e1000: Add support for new hardware (ESB2)
[safe/jmp/linux-2.6] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32
33 #include <asm/uaccess.h>
34
35 extern char e1000_driver_name[];
36 extern char e1000_driver_version[];
37
38 extern int e1000_up(struct e1000_adapter *adapter);
39 extern void e1000_down(struct e1000_adapter *adapter);
40 extern void e1000_reset(struct e1000_adapter *adapter);
41 extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
42 extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
43 extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
44 extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
45 extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
46 extern void e1000_update_stats(struct e1000_adapter *adapter);
47
48 struct e1000_stats {
49         char stat_string[ETH_GSTRING_LEN];
50         int sizeof_stat;
51         int stat_offset;
52 };
53
54 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
55                       offsetof(struct e1000_adapter, m)
56 static const struct e1000_stats e1000_gstrings_stats[] = {
57         { "rx_packets", E1000_STAT(net_stats.rx_packets) },
58         { "tx_packets", E1000_STAT(net_stats.tx_packets) },
59         { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
60         { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
61         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
62         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
63         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
64         { "multicast", E1000_STAT(net_stats.multicast) },
65         { "collisions", E1000_STAT(net_stats.collisions) },
66         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
67         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
68         { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
69         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
70         { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
71         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
72         { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
73         { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
74         { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
75         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
76         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
77         { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
78         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
79         { "tx_deferred_ok", E1000_STAT(stats.dc) },
80         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
81         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
82         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
83         { "rx_long_length_errors", E1000_STAT(stats.roc) },
84         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
85         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
86         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
87         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
88         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
89         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
90         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
91         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
92         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
93         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
94         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
95         { "rx_header_split", E1000_STAT(rx_hdr_split) },
96         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
97 };
98
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN  \
101         sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
102 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
103 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
104         "Register test  (offline)", "Eeprom test    (offline)",
105         "Interrupt test (offline)", "Loopback test  (offline)",
106         "Link test   (on/offline)"
107 };
108 #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
109
110 static int
111 e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
112 {
113         struct e1000_adapter *adapter = netdev_priv(netdev);
114         struct e1000_hw *hw = &adapter->hw;
115
116         if (hw->media_type == e1000_media_type_copper) {
117
118                 ecmd->supported = (SUPPORTED_10baseT_Half |
119                                    SUPPORTED_10baseT_Full |
120                                    SUPPORTED_100baseT_Half |
121                                    SUPPORTED_100baseT_Full |
122                                    SUPPORTED_1000baseT_Full|
123                                    SUPPORTED_Autoneg |
124                                    SUPPORTED_TP);
125
126                 ecmd->advertising = ADVERTISED_TP;
127
128                 if (hw->autoneg == 1) {
129                         ecmd->advertising |= ADVERTISED_Autoneg;
130
131                         /* the e1000 autoneg seems to match ethtool nicely */
132
133                         ecmd->advertising |= hw->autoneg_advertised;
134                 }
135
136                 ecmd->port = PORT_TP;
137                 ecmd->phy_address = hw->phy_addr;
138
139                 if (hw->mac_type == e1000_82543)
140                         ecmd->transceiver = XCVR_EXTERNAL;
141                 else
142                         ecmd->transceiver = XCVR_INTERNAL;
143
144         } else {
145                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
146                                      SUPPORTED_FIBRE |
147                                      SUPPORTED_Autoneg);
148
149                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
150                                      ADVERTISED_FIBRE |
151                                      ADVERTISED_Autoneg);
152
153                 ecmd->port = PORT_FIBRE;
154
155                 if (hw->mac_type >= e1000_82545)
156                         ecmd->transceiver = XCVR_INTERNAL;
157                 else
158                         ecmd->transceiver = XCVR_EXTERNAL;
159         }
160
161         if (netif_carrier_ok(adapter->netdev)) {
162
163                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
164                                                    &adapter->link_duplex);
165                 ecmd->speed = adapter->link_speed;
166
167                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
168                  *          and HALF_DUPLEX != DUPLEX_HALF */
169
170                 if (adapter->link_duplex == FULL_DUPLEX)
171                         ecmd->duplex = DUPLEX_FULL;
172                 else
173                         ecmd->duplex = DUPLEX_HALF;
174         } else {
175                 ecmd->speed = -1;
176                 ecmd->duplex = -1;
177         }
178
179         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
180                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
181         return 0;
182 }
183
184 static int
185 e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
186 {
187         struct e1000_adapter *adapter = netdev_priv(netdev);
188         struct e1000_hw *hw = &adapter->hw;
189
190         /* When SoL/IDER sessions are active, autoneg/speed/duplex
191          * cannot be changed */
192         if (e1000_check_phy_reset_block(hw)) {
193                 DPRINTK(DRV, ERR, "Cannot change link characteristics "
194                         "when SoL/IDER is active.\n");
195                 return -EINVAL;
196         }
197
198         if (ecmd->autoneg == AUTONEG_ENABLE) {
199                 hw->autoneg = 1;
200                 if (hw->media_type == e1000_media_type_fiber)
201                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
202                                      ADVERTISED_FIBRE |
203                                      ADVERTISED_Autoneg;
204                 else
205                         hw->autoneg_advertised = ADVERTISED_10baseT_Half |
206                                                   ADVERTISED_10baseT_Full |
207                                                   ADVERTISED_100baseT_Half |
208                                                   ADVERTISED_100baseT_Full |
209                                                   ADVERTISED_1000baseT_Full|
210                                                   ADVERTISED_Autoneg |
211                                                   ADVERTISED_TP;
212                 ecmd->advertising = hw->autoneg_advertised;
213         } else
214                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
215                         return -EINVAL;
216
217         /* reset the link */
218
219         if (netif_running(adapter->netdev)) {
220                 e1000_down(adapter);
221                 e1000_reset(adapter);
222                 e1000_up(adapter);
223         } else
224                 e1000_reset(adapter);
225
226         return 0;
227 }
228
229 static void
230 e1000_get_pauseparam(struct net_device *netdev,
231                      struct ethtool_pauseparam *pause)
232 {
233         struct e1000_adapter *adapter = netdev_priv(netdev);
234         struct e1000_hw *hw = &adapter->hw;
235
236         pause->autoneg =
237                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
238
239         if (hw->fc == e1000_fc_rx_pause)
240                 pause->rx_pause = 1;
241         else if (hw->fc == e1000_fc_tx_pause)
242                 pause->tx_pause = 1;
243         else if (hw->fc == e1000_fc_full) {
244                 pause->rx_pause = 1;
245                 pause->tx_pause = 1;
246         }
247 }
248
249 static int
250 e1000_set_pauseparam(struct net_device *netdev,
251                      struct ethtool_pauseparam *pause)
252 {
253         struct e1000_adapter *adapter = netdev_priv(netdev);
254         struct e1000_hw *hw = &adapter->hw;
255
256         adapter->fc_autoneg = pause->autoneg;
257
258         if (pause->rx_pause && pause->tx_pause)
259                 hw->fc = e1000_fc_full;
260         else if (pause->rx_pause && !pause->tx_pause)
261                 hw->fc = e1000_fc_rx_pause;
262         else if (!pause->rx_pause && pause->tx_pause)
263                 hw->fc = e1000_fc_tx_pause;
264         else if (!pause->rx_pause && !pause->tx_pause)
265                 hw->fc = e1000_fc_none;
266
267         hw->original_fc = hw->fc;
268
269         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
270                 if (netif_running(adapter->netdev)) {
271                         e1000_down(adapter);
272                         e1000_up(adapter);
273                 } else
274                         e1000_reset(adapter);
275         } else
276                 return ((hw->media_type == e1000_media_type_fiber) ?
