md: move lots of #include lines out of .h files and into .c
[safe/jmp/linux-2.6] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/raid/md_k.h>
48 #include <linux/kthread.h>
49 #include <linux/async_tx.h>
50 #include <linux/seq_file.h>
51 #include "raid5.h"
52 #include "raid6.h"
53 #include "bitmap.h"
54
55 /*
56  * Stripe cache
57  */
58
59 #define NR_STRIPES              256
60 #define STRIPE_SIZE             PAGE_SIZE
61 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
62 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
63 #define IO_THRESHOLD            1
64 #define BYPASS_THRESHOLD        1
65 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK               (NR_HASH - 1)
67
68 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
69
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71  * order without overlap.  There may be several bio's per stripe+device, and
72  * a bio could span several devices.
73  * When walking this list for a particular stripe+device, we must never proceed
74  * beyond a bio that extends past this device, as the next bio might no longer
75  * be valid.
76  * This macro is used to determine the 'next' bio in the list, given the sector
77  * of the current stripe+device
78  */
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80 /*
81  * The following can be used to debug the driver
82  */
83 #define RAID5_PARANOIA  1
84 #if RAID5_PARANOIA && defined(CONFIG_SMP)
85 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
86 #else
87 # define CHECK_DEVLOCK()
88 #endif
89
90 #ifdef DEBUG
91 #define inline
92 #define __inline__
93 #endif
94
95 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
96
97 #if !RAID6_USE_EMPTY_ZERO_PAGE
98 /* In .bss so it's zeroed */
99 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
100 #endif
101
102 /*
103  * We maintain a biased count of active stripes in the bottom 16 bits of
104  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
105  */
106 static inline int raid5_bi_phys_segments(struct bio *bio)
107 {
108         return bio->bi_phys_segments & 0xffff;
109 }
110
111 static inline int raid5_bi_hw_segments(struct bio *bio)
112 {
113         return (bio->bi_phys_segments >> 16) & 0xffff;
114 }
115
116 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
117 {
118         --bio->bi_phys_segments;
119         return raid5_bi_phys_segments(bio);
120 }
121
122 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
123 {
124         unsigned short val = raid5_bi_hw_segments(bio);
125
126         --val;
127         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
128         return val;
129 }
130
131 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
132 {
133         bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
134 }
135
136 static inline int raid6_next_disk(int disk, int raid_disks)
137 {
138         disk++;
139         return (disk < raid_disks) ? disk : 0;
140 }
141
142 static void return_io(struct bio *return_bi)
143 {
144         struct bio *bi = return_bi;
145         while (bi) {
146
147                 return_bi = bi->bi_next;
148                 bi->bi_next = NULL;
149                 bi->bi_size = 0;
150                 bio_endio(bi, 0);
151                 bi = return_bi;
152         }
153 }
154
155 static void print_raid5_conf (raid5_conf_t *conf);
156
157 static int stripe_operations_active(struct stripe_head *sh)
158 {
159         return sh->check_state || sh->reconstruct_state ||
160                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
161                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
162 }
163
164 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
165 {
166         if (atomic_dec_and_test(&sh->count)) {
167                 BUG_ON(!list_empty(&sh->lru));
168                 BUG_ON(atomic_read(&conf->active_stripes)==0);
169                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
170                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
171                                 list_add_tail(&sh->lru, &conf->delayed_list);
172                                 blk_plug_device(conf->mddev->queue);
173                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
174                                    sh->bm_seq - conf->seq_write > 0) {
175                                 list_add_tail(&sh->lru, &conf->bitmap_list);
176                                 blk_plug_device(conf->mddev->queue);
177                         } else {
178                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
179                                 list_add_tail(&sh->lru, &conf->handle_list);
180                         }
181                         md_wakeup_thread(conf->mddev->thread);
182                 } else {
183                         BUG_ON(stripe_operations_active(sh));
184                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
185                                 atomic_dec(&conf->preread_active_stripes);
186                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
187                                         md_wakeup_thread(conf->mddev->thread);
188                         }
189                         atomic_dec(&conf->active_stripes);
190                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
191                                 list_add_tail(&sh->lru, &conf->inactive_list);
192                                 wake_up(&conf->wait_for_stripe);
193                                 if (conf->retry_read_aligned)
194                                         md_wakeup_thread(conf->mddev->thread);
195                         }
196                 }
197         }
198 }
199 static void release_stripe(struct stripe_head *sh)
200 {
201         raid5_conf_t *conf = sh->raid_conf;
202         unsigned long flags;
203
204         spin_lock_irqsave(&conf->device_lock, flags);
205         __release_stripe(conf, sh);
206         spin_unlock_irqrestore(&conf->device_lock, flags);
207 }
208
209 static inline void remove_hash(struct stripe_head *sh)
210 {
211         pr_debug("remove_hash(), stripe %llu\n",
212                 (unsigned long long)sh->sector);
213
214         hlist_del_init(&sh->hash);
215 }
216
217 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
218 {
219         struct hlist_head *hp = stripe_hash(conf, sh->sector);
220
221         pr_debug("insert_hash(), stripe %llu\n",
222                 (unsigned long long)sh->sector);
223
224         CHECK_DEVLOCK();
225         hlist_add_head(&sh->hash, hp);
226 }
227
228
229 /* find an idle stripe, make sure it is unhashed, and return it. */
230 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
231 {
232         struct stripe_head *sh = NULL;
233         struct list_head *first;
234
235         CHECK_DEVLOCK();
236         if (list_empty(&conf->inactive_list))
237                 goto out;
238         first = conf->inactive_list.next;
239         sh = list_entry(first, struct stripe_head, lru);
240         list_del_init(first);
241         remove_hash(sh);
242         atomic_inc(&conf->active_stripes);
243 out:
244         return sh;
245 }
246
247 static void shrink_buffers(struct stripe_head *sh, int num)
248 {
249         struct page *p;
250         int i;
251
252         for (i=0; i<num ; i++) {
253                 p = sh->dev[i].page;
254                 if (!p)
255                         continue;
256                 sh->dev[i].page = NULL;
257                 put_page(p);
258         }
259 }
260
261 static int grow_buffers(struct stripe_head *sh, int num)
262 {
263         int i;
264
265         for (i=0; i<num; i++) {
266                 struct page *page;
267
268                 if (!(page = alloc_page(GFP_KERNEL))) {
269                         return 1;
270                 }
271                 sh->dev[i].page = page;
272         }
273         return 0;
274 }
275
276 static void raid5_build_block(struct stripe_head *sh, int i);
277
278 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
279 {
280         raid5_conf_t *conf = sh->raid_conf;
281         int i;
282
283         BUG_ON(atomic_read(&sh->count) != 0);
284         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
285         BUG_ON(stripe_operations_active(sh));
286
287         CHECK_DEVLOCK();
288         pr_debug("init_stripe called, stripe %llu\n",
289                 (unsigned long long)sh->sector);
290
291         remove_hash(sh);
292
293         sh->sector = sector;
294         sh->pd_idx = pd_idx;
295         sh->state = 0;
296
297         sh->disks = disks;
298
299         for (i = sh->disks; i--; ) {
300                 struct r5dev *dev = &sh->dev[i];
301
302                 if (dev->toread || dev->read || dev->towrite || dev->written ||
303                     test_bit(R5_LOCKED, &dev->flags)) {
304                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
305                                (unsigned long long)sh->sector, i, dev->toread,
306                                dev->read, dev->towrite, dev->written,
307                                test_bit(R5_LOCKED, &dev->flags));
308                         BUG();
309                 }
310                 dev->flags = 0;
311                 raid5_build_block(sh, i);
312         }
313         insert_hash(conf, sh);
314 }
315
316 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
317 {
318         struct stripe_head *sh;
319         struct hlist_node *hn;
320
321         CHECK_DEVLOCK();
322         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
323         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
324                 if (sh->sector == sector && sh->disks == disks)
325                         return sh;
326         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
327         return NULL;
328 }
329
330 static void unplug_slaves(mddev_t *mddev);
331 static void raid5_unplug_device(struct request_queue *q);
332
333 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
334                                              int pd_idx, int noblock)
335 {
336         struct stripe_head *sh;
337
338         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
339
340         spin_lock_irq(&conf->device_lock);
341
342         do {
343                 wait_event_lock_irq(conf->wait_for_stripe,
344                                     conf->quiesce == 0,
345                                     conf->device_lock, /* nothing */);
346                 sh = __find_stripe(conf, sector, disks);
347                 if (!sh) {
348                         if (!conf->inactive_blocked)
349                                 sh = get_free_stripe(conf);
350                         if (noblock && sh == NULL)
351                                 break;
352                         if (!sh) {
353                                 conf->inactive_blocked = 1;
354                                 wait_event_lock_irq(conf->wait_for_stripe,
355                                                     !list_empty(&conf->inactive_list) &&
356                                                     (atomic_read(&conf->active_stripes)
357                                                      < (conf->max_nr_stripes *3/4)
358                                                      || !conf->inactive_blocked),
359                                                     conf->device_lock,
360                                                     raid5_unplug_device(conf->mddev->queue)
361                                         );
362                                 conf->inactive_blocked = 0;
363                         } else
364                                 init_stripe(sh, sector, pd_idx, disks);
365                 } else {
366                         if (atomic_read(&sh->count)) {
367                           BUG_ON(!list_empty(&sh->lru));
368                         } else {
369                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
370                                         atomic_inc(&conf->active_stripes);
371                                 if (list_empty(&sh->lru) &&
372                                     !test_bit(STRIPE_EXPANDING, &sh->state))
373                                         BUG();
374                                 list_del_init(&sh->lru);
375                         }
376                 }
377         } while (sh == NULL);
378
379         if (sh)
380                 atomic_inc(&sh->count);
381
382         spin_unlock_irq(&conf->device_lock);
383         return sh;
384 }
385
386 static void
387 raid5_end_read_request(struct bio *bi, int error);
388 static void
389 raid5_end_write_request(struct bio *bi, int error);
390
391 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
392 {
393         raid5_conf_t *conf = sh->raid_conf;
394         int i, disks = sh->disks;
395
396         might_sleep();
397
398         for (i = disks; i--; ) {
399                 int rw;
400                 struct bio *bi;
401                 mdk_rdev_t *rdev;
402                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
403                         rw = WRITE;
404                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
405                         rw = READ;
406                 else
407                         continue;
408
409                 bi = &sh->dev[i].req;
410
411                 bi->bi_rw = rw;
412                 if (rw == WRITE)
413                         bi->bi_end_io = raid5_end_write_request;
414                 else
415                         bi->bi_end_io = raid5_end_read_request;
416
417                 rcu_read_lock();
418                 rdev = rcu_dereference(conf->disks[i].rdev);
419                 if (rdev && test_bit(Faulty, &rdev->flags))
420                         rdev = NULL;
421                 if (rdev)
422                         atomic_inc(&rdev->nr_pending);
423                 rcu_read_unlock();
424
425                 if (rdev) {
426                         if (s->syncing || s->expanding || s->expanded)
427                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
428
429                         set_bit(STRIPE_IO_STARTED, &sh->state);
430
431                         bi->bi_bdev = rdev->bdev;
432                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
433                                 __func__, (unsigned long long)sh->sector,
434                                 bi->bi_rw, i);
435                         atomic_inc(&sh->count);
436                         bi->bi_sector = sh->sector + rdev->data_offset;
437                         bi->bi_flags = 1 << BIO_UPTODATE;
438                         bi->bi_vcnt = 1;
439                         bi->bi_max_vecs = 1;
440                         bi->bi_idx = 0;
441                         bi->bi_io_vec = &sh->dev[i].vec;
442                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
443                         bi->bi_io_vec[0].bv_offset = 0;
444                         bi->bi_size = STRIPE_SIZE;
445                         bi->bi_next = NULL;
446                         if (rw == WRITE &&
447                             test_bit(R5_ReWrite, &sh->dev[i].flags))
448                                 atomic_add(STRIPE_SECTORS,
449                                         &rdev->corrected_errors);
450                         generic_make_request(bi);
451                 } else {
452                         if (rw == WRITE)
453                                 set_bit(STRIPE_DEGRADED, &sh->state);
454                         pr_debug("skip op %ld on disc %d for sector %llu\n",
455                                 bi->bi_rw, i, (unsigned long long)sh->sector);
456                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
457                         set_bit(STRIPE_HANDLE, &sh->state);
458                 }
459         }
460 }
461
462 static struct dma_async_tx_descriptor *
463 async_copy_data(int frombio, struct bio *bio, struct page *page,
464         sector_t sector, struct dma_async_tx_descriptor *tx)
465 {
466         struct bio_vec *bvl;
467         struct page *bio_page;
468         int i;
469         int page_offset;
470
471         if (bio->bi_sector >= sector)
472                 page_offset = (signed)(bio->bi_sector - sector) * 512;
473         else
474                 page_offset = (signed)(sector - bio->bi_sector) * -512;
475         bio_for_each_segment(bvl, bio, i) {
476                 int len = bio_iovec_idx(bio, i)->bv_len;
477                 int clen;
478                 int b_offset = 0;
479
480                 if (page_offset < 0) {
481                         b_offset = -page_offset;
482                         page_offset += b_offset;
483                         len -= b_offset;
484                 }
485
486                 if (len > 0 && page_offset + len > STRIPE_SIZE)
487                         clen = STRIPE_SIZE - page_offset;
488                 else
489                         clen = len;
490
491                 if (clen > 0) {
492                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
493                         bio_page = bio_iovec_idx(bio, i)->bv_page;
494                         if (frombio)
495                                 tx = async_memcpy(page, bio_page, page_offset,
496                                         b_offset, clen,
497                                         ASYNC_TX_DEP_ACK,
498                                         tx, NULL, NULL);
499                         else
500                                 tx = async_memcpy(bio_page, page, b_offset,
501                                         page_offset, clen,
502                                         ASYNC_TX_DEP_ACK,
503                                         tx, NULL, NULL);
504                 }
505                 if (clen < len) /* hit end of page */
506                         break;
507                 page_offset +=  len;
508         }
509
510         return tx;
511 }
512
513 static void ops_complete_biofill(void *stripe_head_ref)
514 {
515         struct stripe_head *sh = stripe_head_ref;
516         struct bio *return_bi = NULL;
517         raid5_conf_t *conf = sh->raid_conf;
518         int i;
519
520         pr_debug("%s: stripe %llu\n", __func__,
521                 (unsigned long long)sh->sector);
522
523         /* clear completed biofills */
524         spin_lock_irq(&conf->device_lock);
525         for (i = sh->disks; i--; ) {
526                 struct r5dev *dev = &sh->dev[i];
527
528                 /* acknowledge completion of a biofill operation */
529                 /* and check if we need to reply to a read request,
530                  * new R5_Wantfill requests are held off until
531                  * !STRIPE_BIOFILL_RUN
532                  */
533                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
534                         struct bio *rbi, *rbi2;
535
536                         BUG_ON(!dev->read);
537                         rbi = dev->read;
538                         dev->read = NULL;
539                         while (rbi && rbi->bi_sector <
540                                 dev->sector + STRIPE_SECTORS) {
541                                 rbi2 = r5_next_bio(rbi, dev->sector);
542                                 if (!raid5_dec_bi_phys_segments(rbi)) {
543                                         rbi->bi_next = return_bi;
544                                         return_bi = rbi;
545                                 }
546                                 rbi = rbi2;
547                         }
548                 }
549         }
550         spin_unlock_irq(&conf->device_lock);
551         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
552
553         return_io(return_bi);
554
555         set_bit(STRIPE_HANDLE, &sh->state);
556         release_stripe(sh);
557 }
558
559 static void ops_run_biofill(struct stripe_head *sh)
560 {
561         struct dma_async_tx_descriptor *tx = NULL;
562         raid5_conf_t *conf = sh->raid_conf;
563         int i;
564
565         pr_debug("%s: stripe %llu\n", __func__,
566                 (unsigned long long)sh->sector);
567
568         for (i = sh->disks; i--; ) {
569                 struct r5dev *dev = &sh->dev[i];
570                 if (test_bit(R5_Wantfill, &dev->flags)) {
571                         struct bio *rbi;
572                         spin_lock_irq(&conf->device_lock);
573                         dev->read = rbi = dev->toread;
574                         dev->toread = NULL;
575                         spin_unlock_irq(&conf->device_lock);
576                         while (rbi && rbi->bi_sector <
577                                 dev->sector + STRIPE_SECTORS) {
578                                 tx = async_copy_data(0, rbi, dev->page,
579                                         dev->sector, tx);
580                                 rbi = r5_next_bio(rbi, dev->sector);
581                         }
582                 }
583         }
584
585         atomic_inc(&sh->count);
586         async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
587                 ops_complete_biofill, sh);
588 }
589
590 static void ops_complete_compute5(void *stripe_head_ref)
591 {
592         struct stripe_head *sh = stripe_head_ref;
593         int target = sh->ops.target;
594         struct r5dev *tgt = &sh->dev[target];
595
596         pr_debug("%s: stripe %llu\n", __func__,
597                 (unsigned long long)sh->sector);
598
599         set_bit(R5_UPTODATE, &tgt->flags);
600         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
601         clear_bit(R5_Wantcompute, &tgt->flags);
602         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
603         if (sh->check_state == check_state_compute_run)
604                 sh->check_state = check_state_compute_result;
605         set_bit(STRIPE_HANDLE, &sh->state);
606         release_stripe(sh);
607 }
608
609 static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
610 {
611         /* kernel stack size limits the total number of disks */
612         int disks = sh->disks;
613         struct page *xor_srcs[disks];
614         int target = sh->ops.target;
615         struct r5dev *tgt = &sh->dev[target];
616         struct page *xor_dest = tgt->page;
617         int count = 0;
618         struct dma_async_tx_descriptor *tx;
619         int i;
620
621         pr_debug("%s: stripe %llu block: %d\n",
622                 __func__, (unsigned long long)sh->sector, target);
623         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
624
625         for (i = disks; i--; )
626                 if (i != target)
627                         xor_srcs[count++] = sh->dev[i].page;
628
629         atomic_inc(&sh->count);
630
631         if (unlikely(count == 1))
632                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
633                         0, NULL, ops_complete_compute5, sh);
634         else
635                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
636                         ASYNC_TX_XOR_ZERO_DST, NULL,
637                         ops_complete_compute5, sh);
638
639         return tx;
640 }
641
642 static void ops_complete_prexor(void *stripe_head_ref)
643 {
644         struct stripe_head *sh = stripe_head_ref;
645
646         pr_debug("%s: stripe %llu\n", __func__,
647                 (unsigned long long)sh->sector);
648 }
649
650 static struct dma_async_tx_descriptor *
651 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
652 {
653         /* kernel stack size limits the total number of disks */
654         int disks = sh->disks;
655         struct page *xor_srcs[disks];
656         int count = 0, pd_idx = sh->pd_idx, i;
657
658         /* existing parity data subtracted */
659         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
660
661         pr_debug("%s: stripe %llu\n", __func__,
662                 (unsigned long long)sh->sector);
663
664         for (i = disks; i--; ) {
665                 struct r5dev *dev = &sh->dev[i];
666                 /* Only process blocks that are known to be uptodate */
667                 if (test_bit(R5_Wantdrain, &dev->flags))
