[MTD] [NAND] fsl_elbc_nand: fix OOB workability for large page NAND chips
[safe/jmp/linux-2.6] / drivers / mtd / nand / fsl_elbc_nand.c
1 /* Freescale Enhanced Local Bus Controller NAND driver
2  *
3  * Copyright (c) 2006-2007 Freescale Semiconductor
4  *
5  * Authors: Nick Spence <nick.spence@freescale.com>,
6  *          Scott Wood <scottwood@freescale.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21  */
22
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/ioport.h>
29 #include <linux/of_platform.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32
33 #include <linux/mtd/mtd.h>
34 #include <linux/mtd/nand.h>
35 #include <linux/mtd/nand_ecc.h>
36 #include <linux/mtd/partitions.h>
37
38 #include <asm/io.h>
39 #include <asm/fsl_lbc.h>
40
41 #define MAX_BANKS 8
42 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
43 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
44
45 struct fsl_elbc_ctrl;
46
47 /* mtd information per set */
48
49 struct fsl_elbc_mtd {
50         struct mtd_info mtd;
51         struct nand_chip chip;
52         struct fsl_elbc_ctrl *ctrl;
53
54         struct device *dev;
55         int bank;               /* Chip select bank number           */
56         u8 __iomem *vbase;      /* Chip select base virtual address  */
57         int page_size;          /* NAND page size (0=512, 1=2048)    */
58         unsigned int fmr;       /* FCM Flash Mode Register value     */
59 };
60
61 /* overview of the fsl elbc controller */
62
63 struct fsl_elbc_ctrl {
64         struct nand_hw_control controller;
65         struct fsl_elbc_mtd *chips[MAX_BANKS];
66
67         /* device info */
68         struct device *dev;
69         struct fsl_lbc_regs __iomem *regs;
70         int irq;
71         wait_queue_head_t irq_wait;
72         unsigned int irq_status; /* status read from LTESR by irq handler */
73         u8 __iomem *addr;        /* Address of assigned FCM buffer        */
74         unsigned int page;       /* Last page written to / read from      */
75         unsigned int read_bytes; /* Number of bytes read during command   */
76         unsigned int column;     /* Saved column from SEQIN               */
77         unsigned int index;      /* Pointer to next byte to 'read'        */
78         unsigned int status;     /* status read from LTESR after last op  */
79         unsigned int mdr;        /* UPM/FCM Data Register value           */
80         unsigned int use_mdr;    /* Non zero if the MDR is to be set      */
81         unsigned int oob;        /* Non zero if operating on OOB data     */
82         char *oob_poi;           /* Place to write ECC after read back    */
83 };
84
85 /* These map to the positions used by the FCM hardware ECC generator */
86
87 /* Small Page FLASH with FMR[ECCM] = 0 */
88 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
89         .eccbytes = 3,
90         .eccpos = {6, 7, 8},
91         .oobfree = { {0, 5}, {9, 7} },
92         .oobavail = 12,
93 };
94
95 /* Small Page FLASH with FMR[ECCM] = 1 */
96 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
97         .eccbytes = 3,
98         .eccpos = {8, 9, 10},
99         .oobfree = { {0, 5}, {6, 2}, {11, 5} },
100         .oobavail = 12,
101 };
102
103 /* Large Page FLASH with FMR[ECCM] = 0 */
104 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
105         .eccbytes = 12,
106         .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
107         .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
108         .oobavail = 48,
109 };
110
111 /* Large Page FLASH with FMR[ECCM] = 1 */
112 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
113         .eccbytes = 12,
114         .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
115         .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
116         .oobavail = 48,
117 };
118
119 /*
120  * fsl_elbc_oob_lp_eccm* specify that LP NAND's OOB free area starts at offset
121  * 1, so we have to adjust bad block pattern. This pattern should be used for
122  * x8 chips only. So far hardware does not support x16 chips anyway.
