V4L/DVB: s2255drv: return if vdev not found
[safe/jmp/linux-2.6] / drivers / mtd / devices / mtd_dataflash.c
1 /*
2  * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
3  *
4  * Largely derived from at91_dataflash.c:
5  *  Copyright (C) 2003-2005 SAN People (Pty) Ltd
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11 */
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/delay.h>
16 #include <linux/device.h>
17 #include <linux/mutex.h>
18 #include <linux/err.h>
19 #include <linux/math64.h>
20
21 #include <linux/spi/spi.h>
22 #include <linux/spi/flash.h>
23
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/partitions.h>
26
27
28 /*
29  * DataFlash is a kind of SPI flash.  Most AT45 chips have two buffers in
30  * each chip, which may be used for double buffered I/O; but this driver
31  * doesn't (yet) use these for any kind of i/o overlap or prefetching.
32  *
33  * Sometimes DataFlash is packaged in MMC-format cards, although the
34  * MMC stack can't (yet?) distinguish between MMC and DataFlash
35  * protocols during enumeration.
36  */
37
38 /* reads can bypass the buffers */
39 #define OP_READ_CONTINUOUS      0xE8
40 #define OP_READ_PAGE            0xD2
41
42 /* group B requests can run even while status reports "busy" */
43 #define OP_READ_STATUS          0xD7    /* group B */
44
45 /* move data between host and buffer */
46 #define OP_READ_BUFFER1         0xD4    /* group B */
47 #define OP_READ_BUFFER2         0xD6    /* group B */
48 #define OP_WRITE_BUFFER1        0x84    /* group B */
49 #define OP_WRITE_BUFFER2        0x87    /* group B */
50
51 /* erasing flash */
52 #define OP_ERASE_PAGE           0x81
53 #define OP_ERASE_BLOCK          0x50
54
55 /* move data between buffer and flash */
56 #define OP_TRANSFER_BUF1        0x53
57 #define OP_TRANSFER_BUF2        0x55
58 #define OP_MREAD_BUFFER1        0xD4
59 #define OP_MREAD_BUFFER2        0xD6
60 #define OP_MWERASE_BUFFER1      0x83
61 #define OP_MWERASE_BUFFER2      0x86
62 #define OP_MWRITE_BUFFER1       0x88    /* sector must be pre-erased */
63 #define OP_MWRITE_BUFFER2       0x89    /* sector must be pre-erased */
64
65 /* write to buffer, then write-erase to flash */
66 #define OP_PROGRAM_VIA_BUF1     0x82
67 #define OP_PROGRAM_VIA_BUF2     0x85
68
69 /* compare buffer to flash */
70 #define OP_COMPARE_BUF1         0x60
71 #define OP_COMPARE_BUF2         0x61
72
73 /* read flash to buffer, then write-erase to flash */
74 #define OP_REWRITE_VIA_BUF1     0x58
75 #define OP_REWRITE_VIA_BUF2     0x59
76
77 /* newer chips report JEDEC manufacturer and device IDs; chip
78  * serial number and OTP bits; and per-sector writeprotect.
79  */
80 #define OP_READ_ID              0x9F
81 #define OP_READ_SECURITY        0x77
82 #define OP_WRITE_SECURITY_REVC  0x9A
83 #define OP_WRITE_SECURITY       0x9B    /* revision D */
84
85
86 struct dataflash {
87         uint8_t                 command[4];
88         char                    name[24];
89
90         unsigned                partitioned:1;
91
92         unsigned short          page_offset;    /* offset in flash address */
93         unsigned int            page_size;      /* of bytes per page */
94
95         struct mutex            lock;
96         struct spi_device       *spi;
97
98         struct mtd_info         mtd;
99 };
100
101 /* ......................................................................... */
102
103 /*
104  * Return the status of the DataFlash device.
105  */
106 static inline int dataflash_status(struct spi_device *spi)
107 {
108         /* NOTE:  at45db321c over 25 MHz wants to write
109          * a dummy byte after the opcode...
110          */
111         return spi_w8r8(spi, OP_READ_STATUS);
112 }
113
114 /*
115  * Poll the DataFlash device until it is READY.
116  * This usually takes 5-20 msec or so; more for sector erase.