277                         e1000_setup_link(hw) : e1000_force_mac_fc(hw));
278
279         return 0;
280 }
281
282 static uint32_t
283 e1000_get_rx_csum(struct net_device *netdev)
284 {
285         struct e1000_adapter *adapter = netdev_priv(netdev);
286         return adapter->rx_csum;
287 }
288
289 static int
290 e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
291 {
292         struct e1000_adapter *adapter = netdev_priv(netdev);
293         adapter->rx_csum = data;
294
295         if (netif_running(netdev)) {
296                 e1000_down(adapter);
297                 e1000_up(adapter);
298         } else
299                 e1000_reset(adapter);
300         return 0;
301 }
302
303 static uint32_t
304 e1000_get_tx_csum(struct net_device *netdev)
305 {
306         return (netdev->features & NETIF_F_HW_CSUM) != 0;
307 }
308
309 static int
310 e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
311 {
312         struct e1000_adapter *adapter = netdev_priv(netdev);
313
314         if (adapter->hw.mac_type < e1000_82543) {
315                 if (!data)
316                         return -EINVAL;
317                 return 0;
318         }
319
320         if (data)
321                 netdev->features |= NETIF_F_HW_CSUM;
322         else
323                 netdev->features &= ~NETIF_F_HW_CSUM;
324
325         return 0;
326 }
327
328 #ifdef NETIF_F_TSO
329 static int
330 e1000_set_tso(struct net_device *netdev, uint32_t data)
331 {
332         struct e1000_adapter *adapter = netdev_priv(netdev);
333         if ((adapter->hw.mac_type < e1000_82544) ||
334             (adapter->hw.mac_type == e1000_82547))
335                 return data ? -EINVAL : 0;
336
337         if (data)
338                 netdev->features |= NETIF_F_TSO;
339         else
340                 netdev->features &= ~NETIF_F_TSO;
341
342         DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
343         adapter->tso_force = TRUE;
344         return 0;
345 }
346 #endif /* NETIF_F_TSO */
347
348 static uint32_t
349 e1000_get_msglevel(struct net_device *netdev)
350 {
351         struct e1000_adapter *adapter = netdev_priv(netdev);
352         return adapter->msg_enable;
353 }
354
355 static void
356 e1000_set_msglevel(struct net_device *netdev, uint32_t data)
357 {
358         struct e1000_adapter *adapter = netdev_priv(netdev);
359         adapter->msg_enable = data;
360 }
361
362 static int
363 e1000_get_regs_len(struct net_device *netdev)
364 {
365 #define E1000_REGS_LEN 32
366         return E1000_REGS_LEN * sizeof(uint32_t);
367 }
368
369 static void
370 e1000_get_regs(struct net_device *netdev,
371                struct ethtool_regs *regs, void *p)
372 {
373         struct e1000_adapter *adapter = netdev_priv(netdev);
374         struct e1000_hw *hw = &adapter->hw;
375         uint32_t *regs_buff = p;
376         uint16_t phy_data;
377
378         memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
379
380         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
381
382         regs_buff[0]  = E1000_READ_REG(hw, CTRL);
383         regs_buff[1]  = E1000_READ_REG(hw, STATUS);
384
385         regs_buff[2]  = E1000_READ_REG(hw, RCTL);
386         regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
387         regs_buff[4]  = E1000_READ_REG(hw, RDH);
388         regs_buff[5]  = E1000_READ_REG(hw, RDT);
389         regs_buff[6]  = E1000_READ_REG(hw, RDTR);
390
391         regs_buff[7]  = E1000_READ_REG(hw, TCTL);
392         regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
393         regs_buff[9]  = E1000_READ_REG(hw, TDH);
394         regs_buff[10] = E1000_READ_REG(hw, TDT);
395         regs_buff[11] = E1000_READ_REG(hw, TIDV);
396
397         regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
398         if (hw->phy_type == e1000_phy_igp) {
399                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
400                                     IGP01E1000_PHY_AGC_A);
401                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
402                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
403                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
404                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
405                                     IGP01E1000_PHY_AGC_B);
406                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
407                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
408                 regs_buff[14] = (uint32_t)phy_data; /* cable length */
409                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
410                                     IGP01E1000_PHY_AGC_C);
411                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
412                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
413                 regs_buff[15] = (uint32_t)phy_data; /* cable length */
414                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
415                                     IGP01E1000_PHY_AGC_D);
416                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
417                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
418                 regs_buff[16] = (uint32_t)phy_data; /* cable length */
419                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
420                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
421                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
422                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
423                 regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
424                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
425                                     IGP01E1000_PHY_PCS_INIT_REG);
426                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
427                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
428                 regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
429                 regs_buff[20] = 0; /* polarity correction enabled (always) */
430                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
431                 regs_buff[23] = regs_buff[18]; /* mdix mode */
432                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
433         } else {
434                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
435                 regs_buff[13] = (uint32_t)phy_data; /* cable length */
436                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
437                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
438                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
439                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
440                 regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
441                 regs_buff[18] = regs_buff[13]; /* cable polarity */
442                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
443                 regs_buff[20] = regs_buff[17]; /* polarity correction */
444                 /* phy receive errors */
445                 regs_buff[22] = adapter->phy_stats.receive_errors;
446                 regs_buff[23] = regs_buff[13]; /* mdix mode */
447         }
448         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
449         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
450         regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
451         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
452         if (hw->mac_type >= e1000_82540 &&
453            hw->media_type == e1000_media_type_copper) {
454                 regs_buff[26] = E1000_READ_REG(hw, MANC);
455         }
456 }
457
458 static int
459 e1000_get_eeprom_len(struct net_device *netdev)
460 {
461         struct e1000_adapter *adapter = netdev_priv(netdev);
462         return adapter->hw.eeprom.word_size * 2;
463 }
464
465 static int
466 e1000_get_eeprom(struct net_device *netdev,
467                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
468 {
469         struct e1000_adapter *adapter = netdev_priv(netdev);
470         struct e1000_hw *hw = &adapter->hw;
471         uint16_t *eeprom_buff;
472         int first_word, last_word;
473         int ret_val = 0;
474         uint16_t i;
475
476         if (eeprom->len == 0)
477                 return -EINVAL;
478
479         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
480
481         first_word = eeprom->offset >> 1;
482         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
483
484         eeprom_buff = kmalloc(sizeof(uint16_t) *
485                         (last_word - first_word + 1), GFP_KERNEL);
486         if (!eeprom_buff)
487                 return -ENOMEM;
488
489         if (hw->eeprom.type == e1000_eeprom_spi)
490                 ret_val = e1000_read_eeprom(hw, first_word,
491                                             last_word - first_word + 1,
492                                             eeprom_buff);
493         else {
494                 for (i = 0; i < last_word - first_word + 1; i++)
495                         if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
496                                                         &eeprom_buff[i])))
497                                 break;
498         }
499
500         /* Device's eeprom is always little-endian, word addressable */
501         for (i = 0; i < last_word - first_word + 1; i++)
502                 le16_to_cpus(&eeprom_buff[i]);
503
504         memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
505                         eeprom->len);
506         kfree(eeprom_buff);
507
508         return ret_val;
509 }
510
511 static int
512 e1000_set_eeprom(struct net_device *netdev,
513                       struct ethtool_eeprom *eeprom, uint8_t *bytes)
514 {
515         struct e1000_adapter *adapter = netdev_priv(netdev);
516         struct e1000_hw *hw = &adapter->hw;
517         uint16_t *eeprom_buff;
518         void *ptr;
519         int max_len, first_word, last_word, ret_val = 0;
520         uint16_t i;
521
522         if (eeprom->len == 0)
523                 return -EOPNOTSUPP;
524
525         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
526                 return -EFAULT;
527
528         max_len = hw->eeprom.word_size * 2;
529
530         first_word = eeprom->offset >> 1;
531         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