123  */
124 static u8 scan_ff_pattern[] = { 0xff, };
125
126 static struct nand_bbt_descr largepage_memorybased = {
127         .options = 0,
128         .offs = 0,
129         .len = 1,
130         .pattern = scan_ff_pattern,
131 };
132
133 /*=================================*/
134
135 /*
136  * Set up the FCM hardware block and page address fields, and the fcm
137  * structure addr field to point to the correct FCM buffer in memory
138  */
139 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
140 {
141         struct nand_chip *chip = mtd->priv;
142         struct fsl_elbc_mtd *priv = chip->priv;
143         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
144         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
145         int buf_num;
146
147         ctrl->page = page_addr;
148
149         out_be32(&lbc->fbar,
150                  page_addr >> (chip->phys_erase_shift - chip->page_shift));
151
152         if (priv->page_size) {
153                 out_be32(&lbc->fpar,
154                          ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
155                          (oob ? FPAR_LP_MS : 0) | column);
156                 buf_num = (page_addr & 1) << 2;
157         } else {
158                 out_be32(&lbc->fpar,
159                          ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
160                          (oob ? FPAR_SP_MS : 0) | column);
161                 buf_num = page_addr & 7;
162         }
163
164         ctrl->addr = priv->vbase + buf_num * 1024;
165         ctrl->index = column;
166
167         /* for OOB data point to the second half of the buffer */
168         if (oob)
169                 ctrl->index += priv->page_size ? 2048 : 512;
170
171         dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
172                             "index %x, pes %d ps %d\n",
173                  buf_num, ctrl->addr, priv->vbase, ctrl->index,
174                  chip->phys_erase_shift, chip->page_shift);
175 }
176
177 /*
178  * execute FCM command and wait for it to complete
179  */
180 static int fsl_elbc_run_command(struct mtd_info *mtd)
181 {
182         struct nand_chip *chip = mtd->priv;
183         struct fsl_elbc_mtd *priv = chip->priv;
184         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
185         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
186
187         /* Setup the FMR[OP] to execute without write protection */
188         out_be32(&lbc->fmr, priv->fmr | 3);
189         if (ctrl->use_mdr)
190                 out_be32(&lbc->mdr, ctrl->mdr);
191
192         dev_vdbg(ctrl->dev,
193                  "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
194                  in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
195         dev_vdbg(ctrl->dev,
196                  "fsl_elbc_run_command: fbar=%08x fpar=%08x "
197                  "fbcr=%08x bank=%d\n",
198                  in_be32(&lbc->fbar), in_be32(&lbc->fpar),
199                  in_be32(&lbc->fbcr), priv->bank);
200
201         ctrl->irq_status = 0;
202         /* execute special operation */
203         out_be32(&lbc->lsor, priv->bank);
204
205         /* wait for FCM complete flag or timeout */
206         wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
207                            FCM_TIMEOUT_MSECS * HZ/1000);
208         ctrl->status = ctrl->irq_status;
209
210         /* store mdr value in case it was needed */
211         if (ctrl->use_mdr)
212                 ctrl->mdr = in_be32(&lbc->mdr);
213
214         ctrl->use_mdr = 0;
215
216         dev_vdbg(ctrl->dev,
217                  "fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
218                  ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
219
220         /* returns 0 on success otherwise non-zero) */
221         return ctrl->status == LTESR_CC ? 0 : -EIO;
222 }
223
224 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
225 {
226         struct fsl_elbc_mtd *priv = chip->priv;
227         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
228         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
229
230         if (priv->page_size) {
231                 out_be32(&lbc->fir,
232                          (FIR_OP_CW0 << FIR_OP0_SHIFT) |
233                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
234                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
235                          (FIR_OP_CW1 << FIR_OP3_SHIFT) |
236                          (FIR_OP_RBW << FIR_OP4_SHIFT));
237
238                 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
239                                     (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
240         } else {
241                 out_be32(&lbc->fir,
242                          (FIR_OP_CW0 << FIR_OP0_SHIFT) |
243                          (FIR_OP_CA  << FIR_OP1_SHIFT) |
244                          (FIR_OP_PA  << FIR_OP2_SHIFT) |
245                          (FIR_OP_RBW << FIR_OP3_SHIFT));
246
247                 if (oob)
248                         out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
249                 else
250                         out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
251         }
252 }
253
254 /* cmdfunc send commands to the FCM */
255 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
256                              int column, int page_addr)
257 {
258         struct nand_chip *chip = mtd->priv;
259         struct fsl_elbc_mtd *priv = chip->priv;
260         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
261         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
262
263         ctrl->use_mdr = 0;
264
265         /* clear the read buffer */
266         ctrl->read_bytes = 0;
267         if (command != NAND_CMD_PAGEPROG)
268                 ctrl->index = 0;
269
270         switch (command) {
271         /* READ0 and READ1 read the entire buffer to use hardware ECC. */
272         case NAND_CMD_READ1:
273                 column += 256;
274
275         /* fall-through */
276         case NAND_CMD_READ0:
277                 dev_dbg(ctrl->dev,
278                         "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
279                         " 0x%x, column: 0x%x.\n", page_addr, column);