117  */
118 static int dataflash_waitready(struct spi_device *spi)
119 {
120         int     status;
121
122         for (;;) {
123                 status = dataflash_status(spi);
124                 if (status < 0) {
125                         DEBUG(MTD_DEBUG_LEVEL1, "%s: status %d?\n",
126                                         dev_name(&spi->dev), status);
127                         status = 0;
128                 }
129
130                 if (status & (1 << 7))  /* RDY/nBSY */
131                         return status;
132
133                 msleep(3);
134         }
135 }
136
137 /* ......................................................................... */
138
139 /*
140  * Erase pages of flash.
141  */
142 static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
143 {
144         struct dataflash        *priv = (struct dataflash *)mtd->priv;
145         struct spi_device       *spi = priv->spi;
146         struct spi_transfer     x = { .tx_dma = 0, };
147         struct spi_message      msg;
148         unsigned                blocksize = priv->page_size << 3;
149         uint8_t                 *command;
150         uint32_t                rem;
151
152         DEBUG(MTD_DEBUG_LEVEL2, "%s: erase addr=0x%llx len 0x%llx\n",
153               dev_name(&spi->dev), (long long)instr->addr,
154               (long long)instr->len);
155
156         /* Sanity checks */
157         if (instr->addr + instr->len > mtd->size)
158                 return -EINVAL;
159         div_u64_rem(instr->len, priv->page_size, &rem);
160         if (rem)
161                 return -EINVAL;
162         div_u64_rem(instr->addr, priv->page_size, &rem);
163         if (rem)
164                 return -EINVAL;
165
166         spi_message_init(&msg);
167
168         x.tx_buf = command = priv->command;
169         x.len = 4;
170         spi_message_add_tail(&x, &msg);
171
172         mutex_lock(&priv->lock);
173         while (instr->len > 0) {
174                 unsigned int    pageaddr;
175                 int             status;
176                 int             do_block;
177
178                 /* Calculate flash page address; use block erase (for speed) if
179                  * we're at a block boundary and need to erase the whole block.
180                  */
181                 pageaddr = div_u64(instr->addr, priv->page_size);
182                 do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
183                 pageaddr = pageaddr << priv->page_offset;
184
185                 command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
186                 command[1] = (uint8_t)(pageaddr >> 16);
187                 command[2] = (uint8_t)(pageaddr >> 8);
188                 command[3] = 0;
189
190                 DEBUG(MTD_DEBUG_LEVEL3, "ERASE %s: (%x) %x %x %x [%i]\n",
191                         do_block ? "block" : "page",
192                         command[0], command[1], command[2], command[3],
193                         pageaddr);
194
195                 status = spi_sync(spi, &msg);
196                 (void) dataflash_waitready(spi);
197
198                 if (status < 0) {
199                         printk(KERN_ERR "%s: erase %x, err %d\n",
200                                 dev_name(&spi->dev), pageaddr, status);
201                         /* REVISIT:  can retry instr->retries times; or
202                          * giveup and instr->fail_addr = instr->addr;
203                          */
204                         continue;
205                 }
206
207                 if (do_block) {
208                         instr->addr += blocksize;
209                         instr->len -= blocksize;
210                 } else {
211                         instr->addr += priv->page_size;
212                         instr->len -= priv->page_size;
213                 }
214         }
215         mutex_unlock(&priv->lock);
216
217         /* Inform MTD subsystem that erase is complete */
218         instr->state = MTD_ERASE_DONE;
219         mtd_erase_callback(instr);
220
221         return 0;
222 }
223
224 /*
225  * Read from the DataFlash device.
226  *   from   : Start offset in flash device
227  *   len    : Amount to read
228  *   retlen : About of data actually read
229  *   buf    : Buffer containing the data
230  */
231 static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
232                                size_t *retlen, u_char *buf)
233 {
234         struct dataflash        *priv = (struct dataflash *)mtd->priv;
235         struct spi_transfer     x[2] = { { .tx_dma = 0, }, };
236         struct spi_message      msg;
237         unsigned int            addr;
238         uint8_t                 *command;
239         int                     status;
240
241         DEBUG(MTD_DEBUG_LEVEL2, "%s: read 0x%x..0x%x\n",
242                 dev_name(&priv->spi->dev), (unsigned)from, (unsigned)(from + len));
243
244         *retlen = 0;
245
246         /* Sanity checks */
247         if (!len)
248                 return 0;
249         if (from + len > mtd->size)
250                 return -EINVAL;
251
252         /* Calculate flash page/byte address */
253         addr = (((unsigned)from / priv->page_size) << priv->page_offset)
254                 + ((unsigned)from % priv->page_size);
255
256         command = priv->command;
257
258         DEBUG(MTD_DEBUG_LEVEL3, "READ: (%x) %x %x %x\n",
259                 command[0], command[1], command[2], command[3]);
260
261         spi_message_init(&msg);
262
263         x[0].tx_buf = command;
264         x[0].len = 8;
265         spi_message_add_tail(&x[0], &msg);
266
267         x[1].rx_buf = buf;
268         x[1].len = len;
269         spi_message_add_tail(&x[1], &msg);
270
271         mutex_lock(&priv->lock);
272
273         /* Continuous read, max clock = f(car) which may be less than
274          * the peak rate available.  Some chips support commands with
275          * fewer "don't care" bytes.  Both buffers stay unchanged.
