fde870aebcb98c482d72ad43a1723415caa028c6
[safe/jmp/linux-2.6] / drivers / misc / sgi-xp / xpc_sn2.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
7  */
8
9 /*
10  * Cross Partition Communication (XPC) sn2-based functions.
11  *
12  *     Architecture specific implementation of common functions.
13  *
14  */
15
16 #include <linux/delay.h>
17 #include <asm/uncached.h>
18 #include <asm/sn/mspec.h>
19 #include <asm/sn/sn_sal.h>
20 #include "xpc.h"
21
22 /*
23  * Define the number of u64s required to represent all the C-brick nasids
24  * as a bitmap.  The cross-partition kernel modules deal only with
25  * C-brick nasids, thus the need for bitmaps which don't account for
26  * odd-numbered (non C-brick) nasids.
27  */
28 #define XPC_MAX_PHYSNODES_SN2   (MAX_NUMALINK_NODES / 2)
29 #define XP_NASID_MASK_BYTES_SN2 ((XPC_MAX_PHYSNODES_SN2 + 7) / 8)
30 #define XP_NASID_MASK_WORDS_SN2 ((XPC_MAX_PHYSNODES_SN2 + 63) / 64)
31
32 /*
33  * Memory for XPC's amo variables is allocated by the MSPEC driver. These
34  * pages are located in the lowest granule. The lowest granule uses 4k pages
35  * for cached references and an alternate TLB handler to never provide a
36  * cacheable mapping for the entire region. This will prevent speculative
37  * reading of cached copies of our lines from being issued which will cause
38  * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64
39  * amo variables (based on XP_MAX_NPARTITIONS_SN2) to identify the senders of
40  * NOTIFY IRQs, 128 amo variables (based on XP_NASID_MASK_WORDS_SN2) to identify
41  * the senders of ACTIVATE IRQs, 1 amo variable to identify which remote
42  * partitions (i.e., XPCs) consider themselves currently engaged with the
43  * local XPC and 1 amo variable to request partition deactivation.
44  */
45 #define XPC_NOTIFY_IRQ_AMOS_SN2         0
46 #define XPC_ACTIVATE_IRQ_AMOS_SN2       (XPC_NOTIFY_IRQ_AMOS_SN2 + \
47                                          XP_MAX_NPARTITIONS_SN2)
48 #define XPC_ENGAGED_PARTITIONS_AMO_SN2  (XPC_ACTIVATE_IRQ_AMOS_SN2 + \
49                                          XP_NASID_MASK_WORDS_SN2)
50 #define XPC_DEACTIVATE_REQUEST_AMO_SN2  (XPC_ENGAGED_PARTITIONS_AMO_SN2 + 1)
51
52 /*
53  * Buffer used to store a local copy of portions of a remote partition's
54  * reserved page (either its header and part_nasids mask, or its vars).
55  */
56 static char *xpc_remote_copy_buffer_sn2;
57 static void *xpc_remote_copy_buffer_base_sn2;
58
59 static struct xpc_vars_sn2 *xpc_vars_sn2;
60 static struct xpc_vars_part_sn2 *xpc_vars_part_sn2;
61
62 /* SH_IPI_ACCESS shub register value on startup */
63 static u64 xpc_sh1_IPI_access_sn2;
64 static u64 xpc_sh2_IPI_access0_sn2;
65 static u64 xpc_sh2_IPI_access1_sn2;
66 static u64 xpc_sh2_IPI_access2_sn2;
67 static u64 xpc_sh2_IPI_access3_sn2;
68
69 /*
70  * Change protections to allow IPI operations.
71  */
72 static void
73 xpc_allow_IPI_ops_sn2(void)
74 {
75         int node;
76         int nasid;
77
78         /* !!! The following should get moved into SAL. */
79         if (is_shub2()) {
80                 xpc_sh2_IPI_access0_sn2 =
81                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS0));
82                 xpc_sh2_IPI_access1_sn2 =
83                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS1));
84                 xpc_sh2_IPI_access2_sn2 =
85                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS2));
86                 xpc_sh2_IPI_access3_sn2 =
87                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS3));
88
89                 for_each_online_node(node) {
90                         nasid = cnodeid_to_nasid(node);
91                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
92                               -1UL);
93                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
94                               -1UL);
95                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
96                               -1UL);
97                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
98                               -1UL);
99                 }
100         } else {
101                 xpc_sh1_IPI_access_sn2 =
102                     (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH1_IPI_ACCESS));
103
104                 for_each_online_node(node) {
105                         nasid = cnodeid_to_nasid(node);
106                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
107                               -1UL);
108                 }
109         }
110 }
111
112 /*
113  * Restrict protections to disallow IPI operations.
114  */
115 static void
116 xpc_disallow_IPI_ops_sn2(void)
117 {
118         int node;
119         int nasid;
120
121         /* !!! The following should get moved into SAL. */
122         if (is_shub2()) {
123                 for_each_online_node(node) {
124                         nasid = cnodeid_to_nasid(node);
125                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
126                               xpc_sh2_IPI_access0_sn2);
127                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
128                               xpc_sh2_IPI_access1_sn2);
129                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
130                               xpc_sh2_IPI_access2_sn2);
131                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
132                               xpc_sh2_IPI_access3_sn2);
133                 }
134         } else {
135                 for_each_online_node(node) {
136                         nasid = cnodeid_to_nasid(node);
137                         HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
138                               xpc_sh1_IPI_access_sn2);
139                 }
140         }
141 }
142
143 /*
144  * The following set of functions are used for the sending and receiving of
145  * IRQs (also known as IPIs). There are two flavors of IRQs, one that is
146  * associated with partition activity (SGI_XPC_ACTIVATE) and the other that
147  * is associated with channel activity (SGI_XPC_NOTIFY).
148  */
149
150 static u64
151 xpc_receive_IRQ_amo_sn2(struct amo *amo)
152 {
153         return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR);
154 }
155
156 static enum xp_retval
157 xpc_send_IRQ_sn2(struct amo *amo, u64 flag, int nasid, int phys_cpuid,
158                  int vector)
159 {
160         int ret = 0;
161         unsigned long irq_flags;
162
163         local_irq_save(irq_flags);
164
165         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag);
166         sn_send_IPI_phys(nasid, phys_cpuid, vector, 0);
167
168         /*
169          * We must always use the nofault function regardless of whether we
170          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
171          * didn't, we'd never know that the other partition is down and would
172          * keep sending IRQs and amos to it until the heartbeat times out.
173          */
174         ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable),
175                                                      xp_nofault_PIOR_target));
176
177         local_irq_restore(irq_flags);
178
179         return (ret == 0) ? xpSuccess : xpPioReadError;
180 }
181
182 static struct amo *
183 xpc_init_IRQ_amo_sn2(int index)
184 {
185         struct amo *amo = xpc_vars_sn2->amos_page + index;
186
187         (void)xpc_receive_IRQ_amo_sn2(amo);     /* clear amo variable */
188         return amo;
189 }
190
191 /*
192  * Functions associated with SGI_XPC_ACTIVATE IRQ.
193  */
194
195 /*
196  * Notify the heartbeat check thread that an activate IRQ has been received.
197  */
198 static irqreturn_t
199 xpc_handle_activate_IRQ_sn2(int irq, void *dev_id)
200 {
201         atomic_inc(&xpc_activate_IRQ_rcvd);
202         wake_up_interruptible(&xpc_activate_IRQ_wq);
203         return IRQ_HANDLED;
204 }
205
206 /*
207  * Flag the appropriate amo variable and send an IRQ to the specified node.
208  */
209 static void
210 xpc_send_activate_IRQ_sn2(u64 amos_page_pa, int from_nasid, int to_nasid,
211                           int to_phys_cpuid)
212 {
213         struct amo *amos = (struct amo *)__va(amos_page_pa +
214                                               (XPC_ACTIVATE_IRQ_AMOS_SN2 *
215                                               sizeof(struct amo)));
216
217         (void)xpc_send_IRQ_sn2(&amos[BIT_WORD(from_nasid / 2)],
218                                BIT_MASK(from_nasid / 2), to_nasid,
219                                to_phys_cpuid, SGI_XPC_ACTIVATE);
220 }
221
222 static void
223 xpc_send_local_activate_IRQ_sn2(int from_nasid)
224 {
225         struct amo *amos = (struct amo *)__va(xpc_vars_sn2->amos_page_pa +
226                                               (XPC_ACTIVATE_IRQ_AMOS_SN2 *
227                                               sizeof(struct amo)));
228
229         /* fake the sending and receipt of an activate IRQ from remote nasid */
230         FETCHOP_STORE_OP(TO_AMO((u64)&amos[BIT_WORD(from_nasid / 2)].variable),
231                          FETCHOP_OR, BIT_MASK(from_nasid / 2));
232
233         atomic_inc(&xpc_activate_IRQ_rcvd);
234         wake_up_interruptible(&xpc_activate_IRQ_wq);
235 }
236
237 /*
238  * Functions associated with SGI_XPC_NOTIFY IRQ.
239  */
240
241 /*
242  * Check to see if any chctl flags were sent from the specified partition.
243  */
244 static void
245 xpc_check_for_sent_chctl_flags_sn2(struct xpc_partition *part)
246 {
247         union xpc_channel_ctl_flags chctl;
248         unsigned long irq_flags;
249
250         chctl.all_flags = xpc_receive_IRQ_amo_sn2(part->sn.sn2.
251                                                   local_chctl_amo_va);
252         if (chctl.all_flags == 0)
253                 return;
254
255         spin_lock_irqsave(&part->chctl_lock, irq_flags);
256         part->chctl.all_flags |= chctl.all_flags;
257         spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
258
259         dev_dbg(xpc_chan, "received notify IRQ from partid=%d, chctl.all_flags="
260                 "0x%lx\n", XPC_PARTID(part), chctl.all_flags);
261
262         xpc_wakeup_channel_mgr(part);
263 }
264
265 /*
266  * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified
267  * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more
268  * than one partition, we use an amo structure per partition to indicate
269  * whether a partition has sent an IRQ or not.  If it has, then wake up the
270  * associated kthread to handle it.
271  *
272  * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IRQs sent by XPC
273  * running on other partitions.
274  *
275  * Noteworthy Arguments:
276  *
277  *      irq - Interrupt ReQuest number. NOT USED.
278  *
279  *      dev_id - partid of IRQ's potential sender.
280  */
281 static irqreturn_t
282 xpc_handle_notify_IRQ_sn2(int irq, void *dev_id)
283 {
284         short partid = (short)(u64)dev_id;
285         struct xpc_partition *part = &xpc_partitions[partid];
286
287         DBUG_ON(partid < 0 || partid >= XP_MAX_NPARTITIONS_SN2);
288
289         if (xpc_part_ref(part)) {
290                 xpc_check_for_sent_chctl_flags_sn2(part);
291
292                 xpc_part_deref(part);
293         }
294         return IRQ_HANDLED;
295 }
296
297 /*
298  * Check to see if xpc_handle_notify_IRQ_sn2() dropped any IRQs on the floor
299  * because the write to their associated amo variable completed after the IRQ
300  * was received.
301  */
302 static void
303 xpc_check_for_dropped_notify_IRQ_sn2(struct xpc_partition *part)
304 {
305         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
306
307         if (xpc_part_ref(part)) {
308                 xpc_check_for_sent_chctl_flags_sn2(part);
309
310                 part_sn2->dropped_notify_IRQ_timer.expires = jiffies +
311                     XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
312                 add_timer(&part_sn2->dropped_notify_IRQ_timer);
313                 xpc_part_deref(part);
314         }
315 }
316
317 /*
318  * Send a notify IRQ to the remote partition that is associated with the
319  * specified channel.