280
281
282                 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
283                 set_addr(mtd, 0, page_addr, 0);
284
285                 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
286                 ctrl->index += column;
287
288                 fsl_elbc_do_read(chip, 0);
289                 fsl_elbc_run_command(mtd);
290                 return;
291
292         /* READOOB reads only the OOB because no ECC is performed. */
293         case NAND_CMD_READOOB:
294                 dev_vdbg(ctrl->dev,
295                          "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
296                          " 0x%x, column: 0x%x.\n", page_addr, column);
297
298                 out_be32(&lbc->fbcr, mtd->oobsize - column);
299                 set_addr(mtd, column, page_addr, 1);
300
301                 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
302
303                 fsl_elbc_do_read(chip, 1);
304                 fsl_elbc_run_command(mtd);
305                 return;
306
307         /* READID must read all 5 possible bytes while CEB is active */
308         case NAND_CMD_READID:
309                 dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
310
311                 out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
312                                     (FIR_OP_UA  << FIR_OP1_SHIFT) |
313                                     (FIR_OP_RBW << FIR_OP2_SHIFT));
314                 out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
315                 /* 5 bytes for manuf, device and exts */
316                 out_be32(&lbc->fbcr, 5);
317                 ctrl->read_bytes = 5;
318                 ctrl->use_mdr = 1;
319                 ctrl->mdr = 0;
320
321                 set_addr(mtd, 0, 0, 0);
322                 fsl_elbc_run_command(mtd);
323                 return;
324
325         /* ERASE1 stores the block and page address */
326         case NAND_CMD_ERASE1:
327                 dev_vdbg(ctrl->dev,
328                          "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
329                          "page_addr: 0x%x.\n", page_addr);
330                 set_addr(mtd, 0, page_addr, 0);
331                 return;
332
333         /* ERASE2 uses the block and page address from ERASE1 */
334         case NAND_CMD_ERASE2:
335                 dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
336
337                 out_be32(&lbc->fir,
338                          (FIR_OP_CW0 << FIR_OP0_SHIFT) |
339                          (FIR_OP_PA  << FIR_OP1_SHIFT) |
340                          (FIR_OP_CM1 << FIR_OP2_SHIFT));
341
342                 out_be32(&lbc->fcr,
343                          (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
344                          (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));
345
346                 out_be32(&lbc->fbcr, 0);
347                 ctrl->read_bytes = 0;
348
349                 fsl_elbc_run_command(mtd);
350                 return;
351
352         /* SEQIN sets up the addr buffer and all registers except the length */
353         case NAND_CMD_SEQIN: {
354                 __be32 fcr;
355                 dev_vdbg(ctrl->dev,
356                          "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
357                          "page_addr: 0x%x, column: 0x%x.\n",
358                          page_addr, column);
359
360                 ctrl->column = column;
361                 ctrl->oob = 0;
362
363                 if (priv->page_size) {
364                         fcr = (NAND_CMD_SEQIN << FCR_CMD0_SHIFT) |
365                               (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT);
366
367                         out_be32(&lbc->fir,
368                                  (FIR_OP_CW0 << FIR_OP0_SHIFT) |
369                                  (FIR_OP_CA  << FIR_OP1_SHIFT) |
370                                  (FIR_OP_PA  << FIR_OP2_SHIFT) |
371                                  (FIR_OP_WB  << FIR_OP3_SHIFT) |
372                                  (FIR_OP_CW1 << FIR_OP4_SHIFT));
373                 } else {
374                         fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
375                               (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
376
377                         out_be32(&lbc->fir,
378                                  (FIR_OP_CW0 << FIR_OP0_SHIFT) |
379                                  (FIR_OP_CM2 << FIR_OP1_SHIFT) |
380                                  (FIR_OP_CA  << FIR_OP2_SHIFT) |
381                                  (FIR_OP_PA  << FIR_OP3_SHIFT) |
382                                  (FIR_OP_WB  << FIR_OP4_SHIFT) |
383                                  (FIR_OP_CW1 << FIR_OP5_SHIFT));
384
385                         if (column >= mtd->writesize) {
386                                 /* OOB area --> READOOB */
387                                 column -= mtd->writesize;
388                                 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
389                                 ctrl->oob = 1;
390                         } else if (column < 256) {
391                                 /* First 256 bytes --> READ0 */
392                                 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
393                         } else {
394                                 /* Second 256 bytes --> READ1 */
395                                 fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
396                         }
397                 }
398
399                 out_be32(&lbc->fcr, fcr);
400                 set_addr(mtd, column, page_addr, ctrl->oob);
401                 return;
402         }
403
404         /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
405         case NAND_CMD_PAGEPROG: {
406                 int full_page;
407                 dev_vdbg(ctrl->dev,
408                          "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
409                          "writing %d bytes.\n", ctrl->index);
410
411                 /* if the write did not start at 0 or is not a full page
412                  * then set the exact length, otherwise use a full page
413                  * write so the HW generates the ECC.