668                         xor_srcs[count++] = dev->page;
669         }
670
671         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
672                 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
673                 ops_complete_prexor, sh);
674
675         return tx;
676 }
677
678 static struct dma_async_tx_descriptor *
679 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
680 {
681         int disks = sh->disks;
682         int i;
683
684         pr_debug("%s: stripe %llu\n", __func__,
685                 (unsigned long long)sh->sector);
686
687         for (i = disks; i--; ) {
688                 struct r5dev *dev = &sh->dev[i];
689                 struct bio *chosen;
690
691                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
692                         struct bio *wbi;
693
694                         spin_lock(&sh->lock);
695                         chosen = dev->towrite;
696                         dev->towrite = NULL;
697                         BUG_ON(dev->written);
698                         wbi = dev->written = chosen;
699                         spin_unlock(&sh->lock);
700
701                         while (wbi && wbi->bi_sector <
702                                 dev->sector + STRIPE_SECTORS) {
703                                 tx = async_copy_data(1, wbi, dev->page,
704                                         dev->sector, tx);
705                                 wbi = r5_next_bio(wbi, dev->sector);
706                         }
707                 }
708         }
709
710         return tx;
711 }
712
713 static void ops_complete_postxor(void *stripe_head_ref)
714 {
715         struct stripe_head *sh = stripe_head_ref;
716         int disks = sh->disks, i, pd_idx = sh->pd_idx;
717
718         pr_debug("%s: stripe %llu\n", __func__,
719                 (unsigned long long)sh->sector);
720
721         for (i = disks; i--; ) {
722                 struct r5dev *dev = &sh->dev[i];
723                 if (dev->written || i == pd_idx)
724                         set_bit(R5_UPTODATE, &dev->flags);
725         }
726
727         if (sh->reconstruct_state == reconstruct_state_drain_run)
728                 sh->reconstruct_state = reconstruct_state_drain_result;
729         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
730                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
731         else {
732                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
733                 sh->reconstruct_state = reconstruct_state_result;
734         }
735
736         set_bit(STRIPE_HANDLE, &sh->state);
737         release_stripe(sh);
738 }
739
740 static void
741 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
742 {
743         /* kernel stack size limits the total number of disks */
744         int disks = sh->disks;
745         struct page *xor_srcs[disks];
746
747         int count = 0, pd_idx = sh->pd_idx, i;
748         struct page *xor_dest;
749         int prexor = 0;
750         unsigned long flags;
751
752         pr_debug("%s: stripe %llu\n", __func__,
753                 (unsigned long long)sh->sector);
754
755         /* check if prexor is active which means only process blocks
756          * that are part of a read-modify-write (written)
757          */
758         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
759                 prexor = 1;
760                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
761                 for (i = disks; i--; ) {
762                         struct r5dev *dev = &sh->dev[i];
763                         if (dev->written)
764                                 xor_srcs[count++] = dev->page;
765                 }
766         } else {
767                 xor_dest = sh->dev[pd_idx].page;
768                 for (i = disks; i--; ) {
769                         struct r5dev *dev = &sh->dev[i];
770                         if (i != pd_idx)
771                                 xor_srcs[count++] = dev->page;
772                 }
773         }
774
775         /* 1/ if we prexor'd then the dest is reused as a source
776          * 2/ if we did not prexor then we are redoing the parity
777          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
778          * for the synchronous xor case
779          */
780         flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
781                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
782
783         atomic_inc(&sh->count);
784
785         if (unlikely(count == 1)) {
786                 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
787                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
788                         flags, tx, ops_complete_postxor, sh);
789         } else
790                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
791                         flags, tx, ops_complete_postxor, sh);
792 }
793
794 static void ops_complete_check(void *stripe_head_ref)
795 {
796         struct stripe_head *sh = stripe_head_ref;
797
798         pr_debug("%s: stripe %llu\n", __func__,
799                 (unsigned long long)sh->sector);
800
801         sh->check_state = check_state_check_result;
802         set_bit(STRIPE_HANDLE, &sh->state);
803         release_stripe(sh);
804 }
805
806 static void ops_run_check(struct stripe_head *sh)
807 {
808         /* kernel stack size limits the total number of disks */
809         int disks = sh->disks;
810         struct page *xor_srcs[disks];
811         struct dma_async_tx_descriptor *tx;
812
813         int count = 0, pd_idx = sh->pd_idx, i;
814         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
815
816         pr_debug("%s: stripe %llu\n", __func__,
817                 (unsigned long long)sh->sector);
818
819         for (i = disks; i--; ) {
820                 struct r5dev *dev = &sh->dev[i];
821                 if (i != pd_idx)
822                         xor_srcs[count++] = dev->page;
823         }
824
825         tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
826                 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
827
828         atomic_inc(&sh->count);
829         tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
830                 ops_complete_check, sh);
831 }
832
833 static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
834 {
835         int overlap_clear = 0, i, disks = sh->disks;
836         struct dma_async_tx_descriptor *tx = NULL;
837
838         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
839                 ops_run_biofill(sh);
840                 overlap_clear++;
841         }
842
843         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
844                 tx = ops_run_compute5(sh);
845                 /* terminate the chain if postxor is not set to be run */
846                 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
847                         async_tx_ack(tx);
848         }
849
850         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
851                 tx = ops_run_prexor(sh, tx);
852
853         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
854                 tx = ops_run_biodrain(sh, tx);
855                 overlap_clear++;
856         }
857
858         if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
859                 ops_run_postxor(sh, tx);
860
861         if (test_bit(STRIPE_OP_CHECK, &ops_request))
862                 ops_run_check(sh);
863
864         if (overlap_clear)
865                 for (i = disks; i--; ) {
866                         struct r5dev *dev = &sh->dev[i];
867                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
868                                 wake_up(&sh->raid_conf->wait_for_overlap);
869                 }
870 }
871
872 static int grow_one_stripe(raid5_conf_t *conf)
873 {
874         struct stripe_head *sh;
875         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
876         if (!sh)
877                 return 0;
878         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
879         sh->raid_conf = conf;
880         spin_lock_init(&sh->lock);
881
882         if (grow_buffers(sh, conf->raid_disks)) {
883                 shrink_buffers(sh, conf->raid_disks);
884                 kmem_cache_free(conf->slab_cache, sh);
885                 return 0;
886         }
887         sh->disks = conf->raid_disks;
888         /* we just created an active stripe so... */
889         atomic_set(&sh->count, 1);
890         atomic_inc(&conf->active_stripes);
891         INIT_LIST_HEAD(&sh->lru);
892         release_stripe(sh);
893         return 1;
894 }
895
896 static int grow_stripes(raid5_conf_t *conf, int num)
897 {
898         struct kmem_cache *sc;
899         int devs = conf->raid_disks;
900
901         sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
902         sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
903         conf->active_name = 0;
904         sc = kmem_cache_create(conf->cache_name[conf->active_name],
905                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
906                                0, 0, NULL);
907         if (!sc)
908                 return 1;
909         conf->slab_cache = sc;
910         conf->pool_size = devs;
911         while (num--)
912                 if (!grow_one_stripe(conf))
913                         return 1;
914         return 0;
915 }
916
917 #ifdef CONFIG_MD_RAID5_RESHAPE
918 static int resize_stripes(raid5_conf_t *conf, int newsize)
919 {
920         /* Make all the stripes able to hold 'newsize' devices.
921          * New slots in each stripe get 'page' set to a new page.
922          *
923          * This happens in stages:
924          * 1/ create a new kmem_cache and allocate the required number of
925          *    stripe_heads.
926          * 2/ gather all the old stripe_heads and tranfer the pages across
927          *    to the new stripe_heads.  This will have the side effect of
928          *    freezing the array as once all stripe_heads have been collected,
929          *    no IO will be possible.  Old stripe heads are freed once their
930          *    pages have been transferred over, and the old kmem_cache is
931          *    freed when all stripes are done.
932          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
933          *    we simple return a failre status - no need to clean anything up.
934          * 4/ allocate new pages for the new slots in the new stripe_heads.
935          *    If this fails, we don't bother trying the shrink the
936          *    stripe_heads down again, we just leave them as they are.
937          *    As each stripe_head is processed the new one is released into
938          *    active service.
939          *
940          * Once step2 is started, we cannot afford to wait for a write,
941          * so we use GFP_NOIO allocations.
942          */
943         struct stripe_head *osh, *nsh;
944         LIST_HEAD(newstripes);
945         struct disk_info *ndisks;
946         int err;
947         struct kmem_cache *sc;
948         int i;
949
950         if (newsize <= conf->pool_size)
951                 return 0; /* never bother to shrink */
952
953         err = md_allow_write(conf->mddev);
954         if (err)
955                 return err;
956
957         /* Step 1 */
958         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
959                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
960                                0, 0, NULL);
961         if (!sc)
962                 return -ENOMEM;
963
964         for (i = conf->max_nr_stripes; i; i--) {
965                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
966                 if (!nsh)
967                         break;
968
969                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
970
971                 nsh->raid_conf = conf;
972                 spin_lock_init(&nsh->lock);
973
974                 list_add(&nsh->lru, &newstripes);
975         }
976         if (i) {
977                 /* didn't get enough, give up */
978                 while (!list_empty(&newstripes)) {
979                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
980                         list_del(&nsh->lru);
981                         kmem_cache_free(sc, nsh);
982                 }
983                 kmem_cache_destroy(sc);
984                 return -ENOMEM;
985         }
986         /* Step 2 - Must use GFP_NOIO now.
987          * OK, we have enough stripes, start collecting inactive
988          * stripes and copying them over
989          */
990         list_for_each_entry(nsh, &newstripes, lru) {
991                 spin_lock_irq(&conf->device_lock);
992                 wait_event_lock_irq(conf->wait_for_stripe,
993                                     !list_empty(&conf->inactive_list),
994                                     conf->device_lock,
995                                     unplug_slaves(conf->mddev)
996                         );
997                 osh = get_free_stripe(conf);
998                 spin_unlock_irq(&conf->device_lock);
999                 atomic_set(&nsh->count, 1);
1000                 for(i=0; i<conf->pool_size; i++)
1001                         nsh->dev[i].page = osh->dev[i].page;
1002                 for( ; i<newsize; i++)
1003                         nsh->dev[i].page = NULL;
1004                 kmem_cache_free(conf->slab_cache, osh);
1005         }
1006         kmem_cache_destroy(conf->slab_cache);
1007
1008         /* Step 3.
1009          * At this point, we are holding all the stripes so the array
1010          * is completely stalled, so now is a good time to resize
1011          * conf->disks.
1012          */
1013         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1014         if (ndisks) {
1015                 for (i=0; i<conf->raid_disks; i++)
1016                         ndisks[i] = conf->disks[i];
1017                 kfree(conf->disks);
1018                 conf->disks = ndisks;
1019         } else
1020                 err = -ENOMEM;
1021
1022         /* Step 4, return new stripes to service */
1023         while(!list_empty(&newstripes)) {
1024                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1025                 list_del_init(&nsh->lru);
1026                 for (i=conf->raid_disks; i < newsize; i++)
1027                         if (nsh->dev[i].page == NULL) {
1028                                 struct page *p = alloc_page(GFP_NOIO);
1029                                 nsh->dev[i].page = p;
1030                                 if (!p)
1031                                         err = -ENOMEM;
1032                         }
1033                 release_stripe(nsh);
1034         }
1035         /* critical section pass, GFP_NOIO no longer needed */
1036
1037         conf->slab_cache = sc;
1038         conf->active_name = 1-conf->active_name;
1039         conf->pool_size = newsize;
1040         return err;
1041 }
1042 #endif
1043
1044 static int drop_one_stripe(raid5_conf_t *conf)
1045 {
1046         struct stripe_head *sh;
1047
1048         spin_lock_irq(&conf->device_lock);
1049         sh = get_free_stripe(conf);
1050         spin_unlock_irq(&conf->device_lock);
1051         if (!sh)
1052                 return 0;
1053         BUG_ON(atomic_read(&sh->count));
1054         shrink_buffers(sh, conf->pool_size);
1055         kmem_cache_free(conf->slab_cache, sh);
1056         atomic_dec(&conf->active_stripes);
1057         return 1;
1058 }
1059
1060 static void shrink_stripes(raid5_conf_t *conf)
1061 {
1062         while (drop_one_stripe(conf))
1063                 ;
1064
1065         if (conf->slab_cache)
1066                 kmem_cache_destroy(conf->slab_cache);
1067         conf->slab_cache = NULL;
1068 }
1069
1070 static void raid5_end_read_request(struct bio * bi, int error)
1071 {
1072         struct stripe_head *sh = bi->bi_private;
1073         raid5_conf_t *conf = sh->raid_conf;
1074         int disks = sh->disks, i;
1075         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1076         char b[BDEVNAME_SIZE];
1077         mdk_rdev_t *rdev;
1078
1079
1080         for (i=0 ; i<disks; i++)
1081                 if (bi == &sh->dev[i].req)
1082                         break;
1083
1084         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1085                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1086                 uptodate);
1087         if (i == disks) {
1088                 BUG();
1089                 return;
1090         }
1091
1092         if (uptodate) {
1093                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1094                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1095                         rdev = conf->disks[i].rdev;
1096                         printk_rl(KERN_INFO "raid5:%s: read error corrected"
1097                                   " (%lu sectors at %llu on %s)\n",
1098                                   mdname(conf->mddev), STRIPE_SECTORS,
1099                                   (unsigned long long)(sh->sector
1100                                                        + rdev->data_offset),
1101                                   bdevname(rdev->bdev, b));
1102                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1103                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1104                 }
1105                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1106                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1107         } else {
1108                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1109                 int retry = 0;
1110                 rdev = conf->disks[i].rdev;
1111
1112                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1113                 atomic_inc(&rdev->read_errors);
1114                 if (conf->mddev->degraded)
1115                         printk_rl(KERN_WARNING
1116                                   "raid5:%s: read error not correctable "
1117                                   "(sector %llu on %s).\n",
1118                                   mdname(conf->mddev),
1119                                   (unsigned long long)(sh->sector
1120                                                        + rdev->data_offset),
1121                                   bdn);
1122                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1123                         /* Oh, no!!! */
1124                         printk_rl(KERN_WARNING
1125                                   "raid5:%s: read error NOT corrected!! "
1126                                   "(sector %llu on %s).\n",
1127                                   mdname(conf->mddev),
1128                                   (unsigned long long)(sh->sector
1129                                                        + rdev->data_offset),
1130                                   bdn);
1131                 else if (atomic_read(&rdev->read_errors)
1132                          > conf->max_nr_stripes)
1133                         printk(KERN_WARNING
1134                                "raid5:%s: Too many read errors, failing device %s.\n",
1135                                mdname(conf->mddev), bdn);
1136                 else
1137                         retry = 1;
1138                 if (retry)
1139                         set_bit(R5_ReadError, &sh->dev[i].flags);
1140                 else {
1141                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1142                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1143                         md_error(conf->mddev, rdev);
1144                 }
1145         }
1146         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1147         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1148         set_bit(STRIPE_HANDLE, &sh->state);
1149         release_stripe(sh);
1150 }
1151
1152 static void raid5_end_write_request(struct bio *bi, int error)
1153 {
1154         struct stripe_head *sh = bi->bi_private;
1155         raid5_conf_t *conf = sh->raid_conf;
1156         int disks = sh->disks, i;
1157         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1158
1159         for (i=0 ; i<disks; i++)
1160                 if (bi == &sh->dev[i].req)
1161                         break;
1162
1163         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1164                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1165                 uptodate);
1166         if (i == disks) {
1167                 BUG();
1168                 return;
1169         }
1170
1171         if (!uptodate)
1172                 md_error(conf->mddev, conf->disks[i].rdev);
1173
1174         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1175         
1176         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1177         set_bit(STRIPE_HANDLE, &sh->state);
1178         release_stripe(sh);
1179 }
1180
1181
1182 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1183         
1184 static void raid5_build_block(struct stripe_head *sh, int i)
1185 {
1186         struct r5dev *dev = &sh->dev[i];
1187
1188         bio_init(&dev->req);
1189         dev->req.bi_io_vec = &dev->vec;
1190         dev->req.bi_vcnt++;
1191         dev->req.bi_max_vecs++;
1192         dev->vec.bv_page = dev->page;
1193         dev->vec.bv_len = STRIPE_SIZE;
1194         dev->vec.bv_offset = 0;
1195
1196         dev->req.bi_sector = sh->sector;
1197         dev->req.bi_private = sh;
1198
1199         dev->flags = 0;
1200         dev->sector = compute_blocknr(sh, i);
1201 }
1202
1203 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1204 {
1205         char b[BDEVNAME_SIZE];
1206         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1207         pr_debug("raid5: error called\n");
1208
1209         if (!test_bit(Faulty, &rdev->flags)) {
1210                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1211                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1212                         unsigned long flags;
1213                         spin_lock_irqsave(&conf->device_lock, flags);
1214                         mddev->degraded++;
1215                         spin_unlock_irqrestore(&conf->device_lock, flags);
1216                         /*
1217                          * if recovery was running, make sure it aborts.
1218                          */
1219                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1220                 }
1221                 set_bit(Faulty, &rdev->flags);
1222                 printk(KERN_ALERT
1223                        "raid5: Disk failure on %s, disabling device.\n"
1224                        "raid5: Operation continuing on %d devices.\n",
1225                        bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1226         }
1227 }
1228
1229 /*
1230  * Input: a 'big' sector number,
1231  * Output: index of the data and parity disk, and the sector # in them.
1232  */
1233 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1234                         unsigned int data_disks, unsigned int * dd_idx,
1235                         unsigned int * pd_idx, raid5_conf_t *conf)
1236 {
1237         long stripe;
1238         unsigned long chunk_number;
1239         unsigned int chunk_offset;
1240         sector_t new_sector;
1241         int sectors_per_chunk = conf->chunk_size >> 9;
1242
1243         /* First compute the information on this sector */
1244
1245         /*
1246          * Compute the chunk number and the sector offset inside the chunk
1247          */
1248         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1249         chunk_number = r_sector;
1250         BUG_ON(r_sector != chunk_number);
1251
1252         /*
1253          * Compute the stripe number
1254          */
1255         stripe = chunk_number / data_disks;
1256
1257         /*
1258          * Compute the data disk and parity disk indexes inside the stripe
1259          */
1260         *dd_idx = chunk_number % data_disks;
1261
1262         /*
1263          * Select the parity disk based on the user selected algorithm.