320  */
321 static void
322 xpc_send_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
323                         char *chctl_flag_string, unsigned long *irq_flags)
324 {
325         struct xpc_partition *part = &xpc_partitions[ch->partid];
326         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
327         union xpc_channel_ctl_flags chctl = { 0 };
328         enum xp_retval ret;
329
330         if (likely(part->act_state != XPC_P_DEACTIVATING)) {
331                 chctl.flags[ch->number] = chctl_flag;
332                 ret = xpc_send_IRQ_sn2(part_sn2->remote_chctl_amo_va,
333                                        chctl.all_flags,
334                                        part_sn2->notify_IRQ_nasid,
335                                        part_sn2->notify_IRQ_phys_cpuid,
336                                        SGI_XPC_NOTIFY);
337                 dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n",
338                         chctl_flag_string, ch->partid, ch->number, ret);
339                 if (unlikely(ret != xpSuccess)) {
340                         if (irq_flags != NULL)
341                                 spin_unlock_irqrestore(&ch->lock, *irq_flags);
342                         XPC_DEACTIVATE_PARTITION(part, ret);
343                         if (irq_flags != NULL)
344                                 spin_lock_irqsave(&ch->lock, *irq_flags);
345                 }
346         }
347 }
348
349 #define XPC_SEND_NOTIFY_IRQ_SN2(_ch, _ipi_f, _irq_f) \
350                 xpc_send_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f, _irq_f)
351
352 /*
353  * Make it look like the remote partition, which is associated with the
354  * specified channel, sent us a notify IRQ. This faked IRQ will be handled
355  * by xpc_check_for_dropped_notify_IRQ_sn2().
356  */
357 static void
358 xpc_send_local_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
359                               char *chctl_flag_string)
360 {
361         struct xpc_partition *part = &xpc_partitions[ch->partid];
362         union xpc_channel_ctl_flags chctl = { 0 };
363
364         chctl.flags[ch->number] = chctl_flag;
365         FETCHOP_STORE_OP(TO_AMO((u64)&part->sn.sn2.local_chctl_amo_va->
366                                 variable), FETCHOP_OR, chctl.all_flags);
367         dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n",
368                 chctl_flag_string, ch->partid, ch->number);
369 }
370
371 #define XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(_ch, _ipi_f) \
372                 xpc_send_local_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f)
373
374 static void
375 xpc_send_chctl_closerequest_sn2(struct xpc_channel *ch,
376                                 unsigned long *irq_flags)
377 {
378         struct xpc_openclose_args *args = ch->local_openclose_args;
379
380         args->reason = ch->reason;
381         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREQUEST, irq_flags);
382 }
383
384 static void
385 xpc_send_chctl_closereply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
386 {
387         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREPLY, irq_flags);
388 }
389
390 static void
391 xpc_send_chctl_openrequest_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
392 {
393         struct xpc_openclose_args *args = ch->local_openclose_args;
394
395         args->msg_size = ch->msg_size;
396         args->local_nentries = ch->local_nentries;
397         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREQUEST, irq_flags);
398 }
399
400 static void
401 xpc_send_chctl_openreply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
402 {
403         struct xpc_openclose_args *args = ch->local_openclose_args;
404
405         args->remote_nentries = ch->remote_nentries;
406         args->local_nentries = ch->local_nentries;
407         args->local_msgqueue_pa = __pa(ch->local_msgqueue);
408         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREPLY, irq_flags);
409 }
410
411 static void
412 xpc_send_chctl_msgrequest_sn2(struct xpc_channel *ch)
413 {
414         XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST, NULL);
415 }
416
417 static void
418 xpc_send_chctl_local_msgrequest_sn2(struct xpc_channel *ch)
419 {
420         XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST);
421 }
422
423 /*
424  * This next set of functions are used to keep track of when a partition is
425  * potentially engaged in accessing memory belonging to another partition.
426  */
427
428 static void
429 xpc_indicate_partition_engaged_sn2(struct xpc_partition *part)
430 {
431         unsigned long irq_flags;
432         struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
433                                              (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
434                                              sizeof(struct amo)));
435
436         local_irq_save(irq_flags);
437
438         /* set bit corresponding to our partid in remote partition's amo */
439         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
440                          BIT(sn_partition_id));
441
442         /*
443          * We must always use the nofault function regardless of whether we
444          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
445          * didn't, we'd never know that the other partition is down and would
446          * keep sending IRQs and amos to it until the heartbeat times out.
447          */
448         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
449                                                                variable),
450                                                      xp_nofault_PIOR_target));
451
452         local_irq_restore(irq_flags);
453 }
454
455 static void
456 xpc_indicate_partition_disengaged_sn2(struct xpc_partition *part)
457 {
458         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
459         unsigned long irq_flags;
460         struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
461                                              (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
462                                              sizeof(struct amo)));
463
464         local_irq_save(irq_flags);
465
466         /* clear bit corresponding to our partid in remote partition's amo */
467         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
468                          ~BIT(sn_partition_id));
469
470         /*
471          * We must always use the nofault function regardless of whether we
472          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
473          * didn't, we'd never know that the other partition is down and would
474          * keep sending IRQs and amos to it until the heartbeat times out.
475          */
476         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
477                                                                variable),
478                                                      xp_nofault_PIOR_target));
479
480         local_irq_restore(irq_flags);
481
482         /*
483          * Send activate IRQ to get other side to see that we've cleared our
484          * bit in their engaged partitions amo.
485          */
486         xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
487                                   cnodeid_to_nasid(0),
488                                   part_sn2->activate_IRQ_nasid,
489                                   part_sn2->activate_IRQ_phys_cpuid);
490 }
491
492 static int
493 xpc_partition_engaged_sn2(short partid)
494 {
495         struct amo *amo = xpc_vars_sn2->amos_page +
496                           XPC_ENGAGED_PARTITIONS_AMO_SN2;
497
498         /* our partition's amo variable ANDed with partid mask */
499         return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
500                 BIT(partid)) != 0;
501 }
502
503 static int
504 xpc_any_partition_engaged_sn2(void)
505 {
506         struct amo *amo = xpc_vars_sn2->amos_page +
507                           XPC_ENGAGED_PARTITIONS_AMO_SN2;
508
509         /* our partition's amo variable */
510         return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) != 0;
511 }
512
513 static void
514 xpc_assume_partition_disengaged_sn2(short partid)
515 {
516         struct amo *amo = xpc_vars_sn2->amos_page +
517                           XPC_ENGAGED_PARTITIONS_AMO_SN2;
518
519         /* clear bit(s) based on partid mask in our partition's amo */
520         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
521                          ~BIT(partid));
522 }
523
524 /* original protection values for each node */
525 static u64 xpc_prot_vec_sn2[MAX_NUMNODES];
526
527 /*
528  * Change protections to allow amo operations on non-Shub 1.1 systems.
529  */
530 static enum xp_retval
531 xpc_allow_amo_ops_sn2(struct amo *amos_page)
532 {
533         u64 nasid_array = 0;
534         int ret;
535
536         /*
537          * On SHUB 1.1, we cannot call sn_change_memprotect() since the BIST
538          * collides with memory operations. On those systems we call
539          * xpc_allow_amo_ops_shub_wars_1_1_sn2() instead.
540          */
541         if (!enable_shub_wars_1_1()) {
542                 ret = sn_change_memprotect(ia64_tpa((u64)amos_page), PAGE_SIZE,
543                                            SN_MEMPROT_ACCESS_CLASS_1,
544                                            &nasid_array);
545                 if (ret != 0)
546                         return xpSalError;
547         }
548         return xpSuccess;
549 }
550
551 /*
552  * Change protections to allow amo operations on Shub 1.1 systems.
553  */
554 static void
555 xpc_allow_amo_ops_shub_wars_1_1_sn2(void)
556 {
557         int node;
558         int nasid;
559
560         if (!enable_shub_wars_1_1())
561                 return;
562
563         for_each_online_node(node) {
564                 nasid = cnodeid_to_nasid(node);
565                 /* save current protection values */
566                 xpc_prot_vec_sn2[node] =
567                     (u64)HUB_L((u64 *)GLOBAL_MMR_ADDR(nasid,
568                                                   SH1_MD_DQLP_MMR_DIR_PRIVEC0));
569                 /* open up everything */
570                 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
571                                              SH1_MD_DQLP_MMR_DIR_PRIVEC0),
572                       -1UL);
573                 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
574                                              SH1_MD_DQRP_MMR_DIR_PRIVEC0),
575                       -1UL);
576         }
577 }
578
579 static enum xp_retval
580 xpc_get_partition_rsvd_page_pa_sn2(u64 buf, u64 *cookie, u64 *paddr,
581                                    size_t *len)
582 {
583         s64 status;
584         enum xp_retval ret;
585
586         status = sn_partition_reserved_page_pa(buf, cookie, paddr, len);
587         if (status == SALRET_OK)
588                 ret = xpSuccess;
589         else if (status == SALRET_MORE_PASSES)
590                 ret = xpNeedMoreInfo;
591         else
592                 ret = xpSalError;
593
594         return ret;
595 }
596
597
598 static enum xp_retval
599 xpc_rsvd_page_init_sn2(struct xpc_rsvd_page *rp)
600 {
601         struct amo *amos_page;
602         int i;
603         int ret;
604
605         xpc_vars_sn2 = XPC_RP_VARS(rp);
606
607         rp->sn.vars_pa = __pa(xpc_vars_sn2);
608
609         /* vars_part array follows immediately after vars */
610         xpc_vars_part_sn2 = (struct xpc_vars_part_sn2 *)((u8 *)XPC_RP_VARS(rp) +
611                                                          XPC_RP_VARS_SIZE);
612
613         /*
614          * Before clearing xpc_vars_sn2, see if a page of amos had been
615          * previously allocated. If not we'll need to allocate one and set
616          * permissions so that cross-partition amos are allowed.
617          *
618          * The allocated amo page needs MCA reporting to remain disabled after
619          * XPC has unloaded.  To make this work, we keep a copy of the pointer
620          * to this page (i.e., amos_page) in the struct xpc_vars_sn2 structure,
621          * which is pointed to by the reserved page, and re-use that saved copy
622          * on subsequent loads of XPC. This amo page is never freed, and its
623          * memory protections are never restricted.
624          */
625         amos_page = xpc_vars_sn2->amos_page;
626         if (amos_page == NULL) {
627                 amos_page = (struct amo *)TO_AMO(uncached_alloc_page(0, 1));
628                 if (amos_page == NULL) {
629                         dev_err(xpc_part, "can't allocate page of amos\n");
630                         return xpNoMemory;
631                 }
632
633                 /*
634                  * Open up amo-R/W to cpu.  This is done on Shub 1.1 systems
635                  * when xpc_allow_amo_ops_shub_wars_1_1_sn2() is called.
