[MTD] Rework the out of band handling completely
[safe/jmp/linux-2.6] / drivers / mtd / mtdpart.c
1 /*
2  * Simple MTD partitioning layer
3  *
4  * (C) 2000 Nicolas Pitre <nico@cam.org>
5  *
6  * This code is GPL
7  *
8  * $Id: mtdpart.c,v 1.55 2005/11/07 11:14:20 gleixner Exp $
9  *
10  *      02-21-2002      Thomas Gleixner <gleixner@autronix.de>
11  *                      added support for read_oob, write_oob
12  */
13
14 #include <linux/module.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/list.h>
19 #include <linux/config.h>
20 #include <linux/kmod.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/partitions.h>
23 #include <linux/mtd/compatmac.h>
24
25 /* Our partition linked list */
26 static LIST_HEAD(mtd_partitions);
27
28 /* Our partition node structure */
29 struct mtd_part {
30         struct mtd_info mtd;
31         struct mtd_info *master;
32         u_int32_t offset;
33         int index;
34         struct list_head list;
35         int registered;
36 };
37
38 /*
39  * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
40  * the pointer to that structure with this macro.
41  */
42 #define PART(x)  ((struct mtd_part *)(x))
43
44
45 /*
46  * MTD methods which simply translate the effective address and pass through
47  * to the _real_ device.
48  */
49
50 static int part_read (struct mtd_info *mtd, loff_t from, size_t len,
51                         size_t *retlen, u_char *buf)
52 {
53         struct mtd_part *part = PART(mtd);
54         if (from >= mtd->size)
55                 len = 0;
56         else if (from + len > mtd->size)
57                 len = mtd->size - from;
58         return part->master->read (part->master, from + part->offset,
59                                    len, retlen, buf);
60 }
61
62 static int part_point (struct mtd_info *mtd, loff_t from, size_t len,
63                         size_t *retlen, u_char **buf)
64 {
65         struct mtd_part *part = PART(mtd);
66         if (from >= mtd->size)
67                 len = 0;
68         else if (from + len > mtd->size)
69                 len = mtd->size - from;
70         return part->master->point (part->master, from + part->offset,
71                                     len, retlen, buf);
72 }
73
74 static void part_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len)
75 {
76         struct mtd_part *part = PART(mtd);
77
78         part->master->unpoint (part->master, addr, from + part->offset, len);
79 }
80
81 static int part_read_oob(struct mtd_info *mtd, loff_t from,
82                          struct mtd_oob_ops *ops)
83 {
84         struct mtd_part *part = PART(mtd);
85
86         if (from >= mtd->size)
87                 return -EINVAL;
88         if (from + ops->len > mtd->size)
89                 return -EINVAL;
90         return part->master->read_oob(part->master, from + part->offset, ops);
91 }
92
93 static int part_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
94                         size_t *retlen, u_char *buf)
95 {
96         struct mtd_part *part = PART(mtd);
97         return part->master->read_user_prot_reg (part->master, from,
98                                         len, retlen, buf);
99 }
100
101 static int part_get_user_prot_info (struct mtd_info *mtd,
102                                     struct otp_info *buf, size_t len)
103 {
104         struct mtd_part *part = PART(mtd);
105         return part->master->get_user_prot_info (part->master, buf, len);
106 }
107
108 static int part_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
109                         size_t *retlen, u_char *buf)
110 {
111         struct mtd_part *part = PART(mtd);
112         return part->master->read_fact_prot_reg (part->master, from,
113                                         len, retlen, buf);
114 }
115
116 static int part_get_fact_prot_info (struct mtd_info *mtd,
117                                     struct otp_info *buf, size_t len)
118 {
119         struct mtd_part *part = PART(mtd);
120         return part->master->get_fact_prot_info (part->master, buf, len);
121 }
122
123 static int part_write (struct mtd_info *mtd, loff_t to, size_t len,
124                         size_t *retlen, const u_char *buf)
125 {
126         struct mtd_part *part = PART(mtd);
127         if (!(mtd->flags & MTD_WRITEABLE))
128                 return -EROFS;
129         if (to >= mtd->size)
130                 len = 0;
131         else if (to + len > mtd->size)
132                 len = mtd->size - to;
133         return part->master->write (part->master, to + part->offset,
134                                     len, retlen, buf);
135 }
136
137 static int part_write_oob(struct mtd_info *mtd, loff_t to,
138                          struct mtd_oob_ops *ops)
139 {
140         struct mtd_part *part = PART(mtd);
141
142         if (!(mtd->flags & MTD_WRITEABLE))
143                 return -EROFS;
144
145         if (to >= mtd->size)
146                 return -EINVAL;
