c7b0afc9d2808e13b64ce2fae7d6755b2c99041e
[safe/jmp/linux-2.6] / drivers / mtd / ubi / scan.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20
21 /*
22  * UBI scanning unit.
23  *
24  * This unit is responsible for scanning the flash media, checking UBI
25  * headers and providing complete information about the UBI flash image.
26  *
27  * The scanning information is represented by a &struct ubi_scan_info' object.
28  * Information about found volumes is represented by &struct ubi_scan_volume
29  * objects which are kept in volume RB-tree with root at the @volumes field.
30  * The RB-tree is indexed by the volume ID.
31  *
32  * Found logical eraseblocks are represented by &struct ubi_scan_leb objects.
33  * These objects are kept in per-volume RB-trees with the root at the
34  * corresponding &struct ubi_scan_volume object. To put it differently, we keep
35  * an RB-tree of per-volume objects and each of these objects is the root of
36  * RB-tree of per-eraseblock objects.
37  *
38  * Corrupted physical eraseblocks are put to the @corr list, free physical
39  * eraseblocks are put to the @free list and the physical eraseblock to be
40  * erased are put to the @erase list.
41  */
42
43 #include <linux/err.h>
44 #include <linux/crc32.h>
45 #include "ubi.h"
46
47 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
48 static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si);
49 #else
50 #define paranoid_check_si(ubi, si) 0
51 #endif
52
53 /* Temporary variables used during scanning */
54 static struct ubi_ec_hdr *ech;
55 static struct ubi_vid_hdr *vidh;
56
57 /**
58  * add_to_list - add physical eraseblock to a list.
59  * @si: scanning information
60  * @pnum: physical eraseblock number to add
61  * @ec: erase counter of the physical eraseblock
62  * @list: the list to add to
63  *
64  * This function adds physical eraseblock @pnum to free, erase, corrupted or
65  * alien lists. Returns zero in case of success and a negative error code in
66  * case of failure.
67  */
68 static int add_to_list(struct ubi_scan_info *si, int pnum, int ec,
69                        struct list_head *list)
70 {
71         struct ubi_scan_leb *seb;
72
73         if (list == &si->free)
74                 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
75         else if (list == &si->erase)
76                 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
77         else if (list == &si->corr)
78                 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
79         else if (list == &si->alien)
80                 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
81         else
82                 BUG();
83
84         seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
85         if (!seb)
86                 return -ENOMEM;
87
88         seb->pnum = pnum;
89         seb->ec = ec;
90         list_add_tail(&seb->u.list, list);
91         return 0;
92 }
93
94 /**
95  * commit_to_mean_value - commit intermediate results to the final mean erase
96  * counter value.
97  * @si: scanning information
98  *
99  * This is a helper function which calculates partial mean erase counter mean
100  * value and adds it to the resulting mean value. As we can work only in
101  * integer arithmetic and we want to calculate the mean value of erase counter
102  * accurately, we first sum erase counter values in @si->ec_sum variable and
103  * count these components in @si->ec_count. If this temporary @si->ec_sum is
104  * going to overflow, we calculate the partial mean value
105  * (@si->ec_sum/@si->ec_count) and add it to @si->mean_ec.
106  */
107 static void commit_to_mean_value(struct ubi_scan_info *si)
108 {
109         si->ec_sum /= si->ec_count;
110         if (si->ec_sum % si->ec_count >= si->ec_count / 2)
111                 si->mean_ec += 1;
112         si->mean_ec += si->ec_sum;
113 }
114
115 /**
116  * validate_vid_hdr - check that volume identifier header is correct and
117  * consistent.
118  * @vid_hdr: the volume identifier header to check
119  * @sv: information about the volume this logical eraseblock belongs to
120  * @pnum: physical eraseblock number the VID header came from
121  *
122  * This function checks that data stored in @vid_hdr is consistent. Returns
123  * non-zero if an inconsistency was found and zero if not.
124  *
125  * Note, UBI does sanity check of everything it reads from the flash media.
126  * Most of the checks are done in the I/O unit. Here we check that the
127  * information in the VID header is consistent to the information in other VID
128  * headers of the same volume.
129  */
130 static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
131                             const struct ubi_scan_volume *sv, int pnum)
132 {
133         int vol_type = vid_hdr->vol_type;
134         int vol_id = be32_to_cpu(vid_hdr->vol_id);
135         int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
136         int data_pad = be32_to_cpu(vid_hdr->data_pad);
137
138         if (sv->leb_count != 0) {
139                 int sv_vol_type;
140
141                 /*
142                  * This is not the first logical eraseblock belonging to this
143                  * volume. Ensure that the data in its VID header is consistent
144                  * to the data in previous logical eraseblock headers.
145                  */
146
147                 if (vol_id != sv->vol_id) {
148                         dbg_err("inconsistent vol_id");
149                         goto bad;
150                 }
151
152                 if (sv->vol_type == UBI_STATIC_VOLUME)
153                         sv_vol_type = UBI_VID_STATIC;
154                 else
155                         sv_vol_type = UBI_VID_DYNAMIC;
156
157                 if (vol_type != sv_vol_type) {
158                         dbg_err("inconsistent vol_type");
159                         goto bad;
160                 }
161
162                 if (used_ebs != sv->used_ebs) {
163                         dbg_err("inconsistent used_ebs");
164                         goto bad;
165                 }
166
167                 if (data_pad != sv->data_pad) {
168                         dbg_err("inconsistent data_pad");
169                         goto bad;
170                 }
171         }
172
173         return 0;
174
175 bad:
176         ubi_err("inconsistent VID header at PEB %d", pnum);
177         ubi_dbg_dump_vid_hdr(vid_hdr);
178         ubi_dbg_dump_sv(sv);
179         return -EINVAL;
180 }
181
182 /**
183  * add_volume - add volume to the scanning information.