276          */
277         command[0] = OP_READ_CONTINUOUS;
278         command[1] = (uint8_t)(addr >> 16);
279         command[2] = (uint8_t)(addr >> 8);
280         command[3] = (uint8_t)(addr >> 0);
281         /* plus 4 "don't care" bytes */
282
283         status = spi_sync(priv->spi, &msg);
284         mutex_unlock(&priv->lock);
285
286         if (status >= 0) {
287                 *retlen = msg.actual_length - 8;
288                 status = 0;
289         } else
290                 DEBUG(MTD_DEBUG_LEVEL1, "%s: read %x..%x --> %d\n",
291                         dev_name(&priv->spi->dev),
292                         (unsigned)from, (unsigned)(from + len),
293                         status);
294         return status;
295 }
296
297 /*
298  * Write to the DataFlash device.
299  *   to     : Start offset in flash device
300  *   len    : Amount to write
301  *   retlen : Amount of data actually written
302  *   buf    : Buffer containing the data
303  */
304 static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
305                                 size_t * retlen, const u_char * buf)
306 {
307         struct dataflash        *priv = (struct dataflash *)mtd->priv;
308         struct spi_device       *spi = priv->spi;
309         struct spi_transfer     x[2] = { { .tx_dma = 0, }, };
310         struct spi_message      msg;
311         unsigned int            pageaddr, addr, offset, writelen;
312         size_t                  remaining = len;
313         u_char                  *writebuf = (u_char *) buf;
314         int                     status = -EINVAL;
315         uint8_t                 *command;
316
317         DEBUG(MTD_DEBUG_LEVEL2, "%s: write 0x%x..0x%x\n",
318                 dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len));
319
320         *retlen = 0;
321
322         /* Sanity checks */
323         if (!len)
324                 return 0;
325         if ((to + len) > mtd->size)
326                 return -EINVAL;
327
328         spi_message_init(&msg);
329
330         x[0].tx_buf = command = priv->command;
331         x[0].len = 4;
332         spi_message_add_tail(&x[0], &msg);
333
334         pageaddr = ((unsigned)to / priv->page_size);
335         offset = ((unsigned)to % priv->page_size);
336         if (offset + len > priv->page_size)
337                 writelen = priv->page_size - offset;
338         else
339                 writelen = len;
340
341         mutex_lock(&priv->lock);
342         while (remaining > 0) {
343                 DEBUG(MTD_DEBUG_LEVEL3, "write @ %i:%i len=%i\n",
344                         pageaddr, offset, writelen);
345
346                 /* REVISIT:
347                  * (a) each page in a sector must be rewritten at least
348                  *     once every 10K sibling erase/program operations.
349                  * (b) for pages that are already erased, we could
350                  *     use WRITE+MWRITE not PROGRAM for ~30% speedup.
351                  * (c) WRITE to buffer could be done while waiting for
352                  *     a previous MWRITE/MWERASE to complete ...
353                  * (d) error handling here seems to be mostly missing.
354                  *
355                  * Two persistent bits per page, plus a per-sector counter,
356                  * could support (a) and (b) ... we might consider using
357                  * the second half of sector zero, which is just one block,
358                  * to track that state.  (On AT91, that sector should also
359                  * support boot-from-DataFlash.)