532         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
533         if (!eeprom_buff)
534                 return -ENOMEM;
535
536         ptr = (void *)eeprom_buff;
537
538         if (eeprom->offset & 1) {
539                 /* need read/modify/write of first changed EEPROM word */
540                 /* only the second byte of the word is being modified */
541                 ret_val = e1000_read_eeprom(hw, first_word, 1,
542                                             &eeprom_buff[0]);
543                 ptr++;
544         }
545         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
546                 /* need read/modify/write of last changed EEPROM word */
547                 /* only the first byte of the word is being modified */
548                 ret_val = e1000_read_eeprom(hw, last_word, 1,
549                                   &eeprom_buff[last_word - first_word]);
550         }
551
552         /* Device's eeprom is always little-endian, word addressable */
553         for (i = 0; i < last_word - first_word + 1; i++)
554                 le16_to_cpus(&eeprom_buff[i]);
555
556         memcpy(ptr, bytes, eeprom->len);
557
558         for (i = 0; i < last_word - first_word + 1; i++)
559                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
560
561         ret_val = e1000_write_eeprom(hw, first_word,
562                                      last_word - first_word + 1, eeprom_buff);
563
564         /* Update the checksum over the first part of the EEPROM if needed
565          * and flush shadow RAM for 82573 conrollers */
566         if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
567                                 (hw->mac_type == e1000_82573)))
568                 e1000_update_eeprom_checksum(hw);
569
570         kfree(eeprom_buff);
571         return ret_val;
572 }
573
574 static void
575 e1000_get_drvinfo(struct net_device *netdev,
576                        struct ethtool_drvinfo *drvinfo)
577 {
578         struct e1000_adapter *adapter = netdev_priv(netdev);
579         char firmware_version[32];
580         uint16_t eeprom_data;
581
582         strncpy(drvinfo->driver,  e1000_driver_name, 32);
583         strncpy(drvinfo->version, e1000_driver_version, 32);
584
585         /* EEPROM image version # is reported as firmware version # for
586          * 8257{1|2|3} controllers */
587         e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
588         switch (adapter->hw.mac_type) {
589         case e1000_82571:
590         case e1000_82572:
591         case e1000_82573:
592         case e1000_80003es2lan:
593                 sprintf(firmware_version, "%d.%d-%d",
594                         (eeprom_data & 0xF000) >> 12,
595                         (eeprom_data & 0x0FF0) >> 4,
596                         eeprom_data & 0x000F);
597                 break;
598         default:
599                 sprintf(firmware_version, "N/A");
600         }
601
602         strncpy(drvinfo->fw_version, firmware_version, 32);
603         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
604         drvinfo->n_stats = E1000_STATS_LEN;
605         drvinfo->testinfo_len = E1000_TEST_LEN;
606         drvinfo->regdump_len = e1000_get_regs_len(netdev);
607         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
608 }
609
610 static void
611 e1000_get_ringparam(struct net_device *netdev,
612                     struct ethtool_ringparam *ring)
613 {
614         struct e1000_adapter *adapter = netdev_priv(netdev);
615         e1000_mac_type mac_type = adapter->hw.mac_type;
616         struct e1000_tx_ring *txdr = adapter->tx_ring;
617         struct e1000_rx_ring *rxdr = adapter->rx_ring;
618
619         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
620                 E1000_MAX_82544_RXD;
621         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
622                 E1000_MAX_82544_TXD;
623         ring->rx_mini_max_pending = 0;
624         ring->rx_jumbo_max_pending = 0;
625         ring->rx_pending = rxdr->count;
626         ring->tx_pending = txdr->count;
627         ring->rx_mini_pending = 0;
628         ring->rx_jumbo_pending = 0;
629 }
630
631 static int
632 e1000_set_ringparam(struct net_device *netdev,
633                     struct ethtool_ringparam *ring)
634 {
635         struct e1000_adapter *adapter = netdev_priv(netdev);
636         e1000_mac_type mac_type = adapter->hw.mac_type;
637         struct e1000_tx_ring *txdr, *tx_old, *tx_new;
638         struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
639         int i, err, tx_ring_size, rx_ring_size;
640
641         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
642                 return -EINVAL;
643
644         tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
645         rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
646
647         if (netif_running(adapter->netdev))
648                 e1000_down(adapter);
649
650         tx_old = adapter->tx_ring;
651         rx_old = adapter->rx_ring;
652
653         adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
654         if (!adapter->tx_ring) {
655                 err = -ENOMEM;
656                 goto err_setup_rx;
657         }
658         memset(adapter->tx_ring, 0, tx_ring_size);
659
660         adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
661         if (!adapter->rx_ring) {
662                 kfree(adapter->tx_ring);
663                 err = -ENOMEM;
664                 goto err_setup_rx;
665         }
666         memset(adapter->rx_ring, 0, rx_ring_size);
667
668         txdr = adapter->tx_ring;
669         rxdr = adapter->rx_ring;
670
671         rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
672         rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
673                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
674         E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
675
676         txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
677         txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
678                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
679         E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
680
681         for (i = 0; i < adapter->num_tx_queues; i++)
682                 txdr[i].count = txdr->count;
683         for (i = 0; i < adapter->num_rx_queues; i++)
684                 rxdr[i].count = rxdr->count;
685
686         if (netif_running(adapter->netdev)) {
687                 /* Try to get new resources before deleting old */
688                 if ((err = e1000_setup_all_rx_resources(adapter)))
689                         goto err_setup_rx;
690                 if ((err = e1000_setup_all_tx_resources(adapter)))
691                         goto err_setup_tx;
692
693                 /* save the new, restore the old in order to free it,
694                  * then restore the new back again */
695
696                 rx_new = adapter->rx_ring;
697                 tx_new = adapter->tx_ring;
698                 adapter->rx_ring = rx_old;
699                 adapter->tx_ring = tx_old;
700                 e1000_free_all_rx_resources(adapter);
701                 e1000_free_all_tx_resources(adapter);
702                 kfree(tx_old);
703                 kfree(rx_old);
704                 adapter->rx_ring = rx_new;
705                 adapter->tx_ring = tx_new;
706                 if ((err = e1000_up(adapter)))
707                         return err;
708         }
709
710         return 0;
711 err_setup_tx:
712         e1000_free_all_rx_resources(adapter);
713 err_setup_rx:
714         adapter->rx_ring = rx_old;
715         adapter->tx_ring = tx_old;
716         e1000_up(adapter);
717         return err;
718 }
719
720 #define REG_PATTERN_TEST(R, M, W)                                              \
721 {                                                                              \
722         uint32_t pat, value;                                                   \
723         uint32_t test[] =                                                      \
724                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
725         for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \
726                 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
727                 value = E1000_READ_REG(&adapter->hw, R);                       \
728                 if (value != (test[pat] & W & M)) {                             \
729                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
730                                 "0x%08X expected 0x%08X\n",                    \
731                                 E1000_##R, value, (test[pat] & W & M));        \
732                         *data = (adapter->hw.mac_type < e1000_82543) ?         \
733                                 E1000_82542_##R : E1000_##R;                   \
734                         return 1;                                              \
735                 }                                                              \
736         }                                                                      \
737 }
738
739 #define REG_SET_AND_CHECK(R, M, W)                                             \
740 {                                                                              \
741         uint32_t value;                                                        \
742         E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
743         value = E1000_READ_REG(&adapter->hw, R);                               \
744         if ((W & M) != (value & M)) {                                          \
745                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
746                         "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
747                 *data = (adapter->hw.mac_type < e1000_82543) ?                 \
748                         E1000_82542_##R : E1000_##R;                           \
749                 return 1;                                                      \
750         }                                                                      \
751 }
752
753 static int
754 e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
755 {
756         uint32_t value, before, after;
757         uint32_t i, toggle;
758
759         /* The status register is Read Only, so a write should fail.