184  * @si: scanning information
185  * @vol_id: ID of the volume to add
186  * @pnum: physical eraseblock number
187  * @vid_hdr: volume identifier header
188  *
189  * If the volume corresponding to the @vid_hdr logical eraseblock is already
190  * present in the scanning information, this function does nothing. Otherwise
191  * it adds corresponding volume to the scanning information. Returns a pointer
192  * to the scanning volume object in case of success and a negative error code
193  * in case of failure.
194  */
195 static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
196                                           int pnum,
197                                           const struct ubi_vid_hdr *vid_hdr)
198 {
199         struct ubi_scan_volume *sv;
200         struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
201
202         ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
203
204         /* Walk the volume RB-tree to look if this volume is already present */
205         while (*p) {
206                 parent = *p;
207                 sv = rb_entry(parent, struct ubi_scan_volume, rb);
208
209                 if (vol_id == sv->vol_id)
210                         return sv;
211
212                 if (vol_id > sv->vol_id)
213                         p = &(*p)->rb_left;
214                 else
215                         p = &(*p)->rb_right;
216         }
217
218         /* The volume is absent - add it */
219         sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
220         if (!sv)
221                 return ERR_PTR(-ENOMEM);
222
223         sv->highest_lnum = sv->leb_count = 0;
224         sv->vol_id = vol_id;
225         sv->root = RB_ROOT;
226         sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
227         sv->data_pad = be32_to_cpu(vid_hdr->data_pad);
228         sv->compat = vid_hdr->compat;
229         sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
230                                                             : UBI_STATIC_VOLUME;
231         if (vol_id > si->highest_vol_id)
232                 si->highest_vol_id = vol_id;
233
234         rb_link_node(&sv->rb, parent, p);
235         rb_insert_color(&sv->rb, &si->volumes);
236         si->vols_found += 1;
237         dbg_bld("added volume %d", vol_id);
238         return sv;
239 }
240
241 /**
242  * compare_lebs - find out which logical eraseblock is newer.
243  * @ubi: UBI device description object
244  * @seb: first logical eraseblock to compare
245  * @pnum: physical eraseblock number of the second logical eraseblock to
246  * compare
247  * @vid_hdr: volume identifier header of the second logical eraseblock
248  *
249  * This function compares 2 copies of a LEB and informs which one is newer. In
250  * case of success this function returns a positive value, in case of failure, a
251  * negative error code is returned. The success return codes use the following
252  * bits:
253  *     o bit 0 is cleared: the first PEB (described by @seb) is newer then the
254  *       second PEB (described by @pnum and @vid_hdr);
255  *     o bit 0 is set: the second PEB is newer;
256  *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
257  *     o bit 1 is set: bit-flips were detected in the newer LEB;
258  *     o bit 2 is cleared: the older LEB is not corrupted;
259  *     o bit 2 is set: the older LEB is corrupted.
260  */
261 static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb,
262                         int pnum, const struct ubi_vid_hdr *vid_hdr)
263 {
264         void *buf;
265         int len, err, second_is_newer, bitflips = 0, corrupted = 0;
266         uint32_t data_crc, crc;
267         struct ubi_vid_hdr *vh = NULL;
268         unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
269
270         if (seb->sqnum == 0 && sqnum2 == 0) {
271                 long long abs, v1 = seb->leb_ver, v2 = be32_to_cpu(vid_hdr->leb_ver);
272
273                 /*
274                  * UBI constantly increases the logical eraseblock version
275                  * number and it can overflow. Thus, we have to bear in mind
276                  * that versions that are close to %0xFFFFFFFF are less then
277                  * versions that are close to %0.
278                  *
279                  * The UBI WL unit guarantees that the number of pending tasks
280                  * is not greater then %0x7FFFFFFF. So, if the difference
281                  * between any two versions is greater or equivalent to
282                  * %0x7FFFFFFF, there was an overflow and the logical
283                  * eraseblock with lower version is actually newer then the one
284                  * with higher version.
285                  *
286                  * FIXME: but this is anyway obsolete and will be removed at
287                  * some point.
288                  */
289
290                 dbg_bld("using old crappy leb_ver stuff");
291
292                 abs = v1 - v2;
293                 if (abs < 0)
294                         abs = -abs;
295
296                 if (abs < 0x7FFFFFFF)
297                         /* Non-overflow situation */
298                         second_is_newer = (v2 > v1);
299                 else
300                         second_is_newer = (v2 < v1);
301         } else
302                 /* Obviously the LEB with lower sequence counter is older */
303                 second_is_newer = sqnum2 > seb->sqnum;
304
305         /*
306          * Now we know which copy is newer. If the copy flag of the PEB with
307          * newer version is not set, then we just return, otherwise we have to
308          * check data CRC. For the second PEB we already have the VID header,
309          * for the first one - we'll need to re-read it from flash.
310          *
311          * FIXME: this may be optimized so that we wouldn't read twice.