636                  */
637                 ret = xpc_allow_amo_ops_sn2(amos_page);
638                 if (ret != xpSuccess) {
639                         dev_err(xpc_part, "can't allow amo operations\n");
640                         uncached_free_page(__IA64_UNCACHED_OFFSET |
641                                            TO_PHYS((u64)amos_page), 1);
642                         return ret;
643                 }
644         }
645
646         /* clear xpc_vars_sn2 */
647         memset(xpc_vars_sn2, 0, sizeof(struct xpc_vars_sn2));
648
649         xpc_vars_sn2->version = XPC_V_VERSION;
650         xpc_vars_sn2->activate_IRQ_nasid = cpuid_to_nasid(0);
651         xpc_vars_sn2->activate_IRQ_phys_cpuid = cpu_physical_id(0);
652         xpc_vars_sn2->vars_part_pa = __pa(xpc_vars_part_sn2);
653         xpc_vars_sn2->amos_page_pa = ia64_tpa((u64)amos_page);
654         xpc_vars_sn2->amos_page = amos_page;    /* save for next load of XPC */
655
656         /* clear xpc_vars_part_sn2 */
657         memset((u64 *)xpc_vars_part_sn2, 0, sizeof(struct xpc_vars_part_sn2) *
658                XP_MAX_NPARTITIONS_SN2);
659
660         /* initialize the activate IRQ related amo variables */
661         for (i = 0; i < xpc_nasid_mask_nlongs; i++)
662                 (void)xpc_init_IRQ_amo_sn2(XPC_ACTIVATE_IRQ_AMOS_SN2 + i);
663
664         /* initialize the engaged remote partitions related amo variables */
665         (void)xpc_init_IRQ_amo_sn2(XPC_ENGAGED_PARTITIONS_AMO_SN2);
666         (void)xpc_init_IRQ_amo_sn2(XPC_DEACTIVATE_REQUEST_AMO_SN2);
667
668         return xpSuccess;
669 }
670
671 static void
672 xpc_increment_heartbeat_sn2(void)
673 {
674         xpc_vars_sn2->heartbeat++;
675 }
676
677 static void
678 xpc_offline_heartbeat_sn2(void)
679 {
680         xpc_increment_heartbeat_sn2();
681         xpc_vars_sn2->heartbeat_offline = 1;
682 }
683
684 static void
685 xpc_online_heartbeat_sn2(void)
686 {
687         xpc_increment_heartbeat_sn2();
688         xpc_vars_sn2->heartbeat_offline = 0;
689 }
690
691 static void
692 xpc_heartbeat_init_sn2(void)
693 {
694         DBUG_ON(xpc_vars_sn2 == NULL);
695
696         bitmap_zero(xpc_vars_sn2->heartbeating_to_mask, XP_MAX_NPARTITIONS_SN2);
697         xpc_heartbeating_to_mask = &xpc_vars_sn2->heartbeating_to_mask[0];
698         xpc_online_heartbeat_sn2();
699 }
700
701 static void
702 xpc_heartbeat_exit_sn2(void)
703 {
704         xpc_offline_heartbeat_sn2();
705 }
706
707 /*
708  * At periodic intervals, scan through all active partitions and ensure
709  * their heartbeat is still active.  If not, the partition is deactivated.
710  */
711 static void
712 xpc_check_remote_hb_sn2(void)
713 {
714         struct xpc_vars_sn2 *remote_vars;
715         struct xpc_partition *part;
716         short partid;
717         enum xp_retval ret;
718
719         remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
720
721         for (partid = 0; partid < XP_MAX_NPARTITIONS_SN2; partid++) {
722
723                 if (xpc_exiting)
724                         break;
725
726                 if (partid == sn_partition_id)
727                         continue;
728
729                 part = &xpc_partitions[partid];
730
731                 if (part->act_state == XPC_P_INACTIVE ||
732                     part->act_state == XPC_P_DEACTIVATING) {
733                         continue;
734                 }
735
736                 /* pull the remote_hb cache line */
737                 ret = xp_remote_memcpy(remote_vars,
738                                        (void *)part->sn.sn2.remote_vars_pa,
739                                        XPC_RP_VARS_SIZE);
740                 if (ret != xpSuccess) {
741                         XPC_DEACTIVATE_PARTITION(part, ret);
742                         continue;
743                 }
744
745                 dev_dbg(xpc_part, "partid = %d, heartbeat = %ld, last_heartbeat"
746                         " = %ld, heartbeat_offline = %ld, HB_mask[0] = 0x%lx\n",
747                         partid, remote_vars->heartbeat, part->last_heartbeat,
748                         remote_vars->heartbeat_offline,
749                         remote_vars->heartbeating_to_mask[0]);
750
751                 if (((remote_vars->heartbeat == part->last_heartbeat) &&
752                      (remote_vars->heartbeat_offline == 0)) ||
753                     !xpc_hb_allowed(sn_partition_id,
754                                     &remote_vars->heartbeating_to_mask)) {
755
756                         XPC_DEACTIVATE_PARTITION(part, xpNoHeartbeat);
757                         continue;
758                 }
759
760                 part->last_heartbeat = remote_vars->heartbeat;
761         }
762 }
763
764 /*
765  * Get a copy of the remote partition's XPC variables from the reserved page.
766  *
767  * remote_vars points to a buffer that is cacheline aligned for BTE copies and
768  * assumed to be of size XPC_RP_VARS_SIZE.
769  */
770 static enum xp_retval
771 xpc_get_remote_vars_sn2(u64 remote_vars_pa, struct xpc_vars_sn2 *remote_vars)
772 {
773         enum xp_retval ret;
774
775         if (remote_vars_pa == 0)
776                 return xpVarsNotSet;
777
778         /* pull over the cross partition variables */
779         ret = xp_remote_memcpy(remote_vars, (void *)remote_vars_pa,
780                                XPC_RP_VARS_SIZE);
781         if (ret != xpSuccess)
782                 return ret;
783
784         if (XPC_VERSION_MAJOR(remote_vars->version) !=
785             XPC_VERSION_MAJOR(XPC_V_VERSION)) {
786                 return xpBadVersion;
787         }
788
789         return xpSuccess;
790 }
791
792 static void
793 xpc_request_partition_activation_sn2(struct xpc_rsvd_page *remote_rp,
794                                      u64 remote_rp_pa, int nasid)
795 {
796         xpc_send_local_activate_IRQ_sn2(nasid);
797 }
798
799 static void
800 xpc_request_partition_reactivation_sn2(struct xpc_partition *part)
801 {
802         xpc_send_local_activate_IRQ_sn2(part->sn.sn2.activate_IRQ_nasid);
803 }
804
805 static void
806 xpc_request_partition_deactivation_sn2(struct xpc_partition *part)
807 {
808         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
809         unsigned long irq_flags;
810         struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
811                                              (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
812                                              sizeof(struct amo)));
813
814         local_irq_save(irq_flags);
815
816         /* set bit corresponding to our partid in remote partition's amo */
817         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
818                          BIT(sn_partition_id));
819
820         /*
821          * We must always use the nofault function regardless of whether we
822          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
823          * didn't, we'd never know that the other partition is down and would
824          * keep sending IRQs and amos to it until the heartbeat times out.
825          */
826         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
827                                                                variable),
828                                                      xp_nofault_PIOR_target));
829
830         local_irq_restore(irq_flags);
831
832         /*
833          * Send activate IRQ to get other side to see that we've set our
834          * bit in their deactivate request amo.
835          */
836         xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
837                                   cnodeid_to_nasid(0),
838                                   part_sn2->activate_IRQ_nasid,
839                                   part_sn2->activate_IRQ_phys_cpuid);
840 }
841
842 static void
843 xpc_cancel_partition_deactivation_request_sn2(struct xpc_partition *part)
844 {
845         unsigned long irq_flags;
846         struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
847                                              (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
848                                              sizeof(struct amo)));
849
850         local_irq_save(irq_flags);
851
852         /* clear bit corresponding to our partid in remote partition's amo */
853         FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
854                          ~BIT(sn_partition_id));
855
856         /*
857          * We must always use the nofault function regardless of whether we
858          * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
859          * didn't, we'd never know that the other partition is down and would
860          * keep sending IRQs and amos to it until the heartbeat times out.
861          */
862         (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
863                                                                variable),
864                                                      xp_nofault_PIOR_target));
865
866         local_irq_restore(irq_flags);
867 }
868
869 static int
870 xpc_partition_deactivation_requested_sn2(short partid)
871 {
872         struct amo *amo = xpc_vars_sn2->amos_page +
873                           XPC_DEACTIVATE_REQUEST_AMO_SN2;
874
875         /* our partition's amo variable ANDed with partid mask */
876         return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
877                 BIT(partid)) != 0;
878 }
879
880 /*
881  * Update the remote partition's info.
882  */
883 static void
884 xpc_update_partition_info_sn2(struct xpc_partition *part, u8 remote_rp_version,
885                               unsigned long *remote_rp_ts_jiffies,
886                               u64 remote_rp_pa, u64 remote_vars_pa,
887                               struct xpc_vars_sn2 *remote_vars)
888 {
889         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
890
891         part->remote_rp_version = remote_rp_version;
892         dev_dbg(xpc_part, "  remote_rp_version = 0x%016x\n",
893                 part->remote_rp_version);
894
895         part->remote_rp_ts_jiffies = *remote_rp_ts_jiffies;
896         dev_dbg(xpc_part, "  remote_rp_ts_jiffies = 0x%016lx\n",
897                 part->remote_rp_ts_jiffies);
898
899         part->remote_rp_pa = remote_rp_pa;
900         dev_dbg(xpc_part, "  remote_rp_pa = 0x%016lx\n", part->remote_rp_pa);
901
902         part_sn2->remote_vars_pa = remote_vars_pa;
903         dev_dbg(xpc_part, "  remote_vars_pa = 0x%016lx\n",
904                 part_sn2->remote_vars_pa);
905
906         part->last_heartbeat = remote_vars->heartbeat;
907         dev_dbg(xpc_part, "  last_heartbeat = 0x%016lx\n",
908                 part->last_heartbeat);
909
910         part_sn2->remote_vars_part_pa = remote_vars->vars_part_pa;
911         dev_dbg(xpc_part, "  remote_vars_part_pa = 0x%016lx\n",
912                 part_sn2->remote_vars_part_pa);
913
914         part_sn2->activate_IRQ_nasid = remote_vars->activate_IRQ_nasid;
915         dev_dbg(xpc_part, "  activate_IRQ_nasid = 0x%x\n",
916                 part_sn2->activate_IRQ_nasid);
917
918         part_sn2->activate_IRQ_phys_cpuid =
919             remote_vars->activate_IRQ_phys_cpuid;
920         dev_dbg(xpc_part, "  activate_IRQ_phys_cpuid = 0x%x\n",
921                 part_sn2->activate_IRQ_phys_cpuid);
922
923         part_sn2->remote_amos_page_pa = remote_vars->amos_page_pa;
924         dev_dbg(xpc_part, "  remote_amos_page_pa = 0x%lx\n",
925                 part_sn2->remote_amos_page_pa);
926
927         part_sn2->remote_vars_version = remote_vars->version;
928         dev_dbg(xpc_part, "  remote_vars_version = 0x%x\n",
929                 part_sn2->remote_vars_version);
930 }
931
932 /*
933  * Prior code has determined the nasid which generated a activate IRQ.
934  * Inspect that nasid to determine if its partition needs to be activated
935  * or deactivated.
936  *
937  * A partition is considered "awaiting activation" if our partition
938  * flags indicate it is not active and it has a heartbeat.  A
939  * partition is considered "awaiting deactivation" if our partition
940  * flags indicate it is active but it has no heartbeat or it is not
941  * sending its heartbeat to us.
942  *
943  * To determine the heartbeat, the remote nasid must have a properly
944  * initialized reserved page.
945  */
946 static void
947 xpc_identify_activate_IRQ_req_sn2(int nasid)
948 {
949         struct xpc_rsvd_page *remote_rp;
950         struct xpc_vars_sn2 *remote_vars;
951         u64 remote_rp_pa;
952         u64 remote_vars_pa;
953         int remote_rp_version;
954         int reactivate = 0;
955         unsigned long remote_rp_ts_jiffies = 0;
956         short partid;
957         struct xpc_partition *part;
958         struct xpc_partition_sn2 *part_sn2;
959         enum xp_retval ret;
960
961         /* pull over the reserved page structure */
962
963         remote_rp = (struct xpc_rsvd_page *)xpc_remote_copy_buffer_sn2;
964
965         ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rp_pa);
966         if (ret != xpSuccess) {
967                 dev_warn(xpc_part, "unable to get reserved page from nasid %d, "
968                          "which sent interrupt, reason=%d\n", nasid, ret);
969                 return;
970         }
971
972         remote_vars_pa = remote_rp->sn.vars_pa;
973         remote_rp_version = remote_rp->version;
974         remote_rp_ts_jiffies = remote_rp->ts_jiffies;
975
976         partid = remote_rp->SAL_partid;
977         part = &xpc_partitions[partid];
978         part_sn2 = &part->sn.sn2;
979
980         /* pull over the cross partition variables */
981
982         remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
983
984         ret = xpc_get_remote_vars_sn2(remote_vars_pa, remote_vars);
985         if (ret != xpSuccess) {
986                 dev_warn(xpc_part, "unable to get XPC variables from nasid %d, "
987                          "which sent interrupt, reason=%d\n", nasid, ret);
988
989                 XPC_DEACTIVATE_PARTITION(part, ret);
990                 return;
991         }
992
993         part->activate_IRQ_rcvd++;
994
995         dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = "
996                 "%ld:0x%lx\n", (int)nasid, (int)partid, part->activate_IRQ_rcvd,
997                 remote_vars->heartbeat, remote_vars->heartbeating_to_mask[0]);
998
999         if (xpc_partition_disengaged(part) &&
1000             part->act_state == XPC_P_INACTIVE) {
1001
1002                 xpc_update_partition_info_sn2(part, remote_rp_version,
1003                                               &remote_rp_ts_jiffies,
1004                                               remote_rp_pa, remote_vars_pa,
1005                                               remote_vars);
1006
1007                 if (xpc_partition_deactivation_requested_sn2(partid)) {
1008                         /*
1009                          * Other side is waiting on us to deactivate even though
1010                          * we already have.