760          * Some bits that get toggled are ignored.
761          */
762         switch (adapter->hw.mac_type) {
763         /* there are several bits on newer hardware that are r/w */
764         case e1000_82571:
765         case e1000_82572:
766         case e1000_80003es2lan:
767                 toggle = 0x7FFFF3FF;
768                 break;
769         case e1000_82573:
770                 toggle = 0x7FFFF033;
771                 break;
772         default:
773                 toggle = 0xFFFFF833;
774                 break;
775         }
776
777         before = E1000_READ_REG(&adapter->hw, STATUS);
778         value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
779         E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
780         after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
781         if (value != after) {
782                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
783                         "0x%08X expected: 0x%08X\n", after, value);
784                 *data = 1;
785                 return 1;
786         }
787         /* restore previous status */
788         E1000_WRITE_REG(&adapter->hw, STATUS, before);
789
790         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
791         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
792         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
793         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
794         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
795         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
796         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
797         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
798         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
799         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
800         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
801         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
802         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
803         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
804
805         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
806         REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
807         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
808
809         if (adapter->hw.mac_type >= e1000_82543) {
810
811                 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
812                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
813                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
814                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
815                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
816
817                 for (i = 0; i < E1000_RAR_ENTRIES; i++) {
818                         REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
819                                          0xFFFFFFFF);
820                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
821                                          0xFFFFFFFF);
822                 }
823
824         } else {
825
826                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
827                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
828                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
829                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
830
831         }
832
833         for (i = 0; i < E1000_MC_TBL_SIZE; i++)
834                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
835
836         *data = 0;
837         return 0;
838 }
839
840 static int
841 e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
842 {
843         uint16_t temp;
844         uint16_t checksum = 0;
845         uint16_t i;
846
847         *data = 0;
848         /* Read and add up the contents of the EEPROM */
849         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
850                 if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
851                         *data = 1;
852                         break;
853                 }
854                 checksum += temp;
855         }
856
857         /* If Checksum is not Correct return error else test passed */
858         if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
859                 *data = 2;
860
861         return *data;
862 }
863
864 static irqreturn_t
865 e1000_test_intr(int irq,
866                 void *data,
867                 struct pt_regs *regs)
868 {
869         struct net_device *netdev = (struct net_device *) data;
870         struct e1000_adapter *adapter = netdev_priv(netdev);
871
872         adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
873
874         return IRQ_HANDLED;
875 }
876
877 static int
878 e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
879 {
880         struct net_device *netdev = adapter->netdev;
881         uint32_t mask, i=0, shared_int = TRUE;
882         uint32_t irq = adapter->pdev->irq;
883
884         *data = 0;
885
886         /* Hook up test interrupt handler just for this test */
887         if (!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
888                 shared_int = FALSE;
889         } else if (request_irq(irq, &e1000_test_intr, SA_SHIRQ,
890                               netdev->name, netdev)){
891                 *data = 1;
892                 return -1;
893         }
894
895         /* Disable all the interrupts */
896         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
897         msec_delay(10);
898
899         /* Test each interrupt */
900         for (; i < 10; i++) {
901
902                 /* Interrupt to test */
903                 mask = 1 << i;
904
905                 if (!shared_int) {
906                         /* Disable the interrupt to be reported in
907                          * the cause register and then force the same
908                          * interrupt and see if one gets posted.  If
909                          * an interrupt was posted to the bus, the
910                          * test failed.
911                          */
912                         adapter->test_icr = 0;
913                         E1000_WRITE_REG(&adapter->hw, IMC, mask);
914                         E1000_WRITE_REG(&adapter->hw, ICS, mask);
915                         msec_delay(10);
916
917                         if (adapter->test_icr & mask) {
918                                 *data = 3;
919                                 break;
920                         }
921                 }
922
923                 /* Enable the interrupt to be reported in
924                  * the cause register and then force the same
925                  * interrupt and see if one gets posted.  If
926                  * an interrupt was not posted to the bus, the
927                  * test failed.
928                  */
929                 adapter->test_icr = 0;
930                 E1000_WRITE_REG(&adapter->hw, IMS, mask);
931                 E1000_WRITE_REG(&adapter->hw, ICS, mask);
932                 msec_delay(10);
933
934                 if (!(adapter->test_icr & mask)) {
935                         *data = 4;
936                         break;
937                 }
938
939                 if (!shared_int) {
940                         /* Disable the other interrupts to be reported in
941                          * the cause register and then force the other
942                          * interrupts and see if any get posted.  If
943                          * an interrupt was posted to the bus, the
944                          * test failed.