360                  */
361
362                 addr = pageaddr << priv->page_offset;
363
364                 /* (1) Maybe transfer partial page to Buffer1 */
365                 if (writelen != priv->page_size) {
366                         command[0] = OP_TRANSFER_BUF1;
367                         command[1] = (addr & 0x00FF0000) >> 16;
368                         command[2] = (addr & 0x0000FF00) >> 8;
369                         command[3] = 0;
370
371                         DEBUG(MTD_DEBUG_LEVEL3, "TRANSFER: (%x) %x %x %x\n",
372                                 command[0], command[1], command[2], command[3]);
373
374                         status = spi_sync(spi, &msg);
375                         if (status < 0)
376                                 DEBUG(MTD_DEBUG_LEVEL1, "%s: xfer %u -> %d \n",
377                                         dev_name(&spi->dev), addr, status);
378
379                         (void) dataflash_waitready(priv->spi);
380                 }
381
382                 /* (2) Program full page via Buffer1 */
383                 addr += offset;
384                 command[0] = OP_PROGRAM_VIA_BUF1;
385                 command[1] = (addr & 0x00FF0000) >> 16;
386                 command[2] = (addr & 0x0000FF00) >> 8;
387                 command[3] = (addr & 0x000000FF);
388
389                 DEBUG(MTD_DEBUG_LEVEL3, "PROGRAM: (%x) %x %x %x\n",
390                         command[0], command[1], command[2], command[3]);
391
392                 x[1].tx_buf = writebuf;
393                 x[1].len = writelen;
394                 spi_message_add_tail(x + 1, &msg);
395                 status = spi_sync(spi, &msg);
396                 spi_transfer_del(x + 1);
397                 if (status < 0)
398                         DEBUG(MTD_DEBUG_LEVEL1, "%s: pgm %u/%u -> %d \n",
399                                 dev_name(&spi->dev), addr, writelen, status);
400
401                 (void) dataflash_waitready(priv->spi);
402
403
404 #ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY
405
406                 /* (3) Compare to Buffer1 */
407                 addr = pageaddr << priv->page_offset;
408                 command[0] = OP_COMPARE_BUF1;
409                 command[1] = (addr & 0x00FF0000) >> 16;
410                 command[2] = (addr & 0x0000FF00) >> 8;
411                 command[3] = 0;
412
413                 DEBUG(MTD_DEBUG_LEVEL3, "COMPARE: (%x) %x %x %x\n",
414                         command[0], command[1], command[2], command[3]);
415
416                 status = spi_sync(spi, &msg);
417                 if (status < 0)
418                         DEBUG(MTD_DEBUG_LEVEL1, "%s: compare %u -> %d \n",
419                                 dev_name(&spi->dev), addr, status);
420
421                 status = dataflash_waitready(priv->spi);
422
423                 /* Check result of the compare operation */
424                 if (status & (1 << 6)) {
425                         printk(KERN_ERR "%s: compare page %u, err %d\n",
426                                 dev_name(&spi->dev), pageaddr, status);
427                         remaining = 0;
428                         status = -EIO;
429                         break;
430                 } else
431                         status = 0;
432
433 #endif  /* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */
434
435                 remaining = remaining - writelen;
436                 pageaddr++;
437                 offset = 0;
438                 writebuf += writelen;
439                 *retlen += writelen;
440
441                 if (remaining > priv->page_size)
442                         writelen = priv->page_size;
443                 else
444                         writelen = remaining;
445         }
446         mutex_unlock(&priv->lock);
447
448         return status;
449 }
450
451 /* ......................................................................... */
452
453 #ifdef CONFIG_MTD_DATAFLASH_OTP
454
455 static int dataflash_get_otp_info(struct mtd_info *mtd,
456                 struct otp_info *info, size_t len)
457 {
458         /* Report both blocks as identical:  bytes 0..64, locked.
459          * Unless the user block changed from all-ones, we can't
460          * tell whether it's still writable; so we assume it isn't.