414                  */
415                 if (ctrl->oob || ctrl->column != 0 ||
416                     ctrl->index != mtd->writesize + mtd->oobsize) {
417                         out_be32(&lbc->fbcr, ctrl->index);
418                         full_page = 0;
419                 } else {
420                         out_be32(&lbc->fbcr, 0);
421                         full_page = 1;
422                 }
423
424                 fsl_elbc_run_command(mtd);
425
426                 /* Read back the page in order to fill in the ECC for the
427                  * caller.  Is this really needed?
428                  */
429                 if (full_page && ctrl->oob_poi) {
430                         out_be32(&lbc->fbcr, 3);
431                         set_addr(mtd, 6, page_addr, 1);
432
433                         ctrl->read_bytes = mtd->writesize + 9;
434
435                         fsl_elbc_do_read(chip, 1);
436                         fsl_elbc_run_command(mtd);
437
438                         memcpy_fromio(ctrl->oob_poi + 6,
439                                       &ctrl->addr[ctrl->index], 3);
440                         ctrl->index += 3;
441                 }
442
443                 ctrl->oob_poi = NULL;
444                 return;
445         }
446
447         /* CMD_STATUS must read the status byte while CEB is active */
448         /* Note - it does not wait for the ready line */
449         case NAND_CMD_STATUS:
450                 out_be32(&lbc->fir,
451                          (FIR_OP_CM0 << FIR_OP0_SHIFT) |
452                          (FIR_OP_RBW << FIR_OP1_SHIFT));
453                 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
454                 out_be32(&lbc->fbcr, 1);
455                 set_addr(mtd, 0, 0, 0);
456                 ctrl->read_bytes = 1;
457
458                 fsl_elbc_run_command(mtd);
459
460                 /* The chip always seems to report that it is
461                  * write-protected, even when it is not.
462                  */
463                 setbits8(ctrl->addr, NAND_STATUS_WP);
464                 return;
465
466         /* RESET without waiting for the ready line */
467         case NAND_CMD_RESET:
468                 dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
469                 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
470                 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
471                 fsl_elbc_run_command(mtd);
472                 return;
473
474         default:
475                 dev_err(ctrl->dev,
476                         "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
477                         command);
478         }
479 }
480
481 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
482 {
483         /* The hardware does not seem to support multiple
484          * chips per bank.
485          */
486 }
487
488 /*
489  * Write buf to the FCM Controller Data Buffer
490  */
491 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
492 {
493         struct nand_chip *chip = mtd->priv;
494         struct fsl_elbc_mtd *priv = chip->priv;
495         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
496         unsigned int bufsize = mtd->writesize + mtd->oobsize;
497
498         if (len <= 0) {
499                 dev_err(ctrl->dev, "write_buf of %d bytes", len);
500                 ctrl->status = 0;
501                 return;
502         }
503
504         if ((unsigned int)len > bufsize - ctrl->index) {
505                 dev_err(ctrl->dev,
506                         "write_buf beyond end of buffer "
507                         "(%d requested, %u available)\n",
508                         len, bufsize - ctrl->index);
509                 len = bufsize - ctrl->index;
510         }
511
512         memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
513         /*
514          * This is workaround for the weird elbc hangs during nand write,
515          * Scott Wood says: "...perhaps difference in how long it takes a
516          * write to make it through the localbus compared to a write to IMMR
517          * is causing problems, and sync isn't helping for some reason."
518          * Reading back the last byte helps though.
519          */
520         in_8(&ctrl->addr[ctrl->index] + len - 1);
521
522         ctrl->index += len;
523 }
524
525 /*
526  * read a byte from either the FCM hardware buffer if it has any data left
527  * otherwise issue a command to read a single byte.
528  */
529 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
530 {
531         struct nand_chip *chip = mtd->priv;
532         struct fsl_elbc_mtd *priv = chip->priv;
533         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
534
535         /* If there are still bytes in the FCM, then use the next byte. */
536         if (ctrl->index < ctrl->read_bytes)
537                 return in_8(&ctrl->addr[ctrl->index++]);
538
539         dev_err(ctrl->dev, "read_byte beyond end of buffer\n");
540         return ERR_BYTE;
541 }
542
543 /*
544  * Read from the FCM Controller Data Buffer
545  */
546 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
547 {
548         struct nand_chip *chip = mtd->priv;
549         struct fsl_elbc_mtd *priv = chip->priv;
550         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
551         int avail;
552
553         if (len < 0)
554                 return;
555
556         avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
557         memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
558         ctrl->index += avail;
559
560         if (len > avail)
561                 dev_err(ctrl->dev,
562                         "read_buf beyond end of buffer "
563                         "(%d requested, %d available)\n",
564                         len, avail);
565 }
566
567 /*
568  * Verify buffer against the FCM Controller Data Buffer
569  */
570 static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
571 {
572         struct nand_chip *chip = mtd->priv;
573         struct fsl_elbc_mtd *priv = chip->priv;
574         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
575         int i;
576
577         if (len < 0) {
578                 dev_err(ctrl->dev, "write_buf of %d bytes", len);
579                 return -EINVAL;
580         }
581
582         if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
583                 dev_err(ctrl->dev,
584                         "verify_buf beyond end of buffer "
585                         "(%d requested, %u available)\n",
586                         len, ctrl->read_bytes - ctrl->index);
587
588                 ctrl->index = ctrl->read_bytes;
589                 return -EINVAL;
590         }
591
592         for (i = 0; i < len; i++)
593                 if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
594                         break;
595
596         ctrl->index += len;
597         return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
598 }
599
600 /* This function is called after Program and Erase Operations to
601  * check for success or failure.
602  */
603 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
604 {
605         struct fsl_elbc_mtd *priv = chip->priv;
606         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
607         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
608
609         if (ctrl->status != LTESR_CC)
610                 return NAND_STATUS_FAIL;
611
612         /* Use READ_STATUS command, but wait for the device to be ready */
613         ctrl->use_mdr = 0;
614         out_be32(&lbc->fir,
615                  (FIR_OP_CW0 << FIR_OP0_SHIFT) |
616                  (FIR_OP_RBW << FIR_OP1_SHIFT));
617         out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
618         out_be32(&lbc->fbcr, 1);
619         set_addr(mtd, 0, 0, 0);
620         ctrl->read_bytes = 1;
621
622         fsl_elbc_run_command(mtd);
623
624         if (ctrl->status != LTESR_CC)
625                 return NAND_STATUS_FAIL;
626
627         /* The chip always seems to report that it is
628          * write-protected, even when it is not.
629          */
630         setbits8(ctrl->addr, NAND_STATUS_WP);
631         return fsl_elbc_read_byte(mtd);
632 }
633
634 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
635 {
636         struct nand_chip *chip = mtd->priv;
637         struct fsl_elbc_mtd *priv = chip->priv;
638         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
639         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
640         unsigned int al;
641
642         /* calculate FMR Address Length field */
643         al = 0;
644         if (chip->pagemask & 0xffff0000)
645                 al++;
646         if (chip->pagemask & 0xff000000)
647                 al++;
648
649         /* add to ECCM mode set in fsl_elbc_init */
650         priv->fmr |= (12 << FMR_CWTO_SHIFT) |  /* Timeout > 12 ms */
651                      (al << FMR_AL_SHIFT);
652
653         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n",
654                 chip->numchips);
655         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %ld\n",
656                 chip->chipsize);
657         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
658                 chip->pagemask);
659         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
660                 chip->chip_delay);
661         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
662                 chip->badblockpos);
663         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
664                 chip->chip_shift);
665         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n",
666                 chip->page_shift);
667         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
668                 chip->phys_erase_shift);
669         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
670                 chip->ecclayout);
671         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
672                 chip->ecc.mode);
673         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
674                 chip->ecc.steps);
675         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
676                 chip->ecc.bytes);
677         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
678                 chip->ecc.total);
679         dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
680                 chip->ecc.layout);
681         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
682         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %d\n", mtd->size);
683         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
684                 mtd->erasesize);
685         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n",
686                 mtd->writesize);
687         dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
688                 mtd->oobsize);
689
690         /* adjust Option Register and ECC to match Flash page size */
691         if (mtd->writesize == 512) {
692                 priv->page_size = 0;
693                 clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
694         } else if (mtd->writesize == 2048) {
695                 priv->page_size = 1;
696                 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
697                 /* adjust ecc setup if needed */
698                 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
699                     BR_DECC_CHK_GEN) {
700                         chip->ecc.size = 512;
701                         chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
702                                            &fsl_elbc_oob_lp_eccm1 :
703                                            &fsl_elbc_oob_lp_eccm0;
704                         chip->badblock_pattern = &largepage_memorybased;
705                         mtd->ecclayout = chip->ecc.layout;
706                         mtd->oobavail = chip->ecc.layout->oobavail;
707                 }
708         } else {
709                 dev_err(ctrl->dev,
710                         "fsl_elbc_init: page size %d is not supported\n",
711                         mtd->writesize);
712                 return -1;
713         }
714
715         return 0;
716 }
717
718 static int fsl_elbc_read_page(struct mtd_info *mtd,
719                               struct nand_chip *chip,
720                               uint8_t *buf)
721 {
722         fsl_elbc_read_buf(mtd, buf, mtd->writesize);
723         fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
724
725         if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
726                 mtd->ecc_stats.failed++;
727
728         return 0;
729 }
730
731 /* ECC will be calculated automatically, and errors will be detected in
732  * waitfunc.
733  */
734 static void fsl_elbc_write_page(struct mtd_info *mtd,
735                                 struct nand_chip *chip,
736                                 const uint8_t *buf)
737 {
738         struct fsl_elbc_mtd *priv = chip->priv;
739         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
740
741         fsl_elbc_write_buf(mtd, buf, mtd->writesize);
742         fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
743
744         ctrl->oob_poi = chip->oob_poi;
745 }
746
747 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
748 {
749         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
750         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
751         struct nand_chip *chip = &priv->chip;
752
753         dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
754
755         /* Fill in fsl_elbc_mtd structure */
756         priv->mtd.priv = chip;
757         priv->mtd.owner = THIS_MODULE;
758         priv->fmr = 0; /* rest filled in later */
759
760         /* fill in nand_chip structure */
761         /* set up function call table */
762         chip->read_byte = fsl_elbc_read_byte;
763         chip->write_buf = fsl_elbc_write_buf;
764         chip->read_buf = fsl_elbc_read_buf;
765         chip->verify_buf = fsl_elbc_verify_buf;
766         chip->select_chip = fsl_elbc_select_chip;
767         chip->cmdfunc = fsl_elbc_cmdfunc;
768         chip->waitfunc = fsl_elbc_wait;
769
770         /* set up nand options */
771         chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