945                          */
946                         adapter->test_icr = 0;
947                         E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
948                         E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
949                         msec_delay(10);
950
951                         if (adapter->test_icr) {
952                                 *data = 5;
953                                 break;
954                         }
955                 }
956         }
957
958         /* Disable all the interrupts */
959         E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
960         msec_delay(10);
961
962         /* Unhook test interrupt handler */
963         free_irq(irq, netdev);
964
965         return *data;
966 }
967
968 static void
969 e1000_free_desc_rings(struct e1000_adapter *adapter)
970 {
971         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
972         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
973         struct pci_dev *pdev = adapter->pdev;
974         int i;
975
976         if (txdr->desc && txdr->buffer_info) {
977                 for (i = 0; i < txdr->count; i++) {
978                         if (txdr->buffer_info[i].dma)
979                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
980                                                  txdr->buffer_info[i].length,
981                                                  PCI_DMA_TODEVICE);
982                         if (txdr->buffer_info[i].skb)
983                                 dev_kfree_skb(txdr->buffer_info[i].skb);
984                 }
985         }
986
987         if (rxdr->desc && rxdr->buffer_info) {
988                 for (i = 0; i < rxdr->count; i++) {
989                         if (rxdr->buffer_info[i].dma)
990                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
991                                                  rxdr->buffer_info[i].length,
992                                                  PCI_DMA_FROMDEVICE);
993                         if (rxdr->buffer_info[i].skb)
994                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
995                 }
996         }
997
998         if (txdr->desc) {
999                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
1000                 txdr->desc = NULL;
1001         }
1002         if (rxdr->desc) {
1003                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
1004                 rxdr->desc = NULL;
1005         }
1006
1007         kfree(txdr->buffer_info);
1008         txdr->buffer_info = NULL;
1009         kfree(rxdr->buffer_info);
1010         rxdr->buffer_info = NULL;
1011
1012         return;
1013 }
1014
1015 static int
1016 e1000_setup_desc_rings(struct e1000_adapter *adapter)
1017 {
1018         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1019         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1020         struct pci_dev *pdev = adapter->pdev;
1021         uint32_t rctl;
1022         int size, i, ret_val;
1023
1024         /* Setup Tx descriptor ring and Tx buffers */
1025
1026         if (!txdr->count)
1027                 txdr->count = E1000_DEFAULT_TXD;
1028
1029         size = txdr->count * sizeof(struct e1000_buffer);
1030         if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1031                 ret_val = 1;
1032                 goto err_nomem;
1033         }
1034         memset(txdr->buffer_info, 0, size);
1035
1036         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1037         E1000_ROUNDUP(txdr->size, 4096);
1038         if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
1039                 ret_val = 2;
1040                 goto err_nomem;
1041         }
1042         memset(txdr->desc, 0, txdr->size);
1043         txdr->next_to_use = txdr->next_to_clean = 0;
1044
1045         E1000_WRITE_REG(&adapter->hw, TDBAL,
1046                         ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1047         E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1048         E1000_WRITE_REG(&adapter->hw, TDLEN,
1049                         txdr->count * sizeof(struct e1000_tx_desc));
1050         E1000_WRITE_REG(&adapter->hw, TDH, 0);
1051         E1000_WRITE_REG(&adapter->hw, TDT, 0);
1052         E1000_WRITE_REG(&adapter->hw, TCTL,
1053                         E1000_TCTL_PSP | E1000_TCTL_EN |
1054                         E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1055                         E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1056
1057         for (i = 0; i < txdr->count; i++) {
1058                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1059                 struct sk_buff *skb;
1060                 unsigned int size = 1024;
1061
1062                 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1063                         ret_val = 3;
1064                         goto err_nomem;
1065                 }
1066                 skb_put(skb, size);
1067                 txdr->buffer_info[i].skb = skb;
1068                 txdr->buffer_info[i].length = skb->len;
1069                 txdr->buffer_info[i].dma =
1070                         pci_map_single(pdev, skb->data, skb->len,
1071                                        PCI_DMA_TODEVICE);
1072                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1073                 tx_desc->lower.data = cpu_to_le32(skb->len);
1074                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1075                                                    E1000_TXD_CMD_IFCS |
1076                                                    E1000_TXD_CMD_RPS);
1077                 tx_desc->upper.data = 0;
1078         }
1079
1080         /* Setup Rx descriptor ring and Rx buffers */
1081
1082         if (!rxdr->count)
1083                 rxdr->count = E1000_DEFAULT_RXD;
1084
1085         size = rxdr->count * sizeof(struct e1000_buffer);
1086         if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1087                 ret_val = 4;
1088                 goto err_nomem;
1089         }
1090         memset(rxdr->buffer_info, 0, size);
1091
1092         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1093         if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1094                 ret_val = 5;
1095                 goto err_nomem;
1096         }
1097         memset(rxdr->desc, 0, rxdr->size);
1098         rxdr->next_to_use = rxdr->next_to_clean = 0;
1099
1100         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1101         E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1102         E1000_WRITE_REG(&adapter->hw, RDBAL,
1103                         ((uint64_t) rxdr->dma & 0xFFFFFFFF));
1104         E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1105         E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1106         E1000_WRITE_REG(&adapter->hw, RDH, 0);
1107         E1000_WRITE_REG(&adapter->hw, RDT, 0);
1108         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1109                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1110                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1111         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1112
1113         for (i = 0; i < rxdr->count; i++) {
1114                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1115                 struct sk_buff *skb;
1116
1117                 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1118                                 GFP_KERNEL))) {
1119                         ret_val = 6;
1120                         goto err_nomem;
1121                 }
1122                 skb_reserve(skb, NET_IP_ALIGN);
1123                 rxdr->buffer_info[i].skb = skb;
1124                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1125                 rxdr->buffer_info[i].dma =
1126                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1127                                        PCI_DMA_FROMDEVICE);
1128                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1129                 memset(skb->data, 0x00, skb->len);
1130         }
1131
1132         return 0;
1133
1134 err_nomem:
1135         e1000_free_desc_rings(adapter);
1136         return ret_val;
1137 }
1138
1139 static void
1140 e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1141 {
1142         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1143         e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1144         e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1145         e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1146         e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1147 }
1148
1149 static void
1150 e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1151 {
1152         uint16_t phy_reg;
1153
1154         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1155          * Extended PHY Specific Control Register to 25MHz clock.  This
1156          * value defaults back to a 2.5MHz clock when the PHY is reset.
1157          */
1158         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1159         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1160         e1000_write_phy_reg(&adapter->hw,
1161                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1162
1163         /* In addition, because of the s/w reset above, we need to enable
1164          * CRS on TX.  This must be set for both full and half duplex
1165          * operation.
1166          */
1167         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1168         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1169         e1000_write_phy_reg(&adapter->hw,
1170                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1171 }
1172
1173 static int
1174 e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1175 {
1176         uint32_t ctrl_reg;
1177         uint16_t phy_reg;
1178
1179         /* Setup the Device Control Register for PHY loopback test. */
1180
1181         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1182         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1183                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1184                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1185                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1186                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1187
1188         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1189
1190         /* Read the PHY Specific Control Register (0x10) */
1191         e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1192
1193         /* Clear Auto-Crossover bits in PHY Specific Control Register
1194          * (bits 6:5).
1195          */
1196         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1197         e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1198
1199         /* Perform software reset on the PHY */
1200         e1000_phy_reset(&adapter->hw);
1201
1202         /* Have to setup TX_CLK and TX_CRS after software reset */
1203         e1000_phy_reset_clk_and_crs(adapter);
1204
1205         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1206
1207         /* Wait for reset to complete. */
1208         udelay(500);
1209
1210         /* Have to setup TX_CLK and TX_CRS after software reset */
1211         e1000_phy_reset_clk_and_crs(adapter);
1212
1213         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1214         e1000_phy_disable_receiver(adapter);
1215
1216         /* Set the loopback bit in the PHY control register. */
1217         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1218         phy_reg |= MII_CR_LOOPBACK;
1219         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1220
1221         /* Setup TX_CLK and TX_CRS one more time. */
1222         e1000_phy_reset_clk_and_crs(adapter);
1223
1224         /* Check Phy Configuration */
1225         e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1226         if (phy_reg != 0x4100)
1227                  return 9;
1228
1229         e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1230         if (phy_reg != 0x0070)
1231                 return 10;
1232
1233         e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1234         if (phy_reg != 0x001A)
1235                 return 11;
1236
1237         return 0;
1238 }
1239
1240 static int
1241 e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1242 {
1243         uint32_t ctrl_reg = 0;
1244         uint32_t stat_reg = 0;
1245
1246         adapter->hw.autoneg = FALSE;
1247
1248         if (adapter->hw.phy_type == e1000_phy_m88) {
1249                 /* Auto-MDI/MDIX Off */
1250                 e1000_write_phy_reg(&adapter->hw,
1251                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1252                 /* reset to update Auto-MDI/MDIX */
1253                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1254                 /* autoneg off */
1255                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1256         }
1257         /* force 1000, set loopback */
1258         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1259
1260         /* Now set up the MAC to the same speed/duplex as the PHY. */
1261         ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1262         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1263         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1264                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1265                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1266                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1267
1268         if (adapter->hw.media_type == e1000_media_type_copper &&
1269            adapter->hw.phy_type == e1000_phy_m88) {
1270                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1271         } else {
1272                 /* Set the ILOS bit on the fiber Nic is half
1273                  * duplex link is detected. */
1274                 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1275                 if ((stat_reg & E1000_STATUS_FD) == 0)
1276                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1277         }
1278
1279         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1280
1281         /* Disable the receiver on the PHY so when a cable is plugged in, the
1282          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1283          */
1284         if (adapter->hw.phy_type == e1000_phy_m88)
1285                 e1000_phy_disable_receiver(adapter);
1286
1287         udelay(500);
1288
1289         return 0;
1290 }
1291
1292 static int
1293 e1000_set_phy_loopback(struct e1000_adapter *adapter)
1294 {
1295         uint16_t phy_reg = 0;
1296         uint16_t count = 0;
1297
1298         switch (adapter->hw.mac_type) {
1299         case e1000_82543:
1300                 if (adapter->hw.media_type == e1000_media_type_copper) {
1301                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1302                          * Some PHY registers get corrupted at random, so
1303                          * attempt this 10 times.
