tg3: Allow phylib flowctrl changes anytime
[safe/jmp/linux-2.6] / drivers / net / cpmac.c
1 /*
2  * Copyright (C) 2006, 2007 Eugene Konev
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/moduleparam.h>
22
23 #include <linux/sched.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/types.h>
28 #include <linux/delay.h>
29
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/skbuff.h>
34 #include <linux/mii.h>
35 #include <linux/phy.h>
36 #include <linux/phy_fixed.h>
37 #include <linux/platform_device.h>
38 #include <linux/dma-mapping.h>
39 #include <asm/gpio.h>
40 #include <asm/atomic.h>
41
42 MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
43 MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
44 MODULE_LICENSE("GPL");
45 MODULE_ALIAS("platform:cpmac");
46
47 static int debug_level = 8;
48 static int dumb_switch;
49
50 /* Next 2 are only used in cpmac_probe, so it's pointless to change them */
51 module_param(debug_level, int, 0444);
52 module_param(dumb_switch, int, 0444);
53
54 MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
55 MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
56
57 #define CPMAC_VERSION "0.5.1"
58 /* frame size + 802.1q tag */
59 #define CPMAC_SKB_SIZE          (ETH_FRAME_LEN + 4)
60 #define CPMAC_QUEUES    8
61
62 /* Ethernet registers */
63 #define CPMAC_TX_CONTROL                0x0004
64 #define CPMAC_TX_TEARDOWN               0x0008
65 #define CPMAC_RX_CONTROL                0x0014
66 #define CPMAC_RX_TEARDOWN               0x0018
67 #define CPMAC_MBP                       0x0100
68 # define MBP_RXPASSCRC                  0x40000000
69 # define MBP_RXQOS                      0x20000000
70 # define MBP_RXNOCHAIN                  0x10000000
71 # define MBP_RXCMF                      0x01000000
72 # define MBP_RXSHORT                    0x00800000
73 # define MBP_RXCEF                      0x00400000
74 # define MBP_RXPROMISC                  0x00200000
75 # define MBP_PROMISCCHAN(channel)       (((channel) & 0x7) << 16)
76 # define MBP_RXBCAST                    0x00002000
77 # define MBP_BCASTCHAN(channel)         (((channel) & 0x7) << 8)
78 # define MBP_RXMCAST                    0x00000020
79 # define MBP_MCASTCHAN(channel)         ((channel) & 0x7)
80 #define CPMAC_UNICAST_ENABLE            0x0104
81 #define CPMAC_UNICAST_CLEAR             0x0108
82 #define CPMAC_MAX_LENGTH                0x010c
83 #define CPMAC_BUFFER_OFFSET             0x0110
84 #define CPMAC_MAC_CONTROL               0x0160
85 # define MAC_TXPTYPE                    0x00000200
86 # define MAC_TXPACE                     0x00000040
87 # define MAC_MII                        0x00000020
88 # define MAC_TXFLOW                     0x00000010
89 # define MAC_RXFLOW                     0x00000008
90 # define MAC_MTEST                      0x00000004
91 # define MAC_LOOPBACK                   0x00000002
92 # define MAC_FDX                        0x00000001
93 #define CPMAC_MAC_STATUS                0x0164
94 # define MAC_STATUS_QOS                 0x00000004
95 # define MAC_STATUS_RXFLOW              0x00000002
96 # define MAC_STATUS_TXFLOW              0x00000001
97 #define CPMAC_TX_INT_ENABLE             0x0178
98 #define CPMAC_TX_INT_CLEAR              0x017c
99 #define CPMAC_MAC_INT_VECTOR            0x0180
100 # define MAC_INT_STATUS                 0x00080000
101 # define MAC_INT_HOST                   0x00040000
102 # define MAC_INT_RX                     0x00020000
103 # define MAC_INT_TX                     0x00010000
104 #define CPMAC_MAC_EOI_VECTOR            0x0184
105 #define CPMAC_RX_INT_ENABLE             0x0198
106 #define CPMAC_RX_INT_CLEAR              0x019c
107 #define CPMAC_MAC_INT_ENABLE            0x01a8
108 #define CPMAC_MAC_INT_CLEAR             0x01ac
109 #define CPMAC_MAC_ADDR_LO(channel)      (0x01b0 + (channel) * 4)
110 #define CPMAC_MAC_ADDR_MID              0x01d0
111 #define CPMAC_MAC_ADDR_HI               0x01d4
112 #define CPMAC_MAC_HASH_LO               0x01d8
113 #define CPMAC_MAC_HASH_HI               0x01dc
114 #define CPMAC_TX_PTR(channel)           (0x0600 + (channel) * 4)
115 #define CPMAC_RX_PTR(channel)           (0x0620 + (channel) * 4)
116 #define CPMAC_TX_ACK(channel)           (0x0640 + (channel) * 4)
117 #define CPMAC_RX_ACK(channel)           (0x0660 + (channel) * 4)
118 #define CPMAC_REG_END                   0x0680
119 /*
120  * Rx/Tx statistics
121  * TODO: use some of them to fill stats in cpmac_stats()
122  */
123 #define CPMAC_STATS_RX_GOOD             0x0200
124 #define CPMAC_STATS_RX_BCAST            0x0204
125 #define CPMAC_STATS_RX_MCAST            0x0208
126 #define CPMAC_STATS_RX_PAUSE            0x020c
127 #define CPMAC_STATS_RX_CRC              0x0210
128 #define CPMAC_STATS_RX_ALIGN            0x0214
129 #define CPMAC_STATS_RX_OVER             0x0218
130 #define CPMAC_STATS_RX_JABBER           0x021c
131 #define CPMAC_STATS_RX_UNDER            0x0220
132 #define CPMAC_STATS_RX_FRAG             0x0224
133 #define CPMAC_STATS_RX_FILTER           0x0228
134 #define CPMAC_STATS_RX_QOSFILTER        0x022c
135 #define CPMAC_STATS_RX_OCTETS           0x0230
136
137 #define CPMAC_STATS_TX_GOOD             0x0234
138 #define CPMAC_STATS_TX_BCAST            0x0238
139 #define CPMAC_STATS_TX_MCAST            0x023c
140 #define CPMAC_STATS_TX_PAUSE            0x0240
141 #define CPMAC_STATS_TX_DEFER            0x0244
142 #define CPMAC_STATS_TX_COLLISION        0x0248
143 #define CPMAC_STATS_TX_SINGLECOLL       0x024c
144 #define CPMAC_STATS_TX_MULTICOLL        0x0250
145 #define CPMAC_STATS_TX_EXCESSCOLL       0x0254
146 #define CPMAC_STATS_TX_LATECOLL         0x0258
147 #define CPMAC_STATS_TX_UNDERRUN         0x025c
148 #define CPMAC_STATS_TX_CARRIERSENSE     0x0260
149 #define CPMAC_STATS_TX_OCTETS           0x0264
150
151 #define cpmac_read(base, reg)           (readl((void __iomem *)(base) + (reg)))
152 #define cpmac_write(base, reg, val)     (writel(val, (void __iomem *)(base) + \