312          */
313
314         if (second_is_newer) {
315                 if (!vid_hdr->copy_flag) {
316                         /* It is not a copy, so it is newer */
317                         dbg_bld("second PEB %d is newer, copy_flag is unset",
318                                 pnum);
319                         return 1;
320                 }
321         } else {
322                 pnum = seb->pnum;
323
324                 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
325                 if (!vh)
326                         return -ENOMEM;
327
328                 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
329                 if (err) {
330                         if (err == UBI_IO_BITFLIPS)
331                                 bitflips = 1;
332                         else {
333                                 dbg_err("VID of PEB %d header is bad, but it "
334                                         "was OK earlier", pnum);
335                                 if (err > 0)
336                                         err = -EIO;
337
338                                 goto out_free_vidh;
339                         }
340                 }
341
342                 if (!vh->copy_flag) {
343                         /* It is not a copy, so it is newer */
344                         dbg_bld("first PEB %d is newer, copy_flag is unset",
345                                 pnum);
346                         err = bitflips << 1;
347                         goto out_free_vidh;
348                 }
349
350                 vid_hdr = vh;
351         }
352
353         /* Read the data of the copy and check the CRC */
354
355         len = be32_to_cpu(vid_hdr->data_size);
356         buf = vmalloc(len);
357         if (!buf) {
358                 err = -ENOMEM;
359                 goto out_free_vidh;
360         }
361
362         err = ubi_io_read_data(ubi, buf, pnum, 0, len);
363         if (err && err != UBI_IO_BITFLIPS)
364                 goto out_free_buf;
365
366         data_crc = be32_to_cpu(vid_hdr->data_crc);
367         crc = crc32(UBI_CRC32_INIT, buf, len);
368         if (crc != data_crc) {
369                 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
370                         pnum, crc, data_crc);
371                 corrupted = 1;
372                 bitflips = 0;
373                 second_is_newer = !second_is_newer;
374         } else {
375                 dbg_bld("PEB %d CRC is OK", pnum);
376                 bitflips = !!err;
377         }
378
379         vfree(buf);
380         ubi_free_vid_hdr(ubi, vh);
381
382         if (second_is_newer)
383                 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
384         else
385                 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
386
387         return second_is_newer | (bitflips << 1) | (corrupted << 2);
388
389 out_free_buf:
390         vfree(buf);
391 out_free_vidh:
392         ubi_free_vid_hdr(ubi, vh);
393         ubi_assert(err < 0);
394         return err;
395 }
396
397 /**
398  * ubi_scan_add_used - add information about a physical eraseblock to the
399  * scanning information.
400  * @ubi: UBI device description object
401  * @si: scanning information
402  * @pnum: the physical eraseblock number
403  * @ec: erase counter
404  * @vid_hdr: the volume identifier header
405  * @bitflips: if bit-flips were detected when this physical eraseblock was read
406  *
407  * This function adds information about a used physical eraseblock to the
408  * 'used' tree of the corresponding volume. The function is rather complex
409  * because it has to handle cases when this is not the first physical
410  * eraseblock belonging to the same logical eraseblock, and the newer one has
411  * to be picked, while the older one has to be dropped. This function returns
412  * zero in case of success and a negative error code in case of failure.
413  */
414 int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si,
415                       int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
416                       int bitflips)
417 {
418         int err, vol_id, lnum;
419         uint32_t leb_ver;
420         unsigned long long sqnum;
421         struct ubi_scan_volume *sv;
422         struct ubi_scan_leb *seb;
423         struct rb_node **p, *parent = NULL;
424
425         vol_id = be32_to_cpu(vid_hdr->vol_id);
426         lnum = be32_to_cpu(vid_hdr->lnum);
427         sqnum = be64_to_cpu(vid_hdr->sqnum);
428         leb_ver = be32_to_cpu(vid_hdr->leb_ver);
429
430         dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, ver %u, bitflips %d",
431                 pnum, vol_id, lnum, ec, sqnum, leb_ver, bitflips);
432
433         sv = add_volume(si, vol_id, pnum, vid_hdr);
434         if (IS_ERR(sv) < 0)
435                 return PTR_ERR(sv);
436
437         if (si->max_sqnum < sqnum)
438                 si->max_sqnum = sqnum;
439
440         /*
441          * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
442          * if this is the first instance of this logical eraseblock or not.
443          */
444         p = &sv->root.rb_node;
445         while (*p) {
446                 int cmp_res;
447
448                 parent = *p;
449                 seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
450                 if (lnum != seb->lnum) {
451                         if (lnum < seb->lnum)
452                                 p = &(*p)->rb_left;
453                         else
454                                 p = &(*p)->rb_right;
455                         continue;
456                 }
457
458                 /*
459                  * There is already a physical eraseblock describing the same
460                  * logical eraseblock present.
461                  */
462
463                 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
464                         "LEB ver %u, EC %d", seb->pnum, seb->sqnum,
465                         seb->leb_ver, seb->ec);
466
467                 /*
468                  * Make sure that the logical eraseblocks have different
469                  * versions. Otherwise the image is bad.
470                  */
471                 if (seb->leb_ver == leb_ver && leb_ver != 0) {
472                         ubi_err("two LEBs with same version %u", leb_ver);
473                         ubi_dbg_dump_seb(seb, 0);
474                         ubi_dbg_dump_vid_hdr(vid_hdr);
475                         return -EINVAL;
476                 }
477
478                 /*
479                  * Make sure that the logical eraseblocks have different
480                  * sequence numbers. Otherwise the image is bad.
481                  *
482                  * FIXME: remove 'sqnum != 0' check when leb_ver is removed.
483                  */
484                 if (seb->sqnum == sqnum && sqnum != 0) {
485                         ubi_err("two LEBs with same sequence number %llu",
486                                 sqnum);
487                         ubi_dbg_dump_seb(seb, 0);
488                         ubi_dbg_dump_vid_hdr(vid_hdr);
489                         return -EINVAL;
490                 }
491
492                 /*
493                  * Now we have to drop the older one and preserve the newer
494                  * one.