1264          */
1265         switch(conf->level) {
1266         case 4:
1267                 *pd_idx = data_disks;
1268                 break;
1269         case 5:
1270                 switch (conf->algorithm) {
1271                 case ALGORITHM_LEFT_ASYMMETRIC:
1272                         *pd_idx = data_disks - stripe % raid_disks;
1273                         if (*dd_idx >= *pd_idx)
1274                                 (*dd_idx)++;
1275                         break;
1276                 case ALGORITHM_RIGHT_ASYMMETRIC:
1277                         *pd_idx = stripe % raid_disks;
1278                         if (*dd_idx >= *pd_idx)
1279                                 (*dd_idx)++;
1280                         break;
1281                 case ALGORITHM_LEFT_SYMMETRIC:
1282                         *pd_idx = data_disks - stripe % raid_disks;
1283                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1284                         break;
1285                 case ALGORITHM_RIGHT_SYMMETRIC:
1286                         *pd_idx = stripe % raid_disks;
1287                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1288                         break;
1289                 default:
1290                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1291                                 conf->algorithm);
1292                 }
1293                 break;
1294         case 6:
1295
1296                 /**** FIX THIS ****/
1297                 switch (conf->algorithm) {
1298                 case ALGORITHM_LEFT_ASYMMETRIC:
1299                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1300                         if (*pd_idx == raid_disks-1)
1301                                 (*dd_idx)++;    /* Q D D D P */
1302                         else if (*dd_idx >= *pd_idx)
1303                                 (*dd_idx) += 2; /* D D P Q D */
1304                         break;
1305                 case ALGORITHM_RIGHT_ASYMMETRIC:
1306                         *pd_idx = stripe % raid_disks;
1307                         if (*pd_idx == raid_disks-1)
1308                                 (*dd_idx)++;    /* Q D D D P */
1309                         else if (*dd_idx >= *pd_idx)
1310                                 (*dd_idx) += 2; /* D D P Q D */
1311                         break;
1312                 case ALGORITHM_LEFT_SYMMETRIC:
1313                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1314                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1315                         break;
1316                 case ALGORITHM_RIGHT_SYMMETRIC:
1317                         *pd_idx = stripe % raid_disks;
1318                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1319                         break;
1320                 default:
1321                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1322                                conf->algorithm);
1323                 }
1324                 break;
1325         }
1326
1327         /*
1328          * Finally, compute the new sector number
1329          */
1330         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1331         return new_sector;
1332 }
1333
1334
1335 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1336 {
1337         raid5_conf_t *conf = sh->raid_conf;
1338         int raid_disks = sh->disks;
1339         int data_disks = raid_disks - conf->max_degraded;
1340         sector_t new_sector = sh->sector, check;
1341         int sectors_per_chunk = conf->chunk_size >> 9;
1342         sector_t stripe;
1343         int chunk_offset;
1344         int chunk_number, dummy1, dummy2, dd_idx = i;
1345         sector_t r_sector;
1346
1347
1348         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1349         stripe = new_sector;
1350         BUG_ON(new_sector != stripe);
1351
1352         if (i == sh->pd_idx)
1353                 return 0;
1354         switch(conf->level) {
1355         case 4: break;
1356         case 5:
1357                 switch (conf->algorithm) {
1358                 case ALGORITHM_LEFT_ASYMMETRIC:
1359                 case ALGORITHM_RIGHT_ASYMMETRIC:
1360                         if (i > sh->pd_idx)
1361                                 i--;
1362                         break;
1363                 case ALGORITHM_LEFT_SYMMETRIC:
1364                 case ALGORITHM_RIGHT_SYMMETRIC:
1365                         if (i < sh->pd_idx)
1366                                 i += raid_disks;
1367                         i -= (sh->pd_idx + 1);
1368                         break;
1369                 default:
1370                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1371                                conf->algorithm);
1372                 }
1373                 break;
1374         case 6:
1375                 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1376                         return 0; /* It is the Q disk */
1377                 switch (conf->algorithm) {
1378                 case ALGORITHM_LEFT_ASYMMETRIC:
1379                 case ALGORITHM_RIGHT_ASYMMETRIC:
1380                         if (sh->pd_idx == raid_disks-1)
1381                                 i--;    /* Q D D D P */
1382                         else if (i > sh->pd_idx)
1383                                 i -= 2; /* D D P Q D */
1384                         break;
1385                 case ALGORITHM_LEFT_SYMMETRIC:
1386                 case ALGORITHM_RIGHT_SYMMETRIC:
1387                         if (sh->pd_idx == raid_disks-1)
1388                                 i--; /* Q D D D P */
1389                         else {
1390                                 /* D D P Q D */
1391                                 if (i < sh->pd_idx)
1392                                         i += raid_disks;
1393                                 i -= (sh->pd_idx + 2);
1394                         }
1395                         break;
1396                 default:
1397                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1398                                conf->algorithm);
1399                 }
1400                 break;
1401         }
1402
1403         chunk_number = stripe * data_disks + i;
1404         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1405
1406         check = raid5_compute_sector(r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1407         if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1408                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1409                 return 0;
1410         }
1411         return r_sector;
1412 }
1413
1414
1415
1416 /*
1417  * Copy data between a page in the stripe cache, and one or more bion
1418  * The page could align with the middle of the bio, or there could be
1419  * several bion, each with several bio_vecs, which cover part of the page
1420  * Multiple bion are linked together on bi_next.  There may be extras
1421  * at the end of this list.  We ignore them.
1422  */
1423 static void copy_data(int frombio, struct bio *bio,
1424                      struct page *page,
1425                      sector_t sector)
1426 {
1427         char *pa = page_address(page);
1428         struct bio_vec *bvl;
1429         int i;
1430         int page_offset;
1431
1432         if (bio->bi_sector >= sector)
1433                 page_offset = (signed)(bio->bi_sector - sector) * 512;
1434         else
1435                 page_offset = (signed)(sector - bio->bi_sector) * -512;
1436         bio_for_each_segment(bvl, bio, i) {
1437                 int len = bio_iovec_idx(bio,i)->bv_len;
1438                 int clen;
1439                 int b_offset = 0;
1440
1441                 if (page_offset < 0) {
1442                         b_offset = -page_offset;
1443                         page_offset += b_offset;
1444                         len -= b_offset;
1445                 }
1446
1447                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1448                         clen = STRIPE_SIZE - page_offset;
1449                 else clen = len;
1450
1451                 if (clen > 0) {
1452                         char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1453                         if (frombio)
1454                                 memcpy(pa+page_offset, ba+b_offset, clen);
1455                         else
1456                                 memcpy(ba+b_offset, pa+page_offset, clen);
1457                         __bio_kunmap_atomic(ba, KM_USER0);
1458                 }
1459                 if (clen < len) /* hit end of page */
1460                         break;
1461                 page_offset +=  len;
1462         }
1463 }
1464
1465 #define check_xor()     do {                                              \
1466                                 if (count == MAX_XOR_BLOCKS) {            \
1467                                 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1468                                 count = 0;                                \
1469                            }                                              \
1470                         } while(0)
1471
1472 static void compute_parity6(struct stripe_head *sh, int method)
1473 {
1474         raid5_conf_t *conf = sh->raid_conf;
1475         int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1476         struct bio *chosen;
1477         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1478         void *ptrs[disks];
1479
1480         qd_idx = raid6_next_disk(pd_idx, disks);
1481         d0_idx = raid6_next_disk(qd_idx, disks);
1482
1483         pr_debug("compute_parity, stripe %llu, method %d\n",
1484                 (unsigned long long)sh->sector, method);
1485
1486         switch(method) {
1487         case READ_MODIFY_WRITE:
1488                 BUG();          /* READ_MODIFY_WRITE N/A for RAID-6 */
1489         case RECONSTRUCT_WRITE:
1490                 for (i= disks; i-- ;)
1491                         if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1492                                 chosen = sh->dev[i].towrite;
1493                                 sh->dev[i].towrite = NULL;
1494
1495                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1496                                         wake_up(&conf->wait_for_overlap);
1497
1498                                 BUG_ON(sh->dev[i].written);
1499                                 sh->dev[i].written = chosen;
1500                         }
1501                 break;
1502         case CHECK_PARITY:
1503                 BUG();          /* Not implemented yet */
1504         }
1505
1506         for (i = disks; i--;)
1507                 if (sh->dev[i].written) {
1508                         sector_t sector = sh->dev[i].sector;
1509                         struct bio *wbi = sh->dev[i].written;
1510                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1511                                 copy_data(1, wbi, sh->dev[i].page, sector);
1512                                 wbi = r5_next_bio(wbi, sector);
1513                         }
1514
1515                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1516                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1517                 }
1518
1519 //      switch(method) {
1520 //      case RECONSTRUCT_WRITE:
1521 //      case CHECK_PARITY:
1522 //      case UPDATE_PARITY:
1523                 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1524                 /* FIX: Is this ordering of drives even remotely optimal? */
1525                 count = 0;
1526                 i = d0_idx;
1527                 do {
1528                         ptrs[count++] = page_address(sh->dev[i].page);
1529                         if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1530                                 printk("block %d/%d not uptodate on parity calc\n", i,count);
1531                         i = raid6_next_disk(i, disks);
1532                 } while ( i != d0_idx );
1533 //              break;
1534 //      }
1535
1536         raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1537
1538         switch(method) {
1539         case RECONSTRUCT_WRITE:
1540                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1541                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1542                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1543                 set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1544                 break;
1545         case UPDATE_PARITY:
1546                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1547                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1548                 break;
1549         }
1550 }
1551
1552
1553 /* Compute one missing block */
1554 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1555 {
1556         int i, count, disks = sh->disks;
1557         void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1558         int pd_idx = sh->pd_idx;
1559         int qd_idx = raid6_next_disk(pd_idx, disks);
1560
1561         pr_debug("compute_block_1, stripe %llu, idx %d\n",
1562                 (unsigned long long)sh->sector, dd_idx);
1563
1564         if ( dd_idx == qd_idx ) {
1565                 /* We're actually computing the Q drive */
1566                 compute_parity6(sh, UPDATE_PARITY);
1567         } else {
1568                 dest = page_address(sh->dev[dd_idx].page);
1569                 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1570                 count = 0;
1571                 for (i = disks ; i--; ) {
1572                         if (i == dd_idx || i == qd_idx)
1573                                 continue;
1574                         p = page_address(sh->dev[i].page);
1575                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1576                                 ptr[count++] = p;
1577                         else
1578                                 printk("compute_block() %d, stripe %llu, %d"
1579                                        " not present\n", dd_idx,
1580                                        (unsigned long long)sh->sector, i);
1581
1582                         check_xor();
1583                 }
1584                 if (count)
1585                         xor_blocks(count, STRIPE_SIZE, dest, ptr);
1586                 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1587                 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1588         }
1589 }
1590
1591 /* Compute two missing blocks */
1592 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1593 {
1594         int i, count, disks = sh->disks;
1595         int pd_idx = sh->pd_idx;
1596         int qd_idx = raid6_next_disk(pd_idx, disks);
1597         int d0_idx = raid6_next_disk(qd_idx, disks);
1598         int faila, failb;
1599
1600         /* faila and failb are disk numbers relative to d0_idx */
1601         /* pd_idx become disks-2 and qd_idx become disks-1 */
1602         faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1603         failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1604
1605         BUG_ON(faila == failb);
1606         if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1607
1608         pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1609                (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1610
1611         if ( failb == disks-1 ) {
1612                 /* Q disk is one of the missing disks */
1613                 if ( faila == disks-2 ) {
1614                         /* Missing P+Q, just recompute */
1615                         compute_parity6(sh, UPDATE_PARITY);
1616                         return;
1617                 } else {
1618                         /* We're missing D+Q; recompute D from P */
1619                         compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1620                         compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1621                         return;
1622                 }
1623         }
1624
1625         /* We're missing D+P or D+D; build pointer table */
1626         {
1627                 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1628                 void *ptrs[disks];
1629
1630                 count = 0;
1631                 i = d0_idx;
1632                 do {
1633                         ptrs[count++] = page_address(sh->dev[i].page);
1634                         i = raid6_next_disk(i, disks);
1635                         if (i != dd_idx1 && i != dd_idx2 &&
1636                             !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1637                                 printk("compute_2 with missing block %d/%d\n", count, i);
1638                 } while ( i != d0_idx );
1639
1640                 if ( failb == disks-2 ) {
1641                         /* We're missing D+P. */
1642                         raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1643                 } else {
1644                         /* We're missing D+D. */
1645                         raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1646                 }
1647
1648                 /* Both the above update both missing blocks */
1649                 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1650                 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1651         }
1652 }
1653
1654 static void
1655 schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1656                          int rcw, int expand)
1657 {
1658         int i, pd_idx = sh->pd_idx, disks = sh->disks;
1659
1660         if (rcw) {
1661                 /* if we are not expanding this is a proper write request, and
1662                  * there will be bios with new data to be drained into the
1663                  * stripe cache
1664                  */
1665                 if (!expand) {
1666                         sh->reconstruct_state = reconstruct_state_drain_run;
1667                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1668                 } else
1669                         sh->reconstruct_state = reconstruct_state_run;
1670
1671                 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1672
1673                 for (i = disks; i--; ) {
1674                         struct r5dev *dev = &sh->dev[i];
1675
1676                         if (dev->towrite) {
1677                                 set_bit(R5_LOCKED, &dev->flags);
1678                                 set_bit(R5_Wantdrain, &dev->flags);
1679                                 if (!expand)
1680                                         clear_bit(R5_UPTODATE, &dev->flags);
1681                                 s->locked++;
1682                         }
1683                 }
1684                 if (s->locked + 1 == disks)
1685                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1686                                 atomic_inc(&sh->raid_conf->pending_full_writes);
1687         } else {
1688                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1689                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1690
1691                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1692                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1693                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1694                 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1695
1696                 for (i = disks; i--; ) {
1697                         struct r5dev *dev = &sh->dev[i];
1698                         if (i == pd_idx)
1699                                 continue;
1700
1701                         if (dev->towrite &&
1702                             (test_bit(R5_UPTODATE, &dev->flags) ||
1703                              test_bit(R5_Wantcompute, &dev->flags))) {
1704                                 set_bit(R5_Wantdrain, &dev->flags);
1705                                 set_bit(R5_LOCKED, &dev->flags);
1706                                 clear_bit(R5_UPTODATE, &dev->flags);
1707                                 s->locked++;
1708                         }
1709                 }
1710         }
1711
1712         /* keep the parity disk locked while asynchronous operations
1713          * are in flight
1714          */
1715         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1716         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1717         s->locked++;
1718
1719         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1720                 __func__, (unsigned long long)sh->sector,
1721                 s->locked, s->ops_request);
1722 }
1723
1724 /*
1725  * Each stripe/dev can have one or more bion attached.
1726  * toread/towrite point to the first in a chain.
1727  * The bi_next chain must be in order.
1728  */
1729 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1730 {
1731         struct bio **bip;
1732         raid5_conf_t *conf = sh->raid_conf;
1733         int firstwrite=0;
1734
1735         pr_debug("adding bh b#%llu to stripe s#%llu\n",
1736                 (unsigned long long)bi->bi_sector,
1737                 (unsigned long long)sh->sector);
1738
1739
1740         spin_lock(&sh->lock);
1741         spin_lock_irq(&conf->device_lock);
1742         if (forwrite) {
1743                 bip = &sh->dev[dd_idx].towrite;
1744                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1745                         firstwrite = 1;
1746         } else
1747                 bip = &sh->dev[dd_idx].toread;
1748         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1749                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1750                         goto overlap;
1751                 bip = & (*bip)->bi_next;
1752         }
1753         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1754                 goto overlap;
1755
1756         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1757         if (*bip)
1758                 bi->bi_next = *bip;
1759         *bip = bi;
1760         bi->bi_phys_segments++;
1761         spin_unlock_irq(&conf->device_lock);
1762         spin_unlock(&sh->lock);
1763
1764         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1765                 (unsigned long long)bi->bi_sector,
1766                 (unsigned long long)sh->sector, dd_idx);
1767
1768         if (conf->mddev->bitmap && firstwrite) {
1769                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1770                                   STRIPE_SECTORS, 0);
1771                 sh->bm_seq = conf->seq_flush+1;
1772                 set_bit(STRIPE_BIT_DELAY, &sh->state);
1773         }
1774
1775         if (forwrite) {
1776                 /* check if page is covered */
1777                 sector_t sector = sh->dev[dd_idx].sector;
1778                 for (bi=sh->dev[dd_idx].towrite;
1779                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1780                              bi && bi->bi_sector <= sector;
1781                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1782                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1783                                 sector = bi->bi_sector + (bi->bi_size>>9);
1784                 }
1785                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1786                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1787         }
1788         return 1;
1789
1790  overlap:
1791         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1792         spin_unlock_irq(&conf->device_lock);
1793         spin_unlock(&sh->lock);
1794         return 0;
1795 }
1796
1797 static void end_reshape(raid5_conf_t *conf);
1798
1799 static int page_is_zero(struct page *p)
1800 {
1801         char *a = page_address(p);
1802         return ((*(u32*)a) == 0 &&
1803                 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1804 }
1805
1806 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1807 {
1808         int sectors_per_chunk = conf->chunk_size >> 9;
1809         int pd_idx, dd_idx;
1810         int chunk_offset = sector_div(stripe, sectors_per_chunk);
1811
1812         raid5_compute_sector(stripe * (disks - conf->max_degraded)
1813                              *sectors_per_chunk + chunk_offset,
1814                              disks, disks - conf->max_degraded,
1815                              &dd_idx, &pd_idx, conf);
1816         return pd_idx;
1817 }
1818
1819 static void
1820 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
1821                                 struct stripe_head_state *s, int disks,
1822                                 struct bio **return_bi)
1823 {
1824         int i;
1825         for (i = disks; i--; ) {
1826                 struct bio *bi;
1827                 int bitmap_end = 0;
1828
1829                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1830                         mdk_rdev_t *rdev;
1831                         rcu_read_lock();
1832                         rdev = rcu_dereference(conf->disks[i].rdev);
1833                         if (rdev && test_bit(In_sync, &rdev->flags))
1834                                 /* multiple read failures in one stripe */
1835                                 md_error(conf->mddev, rdev);
1836                         rcu_read_unlock();
1837                 }
1838                 spin_lock_irq(&conf->device_lock);
1839                 /* fail all writes first */
1840                 bi = sh->dev[i].towrite;
1841                 sh->dev[i].towrite = NULL;
1842                 if (bi) {
1843                         s->to_write--;
1844                         bitmap_end = 1;
1845                 }
1846
1847                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1848                         wake_up(&conf->wait_for_overlap);
1849
1850                 while (bi && bi->bi_sector <
1851                         sh->dev[i].sector + STRIPE_SECTORS) {
1852                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1853                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1854                         if (!raid5_dec_bi_phys_segments(bi)) {
1855                                 md_write_end(conf->mddev);
1856                                 bi->bi_next = *return_bi;
1857                                 *return_bi = bi;
1858                         }
1859                         bi = nextbi;
1860                 }
1861                 /* and fail all 'written' */
1862                 bi = sh->dev[i].written;
1863                 sh->dev[i].written = NULL;
1864                 if (bi) bitmap_end = 1;
1865                 while (bi && bi->bi_sector <
1866                        sh->dev[i].sector + STRIPE_SECTORS) {
1867                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1868                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1869                         if (!raid5_dec_bi_phys_segments(bi)) {
1870                                 md_write_end(conf->mddev);
1871                                 bi->bi_next = *return_bi;
1872                                 *return_bi = bi;
1873                         }
1874                         bi = bi2;
1875                 }
1876
1877                 /* fail any reads if this device is non-operational and
1878                  * the data has not reached the cache yet.
1879                  */
1880                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1881                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1882                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
1883                         bi = sh->dev[i].toread;
1884                         sh->dev[i].toread = NULL;
1885                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1886                                 wake_up(&conf->wait_for_overlap);
1887                         if (bi) s->to_read--;
1888                         while (bi && bi->bi_sector <
1889                                sh->dev[i].sector + STRIPE_SECTORS) {
1890                                 struct bio *nextbi =
1891                                         r5_next_bio(bi, sh->dev[i].sector);
1892                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1893                                 if (!raid5_dec_bi_phys_segments(bi)) {
1894                                         bi->bi_next = *return_bi;
1895                                         *return_bi = bi;
1896                                 }
1897                                 bi = nextbi;
1898                         }
1899                 }
1900                 spin_unlock_irq(&conf->device_lock);
1901                 if (bitmap_end)
1902                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1903                                         STRIPE_SECTORS, 0, 0);
1904         }
1905
1906         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1907                 if (atomic_dec_and_test(&conf->pending_full_writes))
1908                         md_wakeup_thread(conf->mddev->thread);
1909 }
1910
1911 /* fetch_block5 - checks the given member device to see if its data needs
1912  * to be read or computed to satisfy a request.