153                                                 (reg)))
154
155 /* MDIO bus */
156 #define CPMAC_MDIO_VERSION              0x0000
157 #define CPMAC_MDIO_CONTROL              0x0004
158 # define MDIOC_IDLE                     0x80000000
159 # define MDIOC_ENABLE                   0x40000000
160 # define MDIOC_PREAMBLE                 0x00100000
161 # define MDIOC_FAULT                    0x00080000
162 # define MDIOC_FAULTDETECT              0x00040000
163 # define MDIOC_INTTEST                  0x00020000
164 # define MDIOC_CLKDIV(div)              ((div) & 0xff)
165 #define CPMAC_MDIO_ALIVE                0x0008
166 #define CPMAC_MDIO_LINK                 0x000c
167 #define CPMAC_MDIO_ACCESS(channel)      (0x0080 + (channel) * 8)
168 # define MDIO_BUSY                      0x80000000
169 # define MDIO_WRITE                     0x40000000
170 # define MDIO_REG(reg)                  (((reg) & 0x1f) << 21)
171 # define MDIO_PHY(phy)                  (((phy) & 0x1f) << 16)
172 # define MDIO_DATA(data)                ((data) & 0xffff)
173 #define CPMAC_MDIO_PHYSEL(channel)      (0x0084 + (channel) * 8)
174 # define PHYSEL_LINKSEL                 0x00000040
175 # define PHYSEL_LINKINT                 0x00000020
176
177 struct cpmac_desc {
178         u32 hw_next;
179         u32 hw_data;
180         u16 buflen;
181         u16 bufflags;
182         u16 datalen;
183         u16 dataflags;
184 #define CPMAC_SOP                       0x8000
185 #define CPMAC_EOP                       0x4000
186 #define CPMAC_OWN                       0x2000
187 #define CPMAC_EOQ                       0x1000
188         struct sk_buff *skb;
189         struct cpmac_desc *next;
190         struct cpmac_desc *prev;
191         dma_addr_t mapping;
192         dma_addr_t data_mapping;
193 };
194
195 struct cpmac_priv {
196         spinlock_t lock;
197         spinlock_t rx_lock;
198         struct cpmac_desc *rx_head;
199         int ring_size;
200         struct cpmac_desc *desc_ring;
201         dma_addr_t dma_ring;
202         void __iomem *regs;
203         struct mii_bus *mii_bus;
204         struct phy_device *phy;
205         char phy_name[MII_BUS_ID_SIZE + 3];
206         int oldlink, oldspeed, oldduplex;
207         u32 msg_enable;
208         struct net_device *dev;
209         struct work_struct reset_work;
210         struct platform_device *pdev;
211         struct napi_struct napi;
212         atomic_t reset_pending;
213 };
214
215 static irqreturn_t cpmac_irq(int, void *);
216 static void cpmac_hw_start(struct net_device *dev);
217 static void cpmac_hw_stop(struct net_device *dev);
218 static int cpmac_stop(struct net_device *dev);
219 static int cpmac_open(struct net_device *dev);
220
221 static void cpmac_dump_regs(struct net_device *dev)
222 {
223         int i;
224         struct cpmac_priv *priv = netdev_priv(dev);
225         for (i = 0; i < CPMAC_REG_END; i += 4) {
226                 if (i % 16 == 0) {
227                         if (i)
228                                 printk("\n");
229                         printk(KERN_DEBUG "%s: reg[%p]:", dev->name,
230                                priv->regs + i);
231                 }
232                 printk(" %08x", cpmac_read(priv->regs, i));
233         }
234         printk("\n");
235 }
236
237 static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
238 {
239         int i;
240         printk(KERN_DEBUG "%s: desc[%p]:", dev->name, desc);
241         for (i = 0; i < sizeof(*desc) / 4; i++)
242                 printk(" %08x", ((u32 *)desc)[i]);
243         printk("\n");
244 }
245
246 static void cpmac_dump_all_desc(struct net_device *dev)
247 {
248         struct cpmac_priv *priv = netdev_priv(dev);
249         struct cpmac_desc *dump = priv->rx_head;
250         do {
251                 cpmac_dump_desc(dev, dump);
252                 dump = dump->next;
253         } while (dump != priv->rx_head);
254 }
255
256 static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
257 {
258         int i;
259         printk(KERN_DEBUG "%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
260         for (i = 0; i < skb->len; i++) {
261                 if (i % 16 == 0) {
262                         if (i)
263                                 printk("\n");
264                         printk(KERN_DEBUG "%s: data[%p]:", dev->name,
265                                skb->data + i);
266                 }
267                 printk(" %02x", ((u8 *)skb->data)[i]);
268         }
269         printk("\n");
270 }
271
272 static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
273 {
274         u32 val;
275
276         while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
277                 cpu_relax();
278         cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
279                     MDIO_PHY(phy_id));
280         while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
281                 cpu_relax();
282         return MDIO_DATA(val);
283 }
284
285 static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
286                             int reg, u16 val)
287 {
288         while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
289                 cpu_relax();
290         cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
291                     MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
292         return 0;
293 }
294
295 static int cpmac_mdio_reset(struct mii_bus *bus)
296 {
297         ar7_device_reset(AR7_RESET_BIT_MDIO);
298         cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
299                     MDIOC_CLKDIV(ar7_cpmac_freq() / 2200000 - 1));
300         return 0;
301 }
302
303 static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
304
305 static struct mii_bus *cpmac_mii;
306
307 static int cpmac_config(struct net_device *dev, struct ifmap *map)
308 {
309         if (dev->flags & IFF_UP)
310                 return -EBUSY;
311
312         /* Don't allow changing the I/O address */