147         if (to + ops->len > mtd->size)
148                 return -EINVAL;
149         return part->master->write_oob(part->master, to + part->offset, ops);
150 }
151
152 static int part_write_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len,
153                         size_t *retlen, u_char *buf)
154 {
155         struct mtd_part *part = PART(mtd);
156         return part->master->write_user_prot_reg (part->master, from,
157                                         len, retlen, buf);
158 }
159
160 static int part_lock_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len)
161 {
162         struct mtd_part *part = PART(mtd);
163         return part->master->lock_user_prot_reg (part->master, from, len);
164 }
165
166 static int part_writev (struct mtd_info *mtd,  const struct kvec *vecs,
167                          unsigned long count, loff_t to, size_t *retlen)
168 {
169         struct mtd_part *part = PART(mtd);
170         if (!(mtd->flags & MTD_WRITEABLE))
171                 return -EROFS;
172         return part->master->writev (part->master, vecs, count,
173                                         to + part->offset, retlen);
174 }
175
176 static int part_erase (struct mtd_info *mtd, struct erase_info *instr)
177 {
178         struct mtd_part *part = PART(mtd);
179         int ret;
180         if (!(mtd->flags & MTD_WRITEABLE))
181                 return -EROFS;
182         if (instr->addr >= mtd->size)
183                 return -EINVAL;
184         instr->addr += part->offset;
185         ret = part->master->erase(part->master, instr);
186         return ret;
187 }
188
189 void mtd_erase_callback(struct erase_info *instr)
190 {
191         if (instr->mtd->erase == part_erase) {
192                 struct mtd_part *part = PART(instr->mtd);
193
194                 if (instr->fail_addr != 0xffffffff)
195                         instr->fail_addr -= part->offset;
196                 instr->addr -= part->offset;
197         }
198         if (instr->callback)
199                 instr->callback(instr);
200 }
201 EXPORT_SYMBOL_GPL(mtd_erase_callback);
202
203 static int part_lock (struct mtd_info *mtd, loff_t ofs, size_t len)
204 {
205         struct mtd_part *part = PART(mtd);
206         if ((len + ofs) > mtd->size)
207                 return -EINVAL;
208         return part->master->lock(part->master, ofs + part->offset, len);
209 }
210
211 static int part_unlock (struct mtd_info *mtd, loff_t ofs, size_t len)
212 {
213         struct mtd_part *part = PART(mtd);
214         if ((len + ofs) > mtd->size)
215                 return -EINVAL;
216         return part->master->unlock(part->master, ofs + part->offset, len);
217 }
218
219 static void part_sync(struct mtd_info *mtd)
220 {
221         struct mtd_part *part = PART(mtd);
222         part->master->sync(part->master);
223 }
224
225 static int part_suspend(struct mtd_info *mtd)
226 {
227         struct mtd_part *part = PART(mtd);
228         return part->master->suspend(part->master);
229 }
230
231 static void part_resume(struct mtd_info *mtd)
232 {
233         struct mtd_part *part = PART(mtd);
234         part->master->resume(part->master);
235 }
236
237 static int part_block_isbad (struct mtd_info *mtd, loff_t ofs)
238 {
239         struct mtd_part *part = PART(mtd);
240         if (ofs >= mtd->size)
241                 return -EINVAL;
242         ofs += part->offset;
243         return part->master->block_isbad(part->master, ofs);
244 }
245
246 static int part_block_markbad (struct mtd_info *mtd, loff_t ofs)
247 {
248         struct mtd_part *part = PART(mtd);
249         if (!(mtd->flags & MTD_WRITEABLE))
250                 return -EROFS;
251         if (ofs >= mtd->size)
252                 return -EINVAL;
253         ofs += part->offset;
254         return part->master->block_markbad(part->master, ofs);
255 }
256
257 /*
258  * This function unregisters and destroy all slave MTD objects which are
259  * attached to the given master MTD object.
260  */
261
262 int del_mtd_partitions(struct mtd_info *master)
263 {
264         struct list_head *node;
265         struct mtd_part *slave;
266
267         for (node = mtd_partitions.next;
268              node != &mtd_partitions;
269              node = node->next) {
270                 slave = list_entry(node, struct mtd_part, list);
271                 if (slave->master == master) {
272                         struct list_head *prev = node->prev;
273                         __list_del(prev, node->next);
274                         if(slave->registered)
275                                 del_mtd_device(&slave->mtd);
276                         kfree(slave);
277                         node = prev;
278                 }
279         }
280
281         return 0;
282 }
283
284 /*
285  * This function, given a master MTD object and a partition table, creates
286  * and registers slave MTD objects which are bound to the master according to
287  * the partition definitions.