772
773         chip->controller = &ctrl->controller;
774         chip->priv = priv;
775
776         chip->ecc.read_page = fsl_elbc_read_page;
777         chip->ecc.write_page = fsl_elbc_write_page;
778
779         /* If CS Base Register selects full hardware ECC then use it */
780         if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
781             BR_DECC_CHK_GEN) {
782                 chip->ecc.mode = NAND_ECC_HW;
783                 /* put in small page settings and adjust later if needed */
784                 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
785                                 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
786                 chip->ecc.size = 512;
787                 chip->ecc.bytes = 3;
788         } else {
789                 /* otherwise fall back to default software ECC */
790                 chip->ecc.mode = NAND_ECC_SOFT;
791         }
792
793         return 0;
794 }
795
796 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
797 {
798         struct fsl_elbc_ctrl *ctrl = priv->ctrl;
799
800         nand_release(&priv->mtd);
801
802         kfree(priv->mtd.name);
803
804         if (priv->vbase)
805                 iounmap(priv->vbase);
806
807         ctrl->chips[priv->bank] = NULL;
808         kfree(priv);
809
810         return 0;
811 }
812
813 static int fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl,
814                                struct device_node *node)
815 {
816         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
817         struct fsl_elbc_mtd *priv;
818         struct resource res;
819 #ifdef CONFIG_MTD_PARTITIONS
820         static const char *part_probe_types[]
821                 = { "cmdlinepart", "RedBoot", NULL };
822         struct mtd_partition *parts;
823 #endif
824         int ret;
825         int bank;
826
827         /* get, allocate and map the memory resource */
828         ret = of_address_to_resource(node, 0, &res);
829         if (ret) {
830                 dev_err(ctrl->dev, "failed to get resource\n");
831                 return ret;
832         }
833
834         /* find which chip select it is connected to */
835         for (bank = 0; bank < MAX_BANKS; bank++)
836                 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
837                     (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
838                     (in_be32(&lbc->bank[bank].br) &
839                      in_be32(&lbc->bank[bank].or) & BR_BA)
840                      == res.start)
841                         break;
842
843         if (bank >= MAX_BANKS) {
844                 dev_err(ctrl->dev, "address did not match any chip selects\n");
845                 return -ENODEV;
846         }
847
848         priv = kzalloc(sizeof(*priv), GFP_KERNEL);
849         if (!priv)
850                 return -ENOMEM;
851
852         ctrl->chips[bank] = priv;
853         priv->bank = bank;
854         priv->ctrl = ctrl;
855         priv->dev = ctrl->dev;
856
857         priv->vbase = ioremap(res.start, res.end - res.start + 1);
858         if (!priv->vbase) {
859                 dev_err(ctrl->dev, "failed to map chip region\n");
860                 ret = -ENOMEM;
861                 goto err;
862         }
863
864         priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", res.start);
865         if (!priv->mtd.name) {
866                 ret = -ENOMEM;
867                 goto err;
868         }
869
870         ret = fsl_elbc_chip_init(priv);
871         if (ret)
872                 goto err;
873
874         ret = nand_scan_ident(&priv->mtd, 1);
875         if (ret)
876                 goto err;
877
878         ret = fsl_elbc_chip_init_tail(&priv->mtd);
879         if (ret)
880                 goto err;
881
882         ret = nand_scan_tail(&priv->mtd);
883         if (ret)
884                 goto err;
885
886 #ifdef CONFIG_MTD_PARTITIONS
887         /* First look for RedBoot table or partitions on the command
888          * line, these take precedence over device tree information */
889         ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
890         if (ret < 0)
891                 goto err;
892
893 #ifdef CONFIG_MTD_OF_PARTS
894         if (ret == 0) {
895                 ret = of_mtd_parse_partitions(priv->dev, &priv->mtd,
896                                               node, &parts);
897                 if (ret < 0)
898                         goto err;
899         }
900 #endif
901
902         if (ret > 0)
903                 add_mtd_partitions(&priv->mtd, parts, ret);
904         else
905 #endif
906                 add_mtd_device(&priv->mtd);
907
908         printk(KERN_INFO "eLBC NAND device at 0x%zx, bank %d\n",
909                res.start, priv->bank);
910         return 0;
911
912 err:
913         fsl_elbc_chip_remove(priv);
914         return ret;
915 }
916
917 static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl)
918 {
919         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
920
921         /* clear event registers */
922         setbits32(&lbc->ltesr, LTESR_NAND_MASK);
923         out_be32(&lbc->lteatr, 0);
924
925         /* Enable interrupts for any detected events */
926         out_be32(&lbc->lteir, LTESR_NAND_MASK);
927
928         ctrl->read_bytes = 0;
929         ctrl->index = 0;
930         ctrl->addr = NULL;
931
932         return 0;
933 }
934
935 static int fsl_elbc_ctrl_remove(struct of_device *ofdev)
936 {
937         struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev);
938         int i;
939
940         for (i = 0; i < MAX_BANKS; i++)
941                 if (ctrl->chips[i])
942                         fsl_elbc_chip_remove(ctrl->chips[i]);
943
944         if (ctrl->irq)
945                 free_irq(ctrl->irq, ctrl);
946
947         if (ctrl->regs)
948                 iounmap(ctrl->regs);
949
950         dev_set_drvdata(&ofdev->dev, NULL);
951         kfree(ctrl);
952         return 0;
953 }
954
955 /* NOTE: This interrupt is also used to report other localbus events,
956  * such as transaction errors on other chipselects.  If we want to
957  * capture those, we'll need to move the IRQ code into a shared
958  * LBC driver.