313         if (map->base_addr != dev->base_addr)
314                 return -EOPNOTSUPP;
315
316         /* ignore other fields */
317         return 0;
318 }
319
320 static void cpmac_set_multicast_list(struct net_device *dev)
321 {
322         struct dev_mc_list *iter;
323         u8 tmp;
324         u32 mbp, bit, hash[2] = { 0, };
325         struct cpmac_priv *priv = netdev_priv(dev);
326
327         mbp = cpmac_read(priv->regs, CPMAC_MBP);
328         if (dev->flags & IFF_PROMISC) {
329                 cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
330                             MBP_RXPROMISC);
331         } else {
332                 cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
333                 if (dev->flags & IFF_ALLMULTI) {
334                         /* enable all multicast mode */
335                         cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
336                         cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
337                 } else {
338                         /*
339                          * cpmac uses some strange mac address hashing
340                          * (not crc32)
341                          */
342                         netdev_for_each_mc_addr(iter, dev) {
343                                 bit = 0;
344                                 tmp = iter->dmi_addr[0];
345                                 bit  ^= (tmp >> 2) ^ (tmp << 4);
346                                 tmp = iter->dmi_addr[1];
347                                 bit  ^= (tmp >> 4) ^ (tmp << 2);
348                                 tmp = iter->dmi_addr[2];
349                                 bit  ^= (tmp >> 6) ^ tmp;
350                                 tmp = iter->dmi_addr[3];
351                                 bit  ^= (tmp >> 2) ^ (tmp << 4);
352                                 tmp = iter->dmi_addr[4];
353                                 bit  ^= (tmp >> 4) ^ (tmp << 2);
354                                 tmp = iter->dmi_addr[5];
355                                 bit  ^= (tmp >> 6) ^ tmp;
356                                 bit &= 0x3f;
357                                 hash[bit / 32] |= 1 << (bit % 32);
358                         }
359
360                         cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
361                         cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
362                 }
363         }
364 }
365
366 static struct sk_buff *cpmac_rx_one(struct cpmac_priv *priv,
367                                     struct cpmac_desc *desc)
368 {
369         struct sk_buff *skb, *result = NULL;
370
371         if (unlikely(netif_msg_hw(priv)))
372                 cpmac_dump_desc(priv->dev, desc);
373         cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
374         if (unlikely(!desc->datalen)) {
375                 if (netif_msg_rx_err(priv) && net_ratelimit())
376                         printk(KERN_WARNING "%s: rx: spurious interrupt\n",
377                                priv->dev->name);
378                 return NULL;
379         }
380
381         skb = netdev_alloc_skb_ip_align(priv->dev, CPMAC_SKB_SIZE);
382         if (likely(skb)) {
383                 skb_put(desc->skb, desc->datalen);
384                 desc->skb->protocol = eth_type_trans(desc->skb, priv->dev);
385                 desc->skb->ip_summed = CHECKSUM_NONE;
386                 priv->dev->stats.rx_packets++;
387                 priv->dev->stats.rx_bytes += desc->datalen;
388                 result = desc->skb;
389                 dma_unmap_single(&priv->dev->dev, desc->data_mapping,
390                                  CPMAC_SKB_SIZE, DMA_FROM_DEVICE);
391                 desc->skb = skb;
392                 desc->data_mapping = dma_map_single(&priv->dev->dev, skb->data,
393                                                     CPMAC_SKB_SIZE,
394                                                     DMA_FROM_DEVICE);
395                 desc->hw_data = (u32)desc->data_mapping;
396                 if (unlikely(netif_msg_pktdata(priv))) {
397                         printk(KERN_DEBUG "%s: received packet:\n",
398                                priv->dev->name);
399                         cpmac_dump_skb(priv->dev, result);
400                 }
401         } else {
402                 if (netif_msg_rx_err(priv) && net_ratelimit())
403                         printk(KERN_WARNING
404                                "%s: low on skbs, dropping packet\n",
405                                priv->dev->name);
406                 priv->dev->stats.rx_dropped++;
407         }
408
409         desc->buflen = CPMAC_SKB_SIZE;
410         desc->dataflags = CPMAC_OWN;
411
412         return result;
413 }
414
415 static int cpmac_poll(struct napi_struct *napi, int budget)
416 {
417         struct sk_buff *skb;
418         struct cpmac_desc *desc, *restart;
419         struct cpmac_priv *priv = container_of(napi, struct cpmac_priv, napi);
420         int received = 0, processed = 0;
421
422         spin_lock(&priv->rx_lock);
423         if (unlikely(!priv->rx_head)) {
424                 if (netif_msg_rx_err(priv) && net_ratelimit())
425                         printk(KERN_WARNING "%s: rx: polling, but no queue\n",
426                                priv->dev->name);
427                 spin_unlock(&priv->rx_lock);
428                 napi_complete(napi);
429                 return 0;
430         }
431
432         desc = priv->rx_head;
433         restart = NULL;
434         while (((desc->dataflags & CPMAC_OWN) == 0) && (received < budget)) {
435                 processed++;
436
437                 if ((desc->dataflags & CPMAC_EOQ) != 0) {
438                         /* The last update to eoq->hw_next didn't happen
439                         * soon enough, and the receiver stopped here.
440                         *Remember this descriptor so we can restart
441                         * the receiver after freeing some space.