495                  */
496                 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
497                 if (cmp_res < 0)
498                         return cmp_res;
499
500                 if (cmp_res & 1) {
501                         /*
502                          * This logical eraseblock is newer then the one
503                          * found earlier.
504                          */
505                         err = validate_vid_hdr(vid_hdr, sv, pnum);
506                         if (err)
507                                 return err;
508
509                         if (cmp_res & 4)
510                                 err = add_to_list(si, seb->pnum, seb->ec,
511                                                   &si->corr);
512                         else
513                                 err = add_to_list(si, seb->pnum, seb->ec,
514                                                   &si->erase);
515                         if (err)
516                                 return err;
517
518                         seb->ec = ec;
519                         seb->pnum = pnum;
520                         seb->scrub = ((cmp_res & 2) || bitflips);
521                         seb->sqnum = sqnum;
522                         seb->leb_ver = leb_ver;
523
524                         if (sv->highest_lnum == lnum)
525                                 sv->last_data_size =
526                                         be32_to_cpu(vid_hdr->data_size);
527
528                         return 0;
529                 } else {
530                         /*
531                          * This logical eraseblock is older then the one found
532                          * previously.
533                          */
534                         if (cmp_res & 4)
535                                 return add_to_list(si, pnum, ec, &si->corr);
536                         else
537                                 return add_to_list(si, pnum, ec, &si->erase);
538                 }
539         }
540
541         /*
542          * We've met this logical eraseblock for the first time, add it to the
543          * scanning information.
544          */
545
546         err = validate_vid_hdr(vid_hdr, sv, pnum);
547         if (err)
548                 return err;
549
550         seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
551         if (!seb)
552                 return -ENOMEM;
553
554         seb->ec = ec;
555         seb->pnum = pnum;
556         seb->lnum = lnum;
557         seb->sqnum = sqnum;
558         seb->scrub = bitflips;
559         seb->leb_ver = leb_ver;
560
561         if (sv->highest_lnum <= lnum) {
562                 sv->highest_lnum = lnum;
563                 sv->last_data_size = be32_to_cpu(vid_hdr->data_size);
564         }
565
566         sv->leb_count += 1;
567         rb_link_node(&seb->u.rb, parent, p);
568         rb_insert_color(&seb->u.rb, &sv->root);
569         return 0;
570 }
571
572 /**
573  * ubi_scan_find_sv - find information about a particular volume in the
574  * scanning information.
575  * @si: scanning information
576  * @vol_id: the requested volume ID
577  *
578  * This function returns a pointer to the volume description or %NULL if there
579  * are no data about this volume in the scanning information.
580  */
581 struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
582                                          int vol_id)
583 {
584         struct ubi_scan_volume *sv;
585         struct rb_node *p = si->volumes.rb_node;
586
587         while (p) {
588                 sv = rb_entry(p, struct ubi_scan_volume, rb);
589
590                 if (vol_id == sv->vol_id)
591                         return sv;
592
593                 if (vol_id > sv->vol_id)
594                         p = p->rb_left;
595                 else
596                         p = p->rb_right;
597         }
598
599         return NULL;
600 }
601
602 /**
603  * ubi_scan_find_seb - find information about a particular logical
604  * eraseblock in the volume scanning information.
605  * @sv: a pointer to the volume scanning information
606  * @lnum: the requested logical eraseblock
607  *
608  * This function returns a pointer to the scanning logical eraseblock or %NULL
609  * if there are no data about it in the scanning volume information.
610  */
611 struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
612                                        int lnum)
613 {
614         struct ubi_scan_leb *seb;
615         struct rb_node *p = sv->root.rb_node;
616
617         while (p) {
618                 seb = rb_entry(p, struct ubi_scan_leb, u.rb);
619
620                 if (lnum == seb->lnum)
621                         return seb;
622
623                 if (lnum > seb->lnum)
624                         p = p->rb_left;
625                 else
626                         p = p->rb_right;
627         }
628
629         return NULL;
630 }
631
632 /**
633  * ubi_scan_rm_volume - delete scanning information about a volume.
634  * @si: scanning information
635  * @sv: the volume scanning information to delete
636  */
637 void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
638 {
639         struct rb_node *rb;
640         struct ubi_scan_leb *seb;
641
642         dbg_bld("remove scanning information about volume %d", sv->vol_id);
643
644         while ((rb = rb_first(&sv->root))) {
645                 seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
646                 rb_erase(&seb->u.rb, &sv->root);
647                 list_add_tail(&seb->u.list, &si->erase);
648         }
649
650         rb_erase(&sv->rb, &si->volumes);
651         kfree(sv);
652         si->vols_found -= 1;
653 }
654
655 /**
656  * ubi_scan_erase_peb - erase a physical eraseblock.
657  * @ubi: UBI device description object
658  * @si: scanning information
659  * @pnum: physical eraseblock number to erase;
660  * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
661  *
662  * This function erases physical eraseblock 'pnum', and writes the erase
663  * counter header to it. This function should only be used on UBI device
664  * initialization stages, when the EBA unit had not been yet initialized. This
665  * function returns zero in case of success and a negative error code in case
666  * of failure.
667  */
668 int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si,
669                        int pnum, int ec)
670 {
671         int err;
672         struct ubi_ec_hdr *ec_hdr;
673
674         if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
675                 /*
676                  * Erase counter overflow. Upgrade UBI and use 64-bit
677                  * erase counters internally.