1011                          */
1012                         return;
1013                 }
1014
1015                 xpc_activate_partition(part);
1016                 return;
1017         }
1018
1019         DBUG_ON(part->remote_rp_version == 0);
1020         DBUG_ON(part_sn2->remote_vars_version == 0);
1021
1022         if (remote_rp_ts_jiffies != part->remote_rp_ts_jiffies) {
1023
1024                 /* the other side rebooted */
1025
1026                 DBUG_ON(xpc_partition_engaged_sn2(partid));
1027                 DBUG_ON(xpc_partition_deactivation_requested_sn2(partid));
1028
1029                 xpc_update_partition_info_sn2(part, remote_rp_version,
1030                                               &remote_rp_ts_jiffies,
1031                                               remote_rp_pa, remote_vars_pa,
1032                                               remote_vars);
1033                 reactivate = 1;
1034         }
1035
1036         if (part->disengage_timeout > 0 && !xpc_partition_disengaged(part)) {
1037                 /* still waiting on other side to disengage from us */
1038                 return;
1039         }
1040
1041         if (reactivate)
1042                 XPC_DEACTIVATE_PARTITION(part, xpReactivating);
1043         else if (xpc_partition_deactivation_requested_sn2(partid))
1044                 XPC_DEACTIVATE_PARTITION(part, xpOtherGoingDown);
1045 }
1046
1047 /*
1048  * Loop through the activation amo variables and process any bits
1049  * which are set.  Each bit indicates a nasid sending a partition
1050  * activation or deactivation request.
1051  *
1052  * Return #of IRQs detected.
1053  */
1054 int
1055 xpc_identify_activate_IRQ_sender_sn2(void)
1056 {
1057         int l;
1058         int b;
1059         unsigned long nasid_mask_long;
1060         u64 nasid;              /* remote nasid */
1061         int n_IRQs_detected = 0;
1062         struct amo *act_amos;
1063
1064         act_amos = xpc_vars_sn2->amos_page + XPC_ACTIVATE_IRQ_AMOS_SN2;
1065
1066         /* scan through activate amo variables looking for non-zero entries */
1067         for (l = 0; l < xpc_nasid_mask_nlongs; l++) {
1068
1069                 if (xpc_exiting)
1070                         break;
1071
1072                 nasid_mask_long = xpc_receive_IRQ_amo_sn2(&act_amos[l]);
1073
1074                 b = find_first_bit(&nasid_mask_long, BITS_PER_LONG);
1075                 if (b >= BITS_PER_LONG) {
1076                         /* no IRQs from nasids in this amo variable */
1077                         continue;
1078                 }
1079
1080                 dev_dbg(xpc_part, "amo[%d] gave back 0x%lx\n", l,
1081                         nasid_mask_long);
1082
1083                 /*
1084                  * If this nasid has been added to the machine since
1085                  * our partition was reset, this will retain the
1086                  * remote nasid in our reserved pages machine mask.
1087                  * This is used in the event of module reload.
1088                  */
1089                 xpc_mach_nasids[l] |= nasid_mask_long;
1090
1091                 /* locate the nasid(s) which sent interrupts */
1092
1093                 do {
1094                         n_IRQs_detected++;
1095                         nasid = (l * BITS_PER_LONG + b) * 2;
1096                         dev_dbg(xpc_part, "interrupt from nasid %ld\n", nasid);
1097                         xpc_identify_activate_IRQ_req_sn2(nasid);
1098
1099                         b = find_next_bit(&nasid_mask_long, BITS_PER_LONG,
1100                                           b + 1);
1101                 } while (b < BITS_PER_LONG);
1102         }
1103         return n_IRQs_detected;
1104 }
1105
1106 static void
1107 xpc_process_activate_IRQ_rcvd_sn2(int n_IRQs_expected)
1108 {
1109         int n_IRQs_detected;
1110
1111         n_IRQs_detected = xpc_identify_activate_IRQ_sender_sn2();
1112         if (n_IRQs_detected < n_IRQs_expected) {
1113                 /* retry once to help avoid missing amo */
1114                 (void)xpc_identify_activate_IRQ_sender_sn2();
1115         }
1116 }
1117
1118 /*
1119  * Guarantee that the kzalloc'd memory is cacheline aligned.
1120  */
1121 static void *
1122 xpc_kzalloc_cacheline_aligned_sn2(size_t size, gfp_t flags, void **base)
1123 {
1124         /* see if kzalloc will give us cachline aligned memory by default */
1125         *base = kzalloc(size, flags);
1126         if (*base == NULL)
1127                 return NULL;
1128
1129         if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
1130                 return *base;
1131
1132         kfree(*base);
1133
1134         /* nope, we'll have to do it ourselves */
1135         *base = kzalloc(size + L1_CACHE_BYTES, flags);
1136         if (*base == NULL)
1137                 return NULL;
1138
1139         return (void *)L1_CACHE_ALIGN((u64)*base);
1140 }
1141
1142 /*
1143  * Setup the infrastructure necessary to support XPartition Communication
1144  * between the specified remote partition and the local one.
1145  */
1146 static enum xp_retval
1147 xpc_setup_infrastructure_sn2(struct xpc_partition *part)
1148 {
1149         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1150         enum xp_retval retval;
1151         int ret;
1152         int cpuid;
1153         int ch_number;
1154         struct xpc_channel *ch;
1155         struct timer_list *timer;
1156         short partid = XPC_PARTID(part);
1157
1158         /*
1159          * Allocate all of the channel structures as a contiguous chunk of
1160          * memory.
1161          */
1162         DBUG_ON(part->channels != NULL);
1163         part->channels = kzalloc(sizeof(struct xpc_channel) * XPC_MAX_NCHANNELS,
1164                                  GFP_KERNEL);
1165         if (part->channels == NULL) {
1166                 dev_err(xpc_chan, "can't get memory for channels\n");
1167                 return xpNoMemory;
1168         }
1169
1170         /* allocate all the required GET/PUT values */
1171
1172         part_sn2->local_GPs =
1173             xpc_kzalloc_cacheline_aligned_sn2(XPC_GP_SIZE, GFP_KERNEL,
1174                                               &part_sn2->local_GPs_base);
1175         if (part_sn2->local_GPs == NULL) {
1176                 dev_err(xpc_chan, "can't get memory for local get/put "
1177                         "values\n");
1178                 retval = xpNoMemory;
1179                 goto out_1;
1180         }
1181
1182         part_sn2->remote_GPs =
1183             xpc_kzalloc_cacheline_aligned_sn2(XPC_GP_SIZE, GFP_KERNEL,
1184                                               &part_sn2->remote_GPs_base);
1185         if (part_sn2->remote_GPs == NULL) {
1186                 dev_err(xpc_chan, "can't get memory for remote get/put "
1187                         "values\n");
1188                 retval = xpNoMemory;
1189                 goto out_2;
1190         }
1191
1192         part_sn2->remote_GPs_pa = 0;
1193
1194         /* allocate all the required open and close args */
1195
1196         part->local_openclose_args =
1197             xpc_kzalloc_cacheline_aligned_sn2(XPC_OPENCLOSE_ARGS_SIZE,
1198                                               GFP_KERNEL,
1199                                               &part->local_openclose_args_base);
1200         if (part->local_openclose_args == NULL) {
1201                 dev_err(xpc_chan, "can't get memory for local connect args\n");
1202                 retval = xpNoMemory;
1203                 goto out_3;
1204         }
1205
1206         part->remote_openclose_args =
1207             xpc_kzalloc_cacheline_aligned_sn2(XPC_OPENCLOSE_ARGS_SIZE,
1208                                               GFP_KERNEL,
1209                                              &part->remote_openclose_args_base);
1210         if (part->remote_openclose_args == NULL) {
1211                 dev_err(xpc_chan, "can't get memory for remote connect args\n");
1212                 retval = xpNoMemory;
1213                 goto out_4;
1214         }
1215
1216         part_sn2->remote_openclose_args_pa = 0;
1217
1218         part_sn2->local_chctl_amo_va = xpc_init_IRQ_amo_sn2(partid);
1219         part->chctl.all_flags = 0;
1220         spin_lock_init(&part->chctl_lock);
1221
1222         part_sn2->notify_IRQ_nasid = 0;
1223         part_sn2->notify_IRQ_phys_cpuid = 0;
1224         part_sn2->remote_chctl_amo_va = NULL;
1225
1226         atomic_set(&part->channel_mgr_requests, 1);
1227         init_waitqueue_head(&part->channel_mgr_wq);
1228
1229         sprintf(part_sn2->notify_IRQ_owner, "xpc%02d", partid);
1230         ret = request_irq(SGI_XPC_NOTIFY, xpc_handle_notify_IRQ_sn2,
1231                           IRQF_SHARED, part_sn2->notify_IRQ_owner,
1232                           (void *)(u64)partid);
1233         if (ret != 0) {
1234                 dev_err(xpc_chan, "can't register NOTIFY IRQ handler, "
1235                         "errno=%d\n", -ret);
1236                 retval = xpLackOfResources;
1237                 goto out_5;
1238         }
1239
1240         /* Setup a timer to check for dropped notify IRQs */
1241         timer = &part_sn2->dropped_notify_IRQ_timer;
1242         init_timer(timer);
1243         timer->function =
1244             (void (*)(unsigned long))xpc_check_for_dropped_notify_IRQ_sn2;
1245         timer->data = (unsigned long)part;
1246         timer->expires = jiffies + XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
1247         add_timer(timer);
1248
1249         part->nchannels = XPC_MAX_NCHANNELS;
1250
1251         atomic_set(&part->nchannels_active, 0);
1252         atomic_set(&part->nchannels_engaged, 0);
1253
1254         for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
1255                 ch = &part->channels[ch_number];
1256
1257                 ch->partid = partid;
1258                 ch->number = ch_number;
1259                 ch->flags = XPC_C_DISCONNECTED;
1260
1261                 ch->sn.sn2.local_GP = &part_sn2->local_GPs[ch_number];
1262                 ch->local_openclose_args =
1263                     &part->local_openclose_args[ch_number];
1264
1265                 atomic_set(&ch->kthreads_assigned, 0);
1266                 atomic_set(&ch->kthreads_idle, 0);
1267                 atomic_set(&ch->kthreads_active, 0);
1268
1269                 atomic_set(&ch->references, 0);
1270                 atomic_set(&ch->n_to_notify, 0);
1271
1272                 spin_lock_init(&ch->lock);
1273                 mutex_init(&ch->sn.sn2.msg_to_pull_mutex);
1274                 init_completion(&ch->wdisconnect_wait);
1275
1276                 atomic_set(&ch->n_on_msg_allocate_wq, 0);
1277                 init_waitqueue_head(&ch->msg_allocate_wq);
1278                 init_waitqueue_head(&ch->idle_wq);
1279         }
1280
1281         /*
1282          * With the setting of the partition setup_state to XPC_P_SETUP, we're
1283          * declaring that this partition is ready to go.
1284          */
1285         part->setup_state = XPC_P_SETUP;
1286
1287         /*
1288          * Setup the per partition specific variables required by the
1289          * remote partition to establish channel connections with us.
1290          *
1291          * The setting of the magic # indicates that these per partition
1292          * specific variables are ready to be used.