1913  *
1914  * Returns 1 when no more member devices need to be checked, otherwise returns
1915  * 0 to tell the loop in handle_stripe_fill5 to continue
1916  */
1917 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
1918                         int disk_idx, int disks)
1919 {
1920         struct r5dev *dev = &sh->dev[disk_idx];
1921         struct r5dev *failed_dev = &sh->dev[s->failed_num];
1922
1923         /* is the data in this block needed, and can we get it? */
1924         if (!test_bit(R5_LOCKED, &dev->flags) &&
1925             !test_bit(R5_UPTODATE, &dev->flags) &&
1926             (dev->toread ||
1927              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1928              s->syncing || s->expanding ||
1929              (s->failed &&
1930               (failed_dev->toread ||
1931                (failed_dev->towrite &&
1932                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
1933                 /* We would like to get this block, possibly by computing it,
1934                  * otherwise read it if the backing disk is insync
1935                  */
1936                 if ((s->uptodate == disks - 1) &&
1937                     (s->failed && disk_idx == s->failed_num)) {
1938                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
1939                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
1940                         set_bit(R5_Wantcompute, &dev->flags);
1941                         sh->ops.target = disk_idx;
1942                         s->req_compute = 1;
1943                         /* Careful: from this point on 'uptodate' is in the eye
1944                          * of raid5_run_ops which services 'compute' operations
1945                          * before writes. R5_Wantcompute flags a block that will
1946                          * be R5_UPTODATE by the time it is needed for a
1947                          * subsequent operation.
1948                          */
1949                         s->uptodate++;
1950                         return 1; /* uptodate + compute == disks */
1951                 } else if (test_bit(R5_Insync, &dev->flags)) {
1952                         set_bit(R5_LOCKED, &dev->flags);
1953                         set_bit(R5_Wantread, &dev->flags);
1954                         s->locked++;
1955                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
1956                                 s->syncing);
1957                 }
1958         }
1959
1960         return 0;
1961 }
1962
1963 /**
1964  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
1965  */
1966 static void handle_stripe_fill5(struct stripe_head *sh,
1967                         struct stripe_head_state *s, int disks)
1968 {
1969         int i;
1970
1971         /* look for blocks to read/compute, skip this if a compute
1972          * is already in flight, or if the stripe contents are in the
1973          * midst of changing due to a write
1974          */
1975         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
1976             !sh->reconstruct_state)
1977                 for (i = disks; i--; )
1978                         if (fetch_block5(sh, s, i, disks))
1979                                 break;
1980         set_bit(STRIPE_HANDLE, &sh->state);
1981 }
1982
1983 static void handle_stripe_fill6(struct stripe_head *sh,
1984                         struct stripe_head_state *s, struct r6_state *r6s,
1985                         int disks)
1986 {
1987         int i;
1988         for (i = disks; i--; ) {
1989                 struct r5dev *dev = &sh->dev[i];
1990                 if (!test_bit(R5_LOCKED, &dev->flags) &&
1991                     !test_bit(R5_UPTODATE, &dev->flags) &&
1992                     (dev->toread || (dev->towrite &&
1993                      !test_bit(R5_OVERWRITE, &dev->flags)) ||
1994                      s->syncing || s->expanding ||
1995                      (s->failed >= 1 &&
1996                       (sh->dev[r6s->failed_num[0]].toread ||
1997                        s->to_write)) ||
1998                      (s->failed >= 2 &&
1999                       (sh->dev[r6s->failed_num[1]].toread ||
2000                        s->to_write)))) {
2001                         /* we would like to get this block, possibly
2002                          * by computing it, but we might not be able to
2003                          */
2004                         if ((s->uptodate == disks - 1) &&
2005                             (s->failed && (i == r6s->failed_num[0] ||
2006                                            i == r6s->failed_num[1]))) {
2007                                 pr_debug("Computing stripe %llu block %d\n",
2008                                        (unsigned long long)sh->sector, i);
2009                                 compute_block_1(sh, i, 0);
2010                                 s->uptodate++;
2011                         } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2012                                 /* Computing 2-failure is *very* expensive; only
2013                                  * do it if failed >= 2
2014                                  */
2015                                 int other;
2016                                 for (other = disks; other--; ) {
2017                                         if (other == i)
2018                                                 continue;
2019                                         if (!test_bit(R5_UPTODATE,
2020                                               &sh->dev[other].flags))
2021                                                 break;
2022                                 }
2023                                 BUG_ON(other < 0);
2024                                 pr_debug("Computing stripe %llu blocks %d,%d\n",
2025                                        (unsigned long long)sh->sector,
2026                                        i, other);
2027                                 compute_block_2(sh, i, other);
2028                                 s->uptodate += 2;
2029                         } else if (test_bit(R5_Insync, &dev->flags)) {
2030                                 set_bit(R5_LOCKED, &dev->flags);
2031                                 set_bit(R5_Wantread, &dev->flags);
2032                                 s->locked++;
2033                                 pr_debug("Reading block %d (sync=%d)\n",
2034                                         i, s->syncing);
2035                         }
2036                 }
2037         }
2038         set_bit(STRIPE_HANDLE, &sh->state);
2039 }
2040
2041
2042 /* handle_stripe_clean_event
2043  * any written block on an uptodate or failed drive can be returned.
2044  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2045  * never LOCKED, so we don't need to test 'failed' directly.
2046  */
2047 static void handle_stripe_clean_event(raid5_conf_t *conf,
2048         struct stripe_head *sh, int disks, struct bio **return_bi)
2049 {
2050         int i;
2051         struct r5dev *dev;
2052
2053         for (i = disks; i--; )
2054                 if (sh->dev[i].written) {
2055                         dev = &sh->dev[i];
2056                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2057                                 test_bit(R5_UPTODATE, &dev->flags)) {
2058                                 /* We can return any write requests */
2059                                 struct bio *wbi, *wbi2;
2060                                 int bitmap_end = 0;
2061                                 pr_debug("Return write for disc %d\n", i);
2062                                 spin_lock_irq(&conf->device_lock);
2063                                 wbi = dev->written;
2064                                 dev->written = NULL;
2065                                 while (wbi && wbi->bi_sector <
2066                                         dev->sector + STRIPE_SECTORS) {
2067                                         wbi2 = r5_next_bio(wbi, dev->sector);
2068                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2069                                                 md_write_end(conf->mddev);
2070                                                 wbi->bi_next = *return_bi;
2071                                                 *return_bi = wbi;
2072                                         }
2073                                         wbi = wbi2;
2074                                 }
2075                                 if (dev->towrite == NULL)
2076                                         bitmap_end = 1;
2077                                 spin_unlock_irq(&conf->device_lock);
2078                                 if (bitmap_end)
2079                                         bitmap_endwrite(conf->mddev->bitmap,
2080                                                         sh->sector,
2081                                                         STRIPE_SECTORS,
2082                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2083                                                         0);
2084                         }
2085                 }
2086
2087         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2088                 if (atomic_dec_and_test(&conf->pending_full_writes))
2089                         md_wakeup_thread(conf->mddev->thread);
2090 }
2091
2092 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2093                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2094 {
2095         int rmw = 0, rcw = 0, i;
2096         for (i = disks; i--; ) {
2097                 /* would I have to read this buffer for read_modify_write */
2098                 struct r5dev *dev = &sh->dev[i];
2099                 if ((dev->towrite || i == sh->pd_idx) &&
2100                     !test_bit(R5_LOCKED, &dev->flags) &&
2101                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2102                       test_bit(R5_Wantcompute, &dev->flags))) {
2103                         if (test_bit(R5_Insync, &dev->flags))
2104                                 rmw++;
2105                         else
2106                                 rmw += 2*disks;  /* cannot read it */
2107                 }
2108                 /* Would I have to read this buffer for reconstruct_write */
2109                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2110                     !test_bit(R5_LOCKED, &dev->flags) &&
2111                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2112                     test_bit(R5_Wantcompute, &dev->flags))) {
2113                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2114                         else
2115                                 rcw += 2*disks;
2116                 }
2117         }
2118         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2119                 (unsigned long long)sh->sector, rmw, rcw);
2120         set_bit(STRIPE_HANDLE, &sh->state);
2121         if (rmw < rcw && rmw > 0)
2122                 /* prefer read-modify-write, but need to get some data */
2123                 for (i = disks; i--; ) {
2124                         struct r5dev *dev = &sh->dev[i];
2125                         if ((dev->towrite || i == sh->pd_idx) &&
2126                             !test_bit(R5_LOCKED, &dev->flags) &&
2127                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2128                             test_bit(R5_Wantcompute, &dev->flags)) &&
2129                             test_bit(R5_Insync, &dev->flags)) {
2130                                 if (
2131                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2132                                         pr_debug("Read_old block "
2133                                                 "%d for r-m-w\n", i);
2134                                         set_bit(R5_LOCKED, &dev->flags);
2135                                         set_bit(R5_Wantread, &dev->flags);
2136                                         s->locked++;
2137                                 } else {
2138                                         set_bit(STRIPE_DELAYED, &sh->state);
2139                                         set_bit(STRIPE_HANDLE, &sh->state);
2140                                 }
2141                         }
2142                 }
2143         if (rcw <= rmw && rcw > 0)
2144                 /* want reconstruct write, but need to get some data */
2145                 for (i = disks; i--; ) {
2146                         struct r5dev *dev = &sh->dev[i];
2147                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2148                             i != sh->pd_idx &&
2149                             !test_bit(R5_LOCKED, &dev->flags) &&
2150                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2151                             test_bit(R5_Wantcompute, &dev->flags)) &&
2152                             test_bit(R5_Insync, &dev->flags)) {
2153                                 if (
2154                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2155                                         pr_debug("Read_old block "
2156                                                 "%d for Reconstruct\n", i);
2157                                         set_bit(R5_LOCKED, &dev->flags);
2158                                         set_bit(R5_Wantread, &dev->flags);
2159                                         s->locked++;
2160                                 } else {
2161                                         set_bit(STRIPE_DELAYED, &sh->state);
2162                                         set_bit(STRIPE_HANDLE, &sh->state);
2163                                 }
2164                         }
2165                 }
2166         /* now if nothing is locked, and if we have enough data,
2167          * we can start a write request
2168          */
2169         /* since handle_stripe can be called at any time we need to handle the
2170          * case where a compute block operation has been submitted and then a
2171          * subsequent call wants to start a write request.  raid5_run_ops only
2172          * handles the case where compute block and postxor are requested
2173          * simultaneously.  If this is not the case then new writes need to be
2174          * held off until the compute completes.
2175          */
2176         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2177             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2178             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2179                 schedule_reconstruction5(sh, s, rcw == 0, 0);
2180 }
2181
2182 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2183                 struct stripe_head *sh, struct stripe_head_state *s,
2184                 struct r6_state *r6s, int disks)
2185 {
2186         int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2187         int qd_idx = r6s->qd_idx;
2188         for (i = disks; i--; ) {
2189                 struct r5dev *dev = &sh->dev[i];
2190                 /* Would I have to read this buffer for reconstruct_write */
2191                 if (!test_bit(R5_OVERWRITE, &dev->flags)
2192                     && i != pd_idx && i != qd_idx
2193                     && (!test_bit(R5_LOCKED, &dev->flags)
2194                             ) &&
2195                     !test_bit(R5_UPTODATE, &dev->flags)) {
2196                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2197                         else {
2198                                 pr_debug("raid6: must_compute: "
2199                                         "disk %d flags=%#lx\n", i, dev->flags);
2200                                 must_compute++;
2201                         }
2202                 }
2203         }
2204         pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2205                (unsigned long long)sh->sector, rcw, must_compute);
2206         set_bit(STRIPE_HANDLE, &sh->state);
2207
2208         if (rcw > 0)
2209                 /* want reconstruct write, but need to get some data */
2210                 for (i = disks; i--; ) {
2211                         struct r5dev *dev = &sh->dev[i];
2212                         if (!test_bit(R5_OVERWRITE, &dev->flags)
2213                             && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2214                             && !test_bit(R5_LOCKED, &dev->flags) &&
2215                             !test_bit(R5_UPTODATE, &dev->flags) &&
2216                             test_bit(R5_Insync, &dev->flags)) {
2217                                 if (
2218                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2219                                         pr_debug("Read_old stripe %llu "
2220                                                 "block %d for Reconstruct\n",
2221                                              (unsigned long long)sh->sector, i);
2222                                         set_bit(R5_LOCKED, &dev->flags);
2223                                         set_bit(R5_Wantread, &dev->flags);
2224                                         s->locked++;
2225                                 } else {
2226                                         pr_debug("Request delayed stripe %llu "
2227                                                 "block %d for Reconstruct\n",
2228                                              (unsigned long long)sh->sector, i);
2229                                         set_bit(STRIPE_DELAYED, &sh->state);
2230                                         set_bit(STRIPE_HANDLE, &sh->state);
2231                                 }
2232                         }
2233                 }
2234         /* now if nothing is locked, and if we have enough data, we can start a
2235          * write request
2236          */
2237         if (s->locked == 0 && rcw == 0 &&
2238             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2239                 if (must_compute > 0) {
2240                         /* We have failed blocks and need to compute them */
2241                         switch (s->failed) {
2242                         case 0:
2243                                 BUG();
2244                         case 1:
2245                                 compute_block_1(sh, r6s->failed_num[0], 0);
2246                                 break;
2247                         case 2:
2248                                 compute_block_2(sh, r6s->failed_num[0],
2249                                                 r6s->failed_num[1]);
2250                                 break;
2251                         default: /* This request should have been failed? */
2252                                 BUG();
2253                         }
2254                 }
2255
2256                 pr_debug("Computing parity for stripe %llu\n",
2257                         (unsigned long long)sh->sector);
2258                 compute_parity6(sh, RECONSTRUCT_WRITE);
2259                 /* now every locked buffer is ready to be written */
2260                 for (i = disks; i--; )
2261                         if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2262                                 pr_debug("Writing stripe %llu block %d\n",
2263                                        (unsigned long long)sh->sector, i);
2264                                 s->locked++;
2265                                 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2266                         }
2267                 if (s->locked == disks)
2268                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2269                                 atomic_inc(&conf->pending_full_writes);
2270                 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2271                 set_bit(STRIPE_INSYNC, &sh->state);
2272
2273                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2274                         atomic_dec(&conf->preread_active_stripes);
2275                         if (atomic_read(&conf->preread_active_stripes) <
2276                             IO_THRESHOLD)
2277                                 md_wakeup_thread(conf->mddev->thread);
2278                 }
2279         }
2280 }
2281
2282 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2283                                 struct stripe_head_state *s, int disks)
2284 {
2285         struct r5dev *dev = NULL;
2286
2287         set_bit(STRIPE_HANDLE, &sh->state);
2288
2289         switch (sh->check_state) {
2290         case check_state_idle:
2291                 /* start a new check operation if there are no failures */
2292                 if (s->failed == 0) {
2293                         BUG_ON(s->uptodate != disks);
2294                         sh->check_state = check_state_run;
2295                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2296                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2297                         s->uptodate--;
2298                         break;
2299                 }
2300                 dev = &sh->dev[s->failed_num];
2301                 /* fall through */
2302         case check_state_compute_result:
2303                 sh->check_state = check_state_idle;
2304                 if (!dev)
2305                         dev = &sh->dev[sh->pd_idx];
2306
2307                 /* check that a write has not made the stripe insync */
2308                 if (test_bit(STRIPE_INSYNC, &sh->state))
2309                         break;
2310
2311                 /* either failed parity check, or recovery is happening */
2312                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2313                 BUG_ON(s->uptodate != disks);
2314
2315                 set_bit(R5_LOCKED, &dev->flags);
2316                 s->locked++;
2317                 set_bit(R5_Wantwrite, &dev->flags);
2318
2319                 clear_bit(STRIPE_DEGRADED, &sh->state);
2320                 set_bit(STRIPE_INSYNC, &sh->state);
2321                 break;
2322         case check_state_run:
2323                 break; /* we will be called again upon completion */
2324         case check_state_check_result:
2325                 sh->check_state = check_state_idle;
2326
2327                 /* if a failure occurred during the check operation, leave
2328                  * STRIPE_INSYNC not set and let the stripe be handled again
2329                  */
2330                 if (s->failed)
2331                         break;
2332
2333                 /* handle a successful check operation, if parity is correct
2334                  * we are done.  Otherwise update the mismatch count and repair
2335                  * parity if !MD_RECOVERY_CHECK
2336                  */
2337                 if (sh->ops.zero_sum_result == 0)
2338                         /* parity is correct (on disc,
2339                          * not in buffer any more)
2340                          */
2341                         set_bit(STRIPE_INSYNC, &sh->state);
2342                 else {
2343                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2344                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2345                                 /* don't try to repair!! */
2346                                 set_bit(STRIPE_INSYNC, &sh->state);
2347                         else {
2348                                 sh->check_state = check_state_compute_run;
2349                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2350                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2351                                 set_bit(R5_Wantcompute,
2352                                         &sh->dev[sh->pd_idx].flags);
2353                                 sh->ops.target = sh->pd_idx;
2354                                 s->uptodate++;
2355                         }
2356                 }
2357                 break;
2358         case check_state_compute_run:
2359                 break;
2360         default:
2361                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2362                        __func__, sh->check_state,
2363                        (unsigned long long) sh->sector);
2364                 BUG();
2365         }
2366 }
2367
2368
2369 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2370                                 struct stripe_head_state *s,
2371                                 struct r6_state *r6s, struct page *tmp_page,
2372                                 int disks)
2373 {
2374         int update_p = 0, update_q = 0;
2375         struct r5dev *dev;
2376         int pd_idx = sh->pd_idx;
2377         int qd_idx = r6s->qd_idx;
2378
2379         set_bit(STRIPE_HANDLE, &sh->state);
2380
2381         BUG_ON(s->failed > 2);
2382         BUG_ON(s->uptodate < disks);
2383         /* Want to check and possibly repair P and Q.
2384          * However there could be one 'failed' device, in which
2385          * case we can only check one of them, possibly using the
2386          * other to generate missing data
2387          */
2388
2389         /* If !tmp_page, we cannot do the calculations,
2390          * but as we have set STRIPE_HANDLE, we will soon be called
2391          * by stripe_handle with a tmp_page - just wait until then.
2392          */
2393         if (tmp_page) {
2394                 if (s->failed == r6s->q_failed) {
2395                         /* The only possible failed device holds 'Q', so it
2396                          * makes sense to check P (If anything else were failed,
2397                          * we would have used P to recreate it).
2398                          */
2399                         compute_block_1(sh, pd_idx, 1);
2400                         if (!page_is_zero(sh->dev[pd_idx].page)) {
2401                                 compute_block_1(sh, pd_idx, 0);
2402                                 update_p = 1;
2403                         }
2404                 }
2405                 if (!r6s->q_failed && s->failed < 2) {
2406                         /* q is not failed, and we didn't use it to generate
2407                          * anything, so it makes sense to check it
2408                          */
2409                         memcpy(page_address(tmp_page),
2410                                page_address(sh->dev[qd_idx].page),
2411                                STRIPE_SIZE);
2412                         compute_parity6(sh, UPDATE_PARITY);
2413                         if (memcmp(page_address(tmp_page),
2414                                    page_address(sh->dev[qd_idx].page),
2415                                    STRIPE_SIZE) != 0) {
2416                                 clear_bit(STRIPE_INSYNC, &sh->state);
2417                                 update_q = 1;
2418                         }
2419                 }
2420                 if (update_p || update_q) {
2421                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2422                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2423                                 /* don't try to repair!! */
2424                                 update_p = update_q = 0;
2425                 }
2426
2427                 /* now write out any block on a failed drive,
2428                  * or P or Q if they need it
2429                  */
2430
2431                 if (s->failed == 2) {
2432                         dev = &sh->dev[r6s->failed_num[1]];
2433                         s->locked++;
2434                         set_bit(R5_LOCKED, &dev->flags);
2435                         set_bit(R5_Wantwrite, &dev->flags);
2436                 }
2437                 if (s->failed >= 1) {
2438                         dev = &sh->dev[r6s->failed_num[0]];
2439                         s->locked++;
2440                         set_bit(R5_LOCKED, &dev->flags);
2441                         set_bit(R5_Wantwrite, &dev->flags);
2442                 }
2443
2444                 if (update_p) {
2445                         dev = &sh->dev[pd_idx];
2446                         s->locked++;
2447                         set_bit(R5_LOCKED, &dev->flags);
2448                         set_bit(R5_Wantwrite, &dev->flags);
2449                 }
2450                 if (update_q) {
2451                         dev = &sh->dev[qd_idx];
2452                         s->locked++;
2453                         set_bit(R5_LOCKED, &dev->flags);
2454                         set_bit(R5_Wantwrite, &dev->flags);
2455                 }
2456                 clear_bit(STRIPE_DEGRADED, &sh->state);
2457
2458                 set_bit(STRIPE_INSYNC, &sh->state);
2459         }
2460 }
2461
2462 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2463                                 struct r6_state *r6s)
2464 {
2465         int i;
2466
2467         /* We have read all the blocks in this stripe and now we need to
2468          * copy some of them into a target stripe for expand.