678                  */
679                 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
680                 return -EINVAL;
681         }
682
683         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
684         if (!ec_hdr)
685                 return -ENOMEM;
686
687         ec_hdr->ec = cpu_to_be64(ec);
688
689         err = ubi_io_sync_erase(ubi, pnum, 0);
690         if (err < 0)
691                 goto out_free;
692
693         err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
694
695 out_free:
696         kfree(ec_hdr);
697         return err;
698 }
699
700 /**
701  * ubi_scan_get_free_peb - get a free physical eraseblock.
702  * @ubi: UBI device description object
703  * @si: scanning information
704  *
705  * This function returns a free physical eraseblock. It is supposed to be
706  * called on the UBI initialization stages when the wear-leveling unit is not
707  * initialized yet. This function picks a physical eraseblocks from one of the
708  * lists, writes the EC header if it is needed, and removes it from the list.
709  *
710  * This function returns scanning physical eraseblock information in case of
711  * success and an error code in case of failure.
712  */
713 struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi,
714                                            struct ubi_scan_info *si)
715 {
716         int err = 0, i;
717         struct ubi_scan_leb *seb;
718
719         if (!list_empty(&si->free)) {
720                 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
721                 list_del(&seb->u.list);
722                 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
723                 return seb;
724         }
725
726         for (i = 0; i < 2; i++) {
727                 struct list_head *head;
728                 struct ubi_scan_leb *tmp_seb;
729
730                 if (i == 0)
731                         head = &si->erase;
732                 else
733                         head = &si->corr;
734
735                 /*
736                  * We try to erase the first physical eraseblock from the @head
737                  * list and pick it if we succeed, or try to erase the
738                  * next one if not. And so forth. We don't want to take care
739                  * about bad eraseblocks here - they'll be handled later.
740                  */
741                 list_for_each_entry_safe(seb, tmp_seb, head, u.list) {
742                         if (seb->ec == UBI_SCAN_UNKNOWN_EC)
743                                 seb->ec = si->mean_ec;
744
745                         err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
746                         if (err)
747                                 continue;
748
749                         seb->ec += 1;
750                         list_del(&seb->u.list);
751                         dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
752                         return seb;
753                 }
754         }
755
756         ubi_err("no eraseblocks found");
757         return ERR_PTR(-ENOSPC);
758 }
759
760 /**
761  * process_eb - read UBI headers, check them and add corresponding data
762  * to the scanning information.
763  * @ubi: UBI device description object
764  * @si: scanning information
765  * @pnum: the physical eraseblock number
766  *
767  * This function returns a zero if the physical eraseblock was successfully
768  * handled and a negative error code in case of failure.
769  */
770 static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, int pnum)
771 {
772         long long ec;
773         int err, bitflips = 0, vol_id, ec_corr = 0;
774
775         dbg_bld("scan PEB %d", pnum);
776
777         /* Skip bad physical eraseblocks */
778         err = ubi_io_is_bad(ubi, pnum);
779         if (err < 0)
780                 return err;
781         else if (err) {
782                 /*
783                  * FIXME: this is actually duty of the I/O unit to initialize
784                  * this, but MTD does not provide enough information.
785                  */
786                 si->bad_peb_count += 1;
787                 return 0;
788         }
789
790         err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
791         if (err < 0)
792                 return err;
793         else if (err == UBI_IO_BITFLIPS)
794                 bitflips = 1;
795         else if (err == UBI_IO_PEB_EMPTY)
796                 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase);
797         else if (err == UBI_IO_BAD_EC_HDR) {
798                 /*
799                  * We have to also look at the VID header, possibly it is not
800                  * corrupted. Set %bitflips flag in order to make this PEB be
801                  * moved and EC be re-created.
802                  */
803                 ec_corr = 1;
804                 ec = UBI_SCAN_UNKNOWN_EC;
805                 bitflips = 1;
806         }
807
808         si->is_empty = 0;
809
810         if (!ec_corr) {
811                 /* Make sure UBI version is OK */
812                 if (ech->version != UBI_VERSION) {
813                         ubi_err("this UBI version is %d, image version is %d",
814                                 UBI_VERSION, (int)ech->version);
815                         return -EINVAL;
816                 }
817
818                 ec = be64_to_cpu(ech->ec);
819                 if (ec > UBI_MAX_ERASECOUNTER) {
820                         /*
821                          * Erase counter overflow. The EC headers have 64 bits
822                          * reserved, but we anyway make use of only 31 bit
823                          * values, as this seems to be enough for any existing
824                          * flash. Upgrade UBI and use 64-bit erase counters
825                          * internally.