461          */
462         info->start = 0;
463         info->length = 64;
464         info->locked = 1;
465         return sizeof(*info);
466 }
467
468 static ssize_t otp_read(struct spi_device *spi, unsigned base,
469                 uint8_t *buf, loff_t off, size_t len)
470 {
471         struct spi_message      m;
472         size_t                  l;
473         uint8_t                 *scratch;
474         struct spi_transfer     t;
475         int                     status;
476
477         if (off > 64)
478                 return -EINVAL;
479
480         if ((off + len) > 64)
481                 len = 64 - off;
482         if (len == 0)
483                 return len;
484
485         spi_message_init(&m);
486
487         l = 4 + base + off + len;
488         scratch = kzalloc(l, GFP_KERNEL);
489         if (!scratch)
490                 return -ENOMEM;
491
492         /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
493          * IN:  ignore 4 bytes, data bytes 0..N (max 127)
494          */
495         scratch[0] = OP_READ_SECURITY;
496
497         memset(&t, 0, sizeof t);
498         t.tx_buf = scratch;
499         t.rx_buf = scratch;
500         t.len = l;
501         spi_message_add_tail(&t, &m);
502
503         dataflash_waitready(spi);
504
505         status = spi_sync(spi, &m);
506         if (status >= 0) {
507                 memcpy(buf, scratch + 4 + base + off, len);
508                 status = len;
509         }
510
511         kfree(scratch);
512         return status;
513 }
514
515 static int dataflash_read_fact_otp(struct mtd_info *mtd,
516                 loff_t from, size_t len, size_t *retlen, u_char *buf)
517 {
518         struct dataflash        *priv = (struct dataflash *)mtd->priv;
519         int                     status;
520
521         /* 64 bytes, from 0..63 ... start at 64 on-chip */
522         mutex_lock(&priv->lock);
523         status = otp_read(priv->spi, 64, buf, from, len);
524         mutex_unlock(&priv->lock);
525
526         if (status < 0)
527                 return status;
528         *retlen = status;
529         return 0;
530 }
531
532 static int dataflash_read_user_otp(struct mtd_info *mtd,
533                 loff_t from, size_t len, size_t *retlen, u_char *buf)
534 {
535         struct dataflash        *priv = (struct dataflash *)mtd->priv;
536         int                     status;
537
538         /* 64 bytes, from 0..63 ... start at 0 on-chip */
539         mutex_lock(&priv->lock);
540         status = otp_read(priv->spi, 0, buf, from, len);
541         mutex_unlock(&priv->lock);
542
543         if (status < 0)
544                 return status;
545         *retlen = status;
546         return 0;
547 }
548
549 static int dataflash_write_user_otp(struct mtd_info *mtd,
550                 loff_t from, size_t len, size_t *retlen, u_char *buf)
551 {
552         struct spi_message      m;
553         const size_t            l = 4 + 64;
554         uint8_t                 *scratch;
555         struct spi_transfer     t;
556         struct dataflash        *priv = (struct dataflash *)mtd->priv;
557         int                     status;
558
559         if (len > 64)
560                 return -EINVAL;
561
562         /* Strictly speaking, we *could* truncate the write ... but
563          * let's not do that for the only write that's ever possible.
564          */
565         if ((from + len) > 64)
566                 return -EINVAL;
567
568         /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
569          * IN:  ignore all
570          */
571         scratch = kzalloc(l, GFP_KERNEL);
572         if (!scratch)
573                 return -ENOMEM;
574         scratch[0] = OP_WRITE_SECURITY;
575         memcpy(scratch + 4 + from, buf, len);
576
577         spi_message_init(&m);
578
579         memset(&t, 0, sizeof t);
580         t.tx_buf = scratch;
581         t.len = l;
582         spi_message_add_tail(&t, &m);
583
584         /* Write the OTP bits, if they've not yet been written.
585          * This modifies SRAM buffer1.
586          */
587         mutex_lock(&priv->lock);
588         dataflash_waitready(priv->spi);
589         status = spi_sync(priv->spi, &m);
590         mutex_unlock(&priv->lock);
591
592         kfree(scratch);
593
594         if (status >= 0) {
595                 status = 0;
596                 *retlen = len;
597         }
598         return status;
599 }
600
601 static char *otp_setup(struct mtd_info *device, char revision)
602 {
603         device->get_fact_prot_info = dataflash_get_otp_info;
604         device->read_fact_prot_reg = dataflash_read_fact_otp;
605         device->get_user_prot_info = dataflash_get_otp_info;
606         device->read_user_prot_reg = dataflash_read_user_otp;
607
608         /* rev c parts (at45db321c and at45db1281 only!) use a
609          * different write procedure; not (yet?) implemented.
610          */
611         if (revision > 'c')
612                 device->write_user_prot_reg = dataflash_write_user_otp;
613
614         return ", OTP";
615 }
616
617 #else
618
619 static char *otp_setup(struct mtd_info *device, char revision)
620 {
621         return " (OTP)";
622 }
623
624 #endif
625
626 /* ......................................................................... */
627
628 /*
629  * Register DataFlash device with MTD subsystem.