1293          */
1294         xpc_vars_part_sn2[partid].GPs_pa = __pa(part_sn2->local_GPs);
1295         xpc_vars_part_sn2[partid].openclose_args_pa =
1296             __pa(part->local_openclose_args);
1297         xpc_vars_part_sn2[partid].chctl_amo_pa =
1298             __pa(part_sn2->local_chctl_amo_va);
1299         cpuid = raw_smp_processor_id(); /* any CPU in this partition will do */
1300         xpc_vars_part_sn2[partid].notify_IRQ_nasid = cpuid_to_nasid(cpuid);
1301         xpc_vars_part_sn2[partid].notify_IRQ_phys_cpuid =
1302             cpu_physical_id(cpuid);
1303         xpc_vars_part_sn2[partid].nchannels = part->nchannels;
1304         xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC1;
1305
1306         return xpSuccess;
1307
1308         /* setup of infrastructure failed */
1309 out_5:
1310         kfree(part->remote_openclose_args_base);
1311         part->remote_openclose_args = NULL;
1312 out_4:
1313         kfree(part->local_openclose_args_base);
1314         part->local_openclose_args = NULL;
1315 out_3:
1316         kfree(part_sn2->remote_GPs_base);
1317         part_sn2->remote_GPs = NULL;
1318 out_2:
1319         kfree(part_sn2->local_GPs_base);
1320         part_sn2->local_GPs = NULL;
1321 out_1:
1322         kfree(part->channels);
1323         part->channels = NULL;
1324         return retval;
1325 }
1326
1327 /*
1328  * Teardown the infrastructure necessary to support XPartition Communication
1329  * between the specified remote partition and the local one.
1330  */
1331 static void
1332 xpc_teardown_infrastructure_sn2(struct xpc_partition *part)
1333 {
1334         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1335         short partid = XPC_PARTID(part);
1336
1337         /*
1338          * We start off by making this partition inaccessible to local
1339          * processes by marking it as no longer setup. Then we make it
1340          * inaccessible to remote processes by clearing the XPC per partition
1341          * specific variable's magic # (which indicates that these variables
1342          * are no longer valid) and by ignoring all XPC notify IRQs sent to
1343          * this partition.
1344          */
1345
1346         DBUG_ON(atomic_read(&part->nchannels_engaged) != 0);
1347         DBUG_ON(atomic_read(&part->nchannels_active) != 0);
1348         DBUG_ON(part->setup_state != XPC_P_SETUP);
1349         part->setup_state = XPC_P_WTEARDOWN;
1350
1351         xpc_vars_part_sn2[partid].magic = 0;
1352
1353         free_irq(SGI_XPC_NOTIFY, (void *)(u64)partid);
1354
1355         /*
1356          * Before proceeding with the teardown we have to wait until all
1357          * existing references cease.
1358          */
1359         wait_event(part->teardown_wq, (atomic_read(&part->references) == 0));
1360
1361         /* now we can begin tearing down the infrastructure */
1362
1363         part->setup_state = XPC_P_TORNDOWN;
1364
1365         /* in case we've still got outstanding timers registered... */
1366         del_timer_sync(&part_sn2->dropped_notify_IRQ_timer);
1367
1368         kfree(part->remote_openclose_args_base);
1369         part->remote_openclose_args = NULL;
1370         kfree(part->local_openclose_args_base);
1371         part->local_openclose_args = NULL;
1372         kfree(part_sn2->remote_GPs_base);
1373         part_sn2->remote_GPs = NULL;
1374         kfree(part_sn2->local_GPs_base);
1375         part_sn2->local_GPs = NULL;
1376         kfree(part->channels);
1377         part->channels = NULL;
1378         part_sn2->local_chctl_amo_va = NULL;
1379 }
1380
1381 /*
1382  * Create a wrapper that hides the underlying mechanism for pulling a cacheline
1383  * (or multiple cachelines) from a remote partition.
1384  *
1385  * src must be a cacheline aligned physical address on the remote partition.
1386  * dst must be a cacheline aligned virtual address on this partition.
1387  * cnt must be cacheline sized
1388  */
1389 /* ??? Replace this function by call to xp_remote_memcpy() or bte_copy()? */
1390 static enum xp_retval
1391 xpc_pull_remote_cachelines_sn2(struct xpc_partition *part, void *dst,
1392                                const void *src, size_t cnt)
1393 {
1394         enum xp_retval ret;
1395
1396         DBUG_ON((u64)src != L1_CACHE_ALIGN((u64)src));
1397         DBUG_ON((u64)dst != L1_CACHE_ALIGN((u64)dst));
1398         DBUG_ON(cnt != L1_CACHE_ALIGN(cnt));
1399
1400         if (part->act_state == XPC_P_DEACTIVATING)
1401                 return part->reason;
1402
1403         ret = xp_remote_memcpy(dst, src, cnt);
1404         if (ret != xpSuccess) {
1405                 dev_dbg(xpc_chan, "xp_remote_memcpy() from partition %d failed,"
1406                         " ret=%d\n", XPC_PARTID(part), ret);
1407         }
1408         return ret;
1409 }
1410
1411 /*
1412  * Pull the remote per partition specific variables from the specified
1413  * partition.
1414  */
1415 static enum xp_retval
1416 xpc_pull_remote_vars_part_sn2(struct xpc_partition *part)
1417 {
1418         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1419         u8 buffer[L1_CACHE_BYTES * 2];
1420         struct xpc_vars_part_sn2 *pulled_entry_cacheline =
1421             (struct xpc_vars_part_sn2 *)L1_CACHE_ALIGN((u64)buffer);
1422         struct xpc_vars_part_sn2 *pulled_entry;
1423         u64 remote_entry_cacheline_pa, remote_entry_pa;
1424         short partid = XPC_PARTID(part);
1425         enum xp_retval ret;
1426
1427         /* pull the cacheline that contains the variables we're interested in */
1428
1429         DBUG_ON(part_sn2->remote_vars_part_pa !=
1430                 L1_CACHE_ALIGN(part_sn2->remote_vars_part_pa));
1431         DBUG_ON(sizeof(struct xpc_vars_part_sn2) != L1_CACHE_BYTES / 2);
1432
1433         remote_entry_pa = part_sn2->remote_vars_part_pa +
1434             sn_partition_id * sizeof(struct xpc_vars_part_sn2);
1435
1436         remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1));
1437
1438         pulled_entry = (struct xpc_vars_part_sn2 *)((u64)pulled_entry_cacheline
1439                                                     + (remote_entry_pa &
1440                                                     (L1_CACHE_BYTES - 1)));
1441
1442         ret = xpc_pull_remote_cachelines_sn2(part, pulled_entry_cacheline,
1443                                              (void *)remote_entry_cacheline_pa,
1444                                              L1_CACHE_BYTES);
1445         if (ret != xpSuccess) {
1446                 dev_dbg(xpc_chan, "failed to pull XPC vars_part from "
1447                         "partition %d, ret=%d\n", partid, ret);
1448                 return ret;
1449         }
1450
1451         /* see if they've been set up yet */
1452
1453         if (pulled_entry->magic != XPC_VP_MAGIC1 &&
1454             pulled_entry->magic != XPC_VP_MAGIC2) {
1455
1456                 if (pulled_entry->magic != 0) {
1457                         dev_dbg(xpc_chan, "partition %d's XPC vars_part for "
1458                                 "partition %d has bad magic value (=0x%lx)\n",
1459                                 partid, sn_partition_id, pulled_entry->magic);
1460                         return xpBadMagic;
1461                 }
1462
1463                 /* they've not been initialized yet */
1464                 return xpRetry;
1465         }
1466
1467         if (xpc_vars_part_sn2[partid].magic == XPC_VP_MAGIC1) {
1468
1469                 /* validate the variables */
1470
1471                 if (pulled_entry->GPs_pa == 0 ||
1472                     pulled_entry->openclose_args_pa == 0 ||
1473                     pulled_entry->chctl_amo_pa == 0) {
1474
1475                         dev_err(xpc_chan, "partition %d's XPC vars_part for "
1476                                 "partition %d are not valid\n", partid,
1477                                 sn_partition_id);
1478                         return xpInvalidAddress;
1479                 }
1480
1481                 /* the variables we imported look to be valid */
1482
1483                 part_sn2->remote_GPs_pa = pulled_entry->GPs_pa;
1484                 part_sn2->remote_openclose_args_pa =
1485                     pulled_entry->openclose_args_pa;
1486                 part_sn2->remote_chctl_amo_va =
1487                     (struct amo *)__va(pulled_entry->chctl_amo_pa);
1488                 part_sn2->notify_IRQ_nasid = pulled_entry->notify_IRQ_nasid;
1489                 part_sn2->notify_IRQ_phys_cpuid =
1490                     pulled_entry->notify_IRQ_phys_cpuid;
1491
1492                 if (part->nchannels > pulled_entry->nchannels)
1493                         part->nchannels = pulled_entry->nchannels;
1494
1495                 /* let the other side know that we've pulled their variables */
1496
1497                 xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC2;
1498         }
1499
1500         if (pulled_entry->magic == XPC_VP_MAGIC1)
1501                 return xpRetry;
1502
1503         return xpSuccess;
1504 }
1505
1506 /*
1507  * Establish first contact with the remote partititon. This involves pulling
1508  * the XPC per partition variables from the remote partition and waiting for
1509  * the remote partition to pull ours.
1510  */
1511 static enum xp_retval
1512 xpc_make_first_contact_sn2(struct xpc_partition *part)
1513 {
1514         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1515         enum xp_retval ret;
1516
1517         /*
1518          * Register the remote partition's amos with SAL so it can handle
1519          * and cleanup errors within that address range should the remote
1520          * partition go down. We don't unregister this range because it is
1521          * difficult to tell when outstanding writes to the remote partition
1522          * are finished and thus when it is safe to unregister. This should
1523          * not result in wasted space in the SAL xp_addr_region table because
1524          * we should get the same page for remote_amos_page_pa after module
1525          * reloads and system reboots.
1526          */
1527         if (sn_register_xp_addr_region(part_sn2->remote_amos_page_pa,
1528                                        PAGE_SIZE, 1) < 0) {
1529                 dev_warn(xpc_part, "xpc_activating(%d) failed to register "
1530                          "xp_addr region\n", XPC_PARTID(part));
1531
1532                 ret = xpPhysAddrRegFailed;
1533                 XPC_DEACTIVATE_PARTITION(part, ret);
1534                 return ret;
1535         }
1536
1537         /*
1538          * Send activate IRQ to get other side to activate if they've not
1539          * already begun to do so.
1540          */
1541         xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
1542                                   cnodeid_to_nasid(0),
1543                                   part_sn2->activate_IRQ_nasid,
1544                                   part_sn2->activate_IRQ_phys_cpuid);
1545
1546         while ((ret = xpc_pull_remote_vars_part_sn2(part)) != xpSuccess) {
1547                 if (ret != xpRetry) {
1548                         XPC_DEACTIVATE_PARTITION(part, ret);
1549                         return ret;
1550                 }
1551
1552                 dev_dbg(xpc_part, "waiting to make first contact with "
1553                         "partition %d\n", XPC_PARTID(part));
1554
1555                 /* wait a 1/4 of a second or so */
1556                 (void)msleep_interruptible(250);
1557
1558                 if (part->act_state == XPC_P_DEACTIVATING)
1559                         return part->reason;
1560         }
1561
1562         return xpSuccess;
1563 }
1564
1565 /*
1566  * Get the chctl flags and pull the openclose args and/or remote GPs as needed.
1567  */
1568 static u64
1569 xpc_get_chctl_all_flags_sn2(struct xpc_partition *part)
1570 {
1571         struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1572         unsigned long irq_flags;
1573         union xpc_channel_ctl_flags chctl;
1574         enum xp_retval ret;
1575
1576         /*
1577          * See if there are any chctl flags to be handled.