826                          */
827                         ubi_err("erase counter overflow, max is %d",
828                                 UBI_MAX_ERASECOUNTER);
829                         ubi_dbg_dump_ec_hdr(ech);
830                         return -EINVAL;
831                 }
832         }
833
834         /* OK, we've done with the EC header, let's look at the VID header */
835
836         err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
837         if (err < 0)
838                 return err;
839         else if (err == UBI_IO_BITFLIPS)
840                 bitflips = 1;
841         else if (err == UBI_IO_BAD_VID_HDR ||
842                  (err == UBI_IO_PEB_FREE && ec_corr)) {
843                 /* VID header is corrupted */
844                 err = add_to_list(si, pnum, ec, &si->corr);
845                 if (err)
846                         return err;
847                 goto adjust_mean_ec;
848         } else if (err == UBI_IO_PEB_FREE) {
849                 /* No VID header - the physical eraseblock is free */
850                 err = add_to_list(si, pnum, ec, &si->free);
851                 if (err)
852                         return err;
853                 goto adjust_mean_ec;
854         }
855
856         vol_id = be32_to_cpu(vidh->vol_id);
857         if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOL_ID) {
858                 int lnum = be32_to_cpu(vidh->lnum);
859
860                 /* Unsupported internal volume */
861                 switch (vidh->compat) {
862                 case UBI_COMPAT_DELETE:
863                         ubi_msg("\"delete\" compatible internal volume %d:%d"
864                                 " found, remove it", vol_id, lnum);
865                         err = add_to_list(si, pnum, ec, &si->corr);
866                         if (err)
867                                 return err;
868                         break;
869
870                 case UBI_COMPAT_RO:
871                         ubi_msg("read-only compatible internal volume %d:%d"
872                                 " found, switch to read-only mode",
873                                 vol_id, lnum);
874                         ubi->ro_mode = 1;
875                         break;
876
877                 case UBI_COMPAT_PRESERVE:
878                         ubi_msg("\"preserve\" compatible internal volume %d:%d"
879                                 " found", vol_id, lnum);
880                         err = add_to_list(si, pnum, ec, &si->alien);
881                         if (err)
882                                 return err;
883                         si->alien_peb_count += 1;
884                         return 0;
885
886                 case UBI_COMPAT_REJECT:
887                         ubi_err("incompatible internal volume %d:%d found",
888                                 vol_id, lnum);
889                         return -EINVAL;
890                 }
891         }
892
893         /* Both UBI headers seem to be fine */
894         err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
895         if (err)
896                 return err;
897
898 adjust_mean_ec:
899         if (!ec_corr) {
900                 if (si->ec_sum + ec < ec) {
901                         commit_to_mean_value(si);
902                         si->ec_sum = 0;
903                         si->ec_count = 0;
904                 } else {
905                         si->ec_sum += ec;
906                         si->ec_count += 1;
907                 }
908
909                 if (ec > si->max_ec)
910                         si->max_ec = ec;
911                 if (ec < si->min_ec)
912                         si->min_ec = ec;
913         }
914
915         return 0;
916 }
917
918 /**
919  * ubi_scan - scan an MTD device.
920  * @ubi: UBI device description object
921  *
922  * This function does full scanning of an MTD device and returns complete
923  * information about it. In case of failure, an error code is returned.
924  */
925 struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
926 {
927         int err, pnum;
928         struct rb_node *rb1, *rb2;
929         struct ubi_scan_volume *sv;
930         struct ubi_scan_leb *seb;
931         struct ubi_scan_info *si;
932
933         si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
934         if (!si)
935                 return ERR_PTR(-ENOMEM);
936
937         INIT_LIST_HEAD(&si->corr);
938         INIT_LIST_HEAD(&si->free);
939         INIT_LIST_HEAD(&si->erase);
940         INIT_LIST_HEAD(&si->alien);
941         si->volumes = RB_ROOT;
942         si->is_empty = 1;
943
944         err = -ENOMEM;
945         ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
946         if (!ech)
947                 goto out_si;
948
949         vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
950         if (!vidh)
951                 goto out_ech;
952
953         for (pnum = 0; pnum < ubi->peb_count; pnum++) {
954                 cond_resched();
955
956                 dbg_msg("process PEB %d", pnum);
957                 err = process_eb(ubi, si, pnum);
958                 if (err < 0)
959                         goto out_vidh;
960         }
961
962         dbg_msg("scanning is finished");
963
964         /* Finish mean erase counter calculations */
965         if (si->ec_count)
966                 commit_to_mean_value(si);
967
968         if (si->is_empty)
969                 ubi_msg("empty MTD device detected");
970
971         /*
972          * In case of unknown erase counter we use the mean erase counter
973          * value.
974          */
975         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
976                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
977                         if (seb->ec == UBI_SCAN_UNKNOWN_EC)
978                                 seb->ec = si->mean_ec;
979         }
980
981         list_for_each_entry(seb, &si->free, u.list) {
982                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
983                         seb->ec = si->mean_ec;
984         }
985
986         list_for_each_entry(seb, &si->corr, u.list)
987                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
988                         seb->ec = si->mean_ec;
989
990         list_for_each_entry(seb, &si->erase, u.list)
991                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
992                         seb->ec = si->mean_ec;
993
994         err = paranoid_check_si(ubi, si);
995         if (err) {
996                 if (err > 0)
997                         err = -EINVAL;
998                 goto out_vidh;
999         }
1000
1001         ubi_free_vid_hdr(ubi, vidh);
1002         kfree(ech);
1003
1004         return si;
1005
1006 out_vidh:
1007         ubi_free_vid_hdr(ubi, vidh);
1008 out_ech:
1009         kfree(ech);
1010 out_si:
1011         ubi_scan_destroy_si(si);
1012         return ERR_PTR(err);
1013 }
1014
1015 /**
1016  * destroy_sv - free the scanning volume information
1017  * @sv: scanning volume information
1018  *
1019  * This function destroys the volume RB-tree (@sv->root) and the scanning
1020  * volume information.