630  */
631 static int __devinit
632 add_dataflash_otp(struct spi_device *spi, char *name,
633                 int nr_pages, int pagesize, int pageoffset, char revision)
634 {
635         struct dataflash                *priv;
636         struct mtd_info                 *device;
637         struct flash_platform_data      *pdata = spi->dev.platform_data;
638         char                            *otp_tag = "";
639         int                             err = 0;
640
641         priv = kzalloc(sizeof *priv, GFP_KERNEL);
642         if (!priv)
643                 return -ENOMEM;
644
645         mutex_init(&priv->lock);
646         priv->spi = spi;
647         priv->page_size = pagesize;
648         priv->page_offset = pageoffset;
649
650         /* name must be usable with cmdlinepart */
651         sprintf(priv->name, "spi%d.%d-%s",
652                         spi->master->bus_num, spi->chip_select,
653                         name);
654
655         device = &priv->mtd;
656         device->name = (pdata && pdata->name) ? pdata->name : priv->name;
657         device->size = nr_pages * pagesize;
658         device->erasesize = pagesize;
659         device->writesize = pagesize;
660         device->owner = THIS_MODULE;
661         device->type = MTD_DATAFLASH;
662         device->flags = MTD_WRITEABLE;
663         device->erase = dataflash_erase;
664         device->read = dataflash_read;
665         device->write = dataflash_write;
666         device->priv = priv;
667
668         device->dev.parent = &spi->dev;
669
670         if (revision >= 'c')
671                 otp_tag = otp_setup(device, revision);
672
673         dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
674                         name, (long long)((device->size + 1023) >> 10),
675                         pagesize, otp_tag);
676         dev_set_drvdata(&spi->dev, priv);
677
678         if (mtd_has_partitions()) {
679                 struct mtd_partition    *parts;
680                 int                     nr_parts = 0;
681
682                 if (mtd_has_cmdlinepart()) {
683                         static const char *part_probes[]
684                                         = { "cmdlinepart", NULL, };
685
686                         nr_parts = parse_mtd_partitions(device,
687                                         part_probes, &parts, 0);
688                 }
689
690                 if (nr_parts <= 0 && pdata && pdata->parts) {
691                         parts = pdata->parts;
692                         nr_parts = pdata->nr_parts;
693                 }
694
695                 if (nr_parts > 0) {
696                         priv->partitioned = 1;
697                         err = add_mtd_partitions(device, parts, nr_parts);
698                         goto out;
699                 }
700         } else if (pdata && pdata->nr_parts)
701                 dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
702                                 pdata->nr_parts, device->name);
703
704         if (add_mtd_device(device) == 1)
705                 err = -ENODEV;
706
707 out:
708         if (!err)
709                 return 0;
710
711         dev_set_drvdata(&spi->dev, NULL);
712         kfree(priv);
713         return err;
714 }
715
716 static inline int __devinit
717 add_dataflash(struct spi_device *spi, char *name,
718                 int nr_pages, int pagesize, int pageoffset)
719 {
720         return add_dataflash_otp(spi, name, nr_pages, pagesize,
721                         pageoffset, 0);
722 }
723
724 struct flash_info {
725         char            *name;
726
727         /* JEDEC id has a high byte of zero plus three data bytes:
728          * the manufacturer id, then a two byte device id.
729          */
730         uint32_t        jedec_id;
731
732         /* The size listed here is what works with OP_ERASE_PAGE. */
733         unsigned        nr_pages;
734         uint16_t        pagesize;
735         uint16_t        pageoffset;
736
737         uint16_t        flags;
738 #define SUP_POW2PS      0x0002          /* supports 2^N byte pages */
739 #define IS_POW2PS       0x0001          /* uses 2^N byte pages */
740 };
741
742 static struct flash_info __devinitdata dataflash_data [] = {
743
744         /*
745          * NOTE:  chips with SUP_POW2PS (rev D and up) need two entries,
746          * one with IS_POW2PS and the other without.  The entry with the
747          * non-2^N byte page size can't name exact chip revisions without
748          * losing backwards compatibility for cmdlinepart.
749          *
750          * These newer chips also support 128-byte security registers (with
751          * 64 bytes one-time-programmable) and software write-protection.