2469          */
2470         struct dma_async_tx_descriptor *tx = NULL;
2471         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2472         for (i = 0; i < sh->disks; i++)
2473                 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2474                         int dd_idx, pd_idx, j;
2475                         struct stripe_head *sh2;
2476
2477                         sector_t bn = compute_blocknr(sh, i);
2478                         sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2479                                                 conf->raid_disks -
2480                                                 conf->max_degraded, &dd_idx,
2481                                                 &pd_idx, conf);
2482                         sh2 = get_active_stripe(conf, s, conf->raid_disks,
2483                                                 pd_idx, 1);
2484                         if (sh2 == NULL)
2485                                 /* so far only the early blocks of this stripe
2486                                  * have been requested.  When later blocks
2487                                  * get requested, we will try again
2488                                  */
2489                                 continue;
2490                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2491                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2492                                 /* must have already done this block */
2493                                 release_stripe(sh2);
2494                                 continue;
2495                         }
2496
2497                         /* place all the copies on one channel */
2498                         tx = async_memcpy(sh2->dev[dd_idx].page,
2499                                 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2500                                 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2501
2502                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2503                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2504                         for (j = 0; j < conf->raid_disks; j++)
2505                                 if (j != sh2->pd_idx &&
2506                                     (!r6s || j != raid6_next_disk(sh2->pd_idx,
2507                                                                  sh2->disks)) &&
2508                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2509                                         break;
2510                         if (j == conf->raid_disks) {
2511                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2512                                 set_bit(STRIPE_HANDLE, &sh2->state);
2513                         }
2514                         release_stripe(sh2);
2515
2516                 }
2517         /* done submitting copies, wait for them to complete */
2518         if (tx) {
2519                 async_tx_ack(tx);
2520                 dma_wait_for_async_tx(tx);
2521         }
2522 }
2523
2524
2525 /*
2526  * handle_stripe - do things to a stripe.
2527  *
2528  * We lock the stripe and then examine the state of various bits
2529  * to see what needs to be done.
2530  * Possible results:
2531  *    return some read request which now have data
2532  *    return some write requests which are safely on disc
2533  *    schedule a read on some buffers
2534  *    schedule a write of some buffers
2535  *    return confirmation of parity correctness
2536  *
2537  * buffers are taken off read_list or write_list, and bh_cache buffers
2538  * get BH_Lock set before the stripe lock is released.
2539  *
2540  */
2541
2542 static bool handle_stripe5(struct stripe_head *sh)
2543 {
2544         raid5_conf_t *conf = sh->raid_conf;
2545         int disks = sh->disks, i;
2546         struct bio *return_bi = NULL;
2547         struct stripe_head_state s;
2548         struct r5dev *dev;
2549         mdk_rdev_t *blocked_rdev = NULL;
2550         int prexor;
2551
2552         memset(&s, 0, sizeof(s));
2553         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2554                  "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2555                  atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2556                  sh->reconstruct_state);
2557
2558         spin_lock(&sh->lock);
2559         clear_bit(STRIPE_HANDLE, &sh->state);
2560         clear_bit(STRIPE_DELAYED, &sh->state);
2561
2562         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2563         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2564         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2565
2566         /* Now to look around and see what can be done */
2567         rcu_read_lock();
2568         for (i=disks; i--; ) {
2569                 mdk_rdev_t *rdev;
2570                 struct r5dev *dev = &sh->dev[i];
2571                 clear_bit(R5_Insync, &dev->flags);
2572
2573                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2574                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2575                         dev->towrite, dev->written);
2576
2577                 /* maybe we can request a biofill operation
2578                  *
2579                  * new wantfill requests are only permitted while
2580                  * ops_complete_biofill is guaranteed to be inactive
2581                  */
2582                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2583                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2584                         set_bit(R5_Wantfill, &dev->flags);
2585
2586                 /* now count some things */
2587                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2588                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2589                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2590
2591                 if (test_bit(R5_Wantfill, &dev->flags))
2592                         s.to_fill++;
2593                 else if (dev->toread)
2594                         s.to_read++;
2595                 if (dev->towrite) {
2596                         s.to_write++;
2597                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2598                                 s.non_overwrite++;
2599                 }
2600                 if (dev->written)
2601                         s.written++;
2602                 rdev = rcu_dereference(conf->disks[i].rdev);
2603                 if (blocked_rdev == NULL &&
2604                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2605                         blocked_rdev = rdev;
2606                         atomic_inc(&rdev->nr_pending);
2607                 }
2608                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2609                         /* The ReadError flag will just be confusing now */
2610                         clear_bit(R5_ReadError, &dev->flags);
2611                         clear_bit(R5_ReWrite, &dev->flags);
2612                 }
2613                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2614                     || test_bit(R5_ReadError, &dev->flags)) {
2615                         s.failed++;
2616                         s.failed_num = i;
2617                 } else
2618                         set_bit(R5_Insync, &dev->flags);
2619         }
2620         rcu_read_unlock();
2621
2622         if (unlikely(blocked_rdev)) {
2623                 if (s.syncing || s.expanding || s.expanded ||
2624                     s.to_write || s.written) {
2625                         set_bit(STRIPE_HANDLE, &sh->state);
2626                         goto unlock;
2627                 }
2628                 /* There is nothing for the blocked_rdev to block */
2629                 rdev_dec_pending(blocked_rdev, conf->mddev);
2630                 blocked_rdev = NULL;
2631         }
2632
2633         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2634                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2635                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2636         }
2637
2638         pr_debug("locked=%d uptodate=%d to_read=%d"
2639                 " to_write=%d failed=%d failed_num=%d\n",
2640                 s.locked, s.uptodate, s.to_read, s.to_write,
2641                 s.failed, s.failed_num);
2642         /* check if the array has lost two devices and, if so, some requests might
2643          * need to be failed
2644          */
2645         if (s.failed > 1 && s.to_read+s.to_write+s.written)
2646                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2647         if (s.failed > 1 && s.syncing) {
2648                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2649                 clear_bit(STRIPE_SYNCING, &sh->state);
2650                 s.syncing = 0;
2651         }
2652
2653         /* might be able to return some write requests if the parity block
2654          * is safe, or on a failed drive
2655          */
2656         dev = &sh->dev[sh->pd_idx];
2657         if ( s.written &&
2658              ((test_bit(R5_Insync, &dev->flags) &&
2659                !test_bit(R5_LOCKED, &dev->flags) &&
2660                test_bit(R5_UPTODATE, &dev->flags)) ||
2661                (s.failed == 1 && s.failed_num == sh->pd_idx)))
2662                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
2663
2664         /* Now we might consider reading some blocks, either to check/generate
2665          * parity, or to satisfy requests
2666          * or to load a block that is being partially written.
2667          */
2668         if (s.to_read || s.non_overwrite ||
2669             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2670                 handle_stripe_fill5(sh, &s, disks);
2671
2672         /* Now we check to see if any write operations have recently
2673          * completed
2674          */
2675         prexor = 0;
2676         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2677                 prexor = 1;
2678         if (sh->reconstruct_state == reconstruct_state_drain_result ||
2679             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2680                 sh->reconstruct_state = reconstruct_state_idle;
2681
2682                 /* All the 'written' buffers and the parity block are ready to
2683                  * be written back to disk
2684                  */
2685                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2686                 for (i = disks; i--; ) {
2687                         dev = &sh->dev[i];
2688                         if (test_bit(R5_LOCKED, &dev->flags) &&
2689                                 (i == sh->pd_idx || dev->written)) {
2690                                 pr_debug("Writing block %d\n", i);
2691                                 set_bit(R5_Wantwrite, &dev->flags);
2692                                 if (prexor)
2693                                         continue;
2694                                 if (!test_bit(R5_Insync, &dev->flags) ||
2695                                     (i == sh->pd_idx && s.failed == 0))
2696                                         set_bit(STRIPE_INSYNC, &sh->state);
2697                         }
2698                 }
2699                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2700                         atomic_dec(&conf->preread_active_stripes);
2701                         if (atomic_read(&conf->preread_active_stripes) <
2702                                 IO_THRESHOLD)
2703                                 md_wakeup_thread(conf->mddev->thread);
2704                 }
2705         }
2706
2707         /* Now to consider new write requests and what else, if anything
2708          * should be read.  We do not handle new writes when:
2709          * 1/ A 'write' operation (copy+xor) is already in flight.
2710          * 2/ A 'check' operation is in flight, as it may clobber the parity
2711          *    block.
2712          */
2713         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2714                 handle_stripe_dirtying5(conf, sh, &s, disks);
2715
2716         /* maybe we need to check and possibly fix the parity for this stripe
2717          * Any reads will already have been scheduled, so we just see if enough
2718          * data is available.  The parity check is held off while parity
2719          * dependent operations are in flight.
2720          */
2721         if (sh->check_state ||
2722             (s.syncing && s.locked == 0 &&
2723              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2724              !test_bit(STRIPE_INSYNC, &sh->state)))
2725                 handle_parity_checks5(conf, sh, &s, disks);
2726
2727         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2728                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2729                 clear_bit(STRIPE_SYNCING, &sh->state);
2730         }
2731
2732         /* If the failed drive is just a ReadError, then we might need to progress
2733          * the repair/check process
2734          */
2735         if (s.failed == 1 && !conf->mddev->ro &&
2736             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2737             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2738             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2739                 ) {
2740                 dev = &sh->dev[s.failed_num];
2741                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2742                         set_bit(R5_Wantwrite, &dev->flags);
2743                         set_bit(R5_ReWrite, &dev->flags);
2744                         set_bit(R5_LOCKED, &dev->flags);
2745                         s.locked++;
2746                 } else {
2747                         /* let's read it back */
2748                         set_bit(R5_Wantread, &dev->flags);
2749                         set_bit(R5_LOCKED, &dev->flags);
2750                         s.locked++;
2751                 }
2752         }
2753
2754         /* Finish reconstruct operations initiated by the expansion process */
2755         if (sh->reconstruct_state == reconstruct_state_result) {
2756                 sh->reconstruct_state = reconstruct_state_idle;
2757                 clear_bit(STRIPE_EXPANDING, &sh->state);
2758                 for (i = conf->raid_disks; i--; ) {
2759                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
2760                         set_bit(R5_LOCKED, &sh->dev[i].flags);
2761                         s.locked++;
2762                 }
2763         }
2764
2765         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2766             !sh->reconstruct_state) {
2767                 /* Need to write out all blocks after computing parity */
2768                 sh->disks = conf->raid_disks;
2769                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2770                         conf->raid_disks);
2771                 schedule_reconstruction5(sh, &s, 1, 1);
2772         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2773                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2774                 atomic_dec(&conf->reshape_stripes);
2775                 wake_up(&conf->wait_for_overlap);
2776                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2777         }
2778
2779         if (s.expanding && s.locked == 0 &&
2780             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2781                 handle_stripe_expansion(conf, sh, NULL);
2782
2783  unlock:
2784         spin_unlock(&sh->lock);
2785
2786         /* wait for this device to become unblocked */
2787         if (unlikely(blocked_rdev))
2788                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2789
2790         if (s.ops_request)
2791                 raid5_run_ops(sh, s.ops_request);
2792
2793         ops_run_io(sh, &s);
2794
2795         return_io(return_bi);
2796
2797         return blocked_rdev == NULL;
2798 }
2799
2800 static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2801 {
2802         raid5_conf_t *conf = sh->raid_conf;
2803         int disks = sh->disks;
2804         struct bio *return_bi = NULL;
2805         int i, pd_idx = sh->pd_idx;
2806         struct stripe_head_state s;
2807         struct r6_state r6s;
2808         struct r5dev *dev, *pdev, *qdev;
2809         mdk_rdev_t *blocked_rdev = NULL;
2810
2811         r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2812         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2813                 "pd_idx=%d, qd_idx=%d\n",
2814                (unsigned long long)sh->sector, sh->state,
2815                atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2816         memset(&s, 0, sizeof(s));
2817
2818         spin_lock(&sh->lock);
2819         clear_bit(STRIPE_HANDLE, &sh->state);
2820         clear_bit(STRIPE_DELAYED, &sh->state);
2821
2822         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2823         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2824         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2825         /* Now to look around and see what can be done */
2826
2827         rcu_read_lock();
2828         for (i=disks; i--; ) {
2829                 mdk_rdev_t *rdev;
2830                 dev = &sh->dev[i];
2831                 clear_bit(R5_Insync, &dev->flags);
2832
2833                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2834                         i, dev->flags, dev->toread, dev->towrite, dev->written);
2835                 /* maybe we can reply to a read */
2836                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2837                         struct bio *rbi, *rbi2;
2838                         pr_debug("Return read for disc %d\n", i);
2839                         spin_lock_irq(&conf->device_lock);
2840                         rbi = dev->toread;
2841                         dev->toread = NULL;
2842                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
2843                                 wake_up(&conf->wait_for_overlap);
2844                         spin_unlock_irq(&conf->device_lock);
2845                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2846                                 copy_data(0, rbi, dev->page, dev->sector);
2847                                 rbi2 = r5_next_bio(rbi, dev->sector);
2848                                 spin_lock_irq(&conf->device_lock);
2849                                 if (!raid5_dec_bi_phys_segments(rbi)) {
2850                                         rbi->bi_next = return_bi;
2851                                         return_bi = rbi;
2852                                 }
2853                                 spin_unlock_irq(&conf->device_lock);
2854                                 rbi = rbi2;
2855                         }
2856                 }
2857
2858                 /* now count some things */
2859                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2860                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2861
2862
2863                 if (dev->toread)
2864                         s.to_read++;
2865                 if (dev->towrite) {
2866                         s.to_write++;
2867                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2868                                 s.non_overwrite++;
2869                 }
2870                 if (dev->written)
2871                         s.written++;
2872                 rdev = rcu_dereference(conf->disks[i].rdev);
2873                 if (blocked_rdev == NULL &&
2874                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2875                         blocked_rdev = rdev;
2876                         atomic_inc(&rdev->nr_pending);
2877                 }
2878                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2879                         /* The ReadError flag will just be confusing now */
2880                         clear_bit(R5_ReadError, &dev->flags);
2881                         clear_bit(R5_ReWrite, &dev->flags);
2882                 }
2883                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2884                     || test_bit(R5_ReadError, &dev->flags)) {
2885                         if (s.failed < 2)
2886                                 r6s.failed_num[s.failed] = i;
2887                         s.failed++;
2888                 } else
2889                         set_bit(R5_Insync, &dev->flags);
2890         }
2891         rcu_read_unlock();
2892
2893         if (unlikely(blocked_rdev)) {
2894                 if (s.syncing || s.expanding || s.expanded ||
2895                     s.to_write || s.written) {
2896                         set_bit(STRIPE_HANDLE, &sh->state);
2897                         goto unlock;
2898                 }
2899                 /* There is nothing for the blocked_rdev to block */
2900                 rdev_dec_pending(blocked_rdev, conf->mddev);
2901                 blocked_rdev = NULL;
2902         }
2903
2904         pr_debug("locked=%d uptodate=%d to_read=%d"
2905                " to_write=%d failed=%d failed_num=%d,%d\n",
2906                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2907                r6s.failed_num[0], r6s.failed_num[1]);
2908         /* check if the array has lost >2 devices and, if so, some requests
2909          * might need to be failed
2910          */
2911         if (s.failed > 2 && s.to_read+s.to_write+s.written)
2912                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2913         if (s.failed > 2 && s.syncing) {
2914                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2915                 clear_bit(STRIPE_SYNCING, &sh->state);
2916                 s.syncing = 0;
2917         }
2918
2919         /*
2920          * might be able to return some write requests if the parity blocks
2921          * are safe, or on a failed drive
2922          */
2923         pdev = &sh->dev[pd_idx];
2924         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2925                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2926         qdev = &sh->dev[r6s.qd_idx];
2927         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2928                 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2929
2930         if ( s.written &&
2931              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
2932                              && !test_bit(R5_LOCKED, &pdev->flags)
2933                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2934              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
2935                              && !test_bit(R5_LOCKED, &qdev->flags)
2936                              && test_bit(R5_UPTODATE, &qdev->flags)))))
2937                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
2938
2939         /* Now we might consider reading some blocks, either to check/generate
2940          * parity, or to satisfy requests
2941          * or to load a block that is being partially written.