1021  */
1022 static void destroy_sv(struct ubi_scan_volume *sv)
1023 {
1024         struct ubi_scan_leb *seb;
1025         struct rb_node *this = sv->root.rb_node;
1026
1027         while (this) {
1028                 if (this->rb_left)
1029                         this = this->rb_left;
1030                 else if (this->rb_right)
1031                         this = this->rb_right;
1032                 else {
1033                         seb = rb_entry(this, struct ubi_scan_leb, u.rb);
1034                         this = rb_parent(this);
1035                         if (this) {
1036                                 if (this->rb_left == &seb->u.rb)
1037                                         this->rb_left = NULL;
1038                                 else
1039                                         this->rb_right = NULL;
1040                         }
1041
1042                         kfree(seb);
1043                 }
1044         }
1045         kfree(sv);
1046 }
1047
1048 /**
1049  * ubi_scan_destroy_si - destroy scanning information.
1050  * @si: scanning information
1051  */
1052 void ubi_scan_destroy_si(struct ubi_scan_info *si)
1053 {
1054         struct ubi_scan_leb *seb, *seb_tmp;
1055         struct ubi_scan_volume *sv;
1056         struct rb_node *rb;
1057
1058         list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
1059                 list_del(&seb->u.list);
1060                 kfree(seb);
1061         }
1062         list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
1063                 list_del(&seb->u.list);
1064                 kfree(seb);
1065         }
1066         list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
1067                 list_del(&seb->u.list);
1068                 kfree(seb);
1069         }
1070         list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
1071                 list_del(&seb->u.list);
1072                 kfree(seb);
1073         }
1074
1075         /* Destroy the volume RB-tree */
1076         rb = si->volumes.rb_node;
1077         while (rb) {
1078                 if (rb->rb_left)
1079                         rb = rb->rb_left;
1080                 else if (rb->rb_right)
1081                         rb = rb->rb_right;
1082                 else {
1083                         sv = rb_entry(rb, struct ubi_scan_volume, rb);
1084
1085                         rb = rb_parent(rb);
1086                         if (rb) {
1087                                 if (rb->rb_left == &sv->rb)
1088                                         rb->rb_left = NULL;
1089                                 else
1090                                         rb->rb_right = NULL;
1091                         }
1092
1093                         destroy_sv(sv);
1094                 }
1095         }
1096
1097         kfree(si);
1098 }
1099
1100 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1101
1102 /**
1103  * paranoid_check_si - check if the scanning information is correct and
1104  * consistent.
1105  * @ubi: UBI device description object
1106  * @si: scanning information
1107  *
1108  * This function returns zero if the scanning information is all right, %1 if
1109  * not and a negative error code if an error occurred.
1110  */
1111 static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si)
1112 {
1113         int pnum, err, vols_found = 0;
1114         struct rb_node *rb1, *rb2;
1115         struct ubi_scan_volume *sv;
1116         struct ubi_scan_leb *seb, *last_seb;
1117         uint8_t *buf;
1118
1119         /*
1120          * At first, check that scanning information is OK.
1121          */
1122         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1123                 int leb_count = 0;
1124
1125                 cond_resched();
1126
1127                 vols_found += 1;
1128
1129                 if (si->is_empty) {
1130                         ubi_err("bad is_empty flag");
1131                         goto bad_sv;
1132                 }
1133
1134                 if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
1135                     sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
1136                     sv->data_pad < 0 || sv->last_data_size < 0) {
1137                         ubi_err("negative values");
1138                         goto bad_sv;
1139                 }
1140
1141                 if (sv->vol_id >= UBI_MAX_VOLUMES &&
1142                     sv->vol_id < UBI_INTERNAL_VOL_START) {
1143                         ubi_err("bad vol_id");
1144                         goto bad_sv;
1145                 }
1146
1147                 if (sv->vol_id > si->highest_vol_id) {
1148                         ubi_err("highest_vol_id is %d, but vol_id %d is there",
1149                                 si->highest_vol_id, sv->vol_id);
1150                         goto out;
1151                 }
1152
1153                 if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
1154                     sv->vol_type != UBI_STATIC_VOLUME) {
1155                         ubi_err("bad vol_type");
1156                         goto bad_sv;
1157                 }
1158
1159                 if (sv->data_pad > ubi->leb_size / 2) {
1160                         ubi_err("bad data_pad");
1161                         goto bad_sv;
1162                 }
1163
1164                 last_seb = NULL;
1165                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1166                         cond_resched();
1167
1168                         last_seb = seb;
1169                         leb_count += 1;
1170
1171                         if (seb->pnum < 0 || seb->ec < 0) {
1172                                 ubi_err("negative values");
1173                                 goto bad_seb;
1174                         }
1175
1176                         if (seb->ec < si->min_ec) {
1177                                 ubi_err("bad si->min_ec (%d), %d found",
1178                                         si->min_ec, seb->ec);
1179                                 goto bad_seb;
1180                         }
1181
1182                         if (seb->ec > si->max_ec) {
1183                                 ubi_err("bad si->max_ec (%d), %d found",
1184                                         si->max_ec, seb->ec);
1185                                 goto bad_seb;
1186                         }
1187
1188                         if (seb->pnum >= ubi->peb_count) {
1189                                 ubi_err("too high PEB number %d, total PEBs %d",
1190                                         seb->pnum, ubi->peb_count);
1191                                 goto bad_seb;
1192                         }
1193
1194                         if (sv->vol_type == UBI_STATIC_VOLUME) {
1195                                 if (seb->lnum >= sv->used_ebs) {
1196                                         ubi_err("bad lnum or used_ebs");
1197                                         goto bad_seb;
1198                                 }
1199                         } else {