1578          */
1579
1580         spin_lock_irqsave(&part->chctl_lock, irq_flags);
1581         chctl = part->chctl;
1582         if (chctl.all_flags != 0)
1583                 part->chctl.all_flags = 0;
1584
1585         spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
1586
1587         if (xpc_any_openclose_chctl_flags_set(&chctl)) {
1588                 ret = xpc_pull_remote_cachelines_sn2(part, part->
1589                                                      remote_openclose_args,
1590                                                      (void *)part_sn2->
1591                                                      remote_openclose_args_pa,
1592                                                      XPC_OPENCLOSE_ARGS_SIZE);
1593                 if (ret != xpSuccess) {
1594                         XPC_DEACTIVATE_PARTITION(part, ret);
1595
1596                         dev_dbg(xpc_chan, "failed to pull openclose args from "
1597                                 "partition %d, ret=%d\n", XPC_PARTID(part),
1598                                 ret);
1599
1600                         /* don't bother processing chctl flags anymore */
1601                         chctl.all_flags = 0;
1602                 }
1603         }
1604
1605         if (xpc_any_msg_chctl_flags_set(&chctl)) {
1606                 ret = xpc_pull_remote_cachelines_sn2(part, part_sn2->remote_GPs,
1607                                                 (void *)part_sn2->remote_GPs_pa,
1608                                                      XPC_GP_SIZE);
1609                 if (ret != xpSuccess) {
1610                         XPC_DEACTIVATE_PARTITION(part, ret);
1611
1612                         dev_dbg(xpc_chan, "failed to pull GPs from partition "
1613                                 "%d, ret=%d\n", XPC_PARTID(part), ret);
1614
1615                         /* don't bother processing chctl flags anymore */
1616                         chctl.all_flags = 0;
1617                 }
1618         }
1619
1620         return chctl.all_flags;
1621 }
1622
1623 /*
1624  * Allocate the local message queue and the notify queue.
1625  */
1626 static enum xp_retval
1627 xpc_allocate_local_msgqueue_sn2(struct xpc_channel *ch)
1628 {
1629         unsigned long irq_flags;
1630         int nentries;
1631         size_t nbytes;
1632
1633         for (nentries = ch->local_nentries; nentries > 0; nentries--) {
1634
1635                 nbytes = nentries * ch->msg_size;
1636                 ch->local_msgqueue =
1637                     xpc_kzalloc_cacheline_aligned_sn2(nbytes, GFP_KERNEL,
1638                                                       &ch->local_msgqueue_base);
1639                 if (ch->local_msgqueue == NULL)
1640                         continue;
1641
1642                 nbytes = nentries * sizeof(struct xpc_notify);
1643                 ch->notify_queue = kzalloc(nbytes, GFP_KERNEL);
1644                 if (ch->notify_queue == NULL) {
1645                         kfree(ch->local_msgqueue_base);
1646                         ch->local_msgqueue = NULL;
1647                         continue;
1648                 }
1649
1650                 spin_lock_irqsave(&ch->lock, irq_flags);
1651                 if (nentries < ch->local_nentries) {
1652                         dev_dbg(xpc_chan, "nentries=%d local_nentries=%d, "
1653                                 "partid=%d, channel=%d\n", nentries,
1654                                 ch->local_nentries, ch->partid, ch->number);
1655
1656                         ch->local_nentries = nentries;
1657                 }
1658                 spin_unlock_irqrestore(&ch->lock, irq_flags);
1659                 return xpSuccess;
1660         }
1661
1662         dev_dbg(xpc_chan, "can't get memory for local message queue and notify "
1663                 "queue, partid=%d, channel=%d\n", ch->partid, ch->number);
1664         return xpNoMemory;
1665 }
1666
1667 /*
1668  * Allocate the cached remote message queue.
1669  */
1670 static enum xp_retval
1671 xpc_allocate_remote_msgqueue_sn2(struct xpc_channel *ch)
1672 {
1673         unsigned long irq_flags;
1674         int nentries;
1675         size_t nbytes;
1676
1677         DBUG_ON(ch->remote_nentries <= 0);
1678
1679         for (nentries = ch->remote_nentries; nentries > 0; nentries--) {
1680
1681                 nbytes = nentries * ch->msg_size;
1682                 ch->remote_msgqueue =
1683                     xpc_kzalloc_cacheline_aligned_sn2(nbytes, GFP_KERNEL,
1684                                                      &ch->remote_msgqueue_base);
1685                 if (ch->remote_msgqueue == NULL)
1686                         continue;
1687
1688                 spin_lock_irqsave(&ch->lock, irq_flags);
1689                 if (nentries < ch->remote_nentries) {
1690                         dev_dbg(xpc_chan, "nentries=%d remote_nentries=%d, "
1691                                 "partid=%d, channel=%d\n", nentries,
1692                                 ch->remote_nentries, ch->partid, ch->number);
1693
1694                         ch->remote_nentries = nentries;
1695                 }
1696                 spin_unlock_irqrestore(&ch->lock, irq_flags);
1697                 return xpSuccess;
1698         }
1699
1700         dev_dbg(xpc_chan, "can't get memory for cached remote message queue, "
1701                 "partid=%d, channel=%d\n", ch->partid, ch->number);
1702         return xpNoMemory;
1703 }
1704
1705 /*
1706  * Allocate message queues and other stuff associated with a channel.
1707  *
1708  * Note: Assumes all of the channel sizes are filled in.
1709  */
1710 static enum xp_retval
1711 xpc_allocate_msgqueues_sn2(struct xpc_channel *ch)
1712 {
1713         enum xp_retval ret;
1714
1715         DBUG_ON(ch->flags & XPC_C_SETUP);
1716
1717         ret = xpc_allocate_local_msgqueue_sn2(ch);
1718         if (ret == xpSuccess) {
1719
1720                 ret = xpc_allocate_remote_msgqueue_sn2(ch);
1721                 if (ret != xpSuccess) {
1722                         kfree(ch->local_msgqueue_base);
1723                         ch->local_msgqueue = NULL;
1724                         kfree(ch->notify_queue);
1725                         ch->notify_queue = NULL;
1726                 }
1727         }
1728         return ret;
1729 }
1730
1731 /*
1732  * Free up message queues and other stuff that were allocated for the specified
1733  * channel.
1734  *
1735  * Note: ch->reason and ch->reason_line are left set for debugging purposes,
1736  * they're cleared when XPC_C_DISCONNECTED is cleared.
1737  */
1738 static void
1739 xpc_free_msgqueues_sn2(struct xpc_channel *ch)
1740 {
1741         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1742
1743         DBUG_ON(!spin_is_locked(&ch->lock));
1744         DBUG_ON(atomic_read(&ch->n_to_notify) != 0);
1745
1746         ch->remote_msgqueue_pa = 0;
1747         ch->func = NULL;
1748         ch->key = NULL;
1749         ch->msg_size = 0;
1750         ch->local_nentries = 0;
1751         ch->remote_nentries = 0;
1752         ch->kthreads_assigned_limit = 0;
1753         ch->kthreads_idle_limit = 0;
1754
1755         ch_sn2->local_GP->get = 0;
1756         ch_sn2->local_GP->put = 0;
1757         ch_sn2->remote_GP.get = 0;
1758         ch_sn2->remote_GP.put = 0;
1759         ch_sn2->w_local_GP.get = 0;
1760         ch_sn2->w_local_GP.put = 0;
1761         ch_sn2->w_remote_GP.get = 0;
1762         ch_sn2->w_remote_GP.put = 0;
1763         ch_sn2->next_msg_to_pull = 0;
1764
1765         if (ch->flags & XPC_C_SETUP) {
1766                 dev_dbg(xpc_chan, "ch->flags=0x%x, partid=%d, channel=%d\n",
1767                         ch->flags, ch->partid, ch->number);
1768
1769                 kfree(ch->local_msgqueue_base);
1770                 ch->local_msgqueue = NULL;
1771                 kfree(ch->remote_msgqueue_base);
1772                 ch->remote_msgqueue = NULL;
1773                 kfree(ch->notify_queue);
1774                 ch->notify_queue = NULL;
1775         }
1776 }
1777
1778 /*
1779  * Notify those who wanted to be notified upon delivery of their message.
1780  */
1781 static void
1782 xpc_notify_senders_sn2(struct xpc_channel *ch, enum xp_retval reason, s64 put)
1783 {
1784         struct xpc_notify *notify;
1785         u8 notify_type;
1786         s64 get = ch->sn.sn2.w_remote_GP.get - 1;
1787
1788         while (++get < put && atomic_read(&ch->n_to_notify) > 0) {
1789
1790                 notify = &ch->notify_queue[get % ch->local_nentries];
1791
1792                 /*
1793                  * See if the notify entry indicates it was associated with
1794                  * a message who's sender wants to be notified. It is possible
1795                  * that it is, but someone else is doing or has done the
1796                  * notification.
1797                  */
1798                 notify_type = notify->type;
1799                 if (notify_type == 0 ||
1800                     cmpxchg(&notify->type, notify_type, 0) != notify_type) {
1801                         continue;
1802                 }
1803
1804                 DBUG_ON(notify_type != XPC_N_CALL);
1805
1806                 atomic_dec(&ch->n_to_notify);
1807
1808                 if (notify->func != NULL) {
1809                         dev_dbg(xpc_chan, "notify->func() called, notify=0x%p, "
1810                                 "msg_number=%ld, partid=%d, channel=%d\n",
1811                                 (void *)notify, get, ch->partid, ch->number);
1812
1813                         notify->func(reason, ch->partid, ch->number,
1814                                      notify->key);
1815
1816                         dev_dbg(xpc_chan, "notify->func() returned, "
1817                                 "notify=0x%p, msg_number=%ld, partid=%d, "
1818                                 "channel=%d\n", (void *)notify, get,
1819                                 ch->partid, ch->number);
1820                 }
1821         }
1822 }
1823
1824 static void
1825 xpc_notify_senders_of_disconnect_sn2(struct xpc_channel *ch)
1826 {
1827         xpc_notify_senders_sn2(ch, ch->reason, ch->sn.sn2.w_local_GP.put);
1828 }
1829
1830 /*
1831  * Clear some of the msg flags in the local message queue.
1832  */
1833 static inline void
1834 xpc_clear_local_msgqueue_flags_sn2(struct xpc_channel *ch)
1835 {
1836         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1837         struct xpc_msg *msg;
1838         s64 get;
1839
1840         get = ch_sn2->w_remote_GP.get;
1841         do {
1842                 msg = (struct xpc_msg *)((u64)ch->local_msgqueue +
1843                                          (get % ch->local_nentries) *
1844                                          ch->msg_size);
1845                 msg->flags = 0;
1846         } while (++get < ch_sn2->remote_GP.get);
1847 }
1848
1849 /*
1850  * Clear some of the msg flags in the remote message queue.
1851  */
1852 static inline void
1853 xpc_clear_remote_msgqueue_flags_sn2(struct xpc_channel *ch)
1854 {
1855         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1856         struct xpc_msg *msg;
1857         s64 put;
1858
1859         put = ch_sn2->w_remote_GP.put;
1860         do {
1861                 msg = (struct xpc_msg *)((u64)ch->remote_msgqueue +
1862                                          (put % ch->remote_nentries) *
1863                                          ch->msg_size);
1864                 msg->flags = 0;
1865         } while (++put < ch_sn2->remote_GP.put);
1866 }
1867
1868 static void
1869 xpc_process_msg_chctl_flags_sn2(struct xpc_partition *part, int ch_number)
1870 {
1871         struct xpc_channel *ch = &part->channels[ch_number];
1872         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1873         int nmsgs_sent;
1874
1875         ch_sn2->remote_GP = part->sn.sn2.remote_GPs[ch_number];
1876
1877         /* See what, if anything, has changed for each connected channel */
1878
1879         xpc_msgqueue_ref(ch);
1880
1881         if (ch_sn2->w_remote_GP.get == ch_sn2->remote_GP.get &&
1882             ch_sn2->w_remote_GP.put == ch_sn2->remote_GP.put) {
1883                 /* nothing changed since GPs were last pulled */
1884                 xpc_msgqueue_deref(ch);
1885                 return;
1886         }
1887
1888         if (!(ch->flags & XPC_C_CONNECTED)) {
1889                 xpc_msgqueue_deref(ch);
1890                 return;
1891         }
1892
1893         /*
1894          * First check to see if messages recently sent by us have been
1895          * received by the other side. (The remote GET value will have
1896          * changed since we last looked at it.)