442                         */
443                         if (unlikely(restart)) {
444                                 if (netif_msg_rx_err(priv))
445                                         printk(KERN_ERR "%s: poll found a"
446                                                 " duplicate EOQ: %p and %p\n",
447                                                 priv->dev->name, restart, desc);
448                                 goto fatal_error;
449                         }
450
451                         restart = desc->next;
452                 }
453
454                 skb = cpmac_rx_one(priv, desc);
455                 if (likely(skb)) {
456                         netif_receive_skb(skb);
457                         received++;
458                 }
459                 desc = desc->next;
460         }
461
462         if (desc != priv->rx_head) {
463                 /* We freed some buffers, but not the whole ring,
464                  * add what we did free to the rx list */
465                 desc->prev->hw_next = (u32)0;
466                 priv->rx_head->prev->hw_next = priv->rx_head->mapping;
467         }
468
469         /* Optimization: If we did not actually process an EOQ (perhaps because
470          * of quota limits), check to see if the tail of the queue has EOQ set.
471         * We should immediately restart in that case so that the receiver can
472         * restart and run in parallel with more packet processing.
473         * This lets us handle slightly larger bursts before running
474         * out of ring space (assuming dev->weight < ring_size) */
475
476         if (!restart &&
477              (priv->rx_head->prev->dataflags & (CPMAC_OWN|CPMAC_EOQ))
478                     == CPMAC_EOQ &&
479              (priv->rx_head->dataflags & CPMAC_OWN) != 0) {
480                 /* reset EOQ so the poll loop (above) doesn't try to
481                 * restart this when it eventually gets to this descriptor.
482                 */
483                 priv->rx_head->prev->dataflags &= ~CPMAC_EOQ;
484                 restart = priv->rx_head;
485         }
486
487         if (restart) {
488                 priv->dev->stats.rx_errors++;
489                 priv->dev->stats.rx_fifo_errors++;
490                 if (netif_msg_rx_err(priv) && net_ratelimit())
491                         printk(KERN_WARNING "%s: rx dma ring overrun\n",
492                                priv->dev->name);
493
494                 if (unlikely((restart->dataflags & CPMAC_OWN) == 0)) {
495                         if (netif_msg_drv(priv))
496                                 printk(KERN_ERR "%s: cpmac_poll is trying to "
497                                         "restart rx from a descriptor that's "
498                                         "not free: %p\n",
499                                         priv->dev->name, restart);
500                                 goto fatal_error;
501                 }
502
503                 cpmac_write(priv->regs, CPMAC_RX_PTR(0), restart->mapping);
504         }
505
506         priv->rx_head = desc;
507         spin_unlock(&priv->rx_lock);
508         if (unlikely(netif_msg_rx_status(priv)))
509                 printk(KERN_DEBUG "%s: poll processed %d packets\n",
510                        priv->dev->name, received);
511         if (processed == 0) {
512                 /* we ran out of packets to read,
513                  * revert to interrupt-driven mode */
514                 napi_complete(napi);
515                 cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
516                 return 0;
517         }
518
519         return 1;
520
521 fatal_error:
522         /* Something went horribly wrong.
523          * Reset hardware to try to recover rather than wedging. */
524
525         if (netif_msg_drv(priv)) {
526                 printk(KERN_ERR "%s: cpmac_poll is confused. "
527                                 "Resetting hardware\n", priv->dev->name);
528                 cpmac_dump_all_desc(priv->dev);
529                 printk(KERN_DEBUG "%s: RX_PTR(0)=0x%08x RX_ACK(0)=0x%08x\n",
530                         priv->dev->name,
531                         cpmac_read(priv->regs, CPMAC_RX_PTR(0)),
532                         cpmac_read(priv->regs, CPMAC_RX_ACK(0)));
533         }
534
535         spin_unlock(&priv->rx_lock);
536         napi_complete(napi);
537         netif_tx_stop_all_queues(priv->dev);
538         napi_disable(&priv->napi);
539
540         atomic_inc(&priv->reset_pending);
541         cpmac_hw_stop(priv->dev);
542         if (!schedule_work(&priv->reset_work))
543                 atomic_dec(&priv->reset_pending);
544         return 0;
545
546 }
547
548 static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
549 {
550         int queue, len;
551         struct cpmac_desc *desc;
552         struct cpmac_priv *priv = netdev_priv(dev);
553
554         if (unlikely(atomic_read(&priv->reset_pending)))
555                 return NETDEV_TX_BUSY;
556
557         if (unlikely(skb_padto(skb, ETH_ZLEN)))
558                 return NETDEV_TX_OK;
559
560         len = max(skb->len, ETH_ZLEN);
561         queue = skb_get_queue_mapping(skb);
562         netif_stop_subqueue(dev, queue);
563
564         desc = &priv->desc_ring[queue];
565         if (unlikely(desc->dataflags & CPMAC_OWN)) {
566                 if (netif_msg_tx_err(priv) && net_ratelimit())
567                         printk(KERN_WARNING "%s: tx dma ring full\n",
568                                dev->name);
569                 return NETDEV_TX_BUSY;
570         }
571
572         spin_lock(&priv->lock);
573         dev->trans_start = jiffies;
574         spin_unlock(&priv->lock);
575         desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
576         desc->skb = skb;
577         desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
578                                             DMA_TO_DEVICE);
579         desc->hw_data = (u32)desc->data_mapping;
580         desc->datalen = len;
581         desc->buflen = len;
582         if (unlikely(netif_msg_tx_queued(priv)))
583                 printk(KERN_DEBUG "%s: sending 0x%p, len=%d\n", dev->name, skb,
584                        skb->len);
585         if (unlikely(netif_msg_hw(priv)))
586                 cpmac_dump_desc(dev, desc);
587         if (unlikely(netif_msg_pktdata(priv)))
588                 cpmac_dump_skb(dev, skb);
589         cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
590
591         return NETDEV_TX_OK;
592 }
593
594 static void cpmac_end_xmit(struct net_device *dev, int queue)
595 {
596         struct cpmac_desc *desc;
597         struct cpmac_priv *priv = netdev_priv(dev);
598
599         desc = &priv->desc_ring[queue];
600         cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
601         if (likely(desc->skb)) {
602                 spin_lock(&priv->lock);
603                 dev->stats.tx_packets++;
604                 dev->stats.tx_bytes += desc->skb->len;
605                 spin_unlock(&priv->lock);