288  * (Q: should we register the master MTD object as well?)
289  */
290
291 int add_mtd_partitions(struct mtd_info *master,
292                        const struct mtd_partition *parts,
293                        int nbparts)
294 {
295         struct mtd_part *slave;
296         u_int32_t cur_offset = 0;
297         int i;
298
299         printk (KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
300
301         for (i = 0; i < nbparts; i++) {
302
303                 /* allocate the partition structure */
304                 slave = kmalloc (sizeof(*slave), GFP_KERNEL);
305                 if (!slave) {
306                         printk ("memory allocation error while creating partitions for \"%s\"\n",
307                                 master->name);
308                         del_mtd_partitions(master);
309                         return -ENOMEM;
310                 }
311                 memset(slave, 0, sizeof(*slave));
312                 list_add(&slave->list, &mtd_partitions);
313
314                 /* set up the MTD object for this partition */
315                 slave->mtd.type = master->type;
316                 slave->mtd.flags = master->flags & ~parts[i].mask_flags;
317                 slave->mtd.size = parts[i].size;
318                 slave->mtd.writesize = master->writesize;
319                 slave->mtd.oobsize = master->oobsize;
320                 slave->mtd.ecctype = master->ecctype;
321                 slave->mtd.eccsize = master->eccsize;
322
323                 slave->mtd.name = parts[i].name;
324                 slave->mtd.bank_size = master->bank_size;
325                 slave->mtd.owner = master->owner;
326
327                 slave->mtd.read = part_read;
328                 slave->mtd.write = part_write;
329
330                 if(master->point && master->unpoint){
331                         slave->mtd.point = part_point;
332                         slave->mtd.unpoint = part_unpoint;
333                 }
334
335                 if (master->read_oob)
336                         slave->mtd.read_oob = part_read_oob;
337                 if (master->write_oob)
338                         slave->mtd.write_oob = part_write_oob;
339                 if(master->read_user_prot_reg)
340                         slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
341                 if(master->read_fact_prot_reg)
342                         slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
343                 if(master->write_user_prot_reg)
344                         slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
345                 if(master->lock_user_prot_reg)
346                         slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
347                 if(master->get_user_prot_info)
348                         slave->mtd.get_user_prot_info = part_get_user_prot_info;
349                 if(master->get_fact_prot_info)
350                         slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
351                 if (master->sync)
352                         slave->mtd.sync = part_sync;
353                 if (!i && master->suspend && master->resume) {
354                                 slave->mtd.suspend = part_suspend;
355                                 slave->mtd.resume = part_resume;
356                 }
357                 if (master->writev)
358                         slave->mtd.writev = part_writev;
359                 if (master->lock)
360                         slave->mtd.lock = part_lock;
361                 if (master->unlock)
362                         slave->mtd.unlock = part_unlock;
363                 if (master->block_isbad)
364                         slave->mtd.block_isbad = part_block_isbad;
365                 if (master->block_markbad)
366                         slave->mtd.block_markbad = part_block_markbad;
367                 slave->mtd.erase = part_erase;
368                 slave->master = master;
369                 slave->offset = parts[i].offset;
370                 slave->index = i;
371
372                 if (slave->offset == MTDPART_OFS_APPEND)
373                         slave->offset = cur_offset;
374                 if (slave->offset == MTDPART_OFS_NXTBLK) {
375                         slave->offset = cur_offset;
376                         if ((cur_offset % master->erasesize) != 0) {
377                                 /* Round up to next erasesize */
378                                 slave->offset = ((cur_offset / master->erasesize) + 1) * master->erasesize;
379                                 printk(KERN_NOTICE "Moving partition %d: "
380                                        "0x%08x -> 0x%08x\n", i,
381                                        cur_offset, slave->offset);
382                         }
383                 }
384                 if (slave->mtd.size == MTDPART_SIZ_FULL)
385                         slave->mtd.size = master->size - slave->offset;
386                 cur_offset = slave->offset + slave->mtd.size;
387
388                 printk (KERN_NOTICE "0x%08x-0x%08x : \"%s\"\n", slave->offset,
389                         slave->offset + slave->mtd.size, slave->mtd.name);
390
391                 /* let's do some sanity checks */
392                 if (slave->offset >= master->size) {
393                                 /* let's register it anyway to preserve ordering */
394                         slave->offset = 0;
395                         slave->mtd.size = 0;
396                         printk ("mtd: partition \"%s\" is out of reach -- disabled\n",
397                                 parts[i].name);
398                 }
399                 if (slave->offset + slave->mtd.size > master->size) {
400                         slave->mtd.size = master->size - slave->offset;
401                         printk ("mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#x\n",
402                                 parts[i].name, master->name, slave->mtd.size);
403                 }
404                 if (master->numeraseregions>1) {
405                         /* Deal with variable erase size stuff */
406                         int i;
407                         struct mtd_erase_region_info *regions = master->eraseregions;
408
409                         /* Find the first erase regions which is part of this partition. */
410                         for (i=0; i < master->numeraseregions && slave->offset >= regions[i].offset; i++)
411                                 ;
412
413                         for (i--; i < master->numeraseregions && slave->offset + slave->mtd.size > regions[i].offset; i++) {
414                                 if (slave->mtd.erasesize < regions[i].erasesize) {
415                                         slave->mtd.erasesize = regions[i].erasesize;
416                                 }
417                         }
418                 } else {
419                         /* Single erase size */
420                         slave->mtd.erasesize = master->erasesize;
421                 }
422
423                 if ((slave->mtd.flags & MTD_WRITEABLE) &&
424                     (slave->offset % slave->mtd.erasesize)) {
425                         /* Doesn't start on a boundary of major erase size */
426                         /* FIXME: Let it be writable if it is on a boundary of _minor_ erase size though */
427                         slave->mtd.flags &= ~MTD_WRITEABLE;
428                         printk ("mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
429                                 parts[i].name);
430                 }
431                 if ((slave->mtd.flags & MTD_WRITEABLE) &&
432                     (slave->mtd.size % slave->mtd.erasesize)) {
433                         slave->mtd.flags &= ~MTD_WRITEABLE;
434                         printk ("mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
435                                 parts[i].name);
436                 }
437
438                 slave->mtd.ecclayout = master->ecclayout;
439
440                 if(parts[i].mtdp)
441                 {       /* store the object pointer (caller may or may not register it */
442                         *parts[i].mtdp = &slave->mtd;
443                         slave->registered = 0;
444                 }
445                 else
446                 {
447                         /* register our partition */
448                         add_mtd_device(&slave->mtd);
449                         slave->registered = 1;
450                 }
451         }
452
453         return 0;
454 }
455
456 EXPORT_SYMBOL(add_mtd_partitions);
457 EXPORT_SYMBOL(del_mtd_partitions);
458
459 static DEFINE_SPINLOCK(part_parser_lock);
460 static LIST_HEAD(part_parsers);
461
462 static struct mtd_part_parser *get_partition_parser(const char *name)
463 {
464         struct list_head *this;
465         void *ret = NULL;
466         spin_lock(&part_parser_lock);
467
468         list_for_each(this, &part_parsers) {
469                 struct mtd_part_parser *p = list_entry(this, struct mtd_part_parser, list);
470
471                 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
472                         ret = p;
473                         break;
474                 }
475         }
476         spin_unlock(&part_parser_lock);
477
478         return ret;
479 }
480
481 int register_mtd_parser(struct mtd_part_parser *p)
482 {
483         spin_lock(&part_parser_lock);
484         list_add(&p->list, &part_parsers);
485         spin_unlock(&part_parser_lock);
486
487         return 0;
488 }
489
490 int deregister_mtd_parser(struct mtd_part_parser *p)
491 {
492         spin_lock(&part_parser_lock);
493         list_del(&p->list);
494         spin_unlock(&part_parser_lock);
495         return 0;
496 }
497
498 int parse_mtd_partitions(struct mtd_info *master, const char **types,
499                          struct mtd_partition **pparts, unsigned long origin)
500 {
501         struct mtd_part_parser *parser;
502         int ret = 0;
503
504         for ( ; ret <= 0 && *types; types++) {
505                 parser = get_partition_parser(*types);
506 #ifdef CONFIG_KMOD
507                 if (!parser && !request_module("%s", *types))
508                                 parser = get_partition_parser(*types);
509 #endif
510                 if (!parser) {
511                         printk(KERN_NOTICE "%s partition parsing not available\n",
512                                *types);
513                         continue;
514                 }
515                 ret = (*parser->parse_fn)(master, pparts, origin);
516                 if (ret > 0) {
517                         printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
518                                ret, parser->name, master->name);
519                 }
520                 put_partition_parser(parser);
521         }
522         return ret;
523 }
524
525 EXPORT_SYMBOL_GPL(parse_mtd_partitions);
526 EXPORT_SYMBOL_GPL(register_mtd_parser);
527 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
528
529 MODULE_LICENSE("GPL");
530 MODULE_AUTHOR("Nicolas Pitre <nico@cam.org>");
531 MODULE_DESCRIPTION("Generic support for partitioning of MTD devices");
532