752          */
753         { "AT45DB011B",  0x1f2200, 512, 264, 9, SUP_POW2PS},
754         { "at45db011d",  0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
755
756         { "AT45DB021B",  0x1f2300, 1024, 264, 9, SUP_POW2PS},
757         { "at45db021d",  0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
758
759         { "AT45DB041x",  0x1f2400, 2048, 264, 9, SUP_POW2PS},
760         { "at45db041d",  0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
761
762         { "AT45DB081B",  0x1f2500, 4096, 264, 9, SUP_POW2PS},
763         { "at45db081d",  0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
764
765         { "AT45DB161x",  0x1f2600, 4096, 528, 10, SUP_POW2PS},
766         { "at45db161d",  0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
767
768         { "AT45DB321x",  0x1f2700, 8192, 528, 10, 0},           /* rev C */
769
770         { "AT45DB321x",  0x1f2701, 8192, 528, 10, SUP_POW2PS},
771         { "at45db321d",  0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
772
773         { "AT45DB642x",  0x1f2800, 8192, 1056, 11, SUP_POW2PS},
774         { "at45db642d",  0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
775 };
776
777 static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
778 {
779         int                     tmp;
780         uint8_t                 code = OP_READ_ID;
781         uint8_t                 id[3];
782         uint32_t                jedec;
783         struct flash_info       *info;
784         int status;
785
786         /* JEDEC also defines an optional "extended device information"
787          * string for after vendor-specific data, after the three bytes
788          * we use here.  Supporting some chips might require using it.
789          *
790          * If the vendor ID isn't Atmel's (0x1f), assume this call failed.
791          * That's not an error; only rev C and newer chips handle it, and
792          * only Atmel sells these chips.
793          */
794         tmp = spi_write_then_read(spi, &code, 1, id, 3);
795         if (tmp < 0) {
796                 DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
797                         dev_name(&spi->dev), tmp);
798                 return ERR_PTR(tmp);
799         }
800         if (id[0] != 0x1f)
801                 return NULL;
802
803         jedec = id[0];
804         jedec = jedec << 8;
805         jedec |= id[1];
806         jedec = jedec << 8;
807         jedec |= id[2];
808
809         for (tmp = 0, info = dataflash_data;
810                         tmp < ARRAY_SIZE(dataflash_data);
811                         tmp++, info++) {
812                 if (info->jedec_id == jedec) {
813                         DEBUG(MTD_DEBUG_LEVEL1, "%s: OTP, sector protect%s\n",
814                                 dev_name(&spi->dev),
815                                 (info->flags & SUP_POW2PS)
816                                         ? ", binary pagesize" : ""
817                                 );
818                         if (info->flags & SUP_POW2PS) {
819                                 status = dataflash_status(spi);
820                                 if (status < 0) {
821                                         DEBUG(MTD_DEBUG_LEVEL1,
822                                                 "%s: status error %d\n",
823                                                 dev_name(&spi->dev), status);
824                                         return ERR_PTR(status);
825                                 }
826                                 if (status & 0x1) {
827                                         if (info->flags & IS_POW2PS)
828                                                 return info;
829                                 } else {
830                                         if (!(info->flags & IS_POW2PS))
831                                                 return info;
832                                 }
833                         } else
834                                 return info;
835                 }
836         }
837
838         /*
839          * Treat other chips as errors ... we won't know the right page
840          * size (it might be binary) even when we can tell which density
841          * class is involved (legacy chip id scheme).
842          */
843         dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec);
844         return ERR_PTR(-ENODEV);
845 }
846
847 /*
848  * Detect and initialize DataFlash device, using JEDEC IDs on newer chips
849  * or else the ID code embedded in the status bits:
850  *
851  *   Device      Density         ID code          #Pages PageSize  Offset
852  *   AT45DB011B  1Mbit   (128K)  xx0011xx (0x0c)    512    264      9
853  *   AT45DB021B  2Mbit   (256K)  xx0101xx (0x14)   1024    264      9
854  *   AT45DB041B  4Mbit   (512K)  xx0111xx (0x1c)   2048    264      9
855  *   AT45DB081B  8Mbit   (1M)    xx1001xx (0x24)   4096    264      9
856  *   AT45DB0161B 16Mbit  (2M)    xx1011xx (0x2c)   4096    528     10
857  *   AT45DB0321B 32Mbit  (4M)    xx1101xx (0x34)   8192    528     10
858  *   AT45DB0642  64Mbit  (8M)    xx111xxx (0x3c)   8192   1056     11
859  *   AT45DB1282  128Mbit (16M)   xx0100xx (0x10)  16384   1056     11
860  */
861 static int __devinit dataflash_probe(struct spi_device *spi)
862 {
863         int status;
864         struct flash_info       *info;
865
866         /*
867          * Try to detect dataflash by JEDEC ID.