606                 dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
607                                  DMA_TO_DEVICE);
608
609                 if (unlikely(netif_msg_tx_done(priv)))
610                         printk(KERN_DEBUG "%s: sent 0x%p, len=%d\n", dev->name,
611                                desc->skb, desc->skb->len);
612
613                 dev_kfree_skb_irq(desc->skb);
614                 desc->skb = NULL;
615                 if (__netif_subqueue_stopped(dev, queue))
616                         netif_wake_subqueue(dev, queue);
617         } else {
618                 if (netif_msg_tx_err(priv) && net_ratelimit())
619                         printk(KERN_WARNING
620                                "%s: end_xmit: spurious interrupt\n", dev->name);
621                 if (__netif_subqueue_stopped(dev, queue))
622                         netif_wake_subqueue(dev, queue);
623         }
624 }
625
626 static void cpmac_hw_stop(struct net_device *dev)
627 {
628         int i;
629         struct cpmac_priv *priv = netdev_priv(dev);
630         struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
631
632         ar7_device_reset(pdata->reset_bit);
633         cpmac_write(priv->regs, CPMAC_RX_CONTROL,
634                     cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
635         cpmac_write(priv->regs, CPMAC_TX_CONTROL,
636                     cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
637         for (i = 0; i < 8; i++) {
638                 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
639                 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
640         }
641         cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
642         cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
643         cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
644         cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
645         cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
646                     cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
647 }
648
649 static void cpmac_hw_start(struct net_device *dev)
650 {
651         int i;
652         struct cpmac_priv *priv = netdev_priv(dev);
653         struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
654
655         ar7_device_reset(pdata->reset_bit);
656         for (i = 0; i < 8; i++) {
657                 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
658                 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
659         }
660         cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
661
662         cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
663                     MBP_RXMCAST);
664         cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
665         for (i = 0; i < 8; i++)
666                 cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
667         cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
668         cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
669                     (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
670                     (dev->dev_addr[3] << 24));
671         cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
672         cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
673         cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
674         cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
675         cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
676         cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
677         cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
678         cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
679         cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
680
681         cpmac_write(priv->regs, CPMAC_RX_CONTROL,
682                     cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
683         cpmac_write(priv->regs, CPMAC_TX_CONTROL,
684                     cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
685         cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
686                     cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
687                     MAC_FDX);
688 }
689
690 static void cpmac_clear_rx(struct net_device *dev)
691 {
692         struct cpmac_priv *priv = netdev_priv(dev);
693         struct cpmac_desc *desc;
694         int i;
695         if (unlikely(!priv->rx_head))
696                 return;
697         desc = priv->rx_head;
698         for (i = 0; i < priv->ring_size; i++) {
699                 if ((desc->dataflags & CPMAC_OWN) == 0) {
700                         if (netif_msg_rx_err(priv) && net_ratelimit())
701                                 printk(KERN_WARNING "%s: packet dropped\n",
702                                        dev->name);
703                         if (unlikely(netif_msg_hw(priv)))
704                                 cpmac_dump_desc(dev, desc);
705                         desc->dataflags = CPMAC_OWN;
706                         dev->stats.rx_dropped++;
707                 }
708                 desc->hw_next = desc->next->mapping;
709                 desc = desc->next;
710         }
711         priv->rx_head->prev->hw_next = 0;
712 }
713
714 static void cpmac_clear_tx(struct net_device *dev)
715 {
716         struct cpmac_priv *priv = netdev_priv(dev);
717         int i;
718         if (unlikely(!priv->desc_ring))
719                 return;
720         for (i = 0; i < CPMAC_QUEUES; i++) {
721                 priv->desc_ring[i].dataflags = 0;
722                 if (priv->desc_ring[i].skb) {
723                         dev_kfree_skb_any(priv->desc_ring[i].skb);
724                         priv->desc_ring[i].skb = NULL;
725                 }
726         }
727 }
728
729 static void cpmac_hw_error(struct work_struct *work)
730 {
731         struct cpmac_priv *priv =
732                 container_of(work, struct cpmac_priv, reset_work);
733
734         spin_lock(&priv->rx_lock);
735         cpmac_clear_rx(priv->dev);
736         spin_unlock(&priv->rx_lock);
737         cpmac_clear_tx(priv->dev);
738         cpmac_hw_start(priv->dev);
739         barrier();
740         atomic_dec(&priv->reset_pending);
741
742         netif_tx_wake_all_queues(priv->dev);
743         cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
744 }
745
746 static void cpmac_check_status(struct net_device *dev)
747 {
748         struct cpmac_priv *priv = netdev_priv(dev);
749
750         u32 macstatus = cpmac_read(priv->regs, CPMAC_MAC_STATUS);
751         int rx_channel = (macstatus >> 8) & 7;
752         int rx_code = (macstatus >> 12) & 15;
753         int tx_channel = (macstatus >> 16) & 7;
754         int tx_code = (macstatus >> 20) & 15;
755
756         if (rx_code || tx_code) {
757                 if (netif_msg_drv(priv) && net_ratelimit()) {
758                         /* Can't find any documentation on what these
759                          *error codes actually are. So just log them and hope..