2942          */
2943         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
2944             (s.syncing && (s.uptodate < disks)) || s.expanding)
2945                 handle_stripe_fill6(sh, &s, &r6s, disks);
2946
2947         /* now to consider writing and what else, if anything should be read */
2948         if (s.to_write)
2949                 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
2950
2951         /* maybe we need to check and possibly fix the parity for this stripe
2952          * Any reads will already have been scheduled, so we just see if enough
2953          * data is available
2954          */
2955         if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
2956                 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
2957
2958         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2959                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2960                 clear_bit(STRIPE_SYNCING, &sh->state);
2961         }
2962
2963         /* If the failed drives are just a ReadError, then we might need
2964          * to progress the repair/check process
2965          */
2966         if (s.failed <= 2 && !conf->mddev->ro)
2967                 for (i = 0; i < s.failed; i++) {
2968                         dev = &sh->dev[r6s.failed_num[i]];
2969                         if (test_bit(R5_ReadError, &dev->flags)
2970                             && !test_bit(R5_LOCKED, &dev->flags)
2971                             && test_bit(R5_UPTODATE, &dev->flags)
2972                                 ) {
2973                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2974                                         set_bit(R5_Wantwrite, &dev->flags);
2975                                         set_bit(R5_ReWrite, &dev->flags);
2976                                         set_bit(R5_LOCKED, &dev->flags);
2977                                 } else {
2978                                         /* let's read it back */
2979                                         set_bit(R5_Wantread, &dev->flags);
2980                                         set_bit(R5_LOCKED, &dev->flags);
2981                                 }
2982                         }
2983                 }
2984
2985         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
2986                 /* Need to write out all blocks after computing P&Q */
2987                 sh->disks = conf->raid_disks;
2988                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2989                                              conf->raid_disks);
2990                 compute_parity6(sh, RECONSTRUCT_WRITE);
2991                 for (i = conf->raid_disks ; i-- ;  ) {
2992                         set_bit(R5_LOCKED, &sh->dev[i].flags);
2993                         s.locked++;
2994                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
2995                 }
2996                 clear_bit(STRIPE_EXPANDING, &sh->state);
2997         } else if (s.expanded) {
2998                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2999                 atomic_dec(&conf->reshape_stripes);
3000                 wake_up(&conf->wait_for_overlap);
3001                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3002         }
3003
3004         if (s.expanding && s.locked == 0 &&
3005             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3006                 handle_stripe_expansion(conf, sh, &r6s);
3007
3008  unlock:
3009         spin_unlock(&sh->lock);
3010
3011         /* wait for this device to become unblocked */
3012         if (unlikely(blocked_rdev))
3013                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3014
3015         ops_run_io(sh, &s);
3016
3017         return_io(return_bi);
3018
3019         return blocked_rdev == NULL;
3020 }
3021
3022 /* returns true if the stripe was handled */
3023 static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3024 {
3025         if (sh->raid_conf->level == 6)
3026                 return handle_stripe6(sh, tmp_page);
3027         else
3028                 return handle_stripe5(sh);
3029 }
3030
3031
3032
3033 static void raid5_activate_delayed(raid5_conf_t *conf)
3034 {
3035         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3036                 while (!list_empty(&conf->delayed_list)) {
3037                         struct list_head *l = conf->delayed_list.next;
3038                         struct stripe_head *sh;
3039                         sh = list_entry(l, struct stripe_head, lru);
3040                         list_del_init(l);
3041                         clear_bit(STRIPE_DELAYED, &sh->state);
3042                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3043                                 atomic_inc(&conf->preread_active_stripes);
3044                         list_add_tail(&sh->lru, &conf->hold_list);
3045                 }
3046         } else
3047                 blk_plug_device(conf->mddev->queue);
3048 }
3049
3050 static void activate_bit_delay(raid5_conf_t *conf)
3051 {
3052         /* device_lock is held */
3053         struct list_head head;
3054         list_add(&head, &conf->bitmap_list);
3055         list_del_init(&conf->bitmap_list);
3056         while (!list_empty(&head)) {
3057                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3058                 list_del_init(&sh->lru);
3059                 atomic_inc(&sh->count);
3060                 __release_stripe(conf, sh);
3061         }
3062 }
3063
3064 static void unplug_slaves(mddev_t *mddev)
3065 {
3066         raid5_conf_t *conf = mddev_to_conf(mddev);
3067         int i;
3068
3069         rcu_read_lock();
3070         for (i=0; i<mddev->raid_disks; i++) {
3071                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3072                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3073                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3074
3075                         atomic_inc(&rdev->nr_pending);
3076                         rcu_read_unlock();
3077
3078                         blk_unplug(r_queue);
3079
3080                         rdev_dec_pending(rdev, mddev);
3081                         rcu_read_lock();
3082                 }
3083         }
3084         rcu_read_unlock();
3085 }
3086
3087 static void raid5_unplug_device(struct request_queue *q)
3088 {
3089         mddev_t *mddev = q->queuedata;
3090         raid5_conf_t *conf = mddev_to_conf(mddev);
3091         unsigned long flags;
3092
3093         spin_lock_irqsave(&conf->device_lock, flags);
3094
3095         if (blk_remove_plug(q)) {
3096                 conf->seq_flush++;
3097                 raid5_activate_delayed(conf);
3098         }
3099         md_wakeup_thread(mddev->thread);
3100
3101         spin_unlock_irqrestore(&conf->device_lock, flags);
3102
3103         unplug_slaves(mddev);
3104 }
3105
3106 static int raid5_congested(void *data, int bits)
3107 {
3108         mddev_t *mddev = data;
3109         raid5_conf_t *conf = mddev_to_conf(mddev);
3110
3111         /* No difference between reads and writes.  Just check
3112          * how busy the stripe_cache is
3113          */
3114         if (conf->inactive_blocked)
3115                 return 1;
3116         if (conf->quiesce)
3117                 return 1;
3118         if (list_empty_careful(&conf->inactive_list))
3119                 return 1;
3120
3121         return 0;
3122 }
3123
3124 /* We want read requests to align with chunks where possible,
3125  * but write requests don't need to.
3126  */
3127 static int raid5_mergeable_bvec(struct request_queue *q,
3128                                 struct bvec_merge_data *bvm,
3129                                 struct bio_vec *biovec)
3130 {
3131         mddev_t *mddev = q->queuedata;
3132         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3133         int max;
3134         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3135         unsigned int bio_sectors = bvm->bi_size >> 9;
3136
3137         if ((bvm->bi_rw & 1) == WRITE)
3138                 return biovec->bv_len; /* always allow writes to be mergeable */
3139
3140         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3141         if (max < 0) max = 0;
3142         if (max <= biovec->bv_len && bio_sectors == 0)
3143                 return biovec->bv_len;
3144         else
3145                 return max;
3146 }
3147
3148
3149 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3150 {
3151         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3152         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3153         unsigned int bio_sectors = bio->bi_size >> 9;
3154
3155         return  chunk_sectors >=
3156                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3157 }
3158
3159 /*
3160  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3161  *  later sampled by raid5d.
3162  */
3163 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3164 {
3165         unsigned long flags;
3166
3167         spin_lock_irqsave(&conf->device_lock, flags);
3168
3169         bi->bi_next = conf->retry_read_aligned_list;
3170         conf->retry_read_aligned_list = bi;
3171
3172         spin_unlock_irqrestore(&conf->device_lock, flags);
3173         md_wakeup_thread(conf->mddev->thread);
3174 }
3175
3176
3177 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3178 {
3179         struct bio *bi;
3180
3181         bi = conf->retry_read_aligned;
3182         if (bi) {
3183                 conf->retry_read_aligned = NULL;
3184                 return bi;
3185         }
3186         bi = conf->retry_read_aligned_list;
3187         if(bi) {
3188                 conf->retry_read_aligned_list = bi->bi_next;
3189                 bi->bi_next = NULL;
3190                 /*
3191                  * this sets the active strip count to 1 and the processed
3192                  * strip count to zero (upper 8 bits)
3193                  */
3194                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3195         }
3196
3197         return bi;
3198 }
3199
3200
3201 /*
3202  *  The "raid5_align_endio" should check if the read succeeded and if it
3203  *  did, call bio_endio on the original bio (having bio_put the new bio
3204  *  first).
3205  *  If the read failed..
3206  */
3207 static void raid5_align_endio(struct bio *bi, int error)
3208 {
3209         struct bio* raid_bi  = bi->bi_private;
3210         mddev_t *mddev;
3211         raid5_conf_t *conf;
3212         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3213         mdk_rdev_t *rdev;
3214
3215         bio_put(bi);
3216
3217         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3218         conf = mddev_to_conf(mddev);
3219         rdev = (void*)raid_bi->bi_next;
3220         raid_bi->bi_next = NULL;
3221
3222         rdev_dec_pending(rdev, conf->mddev);
3223
3224         if (!error && uptodate) {
3225                 bio_endio(raid_bi, 0);
3226                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3227                         wake_up(&conf->wait_for_stripe);
3228                 return;
3229         }
3230
3231
3232         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3233
3234         add_bio_to_retry(raid_bi, conf);
3235 }
3236
3237 static int bio_fits_rdev(struct bio *bi)
3238 {
3239         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3240
3241         if ((bi->bi_size>>9) > q->max_sectors)
3242                 return 0;
3243         blk_recount_segments(q, bi);
3244         if (bi->bi_phys_segments > q->max_phys_segments)
3245                 return 0;
3246
3247         if (q->merge_bvec_fn)
3248                 /* it's too hard to apply the merge_bvec_fn at this stage,
3249                  * just just give up
3250                  */
3251                 return 0;
3252
3253         return 1;
3254 }
3255
3256
3257 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3258 {
3259         mddev_t *mddev = q->queuedata;
3260         raid5_conf_t *conf = mddev_to_conf(mddev);
3261         const unsigned int raid_disks = conf->raid_disks;
3262         const unsigned int data_disks = raid_disks - conf->max_degraded;
3263         unsigned int dd_idx, pd_idx;
3264         struct bio* align_bi;
3265         mdk_rdev_t *rdev;
3266
3267         if (!in_chunk_boundary(mddev, raid_bio)) {
3268                 pr_debug("chunk_aligned_read : non aligned\n");
3269                 return 0;
3270         }
3271         /*
3272          * use bio_clone to make a copy of the bio
3273          */
3274         align_bi = bio_clone(raid_bio, GFP_NOIO);
3275         if (!align_bi)
3276                 return 0;
3277         /*
3278          *   set bi_end_io to a new function, and set bi_private to the
3279          *     original bio.
3280          */
3281         align_bi->bi_end_io  = raid5_align_endio;
3282         align_bi->bi_private = raid_bio;
3283         /*
3284          *      compute position
3285          */
3286         align_bi->bi_sector =  raid5_compute_sector(raid_bio->bi_sector,
3287                                         raid_disks,
3288                                         data_disks,
3289                                         &dd_idx,
3290                                         &pd_idx,
3291                                         conf);
3292
3293         rcu_read_lock();
3294         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3295         if (rdev && test_bit(In_sync, &rdev->flags)) {
3296                 atomic_inc(&rdev->nr_pending);
3297                 rcu_read_unlock();
3298                 raid_bio->bi_next = (void*)rdev;
3299                 align_bi->bi_bdev =  rdev->bdev;
3300                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3301                 align_bi->bi_sector += rdev->data_offset;
3302
3303                 if (!bio_fits_rdev(align_bi)) {
3304                         /* too big in some way */
3305                         bio_put(align_bi);
3306                         rdev_dec_pending(rdev, mddev);
3307                         return 0;
3308                 }
3309
3310                 spin_lock_irq(&conf->device_lock);
3311                 wait_event_lock_irq(conf->wait_for_stripe,
3312                                     conf->quiesce == 0,
3313                                     conf->device_lock, /* nothing */);
3314                 atomic_inc(&conf->active_aligned_reads);
3315                 spin_unlock_irq(&conf->device_lock);
3316
3317                 generic_make_request(align_bi);
3318                 return 1;
3319         } else {
3320                 rcu_read_unlock();
3321                 bio_put(align_bi);
3322                 return 0;
3323         }
3324 }
3325
3326 /* __get_priority_stripe - get the next stripe to process
3327  *
3328  * Full stripe writes are allowed to pass preread active stripes up until
3329  * the bypass_threshold is exceeded.  In general the bypass_count
3330  * increments when the handle_list is handled before the hold_list; however, it
3331  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3332  * stripe with in flight i/o.  The bypass_count will be reset when the
3333  * head of the hold_list has changed, i.e. the head was promoted to the
3334  * handle_list.
3335  */
3336 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3337 {
3338         struct stripe_head *sh;
3339
3340         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3341                   __func__,
3342                   list_empty(&conf->handle_list) ? "empty" : "busy",
3343                   list_empty(&conf->hold_list) ? "empty" : "busy",
3344                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3345
3346         if (!list_empty(&conf->handle_list)) {
3347                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3348
3349                 if (list_empty(&conf->hold_list))
3350                         conf->bypass_count = 0;
3351                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3352                         if (conf->hold_list.next == conf->last_hold)
3353                                 conf->bypass_count++;
3354                         else {
3355                                 conf->last_hold = conf->hold_list.next;
3356                                 conf->bypass_count -= conf->bypass_threshold;
3357                                 if (conf->bypass_count < 0)
3358                                         conf->bypass_count = 0;
3359                         }
3360                 }
3361         } else if (!list_empty(&conf->hold_list) &&
3362                    ((conf->bypass_threshold &&
3363                      conf->bypass_count > conf->bypass_threshold) ||
3364                     atomic_read(&conf->pending_full_writes) == 0)) {
3365                 sh = list_entry(conf->hold_list.next,
3366                                 typeof(*sh), lru);
3367                 conf->bypass_count -= conf->bypass_threshold;
3368                 if (conf->bypass_count < 0)
3369                         conf->bypass_count = 0;
3370         } else
3371                 return NULL;
3372
3373         list_del_init(&sh->lru);
3374         atomic_inc(&sh->count);
3375         BUG_ON(atomic_read(&sh->count) != 1);
3376         return sh;
3377 }
3378
3379 static int make_request(struct request_queue *q, struct bio * bi)
3380 {
3381         mddev_t *mddev = q->queuedata;
3382         raid5_conf_t *conf = mddev_to_conf(mddev);
3383         unsigned int dd_idx, pd_idx;
3384         sector_t new_sector;
3385         sector_t logical_sector, last_sector;
3386         struct stripe_head *sh;
3387         const int rw = bio_data_dir(bi);
3388         int cpu, remaining;
3389
3390         if (unlikely(bio_barrier(bi))) {
3391                 bio_endio(bi, -EOPNOTSUPP);
3392                 return 0;
3393         }
3394
3395         md_write_start(mddev, bi);
3396
3397         cpu = part_stat_lock();
3398         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3399         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3400                       bio_sectors(bi));
3401         part_stat_unlock();
3402
3403         if (rw == READ &&
3404              mddev->reshape_position == MaxSector &&
3405              chunk_aligned_read(q,bi))
3406                 return 0;
3407
3408         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3409         last_sector = bi->bi_sector + (bi->bi_size>>9);
3410         bi->bi_next = NULL;
3411         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3412
3413         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3414                 DEFINE_WAIT(w);
3415                 int disks, data_disks;
3416
3417         retry:
3418                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3419                 if (likely(conf->expand_progress == MaxSector))
3420                         disks = conf->raid_disks;
3421                 else {
3422                         /* spinlock is needed as expand_progress may be
3423                          * 64bit on a 32bit platform, and so it might be
3424                          * possible to see a half-updated value
3425                          * Ofcourse expand_progress could change after
3426                          * the lock is dropped, so once we get a reference
3427                          * to the stripe that we think it is, we will have
3428                          * to check again.
3429                          */
3430                         spin_lock_irq(&conf->device_lock);
3431                         disks = conf->raid_disks;
3432                         if (logical_sector >= conf->expand_progress)
3433                                 disks = conf->previous_raid_disks;
3434                         else {
3435                                 if (logical_sector >= conf->expand_lo) {
3436                                         spin_unlock_irq(&conf->device_lock);
3437                                         schedule();
3438                                         goto retry;
3439                                 }
3440                         }
3441                         spin_unlock_irq(&conf->device_lock);
3442                 }
3443                 data_disks = disks - conf->max_degraded;
3444
3445                 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3446                                                   &dd_idx, &pd_idx, conf);
3447                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3448                         (unsigned long long)new_sector, 
3449                         (unsigned long long)logical_sector);
3450
3451                 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3452                 if (sh) {
3453                         if (unlikely(conf->expand_progress != MaxSector)) {
3454                                 /* expansion might have moved on while waiting for a
3455                                  * stripe, so we must do the range check again.
3456                                  * Expansion could still move past after this
3457                                  * test, but as we are holding a reference to
3458                                  * 'sh', we know that if that happens,
3459                                  *  STRIPE_EXPANDING will get set and the expansion
3460                                  * won't proceed until we finish with the stripe.
3461                                  */
3462                                 int must_retry = 0;
3463                                 spin_lock_irq(&conf->device_lock);
3464                                 if (logical_sector <  conf->expand_progress &&
3465                                     disks == conf->previous_raid_disks)
3466                                         /* mismatch, need to try again */
3467                                         must_retry = 1;
3468                                 spin_unlock_irq(&conf->device_lock);
3469                                 if (must_retry) {
3470                                         release_stripe(sh);
3471                                         goto retry;
3472                                 }
3473                         }
3474                         /* FIXME what if we get a false positive because these
3475                          * are being updated.
3476                          */
3477                         if (logical_sector >= mddev->suspend_lo &&
3478                             logical_sector < mddev->suspend_hi) {
3479                                 release_stripe(sh);
3480                                 schedule();
3481                                 goto retry;
3482                         }
3483
3484                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3485                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3486                                 /* Stripe is busy expanding or
3487                                  * add failed due to overlap.  Flush everything
3488                                  * and wait a while
3489                                  */
3490                                 raid5_unplug_device(mddev->queue);
3491                                 release_stripe(sh);
3492                                 schedule();
3493                                 goto retry;
3494                         }
3495                         finish_wait(&conf->wait_for_overlap, &w);
3496                         set_bit(STRIPE_HANDLE, &sh->state);
3497                         clear_bit(STRIPE_DELAYED, &sh->state);
3498                         release_stripe(sh);
3499                 } else {
3500                         /* cannot get stripe for read-ahead, just give-up */
3501                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3502                         finish_wait(&conf->wait_for_overlap, &w);
3503                         break;
3504                 }
3505                         
3506         }
3507         spin_lock_irq(&conf->device_lock);
3508         remaining = raid5_dec_bi_phys_segments(bi);
3509         spin_unlock_irq(&conf->device_lock);
3510         if (remaining == 0) {
3511
3512                 if ( rw == WRITE )
3513                         md_write_end(mddev);
3514
3515                 bio_endio(bi, 0);
3516         }
3517         return 0;
3518 }
3519
3520 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3521 {
3522         /* reshaping is quite different to recovery/resync so it is
3523          * handled quite separately ... here.
3524          *
3525          * On each call to sync_request, we gather one chunk worth of
3526          * destination stripes and flag them as expanding.
3527          * Then we find all the source stripes and request reads.
3528          * As the reads complete, handle_stripe will copy the data
3529          * into the destination stripe and release that stripe.
3530          */
3531         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3532         struct stripe_head *sh;
3533         int pd_idx;
3534         sector_t first_sector, last_sector;
3535         int raid_disks = conf->previous_raid_disks;
3536         int data_disks = raid_disks - conf->max_degraded;
3537         int new_data_disks = conf->raid_disks - conf->max_degraded;
3538         int i;
3539         int dd_idx;
3540         sector_t writepos, safepos, gap;
3541
3542         if (sector_nr == 0 &&
3543             conf->expand_progress != 0) {
3544                 /* restarting in the middle, skip the initial sectors */
3545                 sector_nr = conf->expand_progress;
3546                 sector_div(sector_nr, new_data_disks);
3547                 *skipped = 1;
3548                 return sector_nr;
3549         }
3550
3551         /* we update the metadata when there is more than 3Meg
3552          * in the block range (that is rather arbitrary, should
3553          * probably be time based) or when the data about to be
3554          * copied would over-write the source of the data at
3555          * the front of the range.
3556          * i.e. one new_stripe forward from expand_progress new_maps
3557          * to after where expand_lo old_maps to
3558          */
3559         writepos = conf->expand_progress +
3560                 conf->chunk_size/512*(new_data_disks);
3561         sector_div(writepos, new_data_disks);
3562         safepos = conf->expand_lo;
3563         sector_div(safepos, data_disks);
3564         gap = conf->expand_progress - conf->expand_lo;
3565
3566         if (writepos >= safepos ||
3567             gap > (new_data_disks)*3000*2 /*3Meg*/) {
3568                 /* Cannot proceed until we've updated the superblock... */
3569                 wait_event(conf->wait_for_overlap,
3570                            atomic_read(&conf->reshape_stripes)==0);
3571                 mddev->reshape_position = conf->expand_progress;
3572                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3573                 md_wakeup_thread(mddev->thread);
3574                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3575                            kthread_should_stop());
3576                 spin_lock_irq(&conf->device_lock);
3577                 conf->expand_lo = mddev->reshape_position;
3578                 spin_unlock_irq(&conf->device_lock);
3579                 wake_up(&conf->wait_for_overlap);
3580         }
3581
3582         for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3583                 int j;
3584                 int skipped = 0;
3585                 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3586                 sh = get_active_stripe(conf, sector_nr+i,
3587                                        conf->raid_disks, pd_idx, 0);
3588                 set_bit(STRIPE_EXPANDING, &sh->state);
3589                 atomic_inc(&conf->reshape_stripes);
3590                 /* If any of this stripe is beyond the end of the old
3591                  * array, then we need to zero those blocks
3592                  */
3593                 for (j=sh->disks; j--;) {
3594                         sector_t s;
3595                         if (j == sh->pd_idx)
3596                                 continue;
3597                         if (conf->level == 6 &&
3598                             j == raid6_next_disk(sh->pd_idx, sh->disks))
3599                                 continue;
3600                         s = compute_blocknr(sh, j);
3601                         if (s < mddev->array_sectors) {
3602                                 skipped = 1;
3603                                 continue;
3604                         }
3605                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3606                         set_bit(R5_Expanded, &sh->dev[j].flags);
3607                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3608                 }
3609                 if (!skipped) {
3610                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3611                         set_bit(STRIPE_HANDLE, &sh->state);
3612                 }
3613                 release_stripe(sh);
3614         }
3615         spin_lock_irq(&conf->device_lock);
3616         conf->expand_progress = (sector_nr + i) * new_data_disks;
3617         spin_unlock_irq(&conf->device_lock);
3618         /* Ok, those stripe are ready. We can start scheduling
3619          * reads on the source stripes.