959  */
960
961 static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data)
962 {
963         struct fsl_elbc_ctrl *ctrl = data;
964         struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
965         __be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK;
966
967         if (status) {
968                 out_be32(&lbc->ltesr, status);
969                 out_be32(&lbc->lteatr, 0);
970
971                 ctrl->irq_status = status;
972                 smp_wmb();
973                 wake_up(&ctrl->irq_wait);
974
975                 return IRQ_HANDLED;
976         }
977
978         return IRQ_NONE;
979 }
980
981 /* fsl_elbc_ctrl_probe
982  *
983  * called by device layer when it finds a device matching
984  * one our driver can handled. This code allocates all of
985  * the resources needed for the controller only.  The
986  * resources for the NAND banks themselves are allocated
987  * in the chip probe function.
988 */
989
990 static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev,
991                                          const struct of_device_id *match)
992 {
993         struct device_node *child;
994         struct fsl_elbc_ctrl *ctrl;
995         int ret;
996
997         ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
998         if (!ctrl)
999                 return -ENOMEM;
1000
1001         dev_set_drvdata(&ofdev->dev, ctrl);
1002
1003         spin_lock_init(&ctrl->controller.lock);
1004         init_waitqueue_head(&ctrl->controller.wq);
1005         init_waitqueue_head(&ctrl->irq_wait);
1006
1007         ctrl->regs = of_iomap(ofdev->node, 0);
1008         if (!ctrl->regs) {
1009                 dev_err(&ofdev->dev, "failed to get memory region\n");
1010                 ret = -ENODEV;
1011                 goto err;
1012         }
1013
1014         ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL);
1015         if (ctrl->irq == NO_IRQ) {
1016                 dev_err(&ofdev->dev, "failed to get irq resource\n");
1017                 ret = -ENODEV;
1018                 goto err;
1019         }
1020
1021         ctrl->dev = &ofdev->dev;
1022
1023         ret = fsl_elbc_ctrl_init(ctrl);
1024         if (ret < 0)
1025                 goto err;
1026
1027         ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl);
1028         if (ret != 0) {
1029                 dev_err(&ofdev->dev, "failed to install irq (%d)\n",
1030                         ctrl->irq);
1031                 ret = ctrl->irq;
1032                 goto err;
1033         }
1034
1035         for_each_child_of_node(ofdev->node, child)
1036                 if (of_device_is_compatible(child, "fsl,elbc-fcm-nand"))
1037                         fsl_elbc_chip_probe(ctrl, child);
1038
1039         return 0;
1040
1041 err:
1042         fsl_elbc_ctrl_remove(ofdev);
1043         return ret;
1044 }
1045
1046 static const struct of_device_id fsl_elbc_match[] = {
1047         {
1048                 .compatible = "fsl,elbc",
1049         },
1050         {}
1051 };
1052
1053 static struct of_platform_driver fsl_elbc_ctrl_driver = {
1054         .driver = {
1055                 .name   = "fsl-elbc",
1056         },
1057         .match_table = fsl_elbc_match,
1058         .probe = fsl_elbc_ctrl_probe,
1059         .remove = fsl_elbc_ctrl_remove,
1060 };
1061
1062 static int __init fsl_elbc_init(void)
1063 {
1064         return of_register_platform_driver(&fsl_elbc_ctrl_driver);
1065 }
1066
1067 static void __exit fsl_elbc_exit(void)
1068 {
1069         of_unregister_platform_driver(&fsl_elbc_ctrl_driver);
1070 }
1071
1072 module_init(fsl_elbc_init);
1073 module_exit(fsl_elbc_exit);
1074
1075 MODULE_LICENSE("GPL");
1076 MODULE_AUTHOR("Freescale");
1077 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");