1897          */
1898
1899         if (ch_sn2->w_remote_GP.get != ch_sn2->remote_GP.get) {
1900
1901                 /*
1902                  * We need to notify any senders that want to be notified
1903                  * that their sent messages have been received by their
1904                  * intended recipients. We need to do this before updating
1905                  * w_remote_GP.get so that we don't allocate the same message
1906                  * queue entries prematurely (see xpc_allocate_msg()).
1907                  */
1908                 if (atomic_read(&ch->n_to_notify) > 0) {
1909                         /*
1910                          * Notify senders that messages sent have been
1911                          * received and delivered by the other side.
1912                          */
1913                         xpc_notify_senders_sn2(ch, xpMsgDelivered,
1914                                                ch_sn2->remote_GP.get);
1915                 }
1916
1917                 /*
1918                  * Clear msg->flags in previously sent messages, so that
1919                  * they're ready for xpc_allocate_msg().
1920                  */
1921                 xpc_clear_local_msgqueue_flags_sn2(ch);
1922
1923                 ch_sn2->w_remote_GP.get = ch_sn2->remote_GP.get;
1924
1925                 dev_dbg(xpc_chan, "w_remote_GP.get changed to %ld, partid=%d, "
1926                         "channel=%d\n", ch_sn2->w_remote_GP.get, ch->partid,
1927                         ch->number);
1928
1929                 /*
1930                  * If anyone was waiting for message queue entries to become
1931                  * available, wake them up.
1932                  */
1933                 if (atomic_read(&ch->n_on_msg_allocate_wq) > 0)
1934                         wake_up(&ch->msg_allocate_wq);
1935         }
1936
1937         /*
1938          * Now check for newly sent messages by the other side. (The remote
1939          * PUT value will have changed since we last looked at it.)
1940          */
1941
1942         if (ch_sn2->w_remote_GP.put != ch_sn2->remote_GP.put) {
1943                 /*
1944                  * Clear msg->flags in previously received messages, so that
1945                  * they're ready for xpc_get_deliverable_msg().
1946                  */
1947                 xpc_clear_remote_msgqueue_flags_sn2(ch);
1948
1949                 ch_sn2->w_remote_GP.put = ch_sn2->remote_GP.put;
1950
1951                 dev_dbg(xpc_chan, "w_remote_GP.put changed to %ld, partid=%d, "
1952                         "channel=%d\n", ch_sn2->w_remote_GP.put, ch->partid,
1953                         ch->number);
1954
1955                 nmsgs_sent = ch_sn2->w_remote_GP.put - ch_sn2->w_local_GP.get;
1956                 if (nmsgs_sent > 0) {
1957                         dev_dbg(xpc_chan, "msgs waiting to be copied and "
1958                                 "delivered=%d, partid=%d, channel=%d\n",
1959                                 nmsgs_sent, ch->partid, ch->number);
1960
1961                         if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE)
1962                                 xpc_activate_kthreads(ch, nmsgs_sent);
1963                 }
1964         }
1965
1966         xpc_msgqueue_deref(ch);
1967 }
1968
1969 static struct xpc_msg *
1970 xpc_pull_remote_msg_sn2(struct xpc_channel *ch, s64 get)
1971 {
1972         struct xpc_partition *part = &xpc_partitions[ch->partid];
1973         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1974         struct xpc_msg *remote_msg, *msg;
1975         u32 msg_index, nmsgs;
1976         u64 msg_offset;
1977         enum xp_retval ret;
1978
1979         if (mutex_lock_interruptible(&ch_sn2->msg_to_pull_mutex) != 0) {
1980                 /* we were interrupted by a signal */
1981                 return NULL;
1982         }
1983
1984         while (get >= ch_sn2->next_msg_to_pull) {
1985
1986                 /* pull as many messages as are ready and able to be pulled */
1987
1988                 msg_index = ch_sn2->next_msg_to_pull % ch->remote_nentries;
1989
1990                 DBUG_ON(ch_sn2->next_msg_to_pull >= ch_sn2->w_remote_GP.put);
1991                 nmsgs = ch_sn2->w_remote_GP.put - ch_sn2->next_msg_to_pull;
1992                 if (msg_index + nmsgs > ch->remote_nentries) {
1993                         /* ignore the ones that wrap the msg queue for now */
1994                         nmsgs = ch->remote_nentries - msg_index;
1995                 }
1996
1997                 msg_offset = msg_index * ch->msg_size;
1998                 msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + msg_offset);
1999                 remote_msg = (struct xpc_msg *)(ch->remote_msgqueue_pa +
2000                                                 msg_offset);
2001
2002                 ret = xpc_pull_remote_cachelines_sn2(part, msg, remote_msg,
2003                                                      nmsgs * ch->msg_size);
2004                 if (ret != xpSuccess) {
2005
2006                         dev_dbg(xpc_chan, "failed to pull %d msgs starting with"
2007                                 " msg %ld from partition %d, channel=%d, "
2008                                 "ret=%d\n", nmsgs, ch_sn2->next_msg_to_pull,
2009                                 ch->partid, ch->number, ret);
2010
2011                         XPC_DEACTIVATE_PARTITION(part, ret);
2012
2013                         mutex_unlock(&ch_sn2->msg_to_pull_mutex);
2014                         return NULL;
2015                 }
2016
2017                 ch_sn2->next_msg_to_pull += nmsgs;
2018         }
2019
2020         mutex_unlock(&ch_sn2->msg_to_pull_mutex);
2021
2022         /* return the message we were looking for */
2023         msg_offset = (get % ch->remote_nentries) * ch->msg_size;
2024         msg = (struct xpc_msg *)((u64)ch->remote_msgqueue + msg_offset);
2025
2026         return msg;
2027 }
2028
2029 static int
2030 xpc_n_of_deliverable_msgs_sn2(struct xpc_channel *ch)
2031 {
2032         return ch->sn.sn2.w_remote_GP.put - ch->sn.sn2.w_local_GP.get;
2033 }
2034
2035 /*
2036  * Get a message to be delivered.
2037  */
2038 static struct xpc_msg *
2039 xpc_get_deliverable_msg_sn2(struct xpc_channel *ch)
2040 {
2041         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2042         struct xpc_msg *msg = NULL;
2043         s64 get;
2044
2045         do {
2046                 if (ch->flags & XPC_C_DISCONNECTING)
2047                         break;
2048
2049                 get = ch_sn2->w_local_GP.get;
2050                 rmb();  /* guarantee that .get loads before .put */
2051                 if (get == ch_sn2->w_remote_GP.put)
2052                         break;
2053
2054                 /* There are messages waiting to be pulled and delivered.
2055                  * We need to try to secure one for ourselves. We'll do this
2056                  * by trying to increment w_local_GP.get and hope that no one
2057                  * else beats us to it. If they do, we'll we'll simply have
2058                  * to try again for the next one.
2059                  */
2060
2061                 if (cmpxchg(&ch_sn2->w_local_GP.get, get, get + 1) == get) {
2062                         /* we got the entry referenced by get */
2063
2064                         dev_dbg(xpc_chan, "w_local_GP.get changed to %ld, "
2065                                 "partid=%d, channel=%d\n", get + 1,
2066                                 ch->partid, ch->number);
2067
2068                         /* pull the message from the remote partition */
2069
2070                         msg = xpc_pull_remote_msg_sn2(ch, get);
2071
2072                         DBUG_ON(msg != NULL && msg->number != get);
2073                         DBUG_ON(msg != NULL && (msg->flags & XPC_M_DONE));
2074                         DBUG_ON(msg != NULL && !(msg->flags & XPC_M_READY));
2075
2076                         break;
2077                 }
2078
2079         } while (1);
2080
2081         return msg;
2082 }
2083
2084 /*
2085  * Now we actually send the messages that are ready to be sent by advancing
2086  * the local message queue's Put value and then send a chctl msgrequest to the
2087  * recipient partition.
2088  */
2089 static void
2090 xpc_send_msgs_sn2(struct xpc_channel *ch, s64 initial_put)
2091 {
2092         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2093         struct xpc_msg *msg;
2094         s64 put = initial_put + 1;
2095         int send_msgrequest = 0;
2096
2097         while (1) {
2098
2099                 while (1) {
2100                         if (put == ch_sn2->w_local_GP.put)
2101                                 break;
2102
2103                         msg = (struct xpc_msg *)((u64)ch->local_msgqueue +
2104                                                  (put % ch->local_nentries) *
2105                                                  ch->msg_size);
2106
2107                         if (!(msg->flags & XPC_M_READY))
2108                                 break;
2109
2110                         put++;
2111                 }
2112
2113                 if (put == initial_put) {
2114                         /* nothing's changed */
2115                         break;
2116                 }
2117
2118                 if (cmpxchg_rel(&ch_sn2->local_GP->put, initial_put, put) !=
2119                     initial_put) {
2120                         /* someone else beat us to it */
2121                         DBUG_ON(ch_sn2->local_GP->put < initial_put);
2122                         break;
2123                 }
2124
2125                 /* we just set the new value of local_GP->put */
2126
2127                 dev_dbg(xpc_chan, "local_GP->put changed to %ld, partid=%d, "
2128                         "channel=%d\n", put, ch->partid, ch->number);
2129
2130                 send_msgrequest = 1;
2131
2132                 /*
2133                  * We need to ensure that the message referenced by
2134                  * local_GP->put is not XPC_M_READY or that local_GP->put
2135                  * equals w_local_GP.put, so we'll go have a look.
2136                  */
2137                 initial_put = put;
2138         }
2139
2140         if (send_msgrequest)
2141                 xpc_send_chctl_msgrequest_sn2(ch);
2142 }
2143
2144 /*
2145  * Allocate an entry for a message from the message queue associated with the
2146  * specified channel.
2147  */
2148 static enum xp_retval
2149 xpc_allocate_msg_sn2(struct xpc_channel *ch, u32 flags,
2150                      struct xpc_msg **address_of_msg)
2151 {
2152         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2153         struct xpc_msg *msg;
2154         enum xp_retval ret;
2155         s64 put;
2156
2157         /*
2158          * Get the next available message entry from the local message queue.
2159          * If none are available, we'll make sure that we grab the latest
2160          * GP values.
2161          */
2162         ret = xpTimeout;
2163
2164         while (1) {
2165
2166                 put = ch_sn2->w_local_GP.put;
2167                 rmb();  /* guarantee that .put loads before .get */
2168                 if (put - ch_sn2->w_remote_GP.get < ch->local_nentries) {
2169
2170                         /* There are available message entries. We need to try
2171                          * to secure one for ourselves. We'll do this by trying
2172                          * to increment w_local_GP.put as long as someone else
2173                          * doesn't beat us to it. If they do, we'll have to
2174                          * try again.
2175                          */
2176                         if (cmpxchg(&ch_sn2->w_local_GP.put, put, put + 1) ==
2177                             put) {
2178                                 /* we got the entry referenced by put */
2179                                 break;
2180                         }
2181                         continue;       /* try again */
2182                 }
2183
2184                 /*
2185                  * There aren't any available msg entries at this time.
2186                  *
2187                  * In waiting for a message entry to become available,
2188                  * we set a timeout in case the other side is not sending
2189                  * completion interrupts. This lets us fake a notify IRQ
2190                  * that will cause the notify IRQ handler to fetch the latest
2191                  * GP values as if an interrupt was sent by the other side.