868          * If it succeeds we know we have either a C or D part.
869          * D will support power of 2 pagesize option.
870          * Both support the security register, though with different
871          * write procedures.
872          */
873         info = jedec_probe(spi);
874         if (IS_ERR(info))
875                 return PTR_ERR(info);
876         if (info != NULL)
877                 return add_dataflash_otp(spi, info->name, info->nr_pages,
878                                 info->pagesize, info->pageoffset,
879                                 (info->flags & SUP_POW2PS) ? 'd' : 'c');
880
881         /*
882          * Older chips support only legacy commands, identifing
883          * capacity using bits in the status byte.
884          */
885         status = dataflash_status(spi);
886         if (status <= 0 || status == 0xff) {
887                 DEBUG(MTD_DEBUG_LEVEL1, "%s: status error %d\n",
888                                 dev_name(&spi->dev), status);
889                 if (status == 0 || status == 0xff)
890                         status = -ENODEV;
891                 return status;
892         }
893
894         /* if there's a device there, assume it's dataflash.
895          * board setup should have set spi->max_speed_max to
896          * match f(car) for continuous reads, mode 0 or 3.
897          */
898         switch (status & 0x3c) {
899         case 0x0c:      /* 0 0 1 1 x x */
900                 status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
901                 break;
902         case 0x14:      /* 0 1 0 1 x x */
903                 status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
904                 break;
905         case 0x1c:      /* 0 1 1 1 x x */
906                 status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
907                 break;
908         case 0x24:      /* 1 0 0 1 x x */
909                 status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
910                 break;
911         case 0x2c:      /* 1 0 1 1 x x */
912                 status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
913                 break;
914         case 0x34:      /* 1 1 0 1 x x */
915                 status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
916                 break;
917         case 0x38:      /* 1 1 1 x x x */
918         case 0x3c:
919                 status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
920                 break;
921         /* obsolete AT45DB1282 not (yet?) supported */
922         default:
923                 DEBUG(MTD_DEBUG_LEVEL1, "%s: unsupported device (%x)\n",
924                                 dev_name(&spi->dev), status & 0x3c);
925                 status = -ENODEV;
926         }
927
928         if (status < 0)
929                 DEBUG(MTD_DEBUG_LEVEL1, "%s: add_dataflash --> %d\n",
930                                 dev_name(&spi->dev), status);
931
932         return status;
933 }
934
935 static int __devexit dataflash_remove(struct spi_device *spi)
936 {
937         struct dataflash        *flash = dev_get_drvdata(&spi->dev);
938         int                     status;
939
940         DEBUG(MTD_DEBUG_LEVEL1, "%s: remove\n", dev_name(&spi->dev));
941
942         if (mtd_has_partitions() && flash->partitioned)
943                 status = del_mtd_partitions(&flash->mtd);
944         else
945                 status = del_mtd_device(&flash->mtd);
946         if (status == 0) {
947                 dev_set_drvdata(&spi->dev, NULL);
948                 kfree(flash);
949         }
950         return status;
951 }
952
953 static struct spi_driver dataflash_driver = {
954         .driver = {
955                 .name           = "mtd_dataflash",
956                 .bus            = &spi_bus_type,
957                 .owner          = THIS_MODULE,
958         },
959
960         .probe          = dataflash_probe,
961         .remove         = __devexit_p(dataflash_remove),
962
963         /* FIXME:  investigate suspend and resume... */
964 };
965
966 static int __init dataflash_init(void)
967 {
968         return spi_register_driver(&dataflash_driver);
969 }
970 module_init(dataflash_init);
971
972 static void __exit dataflash_exit(void)
973 {
974         spi_unregister_driver(&dataflash_driver);
975 }
976 module_exit(dataflash_exit);
977
978
979 MODULE_LICENSE("GPL");
980 MODULE_AUTHOR("Andrew Victor, David Brownell");
981 MODULE_DESCRIPTION("MTD DataFlash driver");
982 MODULE_ALIAS("spi:mtd_dataflash");