1304                          */
1305                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1306                               count++ < 10);
1307                         if (count < 11)
1308                                 return 0;
1309                 }
1310                 break;
1311
1312         case e1000_82544:
1313         case e1000_82540:
1314         case e1000_82545:
1315         case e1000_82545_rev_3:
1316         case e1000_82546:
1317         case e1000_82546_rev_3:
1318         case e1000_82541:
1319         case e1000_82541_rev_2:
1320         case e1000_82547:
1321         case e1000_82547_rev_2:
1322         case e1000_82571:
1323         case e1000_82572:
1324         case e1000_82573:
1325         case e1000_80003es2lan:
1326                 return e1000_integrated_phy_loopback(adapter);
1327                 break;
1328
1329         default:
1330                 /* Default PHY loopback work is to read the MII
1331                  * control register and assert bit 14 (loopback mode).
1332                  */
1333                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1334                 phy_reg |= MII_CR_LOOPBACK;
1335                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1336                 return 0;
1337                 break;
1338         }
1339
1340         return 8;
1341 }
1342
1343 static int
1344 e1000_setup_loopback_test(struct e1000_adapter *adapter)
1345 {
1346         struct e1000_hw *hw = &adapter->hw;
1347         uint32_t rctl;
1348
1349         if (hw->media_type == e1000_media_type_fiber ||
1350             hw->media_type == e1000_media_type_internal_serdes) {
1351                 switch (hw->mac_type) {
1352                 case e1000_82545:
1353                 case e1000_82546:
1354                 case e1000_82545_rev_3:
1355                 case e1000_82546_rev_3:
1356                         return e1000_set_phy_loopback(adapter);
1357                         break;
1358                 case e1000_82571:
1359                 case e1000_82572:
1360 #define E1000_SERDES_LB_ON 0x410
1361                         e1000_set_phy_loopback(adapter);
1362                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1363                         msec_delay(10);
1364                         return 0;
1365                         break;
1366                 default:
1367                         rctl = E1000_READ_REG(hw, RCTL);
1368                         rctl |= E1000_RCTL_LBM_TCVR;
1369                         E1000_WRITE_REG(hw, RCTL, rctl);
1370                         return 0;
1371                 }
1372         } else if (hw->media_type == e1000_media_type_copper)
1373                 return e1000_set_phy_loopback(adapter);
1374
1375         return 7;
1376 }
1377
1378 static void
1379 e1000_loopback_cleanup(struct e1000_adapter *adapter)
1380 {
1381         struct e1000_hw *hw = &adapter->hw;
1382         uint32_t rctl;
1383         uint16_t phy_reg;
1384
1385         rctl = E1000_READ_REG(hw, RCTL);
1386         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1387         E1000_WRITE_REG(hw, RCTL, rctl);
1388
1389         switch (hw->mac_type) {
1390         case e1000_82571:
1391         case e1000_82572:
1392                 if (hw->media_type == e1000_media_type_fiber ||
1393                     hw->media_type == e1000_media_type_internal_serdes) {
1394 #define E1000_SERDES_LB_OFF 0x400
1395                         E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1396                         msec_delay(10);
1397                         break;
1398                 }
1399                 /* Fall Through */
1400         case e1000_82545:
1401         case e1000_82546:
1402         case e1000_82545_rev_3:
1403         case e1000_82546_rev_3:
1404         default:
1405                 hw->autoneg = TRUE;
1406                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1407                 if (phy_reg & MII_CR_LOOPBACK) {
1408                         phy_reg &= ~MII_CR_LOOPBACK;
1409                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1410                         e1000_phy_reset(hw);
1411                 }
1412                 break;
1413         }
1414 }
1415
1416 static void
1417 e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1418 {
1419         memset(skb->data, 0xFF, frame_size);
1420         frame_size &= ~1;
1421         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1422         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1423         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1424 }
1425
1426 static int
1427 e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1428 {
1429         frame_size &= ~1;
1430         if (*(skb->data + 3) == 0xFF) {
1431                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1432                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1433                         return 0;
1434                 }
1435         }
1436         return 13;
1437 }
1438
1439 static int
1440 e1000_run_loopback_test(struct e1000_adapter *adapter)
1441 {
1442         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1443         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1444         struct pci_dev *pdev = adapter->pdev;
1445         int i, j, k, l, lc, good_cnt, ret_val=0;
1446         unsigned long time;
1447
1448         E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1449
1450         /* Calculate the loop count based on the largest descriptor ring
1451          * The idea is to wrap the largest ring a number of times using 64
1452          * send/receive pairs during each loop
1453          */
1454
1455         if (rxdr->count <= txdr->count)
1456                 lc = ((txdr->count / 64) * 2) + 1;
1457         else
1458                 lc = ((rxdr->count / 64) * 2) + 1;
1459
1460         k = l = 0;
1461         for (j = 0; j <= lc; j++) { /* loop count loop */
1462                 for (i = 0; i < 64; i++) { /* send the packets */
1463                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1464                                         1024);
1465                         pci_dma_sync_single_for_device(pdev,
1466                                         txdr->buffer_info[k].dma,
1467                                         txdr->buffer_info[k].length,
1468                                         PCI_DMA_TODEVICE);
1469                         if (unlikely(++k == txdr->count)) k = 0;
1470                 }
1471                 E1000_WRITE_REG(&adapter->hw, TDT, k);
1472                 msec_delay(200);
1473                 time = jiffies; /* set the start time for the receive */
1474                 good_cnt = 0;
1475                 do { /* receive the sent packets */
1476                         pci_dma_sync_single_for_cpu(pdev,
1477                                         rxdr->buffer_info[l].dma,
1478                                         rxdr->buffer_info[l].length,
1479                                         PCI_DMA_FROMDEVICE);
1480
1481                         ret_val = e1000_check_lbtest_frame(
1482                                         rxdr->buffer_info[l].skb,
1483                                         1024);
1484                         if (!ret_val)
1485                                 good_cnt++;
1486                         if (unlikely(++l == rxdr->count)) l = 0;
1487                         /* time + 20 msecs (200 msecs on 2.4) is more than
1488                          * enough time to complete the receives, if it's
1489                          * exceeded, break and error off
1490                          */
1491                 } while (good_cnt < 64 && jiffies < (time + 20));
1492                 if (good_cnt != 64) {
1493                         ret_val = 13; /* ret_val is the same as mis-compare */
1494                         break;
1495                 }
1496                 if (jiffies >= (time + 2)) {
1497                         ret_val = 14; /* error code for time out error */
1498                         break;
1499                 }
1500         } /* end loop count loop */
1501         return ret_val;
1502 }
1503
1504 static int
1505 e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1506 {
1507         /* PHY loopback cannot be performed if SoL/IDER