2192                  */
2193                 if (ret == xpTimeout)
2194                         xpc_send_chctl_local_msgrequest_sn2(ch);
2195
2196                 if (flags & XPC_NOWAIT)
2197                         return xpNoWait;
2198
2199                 ret = xpc_allocate_msg_wait(ch);
2200                 if (ret != xpInterrupted && ret != xpTimeout)
2201                         return ret;
2202         }
2203
2204         /* get the message's address and initialize it */
2205         msg = (struct xpc_msg *)((u64)ch->local_msgqueue +
2206                                  (put % ch->local_nentries) * ch->msg_size);
2207
2208         DBUG_ON(msg->flags != 0);
2209         msg->number = put;
2210
2211         dev_dbg(xpc_chan, "w_local_GP.put changed to %ld; msg=0x%p, "
2212                 "msg_number=%ld, partid=%d, channel=%d\n", put + 1,
2213                 (void *)msg, msg->number, ch->partid, ch->number);
2214
2215         *address_of_msg = msg;
2216         return xpSuccess;
2217 }
2218
2219 /*
2220  * Common code that does the actual sending of the message by advancing the
2221  * local message queue's Put value and sends a chctl msgrequest to the
2222  * partition the message is being sent to.
2223  */
2224 static enum xp_retval
2225 xpc_send_msg_sn2(struct xpc_channel *ch, u32 flags, void *payload,
2226                  u16 payload_size, u8 notify_type, xpc_notify_func func,
2227                  void *key)
2228 {
2229         enum xp_retval ret = xpSuccess;
2230         struct xpc_msg *msg = msg;
2231         struct xpc_notify *notify = notify;
2232         s64 msg_number;
2233         s64 put;
2234
2235         DBUG_ON(notify_type == XPC_N_CALL && func == NULL);
2236
2237         if (XPC_MSG_SIZE(payload_size) > ch->msg_size)
2238                 return xpPayloadTooBig;
2239
2240         xpc_msgqueue_ref(ch);
2241
2242         if (ch->flags & XPC_C_DISCONNECTING) {
2243                 ret = ch->reason;
2244                 goto out_1;
2245         }
2246         if (!(ch->flags & XPC_C_CONNECTED)) {
2247                 ret = xpNotConnected;
2248                 goto out_1;
2249         }
2250
2251         ret = xpc_allocate_msg_sn2(ch, flags, &msg);
2252         if (ret != xpSuccess)
2253                 goto out_1;
2254
2255         msg_number = msg->number;
2256
2257         if (notify_type != 0) {
2258                 /*
2259                  * Tell the remote side to send an ACK interrupt when the
2260                  * message has been delivered.
2261                  */
2262                 msg->flags |= XPC_M_INTERRUPT;
2263
2264                 atomic_inc(&ch->n_to_notify);
2265
2266                 notify = &ch->notify_queue[msg_number % ch->local_nentries];
2267                 notify->func = func;
2268                 notify->key = key;
2269                 notify->type = notify_type;
2270
2271                 /* ??? Is a mb() needed here? */
2272
2273                 if (ch->flags & XPC_C_DISCONNECTING) {
2274                         /*
2275                          * An error occurred between our last error check and
2276                          * this one. We will try to clear the type field from
2277                          * the notify entry. If we succeed then
2278                          * xpc_disconnect_channel() didn't already process
2279                          * the notify entry.
2280                          */
2281                         if (cmpxchg(&notify->type, notify_type, 0) ==
2282                             notify_type) {
2283                                 atomic_dec(&ch->n_to_notify);
2284                                 ret = ch->reason;
2285                         }
2286                         goto out_1;
2287                 }
2288         }
2289
2290         memcpy(&msg->payload, payload, payload_size);
2291
2292         msg->flags |= XPC_M_READY;
2293
2294         /*
2295          * The preceding store of msg->flags must occur before the following
2296          * load of local_GP->put.
2297          */
2298         mb();
2299
2300         /* see if the message is next in line to be sent, if so send it */
2301
2302         put = ch->sn.sn2.local_GP->put;
2303         if (put == msg_number)
2304                 xpc_send_msgs_sn2(ch, put);
2305
2306 out_1:
2307         xpc_msgqueue_deref(ch);
2308         return ret;
2309 }
2310
2311 /*
2312  * Now we actually acknowledge the messages that have been delivered and ack'd
2313  * by advancing the cached remote message queue's Get value and if requested
2314  * send a chctl msgrequest to the message sender's partition.
2315  */
2316 static void
2317 xpc_acknowledge_msgs_sn2(struct xpc_channel *ch, s64 initial_get, u8 msg_flags)
2318 {
2319         struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2320         struct xpc_msg *msg;
2321         s64 get = initial_get + 1;
2322         int send_msgrequest = 0;
2323
2324         while (1) {
2325
2326                 while (1) {
2327                         if (get == ch_sn2->w_local_GP.get)
2328                                 break;
2329
2330                         msg = (struct xpc_msg *)((u64)ch->remote_msgqueue +
2331                                                  (get % ch->remote_nentries) *
2332                                                  ch->msg_size);
2333
2334                         if (!(msg->flags & XPC_M_DONE))
2335                                 break;
2336
2337                         msg_flags |= msg->flags;
2338                         get++;
2339                 }
2340
2341                 if (get == initial_get) {
2342                         /* nothing's changed */
2343                         break;
2344                 }
2345
2346                 if (cmpxchg_rel(&ch_sn2->local_GP->get, initial_get, get) !=
2347                     initial_get) {
2348                         /* someone else beat us to it */
2349                         DBUG_ON(ch_sn2->local_GP->get <= initial_get);
2350                         break;
2351                 }
2352
2353                 /* we just set the new value of local_GP->get */
2354
2355                 dev_dbg(xpc_chan, "local_GP->get changed to %ld, partid=%d, "
2356                         "channel=%d\n", get, ch->partid, ch->number);
2357
2358                 send_msgrequest = (msg_flags & XPC_M_INTERRUPT);
2359
2360                 /*
2361                  * We need to ensure that the message referenced by
2362                  * local_GP->get is not XPC_M_DONE or that local_GP->get
2363                  * equals w_local_GP.get, so we'll go have a look.
2364                  */
2365                 initial_get = get;
2366         }
2367
2368         if (send_msgrequest)
2369                 xpc_send_chctl_msgrequest_sn2(ch);
2370 }
2371
2372 static void
2373 xpc_received_msg_sn2(struct xpc_channel *ch, struct xpc_msg *msg)
2374 {
2375         s64 get;
2376         s64 msg_number = msg->number;
2377
2378         dev_dbg(xpc_chan, "msg=0x%p, msg_number=%ld, partid=%d, channel=%d\n",
2379                 (void *)msg, msg_number, ch->partid, ch->number);
2380
2381         DBUG_ON((((u64)msg - (u64)ch->remote_msgqueue) / ch->msg_size) !=
2382                 msg_number % ch->remote_nentries);
2383         DBUG_ON(msg->flags & XPC_M_DONE);
2384
2385         msg->flags |= XPC_M_DONE;
2386
2387         /*
2388          * The preceding store of msg->flags must occur before the following
2389          * load of local_GP->get.
2390          */
2391         mb();
2392
2393         /*
2394          * See if this message is next in line to be acknowledged as having
2395          * been delivered.
2396          */
2397         get = ch->sn.sn2.local_GP->get;
2398         if (get == msg_number)
2399                 xpc_acknowledge_msgs_sn2(ch, get, msg->flags);
2400 }
2401
2402 int
2403 xpc_init_sn2(void)
2404 {
2405         int ret;
2406         size_t buf_size;
2407
2408         xpc_get_partition_rsvd_page_pa = xpc_get_partition_rsvd_page_pa_sn2;
2409         xpc_rsvd_page_init = xpc_rsvd_page_init_sn2;
2410         xpc_increment_heartbeat = xpc_increment_heartbeat_sn2;
2411         xpc_offline_heartbeat = xpc_offline_heartbeat_sn2;
2412         xpc_online_heartbeat = xpc_online_heartbeat_sn2;
2413         xpc_heartbeat_init = xpc_heartbeat_init_sn2;
2414         xpc_heartbeat_exit = xpc_heartbeat_exit_sn2;
2415         xpc_check_remote_hb = xpc_check_remote_hb_sn2;
2416
2417         xpc_request_partition_activation = xpc_request_partition_activation_sn2;
2418         xpc_request_partition_reactivation =
2419             xpc_request_partition_reactivation_sn2;
2420         xpc_request_partition_deactivation =
2421             xpc_request_partition_deactivation_sn2;
2422         xpc_cancel_partition_deactivation_request =
2423             xpc_cancel_partition_deactivation_request_sn2;
2424
2425         xpc_process_activate_IRQ_rcvd = xpc_process_activate_IRQ_rcvd_sn2;
2426         xpc_setup_infrastructure = xpc_setup_infrastructure_sn2;
2427         xpc_teardown_infrastructure = xpc_teardown_infrastructure_sn2;
2428         xpc_make_first_contact = xpc_make_first_contact_sn2;
2429         xpc_get_chctl_all_flags = xpc_get_chctl_all_flags_sn2;
2430         xpc_allocate_msgqueues = xpc_allocate_msgqueues_sn2;
2431         xpc_free_msgqueues = xpc_free_msgqueues_sn2;
2432         xpc_notify_senders_of_disconnect = xpc_notify_senders_of_disconnect_sn2;
2433         xpc_process_msg_chctl_flags = xpc_process_msg_chctl_flags_sn2;
2434         xpc_n_of_deliverable_msgs = xpc_n_of_deliverable_msgs_sn2;
2435         xpc_get_deliverable_msg = xpc_get_deliverable_msg_sn2;
2436
2437         xpc_indicate_partition_engaged = xpc_indicate_partition_engaged_sn2;
2438         xpc_partition_engaged = xpc_partition_engaged_sn2;
2439         xpc_any_partition_engaged = xpc_any_partition_engaged_sn2;
2440         xpc_indicate_partition_disengaged =
2441             xpc_indicate_partition_disengaged_sn2;
2442         xpc_assume_partition_disengaged = xpc_assume_partition_disengaged_sn2;
2443
2444         xpc_send_chctl_closerequest = xpc_send_chctl_closerequest_sn2;
2445         xpc_send_chctl_closereply = xpc_send_chctl_closereply_sn2;
2446         xpc_send_chctl_openrequest = xpc_send_chctl_openrequest_sn2;
2447         xpc_send_chctl_openreply = xpc_send_chctl_openreply_sn2;
2448
2449         xpc_send_msg = xpc_send_msg_sn2;
2450         xpc_received_msg = xpc_received_msg_sn2;
2451
2452         buf_size = max(XPC_RP_VARS_SIZE,
2453                        XPC_RP_HEADER_SIZE + XP_NASID_MASK_BYTES_SN2);
2454         xpc_remote_copy_buffer_sn2 = xpc_kmalloc_cacheline_aligned(buf_size,
2455                                                                    GFP_KERNEL,
2456                                               &xpc_remote_copy_buffer_base_sn2);
2457         if (xpc_remote_copy_buffer_sn2 == NULL) {
2458                 dev_err(xpc_part, "can't get memory for remote copy buffer\n");
2459                 return -ENOMEM;
2460         }
2461
2462         /* open up protections for IPI and [potentially] amo operations */
2463         xpc_allow_IPI_ops_sn2();
2464         xpc_allow_amo_ops_shub_wars_1_1_sn2();
2465
2466         /*
2467          * This is safe to do before the xpc_hb_checker thread has started
2468          * because the handler releases a wait queue.  If an interrupt is
2469          * received before the thread is waiting, it will not go to sleep,
2470          * but rather immediately process the interrupt.
2471          */
2472         ret = request_irq(SGI_XPC_ACTIVATE, xpc_handle_activate_IRQ_sn2, 0,
2473                           "xpc hb", NULL);
2474         if (ret != 0) {
2475                 dev_err(xpc_part, "can't register ACTIVATE IRQ handler, "
2476                         "errno=%d\n", -ret);
2477                 xpc_disallow_IPI_ops_sn2();
2478                 kfree(xpc_remote_copy_buffer_base_sn2);
2479         }
2480         return ret;
2481 }
2482
2483 void
2484 xpc_exit_sn2(void)
2485 {
2486         free_irq(SGI_XPC_ACTIVATE, NULL);
2487         xpc_disallow_IPI_ops_sn2();
2488         kfree(xpc_remote_copy_buffer_base_sn2);
2489 }