760                          */
761                         if (rx_code)
762                                 printk(KERN_WARNING "%s: host error %d on rx "
763                                      "channel %d (macstatus %08x), resetting\n",
764                                      dev->name, rx_code, rx_channel, macstatus);
765                         if (tx_code)
766                                 printk(KERN_WARNING "%s: host error %d on tx "
767                                      "channel %d (macstatus %08x), resetting\n",
768                                      dev->name, tx_code, tx_channel, macstatus);
769                 }
770
771                 netif_tx_stop_all_queues(dev);
772                 cpmac_hw_stop(dev);
773                 if (schedule_work(&priv->reset_work))
774                         atomic_inc(&priv->reset_pending);
775                 if (unlikely(netif_msg_hw(priv)))
776                         cpmac_dump_regs(dev);
777         }
778         cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
779 }
780
781 static irqreturn_t cpmac_irq(int irq, void *dev_id)
782 {
783         struct net_device *dev = dev_id;
784         struct cpmac_priv *priv;
785         int queue;
786         u32 status;
787
788         priv = netdev_priv(dev);
789
790         status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
791
792         if (unlikely(netif_msg_intr(priv)))
793                 printk(KERN_DEBUG "%s: interrupt status: 0x%08x\n", dev->name,
794                        status);
795
796         if (status & MAC_INT_TX)
797                 cpmac_end_xmit(dev, (status & 7));
798
799         if (status & MAC_INT_RX) {
800                 queue = (status >> 8) & 7;
801                 if (napi_schedule_prep(&priv->napi)) {
802                         cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
803                         __napi_schedule(&priv->napi);
804                 }
805         }
806
807         cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
808
809         if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS)))
810                 cpmac_check_status(dev);
811
812         return IRQ_HANDLED;
813 }
814
815 static void cpmac_tx_timeout(struct net_device *dev)
816 {
817         struct cpmac_priv *priv = netdev_priv(dev);
818
819         spin_lock(&priv->lock);
820         dev->stats.tx_errors++;
821         spin_unlock(&priv->lock);
822         if (netif_msg_tx_err(priv) && net_ratelimit())
823                 printk(KERN_WARNING "%s: transmit timeout\n", dev->name);
824
825         atomic_inc(&priv->reset_pending);
826         barrier();
827         cpmac_clear_tx(dev);
828         barrier();
829         atomic_dec(&priv->reset_pending);
830
831         netif_tx_wake_all_queues(priv->dev);
832 }
833
834 static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
835 {
836         struct cpmac_priv *priv = netdev_priv(dev);
837         if (!(netif_running(dev)))
838                 return -EINVAL;
839         if (!priv->phy)
840                 return -EINVAL;
841         if ((cmd == SIOCGMIIPHY) || (cmd == SIOCGMIIREG) ||
842             (cmd == SIOCSMIIREG))
843                 return phy_mii_ioctl(priv->phy, if_mii(ifr), cmd);
844
845         return -EOPNOTSUPP;
846 }
847
848 static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
849 {
850         struct cpmac_priv *priv = netdev_priv(dev);
851
852         if (priv->phy)
853                 return phy_ethtool_gset(priv->phy, cmd);
854
855         return -EINVAL;
856 }
857
858 static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
859 {
860         struct cpmac_priv *priv = netdev_priv(dev);
861
862         if (!capable(CAP_NET_ADMIN))
863                 return -EPERM;
864
865         if (priv->phy)
866                 return phy_ethtool_sset(priv->phy, cmd);
867
868         return -EINVAL;
869 }
870
871 static void cpmac_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
872 {
873         struct cpmac_priv *priv = netdev_priv(dev);
874
875         ring->rx_max_pending = 1024;
876         ring->rx_mini_max_pending = 1;
877         ring->rx_jumbo_max_pending = 1;
878         ring->tx_max_pending = 1;
879
880         ring->rx_pending = priv->ring_size;
881         ring->rx_mini_pending = 1;
882         ring->rx_jumbo_pending = 1;
883         ring->tx_pending = 1;
884 }
885
886 static int cpmac_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
887 {
888         struct cpmac_priv *priv = netdev_priv(dev);
889
890         if (netif_running(dev))
891                 return -EBUSY;
892         priv->ring_size = ring->rx_pending;
893         return 0;
894 }
895
896 static void cpmac_get_drvinfo(struct net_device *dev,
897                               struct ethtool_drvinfo *info)
898 {
899         strcpy(info->driver, "cpmac");
900         strcpy(info->version, CPMAC_VERSION);
901         info->fw_version[0] = '\0';
902         sprintf(info->bus_info, "%s", "cpmac");
903         info->regdump_len = 0;
904 }
905
906 static const struct ethtool_ops cpmac_ethtool_ops = {
907         .get_settings = cpmac_get_settings,
908         .set_settings = cpmac_set_settings,
909         .get_drvinfo = cpmac_get_drvinfo,
910         .get_link = ethtool_op_get_link,
911         .get_ringparam = cpmac_get_ringparam,
912         .set_ringparam = cpmac_set_ringparam,
913 };
914
915 static void cpmac_adjust_link(struct net_device *dev)
916 {
917         struct cpmac_priv *priv = netdev_priv(dev);
918         int new_state = 0;
919
920         spin_lock(&priv->lock);
921         if (priv->phy->link) {
922                 netif_tx_start_all_queues(dev);
923                 if (priv->phy->duplex != priv->oldduplex) {
924                         new_state = 1;
925                         priv->oldduplex = priv->phy->duplex;
926                 }
927
928                 if (priv->phy->speed != priv->oldspeed) {
929                         new_state = 1;
930                         priv->oldspeed = priv->phy->speed;
931                 }
932
933                 if (!priv->oldlink) {
934                         new_state = 1;
935                         priv->oldlink = 1;
936                 }
937         } else if (priv->oldlink) {
938                 new_state = 1;
939                 priv->oldlink = 0;
940                 priv->oldspeed = 0;
941                 priv->oldduplex = -1;