1508          * sessions are active */
1509         if (e1000_check_phy_reset_block(&adapter->hw)) {
1510                 DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1511                         "when SoL/IDER is active.\n");
1512                 *data = 0;
1513                 goto out;
1514         }
1515
1516         if ((*data = e1000_setup_desc_rings(adapter)))
1517                 goto out;
1518         if ((*data = e1000_setup_loopback_test(adapter)))
1519                 goto err_loopback;
1520         *data = e1000_run_loopback_test(adapter);
1521         e1000_loopback_cleanup(adapter);
1522
1523 err_loopback:
1524         e1000_free_desc_rings(adapter);
1525 out:
1526         return *data;
1527 }
1528
1529 static int
1530 e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1531 {
1532         *data = 0;
1533         if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1534                 int i = 0;
1535                 adapter->hw.serdes_link_down = TRUE;
1536
1537                 /* On some blade server designs, link establishment
1538                  * could take as long as 2-3 minutes */
1539                 do {
1540                         e1000_check_for_link(&adapter->hw);
1541                         if (adapter->hw.serdes_link_down == FALSE)
1542                                 return *data;
1543                         msec_delay(20);
1544                 } while (i++ < 3750);
1545
1546                 *data = 1;
1547         } else {
1548                 e1000_check_for_link(&adapter->hw);
1549                 if (adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1550                         msec_delay(4000);
1551
1552                 if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1553                         *data = 1;
1554                 }
1555         }
1556         return *data;
1557 }
1558
1559 static int
1560 e1000_diag_test_count(struct net_device *netdev)
1561 {
1562         return E1000_TEST_LEN;
1563 }
1564
1565 static void
1566 e1000_diag_test(struct net_device *netdev,
1567                    struct ethtool_test *eth_test, uint64_t *data)
1568 {
1569         struct e1000_adapter *adapter = netdev_priv(netdev);
1570         boolean_t if_running = netif_running(netdev);
1571
1572         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1573                 /* Offline tests */
1574
1575                 /* save speed, duplex, autoneg settings */
1576                 uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1577                 uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1578                 uint8_t autoneg = adapter->hw.autoneg;
1579
1580                 /* Link test performed before hardware reset so autoneg doesn't
1581                  * interfere with test result */
1582                 if (e1000_link_test(adapter, &data[4]))
1583                         eth_test->flags |= ETH_TEST_FL_FAILED;
1584
1585                 if (if_running)
1586                         e1000_down(adapter);
1587                 else
1588                         e1000_reset(adapter);
1589
1590                 if (e1000_reg_test(adapter, &data[0]))
1591                         eth_test->flags |= ETH_TEST_FL_FAILED;
1592
1593                 e1000_reset(adapter);
1594                 if (e1000_eeprom_test(adapter, &data[1]))
1595                         eth_test->flags |= ETH_TEST_FL_FAILED;
1596
1597                 e1000_reset(adapter);
1598                 if (e1000_intr_test(adapter, &data[2]))
1599                         eth_test->flags |= ETH_TEST_FL_FAILED;
1600
1601                 e1000_reset(adapter);
1602                 if (e1000_loopback_test(adapter, &data[3]))
1603                         eth_test->flags |= ETH_TEST_FL_FAILED;
1604
1605                 /* restore speed, duplex, autoneg settings */
1606                 adapter->hw.autoneg_advertised = autoneg_advertised;
1607                 adapter->hw.forced_speed_duplex = forced_speed_duplex;
1608                 adapter->hw.autoneg = autoneg;
1609
1610                 e1000_reset(adapter);
1611                 if (if_running)
1612                         e1000_up(adapter);
1613         } else {
1614                 /* Online tests */
1615                 if (e1000_link_test(adapter, &data[4]))
1616                         eth_test->flags |= ETH_TEST_FL_FAILED;
1617
1618                 /* Offline tests aren't run; pass by default */
1619                 data[0] = 0;
1620                 data[1] = 0;
1621                 data[2] = 0;
1622                 data[3] = 0;
1623         }
1624         msleep_interruptible(4 * 1000);
1625 }
1626
1627 static void
1628 e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1629 {
1630         struct e1000_adapter *adapter = netdev_priv(netdev);
1631         struct e1000_hw *hw = &adapter->hw;
1632
1633         switch (adapter->hw.device_id) {
1634         case E1000_DEV_ID_82542:
1635         case E1000_DEV_ID_82543GC_FIBER:
1636         case E1000_DEV_ID_82543GC_COPPER:
1637         case E1000_DEV_ID_82544EI_FIBER:
1638         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1639         case E1000_DEV_ID_82545EM_FIBER:
1640         case E1000_DEV_ID_82545EM_COPPER:
1641         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1642                 wol->supported = 0;
1643                 wol->wolopts   = 0;
1644                 return;
1645
1646         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1647                 /* device id 10B5 port-A supports wol */
1648                 if (!adapter->ksp3_port_a) {
1649                         wol->supported = 0;
1650                         return;
1651                 }
1652                 /* KSP3 does not suppport UCAST wake-ups for any interface */
1653                 wol->supported = WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1654
1655                 if (adapter->wol & E1000_WUFC_EX)
1656                         DPRINTK(DRV, ERR, "Interface does not support "
1657                         "directed (unicast) frame wake-up packets\n");
1658                 wol->wolopts = 0;
1659                 goto do_defaults;
1660
1661         case E1000_DEV_ID_82546EB_FIBER:
1662         case E1000_DEV_ID_82546GB_FIBER:
1663         case E1000_DEV_ID_82571EB_FIBER:
1664                 /* Wake events only supported on port A for dual fiber */
1665                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1666                         wol->supported = 0;
1667                         wol->wolopts   = 0;
1668                         return;
1669                 }
1670                 /* Fall Through */
1671
1672         default:
1673                 wol->supported = WAKE_UCAST | WAKE_MCAST |
1674                                  WAKE_BCAST | WAKE_MAGIC;
1675                 wol->wolopts = 0;
1676
1677 do_defaults:
1678                 if (adapter->wol & E1000_WUFC_EX)
1679                         wol->wolopts |= WAKE_UCAST;
1680                 if (adapter->wol & E1000_WUFC_MC)
1681                         wol->wolopts |= WAKE_MCAST;
1682                 if (adapter->wol & E1000_WUFC_BC)
1683                         wol->wolopts |= WAKE_BCAST;
1684                 if (adapter->wol & E1000_WUFC_MAG)
1685                         wol->wolopts |= WAKE_MAGIC;
1686                 return;
1687         }
1688 }
1689
1690 static int
1691 e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1692 {
1693         struct e1000_adapter *adapter = netdev_priv(netdev);
1694         struct e1000_hw *hw = &adapter->hw;
1695
1696         switch (adapter->hw.device_id) {
1697         case E1000_DEV_ID_82542:
1698         case E1000_DEV_ID_82543GC_FIBER:
1699         case E1000_DEV_ID_82543GC_COPPER:
1700         case E1000_DEV_ID_82544EI_FIBER:
1701         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1702         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1703         case E1000_DEV_ID_82545EM_FIBER:
1704         case E1000_DEV_ID_82545EM_COPPER:
1705                 return wol->wolopts ? -EOPNOTSUPP : 0;
1706
1707         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1708                 /* device id 10B5 port-A supports wol */
1709                 if (!adapter->ksp3_port_a)