3620          * The source stripes are determined by mapping the first and last
3621          * block on the destination stripes.
3622          */
3623         first_sector =
3624                 raid5_compute_sector(sector_nr*(new_data_disks),
3625                                      raid_disks, data_disks,
3626                                      &dd_idx, &pd_idx, conf);
3627         last_sector =
3628                 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3629                                      *(new_data_disks) -1,
3630                                      raid_disks, data_disks,
3631                                      &dd_idx, &pd_idx, conf);
3632         if (last_sector >= (mddev->size<<1))
3633                 last_sector = (mddev->size<<1)-1;
3634         while (first_sector <= last_sector) {
3635                 pd_idx = stripe_to_pdidx(first_sector, conf,
3636                                          conf->previous_raid_disks);
3637                 sh = get_active_stripe(conf, first_sector,
3638                                        conf->previous_raid_disks, pd_idx, 0);
3639                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3640                 set_bit(STRIPE_HANDLE, &sh->state);
3641                 release_stripe(sh);
3642                 first_sector += STRIPE_SECTORS;
3643         }
3644         /* If this takes us to the resync_max point where we have to pause,
3645          * then we need to write out the superblock.
3646          */
3647         sector_nr += conf->chunk_size>>9;
3648         if (sector_nr >= mddev->resync_max) {
3649                 /* Cannot proceed until we've updated the superblock... */
3650                 wait_event(conf->wait_for_overlap,
3651                            atomic_read(&conf->reshape_stripes) == 0);
3652                 mddev->reshape_position = conf->expand_progress;
3653                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3654                 md_wakeup_thread(mddev->thread);
3655                 wait_event(mddev->sb_wait,
3656                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3657                            || kthread_should_stop());
3658                 spin_lock_irq(&conf->device_lock);
3659                 conf->expand_lo = mddev->reshape_position;
3660                 spin_unlock_irq(&conf->device_lock);
3661                 wake_up(&conf->wait_for_overlap);
3662         }
3663         return conf->chunk_size>>9;
3664 }
3665
3666 /* FIXME go_faster isn't used */
3667 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3668 {
3669         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3670         struct stripe_head *sh;
3671         int pd_idx;
3672         int raid_disks = conf->raid_disks;
3673         sector_t max_sector = mddev->size << 1;
3674         int sync_blocks;
3675         int still_degraded = 0;
3676         int i;
3677
3678         if (sector_nr >= max_sector) {
3679                 /* just being told to finish up .. nothing much to do */
3680                 unplug_slaves(mddev);
3681                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3682                         end_reshape(conf);
3683                         return 0;
3684                 }
3685
3686                 if (mddev->curr_resync < max_sector) /* aborted */
3687                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3688                                         &sync_blocks, 1);
3689                 else /* completed sync */
3690                         conf->fullsync = 0;
3691                 bitmap_close_sync(mddev->bitmap);
3692
3693                 return 0;
3694         }
3695
3696         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3697                 return reshape_request(mddev, sector_nr, skipped);
3698
3699         /* No need to check resync_max as we never do more than one
3700          * stripe, and as resync_max will always be on a chunk boundary,
3701          * if the check in md_do_sync didn't fire, there is no chance
3702          * of overstepping resync_max here
3703          */
3704
3705         /* if there is too many failed drives and we are trying
3706          * to resync, then assert that we are finished, because there is
3707          * nothing we can do.
3708          */
3709         if (mddev->degraded >= conf->max_degraded &&
3710             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3711                 sector_t rv = (mddev->size << 1) - sector_nr;
3712                 *skipped = 1;
3713                 return rv;
3714         }
3715         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3716             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3717             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3718                 /* we can skip this block, and probably more */
3719                 sync_blocks /= STRIPE_SECTORS;
3720                 *skipped = 1;
3721                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3722         }
3723
3724
3725         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3726
3727         pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3728         sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3729         if (sh == NULL) {
3730                 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3731                 /* make sure we don't swamp the stripe cache if someone else
3732                  * is trying to get access
3733                  */
3734                 schedule_timeout_uninterruptible(1);
3735         }
3736         /* Need to check if array will still be degraded after recovery/resync
3737          * We don't need to check the 'failed' flag as when that gets set,
3738          * recovery aborts.
3739          */
3740         for (i=0; i<mddev->raid_disks; i++)
3741                 if (conf->disks[i].rdev == NULL)
3742                         still_degraded = 1;
3743
3744         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3745
3746         spin_lock(&sh->lock);
3747         set_bit(STRIPE_SYNCING, &sh->state);
3748         clear_bit(STRIPE_INSYNC, &sh->state);
3749         spin_unlock(&sh->lock);
3750
3751         /* wait for any blocked device to be handled */
3752         while(unlikely(!handle_stripe(sh, NULL)))
3753                 ;
3754         release_stripe(sh);
3755
3756         return STRIPE_SECTORS;
3757 }
3758
3759 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3760 {
3761         /* We may not be able to submit a whole bio at once as there
3762          * may not be enough stripe_heads available.
3763          * We cannot pre-allocate enough stripe_heads as we may need
3764          * more than exist in the cache (if we allow ever large chunks).
3765          * So we do one stripe head at a time and record in
3766          * ->bi_hw_segments how many have been done.
3767          *
3768          * We *know* that this entire raid_bio is in one chunk, so
3769          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3770          */
3771         struct stripe_head *sh;
3772         int dd_idx, pd_idx;
3773         sector_t sector, logical_sector, last_sector;
3774         int scnt = 0;
3775         int remaining;
3776         int handled = 0;
3777
3778         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3779         sector = raid5_compute_sector(  logical_sector,
3780                                         conf->raid_disks,
3781                                         conf->raid_disks - conf->max_degraded,
3782                                         &dd_idx,
3783                                         &pd_idx,
3784                                         conf);
3785         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3786
3787         for (; logical_sector < last_sector;
3788              logical_sector += STRIPE_SECTORS,
3789                      sector += STRIPE_SECTORS,
3790                      scnt++) {
3791
3792                 if (scnt < raid5_bi_hw_segments(raid_bio))
3793                         /* already done this stripe */
3794                         continue;
3795
3796                 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3797
3798                 if (!sh) {
3799                         /* failed to get a stripe - must wait */
3800                         raid5_set_bi_hw_segments(raid_bio, scnt);
3801                         conf->retry_read_aligned = raid_bio;
3802                         return handled;
3803                 }
3804
3805                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3806                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3807                         release_stripe(sh);
3808                         raid5_set_bi_hw_segments(raid_bio, scnt);
3809                         conf->retry_read_aligned = raid_bio;
3810                         return handled;
3811                 }
3812
3813                 handle_stripe(sh, NULL);
3814                 release_stripe(sh);
3815                 handled++;
3816         }
3817         spin_lock_irq(&conf->device_lock);
3818         remaining = raid5_dec_bi_phys_segments(raid_bio);
3819         spin_unlock_irq(&conf->device_lock);
3820         if (remaining == 0)
3821                 bio_endio(raid_bio, 0);
3822         if (atomic_dec_and_test(&conf->active_aligned_reads))
3823                 wake_up(&conf->wait_for_stripe);
3824         return handled;
3825 }
3826
3827
3828
3829 /*
3830  * This is our raid5 kernel thread.
3831  *
3832  * We scan the hash table for stripes which can be handled now.
3833  * During the scan, completed stripes are saved for us by the interrupt
3834  * handler, so that they will not have to wait for our next wakeup.
3835  */
3836 static void raid5d(mddev_t *mddev)
3837 {
3838         struct stripe_head *sh;
3839         raid5_conf_t *conf = mddev_to_conf(mddev);
3840         int handled;
3841
3842         pr_debug("+++ raid5d active\n");
3843
3844         md_check_recovery(mddev);
3845
3846         handled = 0;
3847         spin_lock_irq(&conf->device_lock);
3848         while (1) {
3849                 struct bio *bio;
3850
3851                 if (conf->seq_flush != conf->seq_write) {
3852                         int seq = conf->seq_flush;
3853                         spin_unlock_irq(&conf->device_lock);
3854                         bitmap_unplug(mddev->bitmap);
3855                         spin_lock_irq(&conf->device_lock);
3856                         conf->seq_write = seq;
3857                         activate_bit_delay(conf);
3858                 }
3859
3860                 while ((bio = remove_bio_from_retry(conf))) {
3861                         int ok;
3862                         spin_unlock_irq(&conf->device_lock);
3863                         ok = retry_aligned_read(conf, bio);
3864                         spin_lock_irq(&conf->device_lock);
3865                         if (!ok)
3866                                 break;
3867                         handled++;
3868                 }
3869
3870                 sh = __get_priority_stripe(conf);
3871
3872                 if (!sh)
3873                         break;
3874                 spin_unlock_irq(&conf->device_lock);
3875                 
3876                 handled++;
3877                 handle_stripe(sh, conf->spare_page);
3878                 release_stripe(sh);
3879
3880                 spin_lock_irq(&conf->device_lock);
3881         }
3882         pr_debug("%d stripes handled\n", handled);
3883
3884         spin_unlock_irq(&conf->device_lock);
3885
3886         async_tx_issue_pending_all();
3887         unplug_slaves(mddev);
3888
3889         pr_debug("--- raid5d inactive\n");
3890 }
3891
3892 static ssize_t
3893 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3894 {
3895         raid5_conf_t *conf = mddev_to_conf(mddev);
3896         if (conf)
3897                 return sprintf(page, "%d\n", conf->max_nr_stripes);
3898         else
3899                 return 0;
3900 }
3901
3902 static ssize_t
3903 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3904 {
3905         raid5_conf_t *conf = mddev_to_conf(mddev);
3906         unsigned long new;
3907         int err;
3908
3909         if (len >= PAGE_SIZE)
3910                 return -EINVAL;
3911         if (!conf)
3912                 return -ENODEV;
3913
3914         if (strict_strtoul(page, 10, &new))
3915                 return -EINVAL;
3916         if (new <= 16 || new > 32768)
3917                 return -EINVAL;
3918         while (new < conf->max_nr_stripes) {
3919                 if (drop_one_stripe(conf))
3920                         conf->max_nr_stripes--;
3921                 else
3922                         break;
3923         }
3924         err = md_allow_write(mddev);
3925         if (err)
3926                 return err;
3927         while (new > conf->max_nr_stripes) {
3928                 if (grow_one_stripe(conf))
3929                         conf->max_nr_stripes++;
3930                 else break;
3931         }
3932         return len;
3933 }
3934
3935 static struct md_sysfs_entry
3936 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3937                                 raid5_show_stripe_cache_size,
3938                                 raid5_store_stripe_cache_size);
3939
3940 static ssize_t
3941 raid5_show_preread_threshold(mddev_t *mddev, char *page)
3942 {
3943         raid5_conf_t *conf = mddev_to_conf(mddev);
3944         if (conf)
3945                 return sprintf(page, "%d\n", conf->bypass_threshold);
3946         else
3947                 return 0;
3948 }
3949
3950 static ssize_t
3951 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
3952 {
3953         raid5_conf_t *conf = mddev_to_conf(mddev);
3954         unsigned long new;
3955         if (len >= PAGE_SIZE)
3956                 return -EINVAL;
3957         if (!conf)
3958                 return -ENODEV;
3959
3960         if (strict_strtoul(page, 10, &new))
3961                 return -EINVAL;
3962         if (new > conf->max_nr_stripes)
3963                 return -EINVAL;
3964         conf->bypass_threshold = new;
3965         return len;
3966 }
3967
3968 static struct md_sysfs_entry
3969 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
3970                                         S_IRUGO | S_IWUSR,
3971                                         raid5_show_preread_threshold,
3972                                         raid5_store_preread_threshold);
3973
3974 static ssize_t
3975 stripe_cache_active_show(mddev_t *mddev, char *page)
3976 {
3977         raid5_conf_t *conf = mddev_to_conf(mddev);
3978         if (conf)
3979                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3980         else
3981                 return 0;
3982 }
3983
3984 static struct md_sysfs_entry
3985 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3986
3987 static struct attribute *raid5_attrs[] =  {
3988         &raid5_stripecache_size.attr,
3989         &raid5_stripecache_active.attr,
3990         &raid5_preread_bypass_threshold.attr,
3991         NULL,
3992 };
3993 static struct attribute_group raid5_attrs_group = {
3994         .name = NULL,
3995         .attrs = raid5_attrs,
3996 };
3997
3998 static int run(mddev_t *mddev)
3999 {
4000         raid5_conf_t *conf;
4001         int raid_disk, memory;
4002         mdk_rdev_t *rdev;
4003         struct disk_info *disk;
4004         int working_disks = 0;
4005
4006         if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4007                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4008                        mdname(mddev), mddev->level);
4009                 return -EIO;
4010         }
4011
4012         if (mddev->chunk_size < PAGE_SIZE) {
4013                 printk(KERN_ERR "md/raid5: chunk_size must be at least "
4014                        "PAGE_SIZE but %d < %ld\n",
4015                        mddev->chunk_size, PAGE_SIZE);
4016                 return -EINVAL;
4017         }
4018
4019         if (mddev->reshape_position != MaxSector) {
4020                 /* Check that we can continue the reshape.
4021                  * Currently only disks can change, it must
4022                  * increase, and we must be past the point where
4023                  * a stripe over-writes itself
4024                  */
4025                 sector_t here_new, here_old;
4026                 int old_disks;
4027                 int max_degraded = (mddev->level == 5 ? 1 : 2);
4028
4029                 if (mddev->new_level != mddev->level ||
4030                     mddev->new_layout != mddev->layout ||
4031                     mddev->new_chunk != mddev->chunk_size) {
4032                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4033                                "required - aborting.\n",
4034                                mdname(mddev));
4035                         return -EINVAL;
4036                 }
4037                 if (mddev->delta_disks <= 0) {
4038                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4039                                "(reduce disks) required - aborting.\n",
4040                                mdname(mddev));
4041                         return -EINVAL;
4042                 }
4043                 old_disks = mddev->raid_disks - mddev->delta_disks;
4044                 /* reshape_position must be on a new-stripe boundary, and one
4045                  * further up in new geometry must map after here in old
4046                  * geometry.
4047                  */
4048                 here_new = mddev->reshape_position;
4049                 if (sector_div(here_new, (mddev->chunk_size>>9)*
4050                                (mddev->raid_disks - max_degraded))) {
4051                         printk(KERN_ERR "raid5: reshape_position not "
4052                                "on a stripe boundary\n");
4053                         return -EINVAL;
4054                 }
4055                 /* here_new is the stripe we will write to */
4056                 here_old = mddev->reshape_position;
4057                 sector_div(here_old, (mddev->chunk_size>>9)*
4058                            (old_disks-max_degraded));
4059                 /* here_old is the first stripe that we might need to read
4060                  * from */
4061                 if (here_new >= here_old) {
4062                         /* Reading from the same stripe as writing to - bad */
4063                         printk(KERN_ERR "raid5: reshape_position too early for "
4064                                "auto-recovery - aborting.\n");
4065                         return -EINVAL;
4066                 }
4067                 printk(KERN_INFO "raid5: reshape will continue\n");
4068                 /* OK, we should be able to continue; */
4069         }
4070
4071
4072         mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4073         if ((conf = mddev->private) == NULL)
4074                 goto abort;
4075         if (mddev->reshape_position == MaxSector) {
4076                 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4077         } else {
4078                 conf->raid_disks = mddev->raid_disks;
4079                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4080         }
4081
4082         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4083                               GFP_KERNEL);
4084         if (!conf->disks)
4085                 goto abort;
4086
4087         conf->mddev = mddev;
4088
4089         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4090                 goto abort;
4091
4092         if (mddev->level == 6) {
4093                 conf->spare_page = alloc_page(GFP_KERNEL);
4094                 if (!conf->spare_page)
4095                         goto abort;
4096         }
4097         spin_lock_init(&conf->device_lock);
4098         mddev->queue->queue_lock = &conf->device_lock;
4099         init_waitqueue_head(&conf->wait_for_stripe);
4100         init_waitqueue_head(&conf->wait_for_overlap);
4101         INIT_LIST_HEAD(&conf->handle_list);
4102         INIT_LIST_HEAD(&conf->hold_list);
4103         INIT_LIST_HEAD(&conf->delayed_list);
4104         INIT_LIST_HEAD(&conf->bitmap_list);
4105         INIT_LIST_HEAD(&conf->inactive_list);
4106         atomic_set(&conf->active_stripes, 0);
4107         atomic_set(&conf->preread_active_stripes, 0);
4108         atomic_set(&conf->active_aligned_reads, 0);
4109         conf->bypass_threshold = BYPASS_THRESHOLD;
4110
4111         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4112
4113         list_for_each_entry(rdev, &mddev->disks, same_set) {
4114                 raid_disk = rdev->raid_disk;
4115                 if (raid_disk >= conf->raid_disks
4116                     || raid_disk < 0)
4117                         continue;
4118                 disk = conf->disks + raid_disk;
4119
4120                 disk->rdev = rdev;
4121
4122                 if (test_bit(In_sync, &rdev->flags)) {
4123                         char b[BDEVNAME_SIZE];
4124                         printk(KERN_INFO "raid5: device %s operational as raid"
4125                                 " disk %d\n", bdevname(rdev->bdev,b),
4126                                 raid_disk);
4127                         working_disks++;
4128                 } else
4129                         /* Cannot rely on bitmap to complete recovery */
4130                         conf->fullsync = 1;
4131         }
4132
4133         /*
4134          * 0 for a fully functional array, 1 or 2 for a degraded array.