942         }
943
944         if (new_state && netif_msg_link(priv) && net_ratelimit())
945                 phy_print_status(priv->phy);
946
947         spin_unlock(&priv->lock);
948 }
949
950 static int cpmac_open(struct net_device *dev)
951 {
952         int i, size, res;
953         struct cpmac_priv *priv = netdev_priv(dev);
954         struct resource *mem;
955         struct cpmac_desc *desc;
956         struct sk_buff *skb;
957
958         mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
959         if (!request_mem_region(mem->start, mem->end - mem->start, dev->name)) {
960                 if (netif_msg_drv(priv))
961                         printk(KERN_ERR "%s: failed to request registers\n",
962                                dev->name);
963                 res = -ENXIO;
964                 goto fail_reserve;
965         }
966
967         priv->regs = ioremap(mem->start, mem->end - mem->start);
968         if (!priv->regs) {
969                 if (netif_msg_drv(priv))
970                         printk(KERN_ERR "%s: failed to remap registers\n",
971                                dev->name);
972                 res = -ENXIO;
973                 goto fail_remap;
974         }
975
976         size = priv->ring_size + CPMAC_QUEUES;
977         priv->desc_ring = dma_alloc_coherent(&dev->dev,
978                                              sizeof(struct cpmac_desc) * size,
979                                              &priv->dma_ring,
980                                              GFP_KERNEL);
981         if (!priv->desc_ring) {
982                 res = -ENOMEM;
983                 goto fail_alloc;
984         }
985
986         for (i = 0; i < size; i++)
987                 priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
988
989         priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
990         for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
991                 skb = netdev_alloc_skb_ip_align(dev, CPMAC_SKB_SIZE);
992                 if (unlikely(!skb)) {
993                         res = -ENOMEM;
994                         goto fail_desc;
995                 }
996                 desc->skb = skb;
997                 desc->data_mapping = dma_map_single(&dev->dev, skb->data,
998                                                     CPMAC_SKB_SIZE,
999                                                     DMA_FROM_DEVICE);
1000                 desc->hw_data = (u32)desc->data_mapping;
1001                 desc->buflen = CPMAC_SKB_SIZE;
1002                 desc->dataflags = CPMAC_OWN;
1003                 desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
1004                 desc->next->prev = desc;
1005                 desc->hw_next = (u32)desc->next->mapping;
1006         }
1007
1008         priv->rx_head->prev->hw_next = (u32)0;
1009
1010         if ((res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED,
1011                                dev->name, dev))) {
1012                 if (netif_msg_drv(priv))
1013                         printk(KERN_ERR "%s: failed to obtain irq\n",
1014                                dev->name);
1015                 goto fail_irq;
1016         }
1017
1018         atomic_set(&priv->reset_pending, 0);
1019         INIT_WORK(&priv->reset_work, cpmac_hw_error);
1020         cpmac_hw_start(dev);
1021
1022         napi_enable(&priv->napi);
1023         priv->phy->state = PHY_CHANGELINK;
1024         phy_start(priv->phy);
1025
1026         return 0;
1027
1028 fail_irq:
1029 fail_desc:
1030         for (i = 0; i < priv->ring_size; i++) {
1031                 if (priv->rx_head[i].skb) {
1032                         dma_unmap_single(&dev->dev,
1033                                          priv->rx_head[i].data_mapping,
1034                                          CPMAC_SKB_SIZE,
1035                                          DMA_FROM_DEVICE);
1036                         kfree_skb(priv->rx_head[i].skb);
1037                 }
1038         }
1039 fail_alloc:
1040         kfree(priv->desc_ring);
1041         iounmap(priv->regs);
1042
1043 fail_remap:
1044         release_mem_region(mem->start, mem->end - mem->start);
1045
1046 fail_reserve:
1047         return res;
1048 }
1049
1050 static int cpmac_stop(struct net_device *dev)
1051 {
1052         int i;
1053         struct cpmac_priv *priv = netdev_priv(dev);
1054         struct resource *mem;
1055
1056         netif_tx_stop_all_queues(dev);
1057
1058         cancel_work_sync(&priv->reset_work);
1059         napi_disable(&priv->napi);
1060         phy_stop(priv->phy);
1061
1062         cpmac_hw_stop(dev);
1063
1064         for (i = 0; i < 8; i++)
1065                 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
1066         cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
1067         cpmac_write(priv->regs, CPMAC_MBP, 0);
1068
1069         free_irq(dev->irq, dev);
1070         iounmap(priv->regs);
1071         mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
1072         release_mem_region(mem->start, mem->end - mem->start);
1073         priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
1074         for (i = 0; i < priv->ring_size; i++) {
1075                 if (priv->rx_head[i].skb) {
1076                         dma_unmap_single(&dev->dev,
1077                                          priv->rx_head[i].data_mapping,
1078                                          CPMAC_SKB_SIZE,
1079                                          DMA_FROM_DEVICE);
1080                         kfree_skb(priv->rx_head[i].skb);
1081                 }
1082         }
1083
1084         dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
1085                           (CPMAC_QUEUES + priv->ring_size),
1086                           priv->desc_ring, priv->dma_ring);
1087         return 0;
1088 }
1089
1090 static const struct net_device_ops cpmac_netdev_ops = {
1091         .ndo_open               = cpmac_open,
1092         .ndo_stop               = cpmac_stop,
1093         .ndo_start_xmit         = cpmac_start_xmit,
1094         .ndo_tx_timeout         = cpmac_tx_timeout,
1095         .ndo_set_multicast_list = cpmac_set_multicast_list,
1096         .ndo_do_ioctl           = cpmac_ioctl,
1097         .ndo_set_config         = cpmac_config,
1098         .ndo_change_mtu         = eth_change_mtu,
1099         .ndo_validate_addr      = eth_validate_addr,