1710                         return wol->wolopts ? -EOPNOTSUPP : 0;
1711
1712                 if (wol->wolopts & WAKE_UCAST) {
1713                         DPRINTK(DRV, ERR, "Interface does not support "
1714                         "directed (unicast) frame wake-up packets\n");
1715                         return -EOPNOTSUPP;
1716                 }
1717
1718         case E1000_DEV_ID_82546EB_FIBER:
1719         case E1000_DEV_ID_82546GB_FIBER:
1720         case E1000_DEV_ID_82571EB_FIBER:
1721                 /* Wake events only supported on port A for dual fiber */
1722                 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1723                         return wol->wolopts ? -EOPNOTSUPP : 0;
1724                 /* Fall Through */
1725
1726         default:
1727                 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1728                         return -EOPNOTSUPP;
1729
1730                 adapter->wol = 0;
1731
1732                 if (wol->wolopts & WAKE_UCAST)
1733                         adapter->wol |= E1000_WUFC_EX;
1734                 if (wol->wolopts & WAKE_MCAST)
1735                         adapter->wol |= E1000_WUFC_MC;
1736                 if (wol->wolopts & WAKE_BCAST)
1737                         adapter->wol |= E1000_WUFC_BC;
1738                 if (wol->wolopts & WAKE_MAGIC)
1739                         adapter->wol |= E1000_WUFC_MAG;
1740         }
1741
1742         return 0;
1743 }
1744
1745 /* toggle LED 4 times per second = 2 "blinks" per second */
1746 #define E1000_ID_INTERVAL       (HZ/4)
1747
1748 /* bit defines for adapter->led_status */
1749 #define E1000_LED_ON            0
1750
1751 static void
1752 e1000_led_blink_callback(unsigned long data)
1753 {
1754         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1755
1756         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1757                 e1000_led_off(&adapter->hw);
1758         else
1759                 e1000_led_on(&adapter->hw);
1760
1761         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1762 }
1763
1764 static int
1765 e1000_phys_id(struct net_device *netdev, uint32_t data)
1766 {
1767         struct e1000_adapter *adapter = netdev_priv(netdev);
1768
1769         if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1770                 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1771
1772         if (adapter->hw.mac_type < e1000_82571) {
1773                 if (!adapter->blink_timer.function) {
1774                         init_timer(&adapter->blink_timer);
1775                         adapter->blink_timer.function = e1000_led_blink_callback;
1776                         adapter->blink_timer.data = (unsigned long) adapter;
1777                 }
1778                 e1000_setup_led(&adapter->hw);
1779                 mod_timer(&adapter->blink_timer, jiffies);
1780                 msleep_interruptible(data * 1000);
1781                 del_timer_sync(&adapter->blink_timer);
1782         } else if (adapter->hw.mac_type < e1000_82573) {
1783                 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1784                         (E1000_LEDCTL_LED2_BLINK_RATE |
1785                          E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK |
1786                          (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1787                          (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) |
1788                          (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT)));
1789                 msleep_interruptible(data * 1000);
1790         } else {
1791                 E1000_WRITE_REG(&adapter->hw, LEDCTL,
1792                         (E1000_LEDCTL_LED2_BLINK_RATE |
1793                          E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
1794                          (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
1795                          (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
1796                          (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
1797                 msleep_interruptible(data * 1000);
1798         }
1799
1800         e1000_led_off(&adapter->hw);
1801         clear_bit(E1000_LED_ON, &adapter->led_status);
1802         e1000_cleanup_led(&adapter->hw);
1803
1804         return 0;
1805 }
1806
1807 static int
1808 e1000_nway_reset(struct net_device *netdev)
1809 {
1810         struct e1000_adapter *adapter = netdev_priv(netdev);
1811         if (netif_running(netdev)) {
1812                 e1000_down(adapter);
1813                 e1000_up(adapter);
1814         }
1815         return 0;
1816 }
1817
1818 static int
1819 e1000_get_stats_count(struct net_device *netdev)
1820 {
1821         return E1000_STATS_LEN;
1822 }
1823
1824 static void
1825 e1000_get_ethtool_stats(struct net_device *netdev,
1826                 struct ethtool_stats *stats, uint64_t *data)
1827 {
1828         struct e1000_adapter *adapter = netdev_priv(netdev);
1829         int i;
1830
1831         e1000_update_stats(adapter);
1832         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1833                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1834                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1835                         sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1836         }
1837 /*      BUG_ON(i != E1000_STATS_LEN); */
1838 }
1839
1840 static void
1841 e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1842 {
1843         uint8_t *p = data;
1844         int i;
1845
1846         switch (stringset) {
1847         case ETH_SS_TEST:
1848                 memcpy(data, *e1000_gstrings_test,
1849                         E1000_TEST_LEN*ETH_GSTRING_LEN);
1850                 break;
1851         case ETH_SS_STATS:
1852                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1853                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1854                                ETH_GSTRING_LEN);
1855                         p += ETH_GSTRING_LEN;
1856                 }
1857 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1858                 break;
1859         }
1860 }
1861
1862 static struct ethtool_ops e1000_ethtool_ops = {
1863         .get_settings           = e1000_get_settings,
1864         .set_settings           = e1000_set_settings,
1865         .get_drvinfo            = e1000_get_drvinfo,
1866         .get_regs_len           = e1000_get_regs_len,
1867         .get_regs               = e1000_get_regs,
1868         .get_wol                = e1000_get_wol,
1869         .set_wol                = e1000_set_wol,
1870         .get_msglevel           = e1000_get_msglevel,
1871         .set_msglevel           = e1000_set_msglevel,
1872         .nway_reset             = e1000_nway_reset,
1873         .get_link               = ethtool_op_get_link,
1874         .get_eeprom_len         = e1000_get_eeprom_len,
1875         .get_eeprom             = e1000_get_eeprom,
1876         .set_eeprom             = e1000_set_eeprom,
1877         .get_ringparam          = e1000_get_ringparam,
1878         .set_ringparam          = e1000_set_ringparam,
1879         .get_pauseparam         = e1000_get_pauseparam,
1880         .set_pauseparam         = e1000_set_pauseparam,
1881         .get_rx_csum            = e1000_get_rx_csum,
1882         .set_rx_csum            = e1000_set_rx_csum,
1883         .get_tx_csum            = e1000_get_tx_csum,
1884         .set_tx_csum            = e1000_set_tx_csum,
1885         .get_sg                 = ethtool_op_get_sg,
1886         .set_sg                 = ethtool_op_set_sg,
1887 #ifdef NETIF_F_TSO
1888         .get_tso                = ethtool_op_get_tso,
1889         .set_tso                = e1000_set_tso,
1890 #endif
1891         .self_test_count        = e1000_diag_test_count,
1892         .self_test              = e1000_diag_test,
1893         .get_strings            = e1000_get_strings,
1894         .phys_id                = e1000_phys_id,
1895         .get_stats_count        = e1000_get_stats_count,
1896         .get_ethtool_stats      = e1000_get_ethtool_stats,
1897         .get_perm_addr          = ethtool_op_get_perm_addr,
1898 };
1899
1900 void e1000_set_ethtool_ops(struct net_device *netdev)
1901 {
1902         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1903 }