4135          */
4136         mddev->degraded = conf->raid_disks - working_disks;
4137         conf->mddev = mddev;
4138         conf->chunk_size = mddev->chunk_size;
4139         conf->level = mddev->level;
4140         if (conf->level == 6)
4141                 conf->max_degraded = 2;
4142         else
4143                 conf->max_degraded = 1;
4144         conf->algorithm = mddev->layout;
4145         conf->max_nr_stripes = NR_STRIPES;
4146         conf->expand_progress = mddev->reshape_position;
4147
4148         /* device size must be a multiple of chunk size */
4149         mddev->size &= ~(mddev->chunk_size/1024 -1);
4150         mddev->resync_max_sectors = mddev->size << 1;
4151
4152         if (conf->level == 6 && conf->raid_disks < 4) {
4153                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4154                        mdname(mddev), conf->raid_disks);
4155                 goto abort;
4156         }
4157         if (!conf->chunk_size || conf->chunk_size % 4) {
4158                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4159                         conf->chunk_size, mdname(mddev));
4160                 goto abort;
4161         }
4162         if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4163                 printk(KERN_ERR 
4164                         "raid5: unsupported parity algorithm %d for %s\n",
4165                         conf->algorithm, mdname(mddev));
4166                 goto abort;
4167         }
4168         if (mddev->degraded > conf->max_degraded) {
4169                 printk(KERN_ERR "raid5: not enough operational devices for %s"
4170                         " (%d/%d failed)\n",
4171                         mdname(mddev), mddev->degraded, conf->raid_disks);
4172                 goto abort;
4173         }
4174
4175         if (mddev->degraded > 0 &&
4176             mddev->recovery_cp != MaxSector) {
4177                 if (mddev->ok_start_degraded)
4178                         printk(KERN_WARNING
4179                                "raid5: starting dirty degraded array: %s"
4180                                "- data corruption possible.\n",
4181                                mdname(mddev));
4182                 else {
4183                         printk(KERN_ERR
4184                                "raid5: cannot start dirty degraded array for %s\n",
4185                                mdname(mddev));
4186                         goto abort;
4187                 }
4188         }
4189
4190         {
4191                 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4192                 if (!mddev->thread) {
4193                         printk(KERN_ERR 
4194                                 "raid5: couldn't allocate thread for %s\n",
4195                                 mdname(mddev));
4196                         goto abort;
4197                 }
4198         }
4199         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4200                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4201         if (grow_stripes(conf, conf->max_nr_stripes)) {
4202                 printk(KERN_ERR 
4203                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4204                 shrink_stripes(conf);
4205                 md_unregister_thread(mddev->thread);
4206                 goto abort;
4207         } else
4208                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4209                         memory, mdname(mddev));
4210
4211         if (mddev->degraded == 0)
4212                 printk("raid5: raid level %d set %s active with %d out of %d"
4213                         " devices, algorithm %d\n", conf->level, mdname(mddev), 
4214                         mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4215                         conf->algorithm);
4216         else
4217                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4218                         " out of %d devices, algorithm %d\n", conf->level,
4219                         mdname(mddev), mddev->raid_disks - mddev->degraded,
4220                         mddev->raid_disks, conf->algorithm);
4221
4222         print_raid5_conf(conf);
4223
4224         if (conf->expand_progress != MaxSector) {
4225                 printk("...ok start reshape thread\n");
4226                 conf->expand_lo = conf->expand_progress;
4227                 atomic_set(&conf->reshape_stripes, 0);
4228                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4229                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4230                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4231                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4232                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4233                                                         "%s_reshape");
4234         }
4235
4236         /* read-ahead size must cover two whole stripes, which is
4237          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4238          */
4239         {
4240                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4241                 int stripe = data_disks *
4242                         (mddev->chunk_size / PAGE_SIZE);
4243                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4244                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4245         }
4246
4247         /* Ok, everything is just fine now */
4248         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4249                 printk(KERN_WARNING
4250                        "raid5: failed to create sysfs attributes for %s\n",
4251                        mdname(mddev));
4252
4253         mddev->queue->unplug_fn = raid5_unplug_device;
4254         mddev->queue->backing_dev_info.congested_data = mddev;
4255         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4256
4257         mddev->array_sectors = 2 * mddev->size * (conf->previous_raid_disks -
4258                                             conf->max_degraded);
4259
4260         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4261
4262         return 0;
4263 abort:
4264         if (conf) {
4265                 print_raid5_conf(conf);
4266                 safe_put_page(conf->spare_page);
4267                 kfree(conf->disks);
4268                 kfree(conf->stripe_hashtbl);
4269                 kfree(conf);
4270         }
4271         mddev->private = NULL;
4272         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4273         return -EIO;
4274 }
4275
4276
4277
4278 static int stop(mddev_t *mddev)
4279 {
4280         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4281
4282         md_unregister_thread(mddev->thread);
4283         mddev->thread = NULL;
4284         shrink_stripes(conf);
4285         kfree(conf->stripe_hashtbl);
4286         mddev->queue->backing_dev_info.congested_fn = NULL;
4287         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4288         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4289         kfree(conf->disks);
4290         kfree(conf);
4291         mddev->private = NULL;
4292         return 0;
4293 }
4294
4295 #ifdef DEBUG
4296 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4297 {
4298         int i;
4299
4300         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4301                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4302         seq_printf(seq, "sh %llu,  count %d.\n",
4303                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4304         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4305         for (i = 0; i < sh->disks; i++) {
4306                 seq_printf(seq, "(cache%d: %p %ld) ",
4307                            i, sh->dev[i].page, sh->dev[i].flags);
4308         }
4309         seq_printf(seq, "\n");
4310 }
4311
4312 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4313 {
4314         struct stripe_head *sh;
4315         struct hlist_node *hn;
4316         int i;
4317
4318         spin_lock_irq(&conf->device_lock);
4319         for (i = 0; i < NR_HASH; i++) {
4320                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4321                         if (sh->raid_conf != conf)
4322                                 continue;
4323                         print_sh(seq, sh);
4324                 }
4325         }
4326         spin_unlock_irq(&conf->device_lock);
4327 }
4328 #endif
4329
4330 static void status(struct seq_file *seq, mddev_t *mddev)
4331 {
4332         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4333         int i;
4334
4335         seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4336         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4337         for (i = 0; i < conf->raid_disks; i++)
4338                 seq_printf (seq, "%s",
4339                                conf->disks[i].rdev &&
4340                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4341         seq_printf (seq, "]");
4342 #ifdef DEBUG
4343         seq_printf (seq, "\n");
4344         printall(seq, conf);
4345 #endif
4346 }
4347
4348 static void print_raid5_conf (raid5_conf_t *conf)
4349 {
4350         int i;
4351         struct disk_info *tmp;
4352
4353         printk("RAID5 conf printout:\n");
4354         if (!conf) {
4355                 printk("(conf==NULL)\n");
4356                 return;
4357         }
4358         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4359                  conf->raid_disks - conf->mddev->degraded);
4360
4361         for (i = 0; i < conf->raid_disks; i++) {
4362                 char b[BDEVNAME_SIZE];
4363                 tmp = conf->disks + i;
4364                 if (tmp->rdev)
4365                 printk(" disk %d, o:%d, dev:%s\n",
4366                         i, !test_bit(Faulty, &tmp->rdev->flags),
4367                         bdevname(tmp->rdev->bdev,b));
4368         }
4369 }
4370
4371 static int raid5_spare_active(mddev_t *mddev)
4372 {
4373         int i;
4374         raid5_conf_t *conf = mddev->private;
4375         struct disk_info *tmp;
4376
4377         for (i = 0; i < conf->raid_disks; i++) {
4378                 tmp = conf->disks + i;
4379                 if (tmp->rdev
4380                     && !test_bit(Faulty, &tmp->rdev->flags)
4381                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4382                         unsigned long flags;
4383                         spin_lock_irqsave(&conf->device_lock, flags);
4384                         mddev->degraded--;
4385                         spin_unlock_irqrestore(&conf->device_lock, flags);
4386                 }
4387         }
4388         print_raid5_conf(conf);
4389         return 0;
4390 }
4391
4392 static int raid5_remove_disk(mddev_t *mddev, int number)
4393 {
4394         raid5_conf_t *conf = mddev->private;
4395         int err = 0;
4396         mdk_rdev_t *rdev;
4397         struct disk_info *p = conf->disks + number;
4398
4399         print_raid5_conf(conf);
4400         rdev = p->rdev;
4401         if (rdev) {
4402                 if (test_bit(In_sync, &rdev->flags) ||
4403                     atomic_read(&rdev->nr_pending)) {
4404                         err = -EBUSY;
4405                         goto abort;
4406                 }
4407                 /* Only remove non-faulty devices if recovery
4408                  * isn't possible.
4409                  */
4410                 if (!test_bit(Faulty, &rdev->flags) &&
4411                     mddev->degraded <= conf->max_degraded) {
4412                         err = -EBUSY;
4413                         goto abort;
4414                 }
4415                 p->rdev = NULL;
4416                 synchronize_rcu();
4417                 if (atomic_read(&rdev->nr_pending)) {
4418                         /* lost the race, try later */
4419                         err = -EBUSY;
4420                         p->rdev = rdev;
4421                 }
4422         }
4423 abort:
4424
4425         print_raid5_conf(conf);
4426         return err;
4427 }
4428
4429 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4430 {
4431         raid5_conf_t *conf = mddev->private;
4432         int err = -EEXIST;
4433         int disk;
4434         struct disk_info *p;
4435         int first = 0;
4436         int last = conf->raid_disks - 1;
4437
4438         if (mddev->degraded > conf->max_degraded)
4439                 /* no point adding a device */
4440                 return -EINVAL;
4441
4442         if (rdev->raid_disk >= 0)
4443                 first = last = rdev->raid_disk;
4444
4445         /*
4446          * find the disk ... but prefer rdev->saved_raid_disk
4447          * if possible.
4448          */
4449         if (rdev->saved_raid_disk >= 0 &&
4450             rdev->saved_raid_disk >= first &&
4451             conf->disks[rdev->saved_raid_disk].rdev == NULL)
4452                 disk = rdev->saved_raid_disk;
4453         else
4454                 disk = first;
4455         for ( ; disk <= last ; disk++)
4456                 if ((p=conf->disks + disk)->rdev == NULL) {
4457                         clear_bit(In_sync, &rdev->flags);
4458                         rdev->raid_disk = disk;
4459                         err = 0;
4460                         if (rdev->saved_raid_disk != disk)
4461                                 conf->fullsync = 1;
4462                         rcu_assign_pointer(p->rdev, rdev);
4463                         break;
4464                 }
4465         print_raid5_conf(conf);
4466         return err;
4467 }
4468
4469 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4470 {
4471         /* no resync is happening, and there is enough space
4472          * on all devices, so we can resize.
4473          * We need to make sure resync covers any new space.
4474          * If the array is shrinking we should possibly wait until
4475          * any io in the removed space completes, but it hardly seems
4476          * worth it.
4477          */
4478         raid5_conf_t *conf = mddev_to_conf(mddev);
4479
4480         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4481         mddev->array_sectors = sectors * (mddev->raid_disks
4482                                           - conf->max_degraded);
4483         set_capacity(mddev->gendisk, mddev->array_sectors);
4484         mddev->changed = 1;
4485         if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
4486                 mddev->recovery_cp = mddev->size << 1;
4487                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4488         }
4489         mddev->size = sectors /2;
4490         mddev->resync_max_sectors = sectors;
4491         return 0;
4492 }
4493
4494 #ifdef CONFIG_MD_RAID5_RESHAPE
4495 static int raid5_check_reshape(mddev_t *mddev)
4496 {
4497         raid5_conf_t *conf = mddev_to_conf(mddev);
4498         int err;
4499
4500         if (mddev->delta_disks < 0 ||
4501             mddev->new_level != mddev->level)
4502                 return -EINVAL; /* Cannot shrink array or change level yet */
4503         if (mddev->delta_disks == 0)
4504                 return 0; /* nothing to do */
4505         if (mddev->bitmap)
4506                 /* Cannot grow a bitmap yet */
4507                 return -EBUSY;
4508
4509         /* Can only proceed if there are plenty of stripe_heads.
4510          * We need a minimum of one full stripe,, and for sensible progress
4511          * it is best to have about 4 times that.
4512          * If we require 4 times, then the default 256 4K stripe_heads will
4513          * allow for chunk sizes up to 256K, which is probably OK.
4514          * If the chunk size is greater, user-space should request more
4515          * stripe_heads first.
4516          */
4517         if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4518             (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4519                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4520                        (mddev->chunk_size / STRIPE_SIZE)*4);
4521                 return -ENOSPC;
4522         }
4523
4524         err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4525         if (err)
4526                 return err;
4527
4528         if (mddev->degraded > conf->max_degraded)
4529                 return -EINVAL;
4530         /* looks like we might be able to manage this */
4531         return 0;
4532 }
4533
4534 static int raid5_start_reshape(mddev_t *mddev)
4535 {
4536         raid5_conf_t *conf = mddev_to_conf(mddev);
4537         mdk_rdev_t *rdev;
4538         int spares = 0;
4539         int added_devices = 0;
4540         unsigned long flags;
4541
4542         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4543                 return -EBUSY;
4544
4545         list_for_each_entry(rdev, &mddev->disks, same_set)
4546                 if (rdev->raid_disk < 0 &&
4547                     !test_bit(Faulty, &rdev->flags))
4548                         spares++;
4549
4550         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4551                 /* Not enough devices even to make a degraded array
4552                  * of that size
4553                  */
4554                 return -EINVAL;
4555
4556         atomic_set(&conf->reshape_stripes, 0);
4557         spin_lock_irq(&conf->device_lock);
4558         conf->previous_raid_disks = conf->raid_disks;
4559         conf->raid_disks += mddev->delta_disks;
4560         conf->expand_progress = 0;
4561         conf->expand_lo = 0;
4562         spin_unlock_irq(&conf->device_lock);
4563
4564         /* Add some new drives, as many as will fit.
4565          * We know there are enough to make the newly sized array work.
4566          */
4567         list_for_each_entry(rdev, &mddev->disks, same_set)
4568                 if (rdev->raid_disk < 0 &&
4569                     !test_bit(Faulty, &rdev->flags)) {
4570                         if (raid5_add_disk(mddev, rdev) == 0) {
4571                                 char nm[20];
4572                                 set_bit(In_sync, &rdev->flags);
4573                                 added_devices++;
4574                                 rdev->recovery_offset = 0;
4575                                 sprintf(nm, "rd%d", rdev->raid_disk);
4576                                 if (sysfs_create_link(&mddev->kobj,
4577                                                       &rdev->kobj, nm))
4578                                         printk(KERN_WARNING
4579                                                "raid5: failed to create "
4580                                                " link %s for %s\n",
4581                                                nm, mdname(mddev));
4582                         } else
4583                                 break;
4584                 }
4585
4586         spin_lock_irqsave(&conf->device_lock, flags);
4587         mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4588         spin_unlock_irqrestore(&conf->device_lock, flags);
4589         mddev->raid_disks = conf->raid_disks;
4590         mddev->reshape_position = 0;
4591         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4592
4593         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4594         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4595         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4596         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4597         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4598                                                 "%s_reshape");
4599         if (!mddev->sync_thread) {
4600                 mddev->recovery = 0;
4601                 spin_lock_irq(&conf->device_lock);
4602                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4603                 conf->expand_progress = MaxSector;
4604                 spin_unlock_irq(&conf->device_lock);
4605                 return -EAGAIN;
4606         }
4607         md_wakeup_thread(mddev->sync_thread);
4608         md_new_event(mddev);
4609         return 0;
4610 }
4611 #endif
4612
4613 static void end_reshape(raid5_conf_t *conf)
4614 {
4615         struct block_device *bdev;
4616
4617         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4618                 conf->mddev->array_sectors = 2 * conf->mddev->size *
4619                         (conf->raid_disks - conf->max_degraded);
4620                 set_capacity(conf->mddev->gendisk, conf->mddev->array_sectors);
4621                 conf->mddev->changed = 1;
4622
4623                 bdev = bdget_disk(conf->mddev->gendisk, 0);
4624                 if (bdev) {
4625                         mutex_lock(&bdev->bd_inode->i_mutex);
4626                         i_size_write(bdev->bd_inode,
4627                                      (loff_t)conf->mddev->array_sectors << 9);
4628                         mutex_unlock(&bdev->bd_inode->i_mutex);
4629                         bdput(bdev);
4630                 }
4631                 spin_lock_irq(&conf->device_lock);
4632                 conf->expand_progress = MaxSector;
4633                 spin_unlock_irq(&conf->device_lock);
4634                 conf->mddev->reshape_position = MaxSector;
4635
4636                 /* read-ahead size must cover two whole stripes, which is
4637                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4638                  */
4639                 {
4640                         int data_disks = conf->previous_raid_disks - conf->max_degraded;
4641                         int stripe = data_disks *
4642                                 (conf->mddev->chunk_size / PAGE_SIZE);
4643                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4644                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4645                 }
4646         }
4647 }
4648
4649 static void raid5_quiesce(mddev_t *mddev, int state)
4650 {
4651         raid5_conf_t *conf = mddev_to_conf(mddev);
4652
4653         switch(state) {
4654         case 2: /* resume for a suspend */
4655                 wake_up(&conf->wait_for_overlap);
4656                 break;
4657
4658         case 1: /* stop all writes */
4659                 spin_lock_irq(&conf->device_lock);
4660                 conf->quiesce = 1;
4661                 wait_event_lock_irq(conf->wait_for_stripe,
4662                                     atomic_read(&conf->active_stripes) == 0 &&
4663                                     atomic_read(&conf->active_aligned_reads) == 0,
4664                                     conf->device_lock, /* nothing */);
4665                 spin_unlock_irq(&conf->device_lock);
4666                 break;
4667
4668         case 0: /* re-enable writes */
4669                 spin_lock_irq(&conf->device_lock);
4670                 conf->quiesce = 0;
4671                 wake_up(&conf->wait_for_stripe);
4672                 wake_up(&conf->wait_for_overlap);
4673                 spin_unlock_irq(&conf->device_lock);
4674                 break;
4675         }
4676 }
4677
4678 static struct mdk_personality raid6_personality =
4679 {
4680         .name           = "raid6",
4681         .level          = 6,
4682         .owner          = THIS_MODULE,
4683         .make_request   = make_request,
4684         .run            = run,
4685         .stop           = stop,
4686         .status         = status,
4687         .error_handler  = error,
4688         .hot_add_disk   = raid5_add_disk,
4689         .hot_remove_disk= raid5_remove_disk,
4690         .spare_active   = raid5_spare_active,
4691         .sync_request   = sync_request,
4692         .resize         = raid5_resize,
4693 #ifdef CONFIG_MD_RAID5_RESHAPE
4694         .check_reshape  = raid5_check_reshape,
4695         .start_reshape  = raid5_start_reshape,
4696 #endif
4697         .quiesce        = raid5_quiesce,
4698 };
4699 static struct mdk_personality raid5_personality =
4700 {
4701         .name           = "raid5",
4702         .level          = 5,
4703         .owner          = THIS_MODULE,
4704         .make_request   = make_request,
4705         .run            = run,
4706         .stop           = stop,
4707         .status         = status,
4708         .error_handler  = error,
4709         .hot_add_disk   = raid5_add_disk,
4710         .hot_remove_disk= raid5_remove_disk,
4711         .spare_active   = raid5_spare_active,
4712         .sync_request   = sync_request,
4713         .resize         = raid5_resize,
4714 #ifdef CONFIG_MD_RAID5_RESHAPE
4715         .check_reshape  = raid5_check_reshape,
4716         .start_reshape  = raid5_start_reshape,
4717 #endif
4718         .quiesce        = raid5_quiesce,
4719 };
4720
4721 static struct mdk_personality raid4_personality =
4722 {
4723         .name           = "raid4",
4724         .level          = 4,
4725         .owner          = THIS_MODULE,
4726         .make_request   = make_request,
4727         .run            = run,
4728         .stop           = stop,
4729         .status         = status,
4730         .error_handler  = error,
4731         .hot_add_disk   = raid5_add_disk,
4732         .hot_remove_disk= raid5_remove_disk,
4733         .spare_active   = raid5_spare_active,
4734         .sync_request   = sync_request,
4735         .resize         = raid5_resize,
4736 #ifdef CONFIG_MD_RAID5_RESHAPE
4737         .check_reshape  = raid5_check_reshape,
4738         .start_reshape  = raid5_start_reshape,
4739 #endif
4740         .quiesce        = raid5_quiesce,
4741 };
4742
4743 static int __init raid5_init(void)
4744 {
4745         int e;
4746
4747         e = raid6_select_algo();
4748         if ( e )
4749                 return e;
4750         register_md_personality(&raid6_personality);
4751         register_md_personality(&raid5_personality);
4752         register_md_personality(&raid4_personality);
4753         return 0;
4754 }
4755
4756 static void raid5_exit(void)
4757 {
4758         unregister_md_personality(&raid6_personality);
4759         unregister_md_personality(&raid5_personality);
4760         unregister_md_personality(&raid4_personality);
4761 }
4762
4763 module_init(raid5_init);
4764 module_exit(raid5_exit);
4765 MODULE_LICENSE("GPL");
4766 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4767 MODULE_ALIAS("md-raid5");
4768 MODULE_ALIAS("md-raid4");
4769 MODULE_ALIAS("md-level-5");
4770 MODULE_ALIAS("md-level-4");
4771 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4772 MODULE_ALIAS("md-raid6");
4773 MODULE_ALIAS("md-level-6");
4774
4775 /* This used to be two separate modules, they were: */
4776 MODULE_ALIAS("raid5");
4777 MODULE_ALIAS("raid6");