1100         .ndo_set_mac_address    = eth_mac_addr,
1101 };
1102
1103 static int external_switch;
1104
1105 static int __devinit cpmac_probe(struct platform_device *pdev)
1106 {
1107         int rc, phy_id;
1108         char mdio_bus_id[MII_BUS_ID_SIZE];
1109         struct resource *mem;
1110         struct cpmac_priv *priv;
1111         struct net_device *dev;
1112         struct plat_cpmac_data *pdata;
1113
1114         pdata = pdev->dev.platform_data;
1115
1116         if (external_switch || dumb_switch) {
1117                 strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE); /* fixed phys bus */
1118                 phy_id = pdev->id;
1119         } else {
1120                 for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
1121                         if (!(pdata->phy_mask & (1 << phy_id)))
1122                                 continue;
1123                         if (!cpmac_mii->phy_map[phy_id])
1124                                 continue;
1125                         strncpy(mdio_bus_id, cpmac_mii->id, MII_BUS_ID_SIZE);
1126                         break;
1127                 }
1128         }
1129
1130         if (phy_id == PHY_MAX_ADDR) {
1131                 dev_err(&pdev->dev, "no PHY present\n");
1132                 return -ENODEV;
1133         }
1134
1135         dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
1136
1137         if (!dev) {
1138                 printk(KERN_ERR "cpmac: Unable to allocate net_device\n");
1139                 return -ENOMEM;
1140         }
1141
1142         platform_set_drvdata(pdev, dev);
1143         priv = netdev_priv(dev);
1144
1145         priv->pdev = pdev;
1146         mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1147         if (!mem) {
1148                 rc = -ENODEV;
1149                 goto fail;
1150         }
1151
1152         dev->irq = platform_get_irq_byname(pdev, "irq");
1153
1154         dev->netdev_ops = &cpmac_netdev_ops;
1155         dev->ethtool_ops = &cpmac_ethtool_ops;
1156
1157         netif_napi_add(dev, &priv->napi, cpmac_poll, 64);
1158
1159         spin_lock_init(&priv->lock);
1160         spin_lock_init(&priv->rx_lock);
1161         priv->dev = dev;
1162         priv->ring_size = 64;
1163         priv->msg_enable = netif_msg_init(debug_level, 0xff);
1164         memcpy(dev->dev_addr, pdata->dev_addr, sizeof(pdata->dev_addr));
1165
1166         snprintf(priv->phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id);
1167
1168         priv->phy = phy_connect(dev, priv->phy_name, &cpmac_adjust_link, 0,
1169                                                 PHY_INTERFACE_MODE_MII);
1170
1171         if (IS_ERR(priv->phy)) {
1172                 if (netif_msg_drv(priv))
1173                         printk(KERN_ERR "%s: Could not attach to PHY\n",
1174                                dev->name);
1175                 return PTR_ERR(priv->phy);
1176         }
1177
1178         if ((rc = register_netdev(dev))) {
1179                 printk(KERN_ERR "cpmac: error %i registering device %s\n", rc,
1180                        dev->name);
1181                 goto fail;
1182         }
1183
1184         if (netif_msg_probe(priv)) {
1185                 printk(KERN_INFO
1186                        "cpmac: device %s (regs: %p, irq: %d, phy: %s, "
1187                        "mac: %pM)\n", dev->name, (void *)mem->start, dev->irq,
1188                        priv->phy_name, dev->dev_addr);
1189         }
1190         return 0;
1191
1192 fail:
1193         free_netdev(dev);
1194         return rc;
1195 }
1196
1197 static int __devexit cpmac_remove(struct platform_device *pdev)
1198 {
1199         struct net_device *dev = platform_get_drvdata(pdev);
1200         unregister_netdev(dev);
1201         free_netdev(dev);
1202         return 0;
1203 }
1204
1205 static struct platform_driver cpmac_driver = {
1206         .driver.name = "cpmac",
1207         .driver.owner = THIS_MODULE,
1208         .probe = cpmac_probe,
1209         .remove = __devexit_p(cpmac_remove),
1210 };
1211
1212 int __devinit cpmac_init(void)
1213 {
1214         u32 mask;
1215         int i, res;
1216
1217         cpmac_mii = mdiobus_alloc();
1218         if (cpmac_mii == NULL)
1219                 return -ENOMEM;
1220
1221         cpmac_mii->name = "cpmac-mii";
1222         cpmac_mii->read = cpmac_mdio_read;
1223         cpmac_mii->write = cpmac_mdio_write;
1224         cpmac_mii->reset = cpmac_mdio_reset;
1225         cpmac_mii->irq = mii_irqs;
1226
1227         cpmac_mii->priv = ioremap(AR7_REGS_MDIO, 256);
1228
1229         if (!cpmac_mii->priv) {
1230                 printk(KERN_ERR "Can't ioremap mdio registers\n");
1231                 res = -ENXIO;
1232                 goto fail_alloc;
1233         }
1234
1235 #warning FIXME: unhardcode gpio&reset bits
1236         ar7_gpio_disable(26);
1237         ar7_gpio_disable(27);
1238         ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
1239         ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
1240         ar7_device_reset(AR7_RESET_BIT_EPHY);
1241
1242         cpmac_mii->reset(cpmac_mii);
1243
1244         for (i = 0; i < 300; i++)
1245                 if ((mask = cpmac_read(cpmac_mii->priv, CPMAC_MDIO_ALIVE)))
1246                         break;
1247                 else
1248                         msleep(10);
1249
1250         mask &= 0x7fffffff;
1251         if (mask & (mask - 1)) {
1252                 external_switch = 1;
1253                 mask = 0;
1254         }
1255
1256         cpmac_mii->phy_mask = ~(mask | 0x80000000);
1257         snprintf(cpmac_mii->id, MII_BUS_ID_SIZE, "1");
1258
1259         res = mdiobus_register(cpmac_mii);
1260         if (res)
1261                 goto fail_mii;
1262
1263         res = platform_driver_register(&cpmac_driver);
1264         if (res)
1265                 goto fail_cpmac;
1266
1267         return 0;
1268
1269 fail_cpmac:
1270         mdiobus_unregister(cpmac_mii);
1271
1272 fail_mii:
1273         iounmap(cpmac_mii->priv);
1274
1275 fail_alloc:
1276         mdiobus_free(cpmac_mii);
1277
1278         return res;
1279 }
1280
1281 void __devexit cpmac_exit(void)
1282 {
1283         platform_driver_unregister(&cpmac_driver);
1284         mdiobus_unregister(cpmac_mii);
1285         mdiobus_free(cpmac_mii);
1286         iounmap(cpmac_mii->priv);
1287 }
1288
1289 module_init(cpmac_init);
1290 module_exit(cpmac_exit);