1200                                 if (sv->used_ebs != 0) {
1201                                         ubi_err("non-zero used_ebs");
1202                                         goto bad_seb;
1203                                 }
1204                         }
1205
1206                         if (seb->lnum > sv->highest_lnum) {
1207                                 ubi_err("incorrect highest_lnum or lnum");
1208                                 goto bad_seb;
1209                         }
1210                 }
1211
1212                 if (sv->leb_count != leb_count) {
1213                         ubi_err("bad leb_count, %d objects in the tree",
1214                                 leb_count);
1215                         goto bad_sv;
1216                 }
1217
1218                 if (!last_seb)
1219                         continue;
1220
1221                 seb = last_seb;
1222
1223                 if (seb->lnum != sv->highest_lnum) {
1224                         ubi_err("bad highest_lnum");
1225                         goto bad_seb;
1226                 }
1227         }
1228
1229         if (vols_found != si->vols_found) {
1230                 ubi_err("bad si->vols_found %d, should be %d",
1231                         si->vols_found, vols_found);
1232                 goto out;
1233         }
1234
1235         /* Check that scanning information is correct */
1236         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1237                 last_seb = NULL;
1238                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1239                         int vol_type;
1240
1241                         cond_resched();
1242
1243                         last_seb = seb;
1244
1245                         err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
1246                         if (err && err != UBI_IO_BITFLIPS) {
1247                                 ubi_err("VID header is not OK (%d)", err);
1248                                 if (err > 0)
1249                                         err = -EIO;
1250                                 return err;
1251                         }
1252
1253                         vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1254                                    UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1255                         if (sv->vol_type != vol_type) {
1256                                 ubi_err("bad vol_type");
1257                                 goto bad_vid_hdr;
1258                         }
1259
1260                         if (seb->sqnum != be64_to_cpu(vidh->sqnum)) {
1261                                 ubi_err("bad sqnum %llu", seb->sqnum);
1262                                 goto bad_vid_hdr;
1263                         }
1264
1265                         if (sv->vol_id != be32_to_cpu(vidh->vol_id)) {
1266                                 ubi_err("bad vol_id %d", sv->vol_id);
1267                                 goto bad_vid_hdr;
1268                         }
1269
1270                         if (sv->compat != vidh->compat) {
1271                                 ubi_err("bad compat %d", vidh->compat);
1272                                 goto bad_vid_hdr;
1273                         }
1274
1275                         if (seb->lnum != be32_to_cpu(vidh->lnum)) {
1276                                 ubi_err("bad lnum %d", seb->lnum);
1277                                 goto bad_vid_hdr;
1278                         }
1279
1280                         if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1281                                 ubi_err("bad used_ebs %d", sv->used_ebs);
1282                                 goto bad_vid_hdr;
1283                         }
1284
1285                         if (sv->data_pad != be32_to_cpu(vidh->data_pad)) {
1286                                 ubi_err("bad data_pad %d", sv->data_pad);
1287                                 goto bad_vid_hdr;
1288                         }
1289
1290                         if (seb->leb_ver != be32_to_cpu(vidh->leb_ver)) {
1291                                 ubi_err("bad leb_ver %u", seb->leb_ver);
1292                                 goto bad_vid_hdr;
1293                         }
1294                 }
1295
1296                 if (!last_seb)
1297                         continue;
1298
1299                 if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) {
1300                         ubi_err("bad highest_lnum %d", sv->highest_lnum);
1301                         goto bad_vid_hdr;
1302                 }
1303
1304                 if (sv->last_data_size != be32_to_cpu(vidh->data_size)) {
1305                         ubi_err("bad last_data_size %d", sv->last_data_size);
1306                         goto bad_vid_hdr;
1307                 }
1308         }
1309
1310         /*
1311          * Make sure that all the physical eraseblocks are in one of the lists
1312          * or trees.
1313          */
1314         buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1315         if (!buf)
1316                 return -ENOMEM;
1317
1318         for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1319                 err = ubi_io_is_bad(ubi, pnum);
1320                 if (err < 0) {
1321                         kfree(buf);
1322                         return err;
1323                 }
1324                 else if (err)
1325                         buf[pnum] = 1;
1326         }
1327
1328         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
1329                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
1330                         buf[seb->pnum] = 1;
1331
1332         list_for_each_entry(seb, &si->free, u.list)
1333                 buf[seb->pnum] = 1;
1334
1335         list_for_each_entry(seb, &si->corr, u.list)
1336                 buf[seb->pnum] = 1;
1337
1338         list_for_each_entry(seb, &si->erase, u.list)
1339                 buf[seb->pnum] = 1;
1340
1341         list_for_each_entry(seb, &si->alien, u.list)
1342                 buf[seb->pnum] = 1;
1343
1344         err = 0;
1345         for (pnum = 0; pnum < ubi->peb_count; pnum++)
1346                 if (!buf[pnum]) {
1347                         ubi_err("PEB %d is not referred", pnum);
1348                         err = 1;
1349                 }
1350
1351         kfree(buf);
1352         if (err)
1353                 goto out;
1354         return 0;
1355
1356 bad_seb:
1357         ubi_err("bad scanning information about LEB %d", seb->lnum);
1358         ubi_dbg_dump_seb(seb, 0);
1359         ubi_dbg_dump_sv(sv);
1360         goto out;
1361
1362 bad_sv:
1363         ubi_err("bad scanning information about volume %d", sv->vol_id);
1364         ubi_dbg_dump_sv(sv);
1365         goto out;
1366
1367 bad_vid_hdr:
1368         ubi_err("bad scanning information about volume %d", sv->vol_id);
1369         ubi_dbg_dump_sv(sv);
1370         ubi_dbg_dump_vid_hdr(vidh);
1371
1372 out:
1373         ubi_dbg_dump_stack();
1374         return 1;
1375 }
1376
1377 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */