async_tx: add sum check flags
[safe/jmp/linux-2.6] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/seq_file.h>
51 #include <linux/cpu.h>
52 #include "md.h"
53 #include "raid5.h"
54 #include "bitmap.h"
55
56 /*
57  * Stripe cache
58  */
59
60 #define NR_STRIPES              256
61 #define STRIPE_SIZE             PAGE_SIZE
62 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
63 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
64 #define IO_THRESHOLD            1
65 #define BYPASS_THRESHOLD        1
66 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
67 #define HASH_MASK               (NR_HASH - 1)
68
69 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
70
71 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
72  * order without overlap.  There may be several bio's per stripe+device, and
73  * a bio could span several devices.
74  * When walking this list for a particular stripe+device, we must never proceed
75  * beyond a bio that extends past this device, as the next bio might no longer
76  * be valid.
77  * This macro is used to determine the 'next' bio in the list, given the sector
78  * of the current stripe+device
79  */
80 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
81 /*
82  * The following can be used to debug the driver
83  */
84 #define RAID5_PARANOIA  1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 #else
88 # define CHECK_DEVLOCK()
89 #endif
90
91 #ifdef DEBUG
92 #define inline
93 #define __inline__
94 #endif
95
96 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
97
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_phys_segments(struct bio *bio)
103 {
104         return bio->bi_phys_segments & 0xffff;
105 }
106
107 static inline int raid5_bi_hw_segments(struct bio *bio)
108 {
109         return (bio->bi_phys_segments >> 16) & 0xffff;
110 }
111
112 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113 {
114         --bio->bi_phys_segments;
115         return raid5_bi_phys_segments(bio);
116 }
117
118 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119 {
120         unsigned short val = raid5_bi_hw_segments(bio);
121
122         --val;
123         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124         return val;
125 }
126
127 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128 {
129         bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
130 }
131
132 /* Find first data disk in a raid6 stripe */
133 static inline int raid6_d0(struct stripe_head *sh)
134 {
135         if (sh->ddf_layout)
136                 /* ddf always start from first device */
137                 return 0;
138         /* md starts just after Q block */
139         if (sh->qd_idx == sh->disks - 1)
140                 return 0;
141         else
142                 return sh->qd_idx + 1;
143 }
144 static inline int raid6_next_disk(int disk, int raid_disks)
145 {
146         disk++;
147         return (disk < raid_disks) ? disk : 0;
148 }
149
150 /* When walking through the disks in a raid5, starting at raid6_d0,
151  * We need to map each disk to a 'slot', where the data disks are slot
152  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153  * is raid_disks-1.  This help does that mapping.
154  */
155 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156                              int *count, int syndrome_disks)
157 {
158         int slot;
159
160         if (idx == sh->pd_idx)
161                 return syndrome_disks;
162         if (idx == sh->qd_idx)
163                 return syndrome_disks + 1;
164         slot = (*count)++;
165         return slot;
166 }
167
168 static void return_io(struct bio *return_bi)
169 {
170         struct bio *bi = return_bi;
171         while (bi) {
172
173                 return_bi = bi->bi_next;
174                 bi->bi_next = NULL;
175                 bi->bi_size = 0;
176                 bio_endio(bi, 0);
177                 bi = return_bi;
178         }
179 }
180
181 static void print_raid5_conf (raid5_conf_t *conf);
182
183 static int stripe_operations_active(struct stripe_head *sh)
184 {
185         return sh->check_state || sh->reconstruct_state ||
186                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
187                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
188 }
189
190 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
191 {
192         if (atomic_dec_and_test(&sh->count)) {
193                 BUG_ON(!list_empty(&sh->lru));
194                 BUG_ON(atomic_read(&conf->active_stripes)==0);
195                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
196                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
197                                 list_add_tail(&sh->lru, &conf->delayed_list);
198                                 blk_plug_device(conf->mddev->queue);
199                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
200                                    sh->bm_seq - conf->seq_write > 0) {
201                                 list_add_tail(&sh->lru, &conf->bitmap_list);
202                                 blk_plug_device(conf->mddev->queue);
203                         } else {
204                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
205                                 list_add_tail(&sh->lru, &conf->handle_list);
206                         }
207                         md_wakeup_thread(conf->mddev->thread);
208                 } else {
209                         BUG_ON(stripe_operations_active(sh));
210                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
211                                 atomic_dec(&conf->preread_active_stripes);
212                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
213                                         md_wakeup_thread(conf->mddev->thread);
214                         }
215                         atomic_dec(&conf->active_stripes);
216                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
217                                 list_add_tail(&sh->lru, &conf->inactive_list);
218                                 wake_up(&conf->wait_for_stripe);
219                                 if (conf->retry_read_aligned)
220                                         md_wakeup_thread(conf->mddev->thread);
221                         }
222                 }
223         }
224 }
225
226 static void release_stripe(struct stripe_head *sh)
227 {
228         raid5_conf_t *conf = sh->raid_conf;
229         unsigned long flags;
230
231         spin_lock_irqsave(&conf->device_lock, flags);
232         __release_stripe(conf, sh);
233         spin_unlock_irqrestore(&conf->device_lock, flags);
234 }
235
236 static inline void remove_hash(struct stripe_head *sh)
237 {
238         pr_debug("remove_hash(), stripe %llu\n",
239                 (unsigned long long)sh->sector);
240
241         hlist_del_init(&sh->hash);
242 }
243
244 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
245 {
246         struct hlist_head *hp = stripe_hash(conf, sh->sector);
247
248         pr_debug("insert_hash(), stripe %llu\n",
249                 (unsigned long long)sh->sector);
250
251         CHECK_DEVLOCK();
252         hlist_add_head(&sh->hash, hp);
253 }
254
255
256 /* find an idle stripe, make sure it is unhashed, and return it. */
257 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
258 {
259         struct stripe_head *sh = NULL;
260         struct list_head *first;
261
262         CHECK_DEVLOCK();
263         if (list_empty(&conf->inactive_list))
264                 goto out;
265         first = conf->inactive_list.next;
266         sh = list_entry(first, struct stripe_head, lru);
267         list_del_init(first);
268         remove_hash(sh);
269         atomic_inc(&conf->active_stripes);
270 out:
271         return sh;
272 }
273
274 static void shrink_buffers(struct stripe_head *sh, int num)
275 {
276         struct page *p;
277         int i;
278
279         for (i=0; i<num ; i++) {
280                 p = sh->dev[i].page;
281                 if (!p)
282                         continue;
283                 sh->dev[i].page = NULL;
284                 put_page(p);
285         }
286 }
287
288 static int grow_buffers(struct stripe_head *sh, int num)
289 {
290         int i;
291
292         for (i=0; i<num; i++) {
293                 struct page *page;
294
295                 if (!(page = alloc_page(GFP_KERNEL))) {
296                         return 1;
297                 }
298                 sh->dev[i].page = page;
299         }
300         return 0;
301 }
302
303 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
304 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
305                             struct stripe_head *sh);
306
307 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
308 {
309         raid5_conf_t *conf = sh->raid_conf;
310         int i;
311
312         BUG_ON(atomic_read(&sh->count) != 0);
313         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
314         BUG_ON(stripe_operations_active(sh));
315
316         CHECK_DEVLOCK();
317         pr_debug("init_stripe called, stripe %llu\n",
318                 (unsigned long long)sh->sector);
319
320         remove_hash(sh);
321
322         sh->generation = conf->generation - previous;
323         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
324         sh->sector = sector;
325         stripe_set_idx(sector, conf, previous, sh);
326         sh->state = 0;
327
328
329         for (i = sh->disks; i--; ) {
330                 struct r5dev *dev = &sh->dev[i];
331
332                 if (dev->toread || dev->read || dev->towrite || dev->written ||
333                     test_bit(R5_LOCKED, &dev->flags)) {
334                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
335                                (unsigned long long)sh->sector, i, dev->toread,
336                                dev->read, dev->towrite, dev->written,
337                                test_bit(R5_LOCKED, &dev->flags));
338                         BUG();
339                 }
340                 dev->flags = 0;
341                 raid5_build_block(sh, i, previous);
342         }
343         insert_hash(conf, sh);
344 }
345
346 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
347                                          short generation)
348 {
349         struct stripe_head *sh;
350         struct hlist_node *hn;
351
352         CHECK_DEVLOCK();
353         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
354         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
355                 if (sh->sector == sector && sh->generation == generation)
356                         return sh;
357         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
358         return NULL;
359 }
360
361 static void unplug_slaves(mddev_t *mddev);
362 static void raid5_unplug_device(struct request_queue *q);
363
364 static struct stripe_head *
365 get_active_stripe(raid5_conf_t *conf, sector_t sector,
366                   int previous, int noblock)
367 {
368         struct stripe_head *sh;
369
370         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
371
372         spin_lock_irq(&conf->device_lock);
373
374         do {
375                 wait_event_lock_irq(conf->wait_for_stripe,
376                                     conf->quiesce == 0,
377                                     conf->device_lock, /* nothing */);
378                 sh = __find_stripe(conf, sector, conf->generation - previous);
379                 if (!sh) {
380                         if (!conf->inactive_blocked)
381                                 sh = get_free_stripe(conf);
382                         if (noblock && sh == NULL)
383                                 break;
384                         if (!sh) {
385                                 conf->inactive_blocked = 1;
386                                 wait_event_lock_irq(conf->wait_for_stripe,
387                                                     !list_empty(&conf->inactive_list) &&
388                                                     (atomic_read(&conf->active_stripes)
389                                                      < (conf->max_nr_stripes *3/4)
390                                                      || !conf->inactive_blocked),
391                                                     conf->device_lock,
392                                                     raid5_unplug_device(conf->mddev->queue)
393                                         );
394                                 conf->inactive_blocked = 0;
395                         } else
396                                 init_stripe(sh, sector, previous);
397                 } else {
398                         if (atomic_read(&sh->count)) {
399                                 BUG_ON(!list_empty(&sh->lru)
400                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
401                         } else {
402                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
403                                         atomic_inc(&conf->active_stripes);
404                                 if (list_empty(&sh->lru) &&
405                                     !test_bit(STRIPE_EXPANDING, &sh->state))
406                                         BUG();
407                                 list_del_init(&sh->lru);
408                         }
409                 }
410         } while (sh == NULL);
411
412         if (sh)
413                 atomic_inc(&sh->count);
414
415         spin_unlock_irq(&conf->device_lock);
416         return sh;
417 }
418
419 static void
420 raid5_end_read_request(struct bio *bi, int error);
421 static void
422 raid5_end_write_request(struct bio *bi, int error);
423
424 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
425 {
426         raid5_conf_t *conf = sh->raid_conf;
427         int i, disks = sh->disks;
428
429         might_sleep();
430
431         for (i = disks; i--; ) {
432                 int rw;
433                 struct bio *bi;
434                 mdk_rdev_t *rdev;
435                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
436                         rw = WRITE;
437                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
438                         rw = READ;
439                 else
440                         continue;
441
442                 bi = &sh->dev[i].req;
443
444                 bi->bi_rw = rw;
445                 if (rw == WRITE)
446                         bi->bi_end_io = raid5_end_write_request;
447                 else
448                         bi->bi_end_io = raid5_end_read_request;
449
450                 rcu_read_lock();
451                 rdev = rcu_dereference(conf->disks[i].rdev);
452                 if (rdev && test_bit(Faulty, &rdev->flags))
453                         rdev = NULL;
454                 if (rdev)
455                         atomic_inc(&rdev->nr_pending);
456                 rcu_read_unlock();
457
458                 if (rdev) {
459                         if (s->syncing || s->expanding || s->expanded)
460                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
461
462                         set_bit(STRIPE_IO_STARTED, &sh->state);
463
464                         bi->bi_bdev = rdev->bdev;
465                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
466                                 __func__, (unsigned long long)sh->sector,
467                                 bi->bi_rw, i);
468                         atomic_inc(&sh->count);
469                         bi->bi_sector = sh->sector + rdev->data_offset;
470                         bi->bi_flags = 1 << BIO_UPTODATE;
471                         bi->bi_vcnt = 1;
472                         bi->bi_max_vecs = 1;
473                         bi->bi_idx = 0;
474                         bi->bi_io_vec = &sh->dev[i].vec;
475                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
476                         bi->bi_io_vec[0].bv_offset = 0;
477                         bi->bi_size = STRIPE_SIZE;
478                         bi->bi_next = NULL;
479                         if (rw == WRITE &&
480                             test_bit(R5_ReWrite, &sh->dev[i].flags))
481                                 atomic_add(STRIPE_SECTORS,
482                                         &rdev->corrected_errors);
483                         generic_make_request(bi);
484                 } else {
485                         if (rw == WRITE)
486                                 set_bit(STRIPE_DEGRADED, &sh->state);
487                         pr_debug("skip op %ld on disc %d for sector %llu\n",
488                                 bi->bi_rw, i, (unsigned long long)sh->sector);
489                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
490                         set_bit(STRIPE_HANDLE, &sh->state);
491                 }
492         }
493 }
494
495 static struct dma_async_tx_descriptor *
496 async_copy_data(int frombio, struct bio *bio, struct page *page,
497         sector_t sector, struct dma_async_tx_descriptor *tx)
498 {
499         struct bio_vec *bvl;
500         struct page *bio_page;
501         int i;
502         int page_offset;
503         struct async_submit_ctl submit;
504
505         if (bio->bi_sector >= sector)
506                 page_offset = (signed)(bio->bi_sector - sector) * 512;
507         else
508                 page_offset = (signed)(sector - bio->bi_sector) * -512;
509
510         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
511         bio_for_each_segment(bvl, bio, i) {
512                 int len = bio_iovec_idx(bio, i)->bv_len;
513                 int clen;
514                 int b_offset = 0;
515
516                 if (page_offset < 0) {
517                         b_offset = -page_offset;
518                         page_offset += b_offset;
519                         len -= b_offset;
520                 }
521
522                 if (len > 0 && page_offset + len > STRIPE_SIZE)
523                         clen = STRIPE_SIZE - page_offset;
524                 else
525                         clen = len;
526
527                 if (clen > 0) {
528                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
529                         bio_page = bio_iovec_idx(bio, i)->bv_page;
530                         if (frombio)
531                                 tx = async_memcpy(page, bio_page, page_offset,
532                                                   b_offset, clen, &submit);
533                         else
534                                 tx = async_memcpy(bio_page, page, b_offset,
535                                                   page_offset, clen, &submit);
536                 }
537                 /* chain the operations */
538                 submit.depend_tx = tx;
539
540                 if (clen < len) /* hit end of page */
541                         break;
542                 page_offset +=  len;
543         }
544
545         return tx;
546 }
547
548 static void ops_complete_biofill(void *stripe_head_ref)
549 {
550         struct stripe_head *sh = stripe_head_ref;
551         struct bio *return_bi = NULL;
552         raid5_conf_t *conf = sh->raid_conf;
553         int i;
554
555         pr_debug("%s: stripe %llu\n", __func__,
556                 (unsigned long long)sh->sector);
557
558         /* clear completed biofills */
559         spin_lock_irq(&conf->device_lock);
560         for (i = sh->disks; i--; ) {
561                 struct r5dev *dev = &sh->dev[i];
562
563                 /* acknowledge completion of a biofill operation */
564                 /* and check if we need to reply to a read request,
565                  * new R5_Wantfill requests are held off until
566                  * !STRIPE_BIOFILL_RUN
567                  */
568                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
569                         struct bio *rbi, *rbi2;
570
571                         BUG_ON(!dev->read);
572                         rbi = dev->read;
573                         dev->read = NULL;
574                         while (rbi && rbi->bi_sector <
575                                 dev->sector + STRIPE_SECTORS) {
576                                 rbi2 = r5_next_bio(rbi, dev->sector);
577                                 if (!raid5_dec_bi_phys_segments(rbi)) {
578                                         rbi->bi_next = return_bi;
579                                         return_bi = rbi;
580                                 }
581                                 rbi = rbi2;
582                         }
583                 }
584         }
585         spin_unlock_irq(&conf->device_lock);
586         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
587
588         return_io(return_bi);
589
590         set_bit(STRIPE_HANDLE, &sh->state);
591         release_stripe(sh);
592 }
593
594 static void ops_run_biofill(struct stripe_head *sh)
595 {
596         struct dma_async_tx_descriptor *tx = NULL;
597         raid5_conf_t *conf = sh->raid_conf;
598         struct async_submit_ctl submit;
599         int i;
600
601         pr_debug("%s: stripe %llu\n", __func__,
602                 (unsigned long long)sh->sector);
603
604         for (i = sh->disks; i--; ) {
605                 struct r5dev *dev = &sh->dev[i];
606                 if (test_bit(R5_Wantfill, &dev->flags)) {
607                         struct bio *rbi;
608                         spin_lock_irq(&conf->device_lock);
609                         dev->read = rbi = dev->toread;
610                         dev->toread = NULL;
611                         spin_unlock_irq(&conf->device_lock);
612                         while (rbi && rbi->bi_sector <
613                                 dev->sector + STRIPE_SECTORS) {
614                                 tx = async_copy_data(0, rbi, dev->page,
615                                         dev->sector, tx);
616                                 rbi = r5_next_bio(rbi, dev->sector);
617                         }
618                 }
619         }
620
621         atomic_inc(&sh->count);
622         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
623         async_trigger_callback(&submit);
624 }
625
626 static void ops_complete_compute5(void *stripe_head_ref)
627 {
628         struct stripe_head *sh = stripe_head_ref;
629         int target = sh->ops.target;
630         struct r5dev *tgt = &sh->dev[target];
631
632         pr_debug("%s: stripe %llu\n", __func__,
633                 (unsigned long long)sh->sector);
634
635         set_bit(R5_UPTODATE, &tgt->flags);
636         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
637         clear_bit(R5_Wantcompute, &tgt->flags);
638         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
639         if (sh->check_state == check_state_compute_run)
640                 sh->check_state = check_state_compute_result;
641         set_bit(STRIPE_HANDLE, &sh->state);
642         release_stripe(sh);
643 }
644
645 /* return a pointer to the address conversion region of the scribble buffer */
646 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
647                                  struct raid5_percpu *percpu)
648 {
649         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
650 }
651
652 static struct dma_async_tx_descriptor *
653 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
654 {
655         int disks = sh->disks;
656         struct page **xor_srcs = percpu->scribble;
657         int target = sh->ops.target;
658         struct r5dev *tgt = &sh->dev[target];
659         struct page *xor_dest = tgt->page;
660         int count = 0;
661         struct dma_async_tx_descriptor *tx;
662         struct async_submit_ctl submit;
663         int i;
664
665         pr_debug("%s: stripe %llu block: %d\n",
666                 __func__, (unsigned long long)sh->sector, target);
667         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
668
669         for (i = disks; i--; )
670                 if (i != target)
671                         xor_srcs[count++] = sh->dev[i].page;
672
673         atomic_inc(&sh->count);
674
675         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL,
676                           ops_complete_compute5, sh, to_addr_conv(sh, percpu));
677         if (unlikely(count == 1))
678                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
679         else
680                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
681
682         return tx;
683 }
684
685 static void ops_complete_prexor(void *stripe_head_ref)
686 {
687         struct stripe_head *sh = stripe_head_ref;
688
689         pr_debug("%s: stripe %llu\n", __func__,
690                 (unsigned long long)sh->sector);
691 }
692
693 static struct dma_async_tx_descriptor *
694 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
695                struct dma_async_tx_descriptor *tx)
696 {
697         int disks = sh->disks;
698         struct page **xor_srcs = percpu->scribble;
699         int count = 0, pd_idx = sh->pd_idx, i;
700         struct async_submit_ctl submit;
701
702         /* existing parity data subtracted */
703         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
704
705         pr_debug("%s: stripe %llu\n", __func__,
706                 (unsigned long long)sh->sector);
707
708         for (i = disks; i--; ) {
709                 struct r5dev *dev = &sh->dev[i];
710                 /* Only process blocks that are known to be uptodate */
711                 if (test_bit(R5_Wantdrain, &dev->flags))
712                         xor_srcs[count++] = dev->page;
713         }
714
715         init_async_submit(&submit, ASYNC_TX_XOR_DROP_DST, tx,
716                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
717         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
718
719         return tx;
720 }
721
722 static struct dma_async_tx_descriptor *
723 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
724 {
725         int disks = sh->disks;
726         int i;
727
728         pr_debug("%s: stripe %llu\n", __func__,
729                 (unsigned long long)sh->sector);
730
731         for (i = disks; i--; ) {
732                 struct r5dev *dev = &sh->dev[i];
733                 struct bio *chosen;
734
735                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
736                         struct bio *wbi;
737
738                         spin_lock(&sh->lock);
739                         chosen = dev->towrite;
740                         dev->towrite = NULL;
741                         BUG_ON(dev->written);
742                         wbi = dev->written = chosen;
743                         spin_unlock(&sh->lock);
744
745                         while (wbi && wbi->bi_sector <
746                                 dev->sector + STRIPE_SECTORS) {
747                                 tx = async_copy_data(1, wbi, dev->page,
748                                         dev->sector, tx);
749                                 wbi = r5_next_bio(wbi, dev->sector);
750                         }
751                 }
752         }
753
754         return tx;
755 }
756
757 static void ops_complete_postxor(void *stripe_head_ref)
758 {
759         struct stripe_head *sh = stripe_head_ref;
760         int disks = sh->disks, i, pd_idx = sh->pd_idx;
761
762         pr_debug("%s: stripe %llu\n", __func__,
763                 (unsigned long long)sh->sector);
764
765         for (i = disks; i--; ) {
766                 struct r5dev *dev = &sh->dev[i];
767                 if (dev->written || i == pd_idx)
768                         set_bit(R5_UPTODATE, &dev->flags);
769         }
770
771         if (sh->reconstruct_state == reconstruct_state_drain_run)
772                 sh->reconstruct_state = reconstruct_state_drain_result;
773         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
774                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
775         else {
776                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
777                 sh->reconstruct_state = reconstruct_state_result;
778         }
779
780         set_bit(STRIPE_HANDLE, &sh->state);
781         release_stripe(sh);
782 }
783
784 static void
785 ops_run_postxor(struct stripe_head *sh, struct raid5_percpu *percpu,
786                 struct dma_async_tx_descriptor *tx)
787 {
788         int disks = sh->disks;
789         struct page **xor_srcs = percpu->scribble;
790         struct async_submit_ctl submit;
791         int count = 0, pd_idx = sh->pd_idx, i;
792         struct page *xor_dest;
793         int prexor = 0;
794         unsigned long flags;
795
796         pr_debug("%s: stripe %llu\n", __func__,
797                 (unsigned long long)sh->sector);
798
799         /* check if prexor is active which means only process blocks
800          * that are part of a read-modify-write (written)
801          */
802         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
803                 prexor = 1;
804                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
805                 for (i = disks; i--; ) {
806                         struct r5dev *dev = &sh->dev[i];
807                         if (dev->written)
808                                 xor_srcs[count++] = dev->page;
809                 }
810         } else {
811                 xor_dest = sh->dev[pd_idx].page;
812                 for (i = disks; i--; ) {
813                         struct r5dev *dev = &sh->dev[i];
814                         if (i != pd_idx)
815                                 xor_srcs[count++] = dev->page;
816                 }
817         }
818
819         /* 1/ if we prexor'd then the dest is reused as a source
820          * 2/ if we did not prexor then we are redoing the parity
821          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
822          * for the synchronous xor case
823          */
824         flags = ASYNC_TX_ACK |
825                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
826
827         atomic_inc(&sh->count);
828
829         init_async_submit(&submit, flags, tx, ops_complete_postxor, sh,
830                           to_addr_conv(sh, percpu));
831         if (unlikely(count == 1))
832                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
833         else
834                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
835 }
836
837 static void ops_complete_check(void *stripe_head_ref)
838 {
839         struct stripe_head *sh = stripe_head_ref;
840
841         pr_debug("%s: stripe %llu\n", __func__,
842                 (unsigned long long)sh->sector);
843
844         sh->check_state = check_state_check_result;
845         set_bit(STRIPE_HANDLE, &sh->state);
846         release_stripe(sh);
847 }
848
849 static void ops_run_check(struct stripe_head *sh, struct raid5_percpu *percpu)
850 {
851         int disks = sh->disks;
852         struct page **xor_srcs = percpu->scribble;
853         struct dma_async_tx_descriptor *tx;
854         struct async_submit_ctl submit;
855
856         int count = 0, pd_idx = sh->pd_idx, i;
857         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
858
859         pr_debug("%s: stripe %llu\n", __func__,
860                 (unsigned long long)sh->sector);
861
862         for (i = disks; i--; ) {
863                 struct r5dev *dev = &sh->dev[i];
864                 if (i != pd_idx)
865                         xor_srcs[count++] = dev->page;
866         }
867
868         init_async_submit(&submit, 0, NULL, NULL, NULL,
869                           to_addr_conv(sh, percpu));
870         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
871                            &sh->ops.zero_sum_result, &submit);
872
873         atomic_inc(&sh->count);
874         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
875         tx = async_trigger_callback(&submit);
876 }
877
878 static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
879 {
880         int overlap_clear = 0, i, disks = sh->disks;
881         struct dma_async_tx_descriptor *tx = NULL;
882         raid5_conf_t *conf = sh->raid_conf;
883         struct raid5_percpu *percpu;
884         unsigned long cpu;
885
886         cpu = get_cpu();
887         percpu = per_cpu_ptr(conf->percpu, cpu);
888         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
889                 ops_run_biofill(sh);
890                 overlap_clear++;
891         }
892
893         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
894                 tx = ops_run_compute5(sh, percpu);
895                 /* terminate the chain if postxor is not set to be run */
896                 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
897                         async_tx_ack(tx);
898         }
899
900         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
901                 tx = ops_run_prexor(sh, percpu, tx);
902
903         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
904                 tx = ops_run_biodrain(sh, tx);
905                 overlap_clear++;
906         }
907
908         if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
909                 ops_run_postxor(sh, percpu, tx);
910
911         if (test_bit(STRIPE_OP_CHECK, &ops_request))
912                 ops_run_check(sh, percpu);
913
914         if (overlap_clear)
915                 for (i = disks; i--; ) {
916                         struct r5dev *dev = &sh->dev[i];
917                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
918                                 wake_up(&sh->raid_conf->wait_for_overlap);
919                 }
920         put_cpu();
921 }
922
923 static int grow_one_stripe(raid5_conf_t *conf)
924 {
925         struct stripe_head *sh;
926         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
927         if (!sh)
928                 return 0;
929         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
930         sh->raid_conf = conf;
931         spin_lock_init(&sh->lock);
932
933         if (grow_buffers(sh, conf->raid_disks)) {
934                 shrink_buffers(sh, conf->raid_disks);
935                 kmem_cache_free(conf->slab_cache, sh);
936                 return 0;
937         }
938         sh->disks = conf->raid_disks;
939         /* we just created an active stripe so... */
940         atomic_set(&sh->count, 1);
941         atomic_inc(&conf->active_stripes);
942         INIT_LIST_HEAD(&sh->lru);
943         release_stripe(sh);
944         return 1;
945 }
946
947 static int grow_stripes(raid5_conf_t *conf, int num)
948 {
949         struct kmem_cache *sc;
950         int devs = conf->raid_disks;
951
952         sprintf(conf->cache_name[0],
953                 "raid%d-%s", conf->level, mdname(conf->mddev));
954         sprintf(conf->cache_name[1],
955                 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
956         conf->active_name = 0;
957         sc = kmem_cache_create(conf->cache_name[conf->active_name],
958                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
959                                0, 0, NULL);
960         if (!sc)
961                 return 1;
962         conf->slab_cache = sc;
963         conf->pool_size = devs;
964         while (num--)
965                 if (!grow_one_stripe(conf))
966                         return 1;
967         return 0;
968 }
969
970 /**
971  * scribble_len - return the required size of the scribble region
972  * @num - total number of disks in the array
973  *
974  * The size must be enough to contain:
975  * 1/ a struct page pointer for each device in the array +2
976  * 2/ room to convert each entry in (1) to its corresponding dma
977  *    (dma_map_page()) or page (page_address()) address.
978  *
979  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
980  * calculate over all devices (not just the data blocks), using zeros in place
981  * of the P and Q blocks.
982  */
983 static size_t scribble_len(int num)
984 {
985         size_t len;
986
987         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
988
989         return len;
990 }
991
992 static int resize_stripes(raid5_conf_t *conf, int newsize)
993 {
994         /* Make all the stripes able to hold 'newsize' devices.
995          * New slots in each stripe get 'page' set to a new page.
996          *
997          * This happens in stages:
998          * 1/ create a new kmem_cache and allocate the required number of
999          *    stripe_heads.
1000          * 2/ gather all the old stripe_heads and tranfer the pages across
1001          *    to the new stripe_heads.  This will have the side effect of
1002          *    freezing the array as once all stripe_heads have been collected,
1003          *    no IO will be possible.  Old stripe heads are freed once their
1004          *    pages have been transferred over, and the old kmem_cache is
1005          *    freed when all stripes are done.
1006          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1007          *    we simple return a failre status - no need to clean anything up.
1008          * 4/ allocate new pages for the new slots in the new stripe_heads.
1009          *    If this fails, we don't bother trying the shrink the
1010          *    stripe_heads down again, we just leave them as they are.
1011          *    As each stripe_head is processed the new one is released into
1012          *    active service.
1013          *
1014          * Once step2 is started, we cannot afford to wait for a write,
1015          * so we use GFP_NOIO allocations.
1016          */
1017         struct stripe_head *osh, *nsh;
1018         LIST_HEAD(newstripes);
1019         struct disk_info *ndisks;
1020         unsigned long cpu;
1021         int err;
1022         struct kmem_cache *sc;
1023         int i;
1024
1025         if (newsize <= conf->pool_size)
1026                 return 0; /* never bother to shrink */
1027
1028         err = md_allow_write(conf->mddev);
1029         if (err)
1030                 return err;
1031
1032         /* Step 1 */
1033         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1034                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1035                                0, 0, NULL);
1036         if (!sc)
1037                 return -ENOMEM;
1038
1039         for (i = conf->max_nr_stripes; i; i--) {
1040                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1041                 if (!nsh)
1042                         break;
1043
1044                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1045
1046                 nsh->raid_conf = conf;
1047                 spin_lock_init(&nsh->lock);
1048
1049                 list_add(&nsh->lru, &newstripes);
1050         }
1051         if (i) {
1052                 /* didn't get enough, give up */
1053                 while (!list_empty(&newstripes)) {
1054                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1055                         list_del(&nsh->lru);
1056                         kmem_cache_free(sc, nsh);
1057                 }
1058                 kmem_cache_destroy(sc);
1059                 return -ENOMEM;
1060         }
1061         /* Step 2 - Must use GFP_NOIO now.
1062          * OK, we have enough stripes, start collecting inactive
1063          * stripes and copying them over
1064          */
1065         list_for_each_entry(nsh, &newstripes, lru) {
1066                 spin_lock_irq(&conf->device_lock);
1067                 wait_event_lock_irq(conf->wait_for_stripe,
1068                                     !list_empty(&conf->inactive_list),
1069                                     conf->device_lock,
1070                                     unplug_slaves(conf->mddev)
1071                         );
1072                 osh = get_free_stripe(conf);
1073                 spin_unlock_irq(&conf->device_lock);
1074                 atomic_set(&nsh->count, 1);
1075                 for(i=0; i<conf->pool_size; i++)
1076                         nsh->dev[i].page = osh->dev[i].page;
1077                 for( ; i<newsize; i++)
1078                         nsh->dev[i].page = NULL;
1079                 kmem_cache_free(conf->slab_cache, osh);
1080         }
1081         kmem_cache_destroy(conf->slab_cache);
1082
1083         /* Step 3.
1084          * At this point, we are holding all the stripes so the array
1085          * is completely stalled, so now is a good time to resize
1086          * conf->disks and the scribble region
1087          */
1088         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1089         if (ndisks) {
1090                 for (i=0; i<conf->raid_disks; i++)
1091                         ndisks[i] = conf->disks[i];
1092                 kfree(conf->disks);
1093                 conf->disks = ndisks;
1094         } else
1095                 err = -ENOMEM;
1096
1097         get_online_cpus();
1098         conf->scribble_len = scribble_len(newsize);
1099         for_each_present_cpu(cpu) {
1100                 struct raid5_percpu *percpu;
1101                 void *scribble;
1102
1103                 percpu = per_cpu_ptr(conf->percpu, cpu);
1104                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1105
1106                 if (scribble) {
1107                         kfree(percpu->scribble);
1108                         percpu->scribble = scribble;
1109                 } else {
1110                         err = -ENOMEM;
1111                         break;
1112                 }
1113         }
1114         put_online_cpus();
1115
1116         /* Step 4, return new stripes to service */
1117         while(!list_empty(&newstripes)) {
1118                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1119                 list_del_init(&nsh->lru);
1120
1121                 for (i=conf->raid_disks; i < newsize; i++)
1122                         if (nsh->dev[i].page == NULL) {
1123                                 struct page *p = alloc_page(GFP_NOIO);
1124                                 nsh->dev[i].page = p;
1125                                 if (!p)
1126                                         err = -ENOMEM;
1127                         }
1128                 release_stripe(nsh);
1129         }
1130         /* critical section pass, GFP_NOIO no longer needed */
1131
1132         conf->slab_cache = sc;
1133         conf->active_name = 1-conf->active_name;
1134         conf->pool_size = newsize;
1135         return err;
1136 }
1137
1138 static int drop_one_stripe(raid5_conf_t *conf)
1139 {
1140         struct stripe_head *sh;
1141
1142         spin_lock_irq(&conf->device_lock);
1143         sh = get_free_stripe(conf);
1144         spin_unlock_irq(&conf->device_lock);
1145         if (!sh)
1146                 return 0;
1147         BUG_ON(atomic_read(&sh->count));
1148         shrink_buffers(sh, conf->pool_size);
1149         kmem_cache_free(conf->slab_cache, sh);
1150         atomic_dec(&conf->active_stripes);
1151         return 1;
1152 }
1153
1154 static void shrink_stripes(raid5_conf_t *conf)
1155 {
1156         while (drop_one_stripe(conf))
1157                 ;
1158
1159         if (conf->slab_cache)
1160                 kmem_cache_destroy(conf->slab_cache);
1161         conf->slab_cache = NULL;
1162 }
1163
1164 static void raid5_end_read_request(struct bio * bi, int error)
1165 {
1166         struct stripe_head *sh = bi->bi_private;
1167         raid5_conf_t *conf = sh->raid_conf;
1168         int disks = sh->disks, i;
1169         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1170         char b[BDEVNAME_SIZE];
1171         mdk_rdev_t *rdev;
1172
1173
1174         for (i=0 ; i<disks; i++)
1175                 if (bi == &sh->dev[i].req)
1176                         break;
1177
1178         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1179                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1180                 uptodate);
1181         if (i == disks) {
1182                 BUG();
1183                 return;
1184         }
1185
1186         if (uptodate) {
1187                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1188                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1189                         rdev = conf->disks[i].rdev;
1190                         printk_rl(KERN_INFO "raid5:%s: read error corrected"
1191                                   " (%lu sectors at %llu on %s)\n",
1192                                   mdname(conf->mddev), STRIPE_SECTORS,
1193                                   (unsigned long long)(sh->sector
1194                                                        + rdev->data_offset),
1195                                   bdevname(rdev->bdev, b));
1196                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1197                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1198                 }
1199                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1200                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1201         } else {
1202                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1203                 int retry = 0;
1204                 rdev = conf->disks[i].rdev;
1205
1206                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1207                 atomic_inc(&rdev->read_errors);
1208                 if (conf->mddev->degraded)
1209                         printk_rl(KERN_WARNING
1210                                   "raid5:%s: read error not correctable "
1211                                   "(sector %llu on %s).\n",
1212                                   mdname(conf->mddev),
1213                                   (unsigned long long)(sh->sector
1214                                                        + rdev->data_offset),
1215                                   bdn);
1216                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1217                         /* Oh, no!!! */
1218                         printk_rl(KERN_WARNING
1219                                   "raid5:%s: read error NOT corrected!! "
1220                                   "(sector %llu on %s).\n",
1221                                   mdname(conf->mddev),
1222                                   (unsigned long long)(sh->sector
1223                                                        + rdev->data_offset),
1224                                   bdn);
1225                 else if (atomic_read(&rdev->read_errors)
1226                          > conf->max_nr_stripes)
1227                         printk(KERN_WARNING
1228                                "raid5:%s: Too many read errors, failing device %s.\n",
1229                                mdname(conf->mddev), bdn);
1230                 else
1231                         retry = 1;
1232                 if (retry)
1233                         set_bit(R5_ReadError, &sh->dev[i].flags);
1234                 else {
1235                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1236                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1237                         md_error(conf->mddev, rdev);
1238                 }
1239         }
1240         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1241         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1242         set_bit(STRIPE_HANDLE, &sh->state);
1243         release_stripe(sh);
1244 }
1245
1246 static void raid5_end_write_request(struct bio *bi, int error)
1247 {
1248         struct stripe_head *sh = bi->bi_private;
1249         raid5_conf_t *conf = sh->raid_conf;
1250         int disks = sh->disks, i;
1251         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1252
1253         for (i=0 ; i<disks; i++)
1254                 if (bi == &sh->dev[i].req)
1255                         break;
1256
1257         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1258                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1259                 uptodate);
1260         if (i == disks) {
1261                 BUG();
1262                 return;
1263         }
1264
1265         if (!uptodate)
1266                 md_error(conf->mddev, conf->disks[i].rdev);
1267
1268         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1269         
1270         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1271         set_bit(STRIPE_HANDLE, &sh->state);
1272         release_stripe(sh);
1273 }
1274
1275
1276 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1277         
1278 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1279 {
1280         struct r5dev *dev = &sh->dev[i];
1281
1282         bio_init(&dev->req);
1283         dev->req.bi_io_vec = &dev->vec;
1284         dev->req.bi_vcnt++;
1285         dev->req.bi_max_vecs++;
1286         dev->vec.bv_page = dev->page;
1287         dev->vec.bv_len = STRIPE_SIZE;
1288         dev->vec.bv_offset = 0;
1289
1290         dev->req.bi_sector = sh->sector;
1291         dev->req.bi_private = sh;
1292
1293         dev->flags = 0;
1294         dev->sector = compute_blocknr(sh, i, previous);
1295 }
1296
1297 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1298 {
1299         char b[BDEVNAME_SIZE];
1300         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1301         pr_debug("raid5: error called\n");
1302
1303         if (!test_bit(Faulty, &rdev->flags)) {
1304                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1305                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1306                         unsigned long flags;
1307                         spin_lock_irqsave(&conf->device_lock, flags);
1308                         mddev->degraded++;
1309                         spin_unlock_irqrestore(&conf->device_lock, flags);
1310                         /*
1311                          * if recovery was running, make sure it aborts.
1312                          */
1313                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1314                 }
1315                 set_bit(Faulty, &rdev->flags);
1316                 printk(KERN_ALERT
1317                        "raid5: Disk failure on %s, disabling device.\n"
1318                        "raid5: Operation continuing on %d devices.\n",
1319                        bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1320         }
1321 }
1322
1323 /*
1324  * Input: a 'big' sector number,
1325  * Output: index of the data and parity disk, and the sector # in them.
1326  */
1327 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1328                                      int previous, int *dd_idx,
1329                                      struct stripe_head *sh)
1330 {
1331         long stripe;
1332         unsigned long chunk_number;
1333         unsigned int chunk_offset;
1334         int pd_idx, qd_idx;
1335         int ddf_layout = 0;
1336         sector_t new_sector;
1337         int algorithm = previous ? conf->prev_algo
1338                                  : conf->algorithm;
1339         int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1340                                          : (conf->chunk_size >> 9);
1341         int raid_disks = previous ? conf->previous_raid_disks
1342                                   : conf->raid_disks;
1343         int data_disks = raid_disks - conf->max_degraded;
1344
1345         /* First compute the information on this sector */
1346
1347         /*
1348          * Compute the chunk number and the sector offset inside the chunk
1349          */
1350         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1351         chunk_number = r_sector;
1352         BUG_ON(r_sector != chunk_number);
1353
1354         /*
1355          * Compute the stripe number
1356          */
1357         stripe = chunk_number / data_disks;
1358
1359         /*
1360          * Compute the data disk and parity disk indexes inside the stripe
1361          */
1362         *dd_idx = chunk_number % data_disks;
1363
1364         /*
1365          * Select the parity disk based on the user selected algorithm.
1366          */
1367         pd_idx = qd_idx = ~0;
1368         switch(conf->level) {
1369         case 4:
1370                 pd_idx = data_disks;
1371                 break;
1372         case 5:
1373                 switch (algorithm) {
1374                 case ALGORITHM_LEFT_ASYMMETRIC:
1375                         pd_idx = data_disks - stripe % raid_disks;
1376                         if (*dd_idx >= pd_idx)
1377                                 (*dd_idx)++;
1378                         break;
1379                 case ALGORITHM_RIGHT_ASYMMETRIC:
1380                         pd_idx = stripe % raid_disks;
1381                         if (*dd_idx >= pd_idx)
1382                                 (*dd_idx)++;
1383                         break;
1384                 case ALGORITHM_LEFT_SYMMETRIC:
1385                         pd_idx = data_disks - stripe % raid_disks;
1386                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1387                         break;
1388                 case ALGORITHM_RIGHT_SYMMETRIC:
1389                         pd_idx = stripe % raid_disks;
1390                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1391                         break;
1392                 case ALGORITHM_PARITY_0:
1393                         pd_idx = 0;
1394                         (*dd_idx)++;
1395                         break;
1396                 case ALGORITHM_PARITY_N:
1397                         pd_idx = data_disks;
1398                         break;
1399                 default:
1400                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1401                                 algorithm);
1402                         BUG();
1403                 }
1404                 break;
1405         case 6:
1406
1407                 switch (algorithm) {
1408                 case ALGORITHM_LEFT_ASYMMETRIC:
1409                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1410                         qd_idx = pd_idx + 1;
1411                         if (pd_idx == raid_disks-1) {
1412                                 (*dd_idx)++;    /* Q D D D P */
1413                                 qd_idx = 0;
1414                         } else if (*dd_idx >= pd_idx)
1415                                 (*dd_idx) += 2; /* D D P Q D */
1416                         break;
1417                 case ALGORITHM_RIGHT_ASYMMETRIC:
1418                         pd_idx = stripe % raid_disks;
1419                         qd_idx = pd_idx + 1;
1420                         if (pd_idx == raid_disks-1) {
1421                                 (*dd_idx)++;    /* Q D D D P */
1422                                 qd_idx = 0;
1423                         } else if (*dd_idx >= pd_idx)
1424                                 (*dd_idx) += 2; /* D D P Q D */
1425                         break;
1426                 case ALGORITHM_LEFT_SYMMETRIC:
1427                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1428                         qd_idx = (pd_idx + 1) % raid_disks;
1429                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1430                         break;
1431                 case ALGORITHM_RIGHT_SYMMETRIC:
1432                         pd_idx = stripe % raid_disks;
1433                         qd_idx = (pd_idx + 1) % raid_disks;
1434                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1435                         break;
1436
1437                 case ALGORITHM_PARITY_0:
1438                         pd_idx = 0;
1439                         qd_idx = 1;
1440                         (*dd_idx) += 2;
1441                         break;
1442                 case ALGORITHM_PARITY_N:
1443                         pd_idx = data_disks;
1444                         qd_idx = data_disks + 1;
1445                         break;
1446
1447                 case ALGORITHM_ROTATING_ZERO_RESTART:
1448                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1449                          * of blocks for computing Q is different.
1450                          */
1451                         pd_idx = stripe % raid_disks;
1452                         qd_idx = pd_idx + 1;
1453                         if (pd_idx == raid_disks-1) {
1454                                 (*dd_idx)++;    /* Q D D D P */
1455                                 qd_idx = 0;
1456                         } else if (*dd_idx >= pd_idx)
1457                                 (*dd_idx) += 2; /* D D P Q D */
1458                         ddf_layout = 1;
1459                         break;
1460
1461                 case ALGORITHM_ROTATING_N_RESTART:
1462                         /* Same a left_asymmetric, by first stripe is
1463                          * D D D P Q  rather than
1464                          * Q D D D P
1465                          */
1466                         pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1467                         qd_idx = pd_idx + 1;
1468                         if (pd_idx == raid_disks-1) {
1469                                 (*dd_idx)++;    /* Q D D D P */
1470                                 qd_idx = 0;
1471                         } else if (*dd_idx >= pd_idx)
1472                                 (*dd_idx) += 2; /* D D P Q D */
1473                         ddf_layout = 1;
1474                         break;
1475
1476                 case ALGORITHM_ROTATING_N_CONTINUE:
1477                         /* Same as left_symmetric but Q is before P */
1478                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1479                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1480                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1481                         ddf_layout = 1;
1482                         break;
1483
1484                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1485                         /* RAID5 left_asymmetric, with Q on last device */
1486                         pd_idx = data_disks - stripe % (raid_disks-1);
1487                         if (*dd_idx >= pd_idx)
1488                                 (*dd_idx)++;
1489                         qd_idx = raid_disks - 1;
1490                         break;
1491
1492                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1493                         pd_idx = stripe % (raid_disks-1);
1494                         if (*dd_idx >= pd_idx)
1495                                 (*dd_idx)++;
1496                         qd_idx = raid_disks - 1;
1497                         break;
1498
1499                 case ALGORITHM_LEFT_SYMMETRIC_6:
1500                         pd_idx = data_disks - stripe % (raid_disks-1);
1501                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1502                         qd_idx = raid_disks - 1;
1503                         break;
1504
1505                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1506                         pd_idx = stripe % (raid_disks-1);
1507                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1508                         qd_idx = raid_disks - 1;
1509                         break;
1510
1511                 case ALGORITHM_PARITY_0_6:
1512                         pd_idx = 0;
1513                         (*dd_idx)++;
1514                         qd_idx = raid_disks - 1;
1515                         break;
1516
1517
1518                 default:
1519                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1520                                algorithm);
1521                         BUG();
1522                 }
1523                 break;
1524         }
1525
1526         if (sh) {
1527                 sh->pd_idx = pd_idx;
1528                 sh->qd_idx = qd_idx;
1529                 sh->ddf_layout = ddf_layout;
1530         }
1531         /*
1532          * Finally, compute the new sector number
1533          */
1534         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1535         return new_sector;
1536 }
1537
1538
1539 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1540 {
1541         raid5_conf_t *conf = sh->raid_conf;
1542         int raid_disks = sh->disks;
1543         int data_disks = raid_disks - conf->max_degraded;
1544         sector_t new_sector = sh->sector, check;
1545         int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1546                                          : (conf->chunk_size >> 9);
1547         int algorithm = previous ? conf->prev_algo
1548                                  : conf->algorithm;
1549         sector_t stripe;
1550         int chunk_offset;
1551         int chunk_number, dummy1, dd_idx = i;
1552         sector_t r_sector;
1553         struct stripe_head sh2;
1554
1555
1556         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1557         stripe = new_sector;
1558         BUG_ON(new_sector != stripe);
1559
1560         if (i == sh->pd_idx)
1561                 return 0;
1562         switch(conf->level) {
1563         case 4: break;
1564         case 5:
1565                 switch (algorithm) {
1566                 case ALGORITHM_LEFT_ASYMMETRIC:
1567                 case ALGORITHM_RIGHT_ASYMMETRIC:
1568                         if (i > sh->pd_idx)
1569                                 i--;
1570                         break;
1571                 case ALGORITHM_LEFT_SYMMETRIC:
1572                 case ALGORITHM_RIGHT_SYMMETRIC:
1573                         if (i < sh->pd_idx)
1574                                 i += raid_disks;
1575                         i -= (sh->pd_idx + 1);
1576                         break;
1577                 case ALGORITHM_PARITY_0:
1578                         i -= 1;
1579                         break;
1580                 case ALGORITHM_PARITY_N:
1581                         break;
1582                 default:
1583                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1584                                algorithm);
1585                         BUG();
1586                 }
1587                 break;
1588         case 6:
1589                 if (i == sh->qd_idx)
1590                         return 0; /* It is the Q disk */
1591                 switch (algorithm) {
1592                 case ALGORITHM_LEFT_ASYMMETRIC:
1593                 case ALGORITHM_RIGHT_ASYMMETRIC:
1594                 case ALGORITHM_ROTATING_ZERO_RESTART:
1595                 case ALGORITHM_ROTATING_N_RESTART:
1596                         if (sh->pd_idx == raid_disks-1)
1597                                 i--;    /* Q D D D P */
1598                         else if (i > sh->pd_idx)
1599                                 i -= 2; /* D D P Q D */
1600                         break;
1601                 case ALGORITHM_LEFT_SYMMETRIC:
1602                 case ALGORITHM_RIGHT_SYMMETRIC:
1603                         if (sh->pd_idx == raid_disks-1)
1604                                 i--; /* Q D D D P */
1605                         else {
1606                                 /* D D P Q D */
1607                                 if (i < sh->pd_idx)
1608                                         i += raid_disks;
1609                                 i -= (sh->pd_idx + 2);
1610                         }
1611                         break;
1612                 case ALGORITHM_PARITY_0:
1613                         i -= 2;
1614                         break;
1615                 case ALGORITHM_PARITY_N:
1616                         break;
1617                 case ALGORITHM_ROTATING_N_CONTINUE:
1618                         if (sh->pd_idx == 0)
1619                                 i--;    /* P D D D Q */
1620                         else if (i > sh->pd_idx)
1621                                 i -= 2; /* D D Q P D */
1622                         break;
1623                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1624                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1625                         if (i > sh->pd_idx)
1626                                 i--;
1627                         break;
1628                 case ALGORITHM_LEFT_SYMMETRIC_6:
1629                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1630                         if (i < sh->pd_idx)
1631                                 i += data_disks + 1;
1632                         i -= (sh->pd_idx + 1);
1633                         break;
1634                 case ALGORITHM_PARITY_0_6:
1635                         i -= 1;
1636                         break;
1637                 default:
1638                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1639                                algorithm);
1640                         BUG();
1641                 }
1642                 break;
1643         }
1644
1645         chunk_number = stripe * data_disks + i;
1646         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1647
1648         check = raid5_compute_sector(conf, r_sector,
1649                                      previous, &dummy1, &sh2);
1650         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1651                 || sh2.qd_idx != sh->qd_idx) {
1652                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1653                 return 0;
1654         }
1655         return r_sector;
1656 }
1657
1658
1659
1660 /*
1661  * Copy data between a page in the stripe cache, and one or more bion
1662  * The page could align with the middle of the bio, or there could be
1663  * several bion, each with several bio_vecs, which cover part of the page
1664  * Multiple bion are linked together on bi_next.  There may be extras
1665  * at the end of this list.  We ignore them.
1666  */
1667 static void copy_data(int frombio, struct bio *bio,
1668                      struct page *page,
1669                      sector_t sector)
1670 {
1671         char *pa = page_address(page);
1672         struct bio_vec *bvl;
1673         int i;
1674         int page_offset;
1675
1676         if (bio->bi_sector >= sector)
1677                 page_offset = (signed)(bio->bi_sector - sector) * 512;
1678         else
1679                 page_offset = (signed)(sector - bio->bi_sector) * -512;
1680         bio_for_each_segment(bvl, bio, i) {
1681                 int len = bio_iovec_idx(bio,i)->bv_len;
1682                 int clen;
1683                 int b_offset = 0;
1684
1685                 if (page_offset < 0) {
1686                         b_offset = -page_offset;
1687                         page_offset += b_offset;
1688                         len -= b_offset;
1689                 }
1690
1691                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1692                         clen = STRIPE_SIZE - page_offset;
1693                 else clen = len;
1694
1695                 if (clen > 0) {
1696                         char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1697                         if (frombio)
1698                                 memcpy(pa+page_offset, ba+b_offset, clen);
1699                         else
1700                                 memcpy(ba+b_offset, pa+page_offset, clen);
1701                         __bio_kunmap_atomic(ba, KM_USER0);
1702                 }
1703                 if (clen < len) /* hit end of page */
1704                         break;
1705                 page_offset +=  len;
1706         }
1707 }
1708
1709 #define check_xor()     do {                                              \
1710                                 if (count == MAX_XOR_BLOCKS) {            \
1711                                 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1712                                 count = 0;                                \
1713                            }                                              \
1714                         } while(0)
1715
1716 static void compute_parity6(struct stripe_head *sh, int method)
1717 {
1718         raid5_conf_t *conf = sh->raid_conf;
1719         int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1720         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1721         struct bio *chosen;
1722         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1723         void *ptrs[syndrome_disks+2];
1724
1725         pd_idx = sh->pd_idx;
1726         qd_idx = sh->qd_idx;
1727         d0_idx = raid6_d0(sh);
1728
1729         pr_debug("compute_parity, stripe %llu, method %d\n",
1730                 (unsigned long long)sh->sector, method);
1731
1732         switch(method) {
1733         case READ_MODIFY_WRITE:
1734                 BUG();          /* READ_MODIFY_WRITE N/A for RAID-6 */
1735         case RECONSTRUCT_WRITE:
1736                 for (i= disks; i-- ;)
1737                         if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1738                                 chosen = sh->dev[i].towrite;
1739                                 sh->dev[i].towrite = NULL;
1740
1741                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1742                                         wake_up(&conf->wait_for_overlap);
1743
1744                                 BUG_ON(sh->dev[i].written);
1745                                 sh->dev[i].written = chosen;
1746                         }
1747                 break;
1748         case CHECK_PARITY:
1749                 BUG();          /* Not implemented yet */
1750         }
1751
1752         for (i = disks; i--;)
1753                 if (sh->dev[i].written) {
1754                         sector_t sector = sh->dev[i].sector;
1755                         struct bio *wbi = sh->dev[i].written;
1756                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1757                                 copy_data(1, wbi, sh->dev[i].page, sector);
1758                                 wbi = r5_next_bio(wbi, sector);
1759                         }
1760
1761                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1762                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1763                 }
1764
1765         /* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1766
1767         for (i = 0; i < disks; i++)
1768                 ptrs[i] = (void *)raid6_empty_zero_page;
1769
1770         count = 0;
1771         i = d0_idx;
1772         do {
1773                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1774
1775                 ptrs[slot] = page_address(sh->dev[i].page);
1776                 if (slot < syndrome_disks &&
1777                     !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1778                         printk(KERN_ERR "block %d/%d not uptodate "
1779                                "on parity calc\n", i, count);
1780                         BUG();
1781                 }
1782
1783                 i = raid6_next_disk(i, disks);
1784         } while (i != d0_idx);
1785         BUG_ON(count != syndrome_disks);
1786
1787         raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
1788
1789         switch(method) {
1790         case RECONSTRUCT_WRITE:
1791                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1792                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1793                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1794                 set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1795                 break;
1796         case UPDATE_PARITY:
1797                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1798                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1799                 break;
1800         }
1801 }
1802
1803
1804 /* Compute one missing block */
1805 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1806 {
1807         int i, count, disks = sh->disks;
1808         void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1809         int qd_idx = sh->qd_idx;
1810
1811         pr_debug("compute_block_1, stripe %llu, idx %d\n",
1812                 (unsigned long long)sh->sector, dd_idx);
1813
1814         if ( dd_idx == qd_idx ) {
1815                 /* We're actually computing the Q drive */
1816                 compute_parity6(sh, UPDATE_PARITY);
1817         } else {
1818                 dest = page_address(sh->dev[dd_idx].page);
1819                 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1820                 count = 0;
1821                 for (i = disks ; i--; ) {
1822                         if (i == dd_idx || i == qd_idx)
1823                                 continue;
1824                         p = page_address(sh->dev[i].page);
1825                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1826                                 ptr[count++] = p;
1827                         else
1828                                 printk("compute_block() %d, stripe %llu, %d"
1829                                        " not present\n", dd_idx,
1830                                        (unsigned long long)sh->sector, i);
1831
1832                         check_xor();
1833                 }
1834                 if (count)
1835                         xor_blocks(count, STRIPE_SIZE, dest, ptr);
1836                 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1837                 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1838         }
1839 }
1840
1841 /* Compute two missing blocks */
1842 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1843 {
1844         int i, count, disks = sh->disks;
1845         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1846         int d0_idx = raid6_d0(sh);
1847         int faila = -1, failb = -1;
1848         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1849         void *ptrs[syndrome_disks+2];
1850
1851         for (i = 0; i < disks ; i++)
1852                 ptrs[i] = (void *)raid6_empty_zero_page;
1853         count = 0;
1854         i = d0_idx;
1855         do {
1856                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1857
1858                 ptrs[slot] = page_address(sh->dev[i].page);
1859
1860                 if (i == dd_idx1)
1861                         faila = slot;
1862                 if (i == dd_idx2)
1863                         failb = slot;
1864                 i = raid6_next_disk(i, disks);
1865         } while (i != d0_idx);
1866         BUG_ON(count != syndrome_disks);
1867
1868         BUG_ON(faila == failb);
1869         if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1870
1871         pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1872                  (unsigned long long)sh->sector, dd_idx1, dd_idx2,
1873                  faila, failb);
1874
1875         if (failb == syndrome_disks+1) {
1876                 /* Q disk is one of the missing disks */
1877                 if (faila == syndrome_disks) {
1878                         /* Missing P+Q, just recompute */
1879                         compute_parity6(sh, UPDATE_PARITY);
1880                         return;
1881                 } else {
1882                         /* We're missing D+Q; recompute D from P */
1883                         compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
1884                                              dd_idx2 : dd_idx1),
1885                                         0);
1886                         compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1887                         return;
1888                 }
1889         }
1890
1891         /* We're missing D+P or D+D; */
1892         if (failb == syndrome_disks) {
1893                 /* We're missing D+P. */
1894                 raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
1895         } else {
1896                 /* We're missing D+D. */
1897                 raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
1898                                   ptrs);
1899         }
1900
1901         /* Both the above update both missing blocks */
1902         set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1903         set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1904 }
1905
1906 static void
1907 schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1908                          int rcw, int expand)
1909 {
1910         int i, pd_idx = sh->pd_idx, disks = sh->disks;
1911
1912         if (rcw) {
1913                 /* if we are not expanding this is a proper write request, and
1914                  * there will be bios with new data to be drained into the
1915                  * stripe cache
1916                  */
1917                 if (!expand) {
1918                         sh->reconstruct_state = reconstruct_state_drain_run;
1919                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1920                 } else
1921                         sh->reconstruct_state = reconstruct_state_run;
1922
1923                 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1924
1925                 for (i = disks; i--; ) {
1926                         struct r5dev *dev = &sh->dev[i];
1927
1928                         if (dev->towrite) {
1929                                 set_bit(R5_LOCKED, &dev->flags);
1930                                 set_bit(R5_Wantdrain, &dev->flags);
1931                                 if (!expand)
1932                                         clear_bit(R5_UPTODATE, &dev->flags);
1933                                 s->locked++;
1934                         }
1935                 }
1936                 if (s->locked + 1 == disks)
1937                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1938                                 atomic_inc(&sh->raid_conf->pending_full_writes);
1939         } else {
1940                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1941                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1942
1943                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1944                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1945                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1946                 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1947
1948                 for (i = disks; i--; ) {
1949                         struct r5dev *dev = &sh->dev[i];
1950                         if (i == pd_idx)
1951                                 continue;
1952
1953                         if (dev->towrite &&
1954                             (test_bit(R5_UPTODATE, &dev->flags) ||
1955                              test_bit(R5_Wantcompute, &dev->flags))) {
1956                                 set_bit(R5_Wantdrain, &dev->flags);
1957                                 set_bit(R5_LOCKED, &dev->flags);
1958                                 clear_bit(R5_UPTODATE, &dev->flags);
1959                                 s->locked++;
1960                         }
1961                 }
1962         }
1963
1964         /* keep the parity disk locked while asynchronous operations
1965          * are in flight
1966          */
1967         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1968         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1969         s->locked++;
1970
1971         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1972                 __func__, (unsigned long long)sh->sector,
1973                 s->locked, s->ops_request);
1974 }
1975
1976 /*
1977  * Each stripe/dev can have one or more bion attached.
1978  * toread/towrite point to the first in a chain.
1979  * The bi_next chain must be in order.
1980  */
1981 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1982 {
1983         struct bio **bip;
1984         raid5_conf_t *conf = sh->raid_conf;
1985         int firstwrite=0;
1986
1987         pr_debug("adding bh b#%llu to stripe s#%llu\n",
1988                 (unsigned long long)bi->bi_sector,
1989                 (unsigned long long)sh->sector);
1990
1991
1992         spin_lock(&sh->lock);
1993         spin_lock_irq(&conf->device_lock);
1994         if (forwrite) {
1995                 bip = &sh->dev[dd_idx].towrite;
1996                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1997                         firstwrite = 1;
1998         } else
1999                 bip = &sh->dev[dd_idx].toread;
2000         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2001                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2002                         goto overlap;
2003                 bip = & (*bip)->bi_next;
2004         }
2005         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2006                 goto overlap;
2007
2008         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2009         if (*bip)
2010                 bi->bi_next = *bip;
2011         *bip = bi;
2012         bi->bi_phys_segments++;
2013         spin_unlock_irq(&conf->device_lock);
2014         spin_unlock(&sh->lock);
2015
2016         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2017                 (unsigned long long)bi->bi_sector,
2018                 (unsigned long long)sh->sector, dd_idx);
2019
2020         if (conf->mddev->bitmap && firstwrite) {
2021                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2022                                   STRIPE_SECTORS, 0);
2023                 sh->bm_seq = conf->seq_flush+1;
2024                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2025         }
2026
2027         if (forwrite) {
2028                 /* check if page is covered */
2029                 sector_t sector = sh->dev[dd_idx].sector;
2030                 for (bi=sh->dev[dd_idx].towrite;
2031                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2032                              bi && bi->bi_sector <= sector;
2033                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2034                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2035                                 sector = bi->bi_sector + (bi->bi_size>>9);
2036                 }
2037                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2038                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2039         }
2040         return 1;
2041
2042  overlap:
2043         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2044         spin_unlock_irq(&conf->device_lock);
2045         spin_unlock(&sh->lock);
2046         return 0;
2047 }
2048
2049 static void end_reshape(raid5_conf_t *conf);
2050
2051 static int page_is_zero(struct page *p)
2052 {
2053         char *a = page_address(p);
2054         return ((*(u32*)a) == 0 &&
2055                 memcmp(a, a+4, STRIPE_SIZE-4)==0);
2056 }
2057
2058 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2059                             struct stripe_head *sh)
2060 {
2061         int sectors_per_chunk =
2062                 previous ? (conf->prev_chunk >> 9)
2063                          : (conf->chunk_size >> 9);
2064         int dd_idx;
2065         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2066         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2067
2068         raid5_compute_sector(conf,
2069                              stripe * (disks - conf->max_degraded)
2070                              *sectors_per_chunk + chunk_offset,
2071                              previous,
2072                              &dd_idx, sh);
2073 }
2074
2075 static void
2076 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2077                                 struct stripe_head_state *s, int disks,
2078                                 struct bio **return_bi)
2079 {
2080         int i;
2081         for (i = disks; i--; ) {
2082                 struct bio *bi;
2083                 int bitmap_end = 0;
2084
2085                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2086                         mdk_rdev_t *rdev;
2087                         rcu_read_lock();
2088                         rdev = rcu_dereference(conf->disks[i].rdev);
2089                         if (rdev && test_bit(In_sync, &rdev->flags))
2090                                 /* multiple read failures in one stripe */
2091                                 md_error(conf->mddev, rdev);
2092                         rcu_read_unlock();
2093                 }
2094                 spin_lock_irq(&conf->device_lock);
2095                 /* fail all writes first */
2096                 bi = sh->dev[i].towrite;
2097                 sh->dev[i].towrite = NULL;
2098                 if (bi) {
2099                         s->to_write--;
2100                         bitmap_end = 1;
2101                 }
2102
2103                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2104                         wake_up(&conf->wait_for_overlap);
2105
2106                 while (bi && bi->bi_sector <
2107                         sh->dev[i].sector + STRIPE_SECTORS) {
2108                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2109                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2110                         if (!raid5_dec_bi_phys_segments(bi)) {
2111                                 md_write_end(conf->mddev);
2112                                 bi->bi_next = *return_bi;
2113                                 *return_bi = bi;
2114                         }
2115                         bi = nextbi;
2116                 }
2117                 /* and fail all 'written' */
2118                 bi = sh->dev[i].written;
2119                 sh->dev[i].written = NULL;
2120                 if (bi) bitmap_end = 1;
2121                 while (bi && bi->bi_sector <
2122                        sh->dev[i].sector + STRIPE_SECTORS) {
2123                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2124                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2125                         if (!raid5_dec_bi_phys_segments(bi)) {
2126                                 md_write_end(conf->mddev);
2127                                 bi->bi_next = *return_bi;
2128                                 *return_bi = bi;
2129                         }
2130                         bi = bi2;
2131                 }
2132
2133                 /* fail any reads if this device is non-operational and
2134                  * the data has not reached the cache yet.
2135                  */
2136                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2137                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2138                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2139                         bi = sh->dev[i].toread;
2140                         sh->dev[i].toread = NULL;
2141                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2142                                 wake_up(&conf->wait_for_overlap);
2143                         if (bi) s->to_read--;
2144                         while (bi && bi->bi_sector <
2145                                sh->dev[i].sector + STRIPE_SECTORS) {
2146                                 struct bio *nextbi =
2147                                         r5_next_bio(bi, sh->dev[i].sector);
2148                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2149                                 if (!raid5_dec_bi_phys_segments(bi)) {
2150                                         bi->bi_next = *return_bi;
2151                                         *return_bi = bi;
2152                                 }
2153                                 bi = nextbi;
2154                         }
2155                 }
2156                 spin_unlock_irq(&conf->device_lock);
2157                 if (bitmap_end)
2158                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2159                                         STRIPE_SECTORS, 0, 0);
2160         }
2161
2162         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2163                 if (atomic_dec_and_test(&conf->pending_full_writes))
2164                         md_wakeup_thread(conf->mddev->thread);
2165 }
2166
2167 /* fetch_block5 - checks the given member device to see if its data needs
2168  * to be read or computed to satisfy a request.
2169  *
2170  * Returns 1 when no more member devices need to be checked, otherwise returns
2171  * 0 to tell the loop in handle_stripe_fill5 to continue
2172  */
2173 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2174                         int disk_idx, int disks)
2175 {
2176         struct r5dev *dev = &sh->dev[disk_idx];
2177         struct r5dev *failed_dev = &sh->dev[s->failed_num];
2178
2179         /* is the data in this block needed, and can we get it? */
2180         if (!test_bit(R5_LOCKED, &dev->flags) &&
2181             !test_bit(R5_UPTODATE, &dev->flags) &&
2182             (dev->toread ||
2183              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2184              s->syncing || s->expanding ||
2185              (s->failed &&
2186               (failed_dev->toread ||
2187                (failed_dev->towrite &&
2188                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2189                 /* We would like to get this block, possibly by computing it,
2190                  * otherwise read it if the backing disk is insync
2191                  */
2192                 if ((s->uptodate == disks - 1) &&
2193                     (s->failed && disk_idx == s->failed_num)) {
2194                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2195                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2196                         set_bit(R5_Wantcompute, &dev->flags);
2197                         sh->ops.target = disk_idx;
2198                         s->req_compute = 1;
2199                         /* Careful: from this point on 'uptodate' is in the eye
2200                          * of raid5_run_ops which services 'compute' operations
2201                          * before writes. R5_Wantcompute flags a block that will
2202                          * be R5_UPTODATE by the time it is needed for a
2203                          * subsequent operation.
2204                          */
2205                         s->uptodate++;
2206                         return 1; /* uptodate + compute == disks */
2207                 } else if (test_bit(R5_Insync, &dev->flags)) {
2208                         set_bit(R5_LOCKED, &dev->flags);
2209                         set_bit(R5_Wantread, &dev->flags);
2210                         s->locked++;
2211                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2212                                 s->syncing);
2213                 }
2214         }
2215
2216         return 0;
2217 }
2218
2219 /**
2220  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2221  */
2222 static void handle_stripe_fill5(struct stripe_head *sh,
2223                         struct stripe_head_state *s, int disks)
2224 {
2225         int i;
2226
2227         /* look for blocks to read/compute, skip this if a compute
2228          * is already in flight, or if the stripe contents are in the
2229          * midst of changing due to a write
2230          */
2231         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2232             !sh->reconstruct_state)
2233                 for (i = disks; i--; )
2234                         if (fetch_block5(sh, s, i, disks))
2235                                 break;
2236         set_bit(STRIPE_HANDLE, &sh->state);
2237 }
2238
2239 static void handle_stripe_fill6(struct stripe_head *sh,
2240                         struct stripe_head_state *s, struct r6_state *r6s,
2241                         int disks)
2242 {
2243         int i;
2244         for (i = disks; i--; ) {
2245                 struct r5dev *dev = &sh->dev[i];
2246                 if (!test_bit(R5_LOCKED, &dev->flags) &&
2247                     !test_bit(R5_UPTODATE, &dev->flags) &&
2248                     (dev->toread || (dev->towrite &&
2249                      !test_bit(R5_OVERWRITE, &dev->flags)) ||
2250                      s->syncing || s->expanding ||
2251                      (s->failed >= 1 &&
2252                       (sh->dev[r6s->failed_num[0]].toread ||
2253                        s->to_write)) ||
2254                      (s->failed >= 2 &&
2255                       (sh->dev[r6s->failed_num[1]].toread ||
2256                        s->to_write)))) {
2257                         /* we would like to get this block, possibly
2258                          * by computing it, but we might not be able to
2259                          */
2260                         if ((s->uptodate == disks - 1) &&
2261                             (s->failed && (i == r6s->failed_num[0] ||
2262                                            i == r6s->failed_num[1]))) {
2263                                 pr_debug("Computing stripe %llu block %d\n",
2264                                        (unsigned long long)sh->sector, i);
2265                                 compute_block_1(sh, i, 0);
2266                                 s->uptodate++;
2267                         } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2268                                 /* Computing 2-failure is *very* expensive; only
2269                                  * do it if failed >= 2
2270                                  */
2271                                 int other;
2272                                 for (other = disks; other--; ) {
2273                                         if (other == i)
2274                                                 continue;
2275                                         if (!test_bit(R5_UPTODATE,
2276                                               &sh->dev[other].flags))
2277                                                 break;
2278                                 }
2279                                 BUG_ON(other < 0);
2280                                 pr_debug("Computing stripe %llu blocks %d,%d\n",
2281                                        (unsigned long long)sh->sector,
2282                                        i, other);
2283                                 compute_block_2(sh, i, other);
2284                                 s->uptodate += 2;
2285                         } else if (test_bit(R5_Insync, &dev->flags)) {
2286                                 set_bit(R5_LOCKED, &dev->flags);
2287                                 set_bit(R5_Wantread, &dev->flags);
2288                                 s->locked++;
2289                                 pr_debug("Reading block %d (sync=%d)\n",
2290                                         i, s->syncing);
2291                         }
2292                 }
2293         }
2294         set_bit(STRIPE_HANDLE, &sh->state);
2295 }
2296
2297
2298 /* handle_stripe_clean_event
2299  * any written block on an uptodate or failed drive can be returned.
2300  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2301  * never LOCKED, so we don't need to test 'failed' directly.
2302  */
2303 static void handle_stripe_clean_event(raid5_conf_t *conf,
2304         struct stripe_head *sh, int disks, struct bio **return_bi)
2305 {
2306         int i;
2307         struct r5dev *dev;
2308
2309         for (i = disks; i--; )
2310                 if (sh->dev[i].written) {
2311                         dev = &sh->dev[i];
2312                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2313                                 test_bit(R5_UPTODATE, &dev->flags)) {
2314                                 /* We can return any write requests */
2315                                 struct bio *wbi, *wbi2;
2316                                 int bitmap_end = 0;
2317                                 pr_debug("Return write for disc %d\n", i);
2318                                 spin_lock_irq(&conf->device_lock);
2319                                 wbi = dev->written;
2320                                 dev->written = NULL;
2321                                 while (wbi && wbi->bi_sector <
2322                                         dev->sector + STRIPE_SECTORS) {
2323                                         wbi2 = r5_next_bio(wbi, dev->sector);
2324                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2325                                                 md_write_end(conf->mddev);
2326                                                 wbi->bi_next = *return_bi;
2327                                                 *return_bi = wbi;
2328                                         }
2329                                         wbi = wbi2;
2330                                 }
2331                                 if (dev->towrite == NULL)
2332                                         bitmap_end = 1;
2333                                 spin_unlock_irq(&conf->device_lock);
2334                                 if (bitmap_end)
2335                                         bitmap_endwrite(conf->mddev->bitmap,
2336                                                         sh->sector,
2337                                                         STRIPE_SECTORS,
2338                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2339                                                         0);
2340                         }
2341                 }
2342
2343         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2344                 if (atomic_dec_and_test(&conf->pending_full_writes))
2345                         md_wakeup_thread(conf->mddev->thread);
2346 }
2347
2348 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2349                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2350 {
2351         int rmw = 0, rcw = 0, i;
2352         for (i = disks; i--; ) {
2353                 /* would I have to read this buffer for read_modify_write */
2354                 struct r5dev *dev = &sh->dev[i];
2355                 if ((dev->towrite || i == sh->pd_idx) &&
2356                     !test_bit(R5_LOCKED, &dev->flags) &&
2357                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2358                       test_bit(R5_Wantcompute, &dev->flags))) {
2359                         if (test_bit(R5_Insync, &dev->flags))
2360                                 rmw++;
2361                         else
2362                                 rmw += 2*disks;  /* cannot read it */
2363                 }
2364                 /* Would I have to read this buffer for reconstruct_write */
2365                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2366                     !test_bit(R5_LOCKED, &dev->flags) &&
2367                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2368                     test_bit(R5_Wantcompute, &dev->flags))) {
2369                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2370                         else
2371                                 rcw += 2*disks;
2372                 }
2373         }
2374         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2375                 (unsigned long long)sh->sector, rmw, rcw);
2376         set_bit(STRIPE_HANDLE, &sh->state);
2377         if (rmw < rcw && rmw > 0)
2378                 /* prefer read-modify-write, but need to get some data */
2379                 for (i = disks; i--; ) {
2380                         struct r5dev *dev = &sh->dev[i];
2381                         if ((dev->towrite || i == sh->pd_idx) &&
2382                             !test_bit(R5_LOCKED, &dev->flags) &&
2383                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2384                             test_bit(R5_Wantcompute, &dev->flags)) &&
2385                             test_bit(R5_Insync, &dev->flags)) {
2386                                 if (
2387                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2388                                         pr_debug("Read_old block "
2389                                                 "%d for r-m-w\n", i);
2390                                         set_bit(R5_LOCKED, &dev->flags);
2391                                         set_bit(R5_Wantread, &dev->flags);
2392                                         s->locked++;
2393                                 } else {
2394                                         set_bit(STRIPE_DELAYED, &sh->state);
2395                                         set_bit(STRIPE_HANDLE, &sh->state);
2396                                 }
2397                         }
2398                 }
2399         if (rcw <= rmw && rcw > 0)
2400                 /* want reconstruct write, but need to get some data */
2401                 for (i = disks; i--; ) {
2402                         struct r5dev *dev = &sh->dev[i];
2403                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2404                             i != sh->pd_idx &&
2405                             !test_bit(R5_LOCKED, &dev->flags) &&
2406                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2407                             test_bit(R5_Wantcompute, &dev->flags)) &&
2408                             test_bit(R5_Insync, &dev->flags)) {
2409                                 if (
2410                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2411                                         pr_debug("Read_old block "
2412                                                 "%d for Reconstruct\n", i);
2413                                         set_bit(R5_LOCKED, &dev->flags);
2414                                         set_bit(R5_Wantread, &dev->flags);
2415                                         s->locked++;
2416                                 } else {
2417                                         set_bit(STRIPE_DELAYED, &sh->state);
2418                                         set_bit(STRIPE_HANDLE, &sh->state);
2419                                 }
2420                         }
2421                 }
2422         /* now if nothing is locked, and if we have enough data,
2423          * we can start a write request
2424          */
2425         /* since handle_stripe can be called at any time we need to handle the
2426          * case where a compute block operation has been submitted and then a
2427          * subsequent call wants to start a write request.  raid5_run_ops only
2428          * handles the case where compute block and postxor are requested
2429          * simultaneously.  If this is not the case then new writes need to be
2430          * held off until the compute completes.
2431          */
2432         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2433             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2434             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2435                 schedule_reconstruction5(sh, s, rcw == 0, 0);
2436 }
2437
2438 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2439                 struct stripe_head *sh, struct stripe_head_state *s,
2440                 struct r6_state *r6s, int disks)
2441 {
2442         int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2443         int qd_idx = sh->qd_idx;
2444         for (i = disks; i--; ) {
2445                 struct r5dev *dev = &sh->dev[i];
2446                 /* Would I have to read this buffer for reconstruct_write */
2447                 if (!test_bit(R5_OVERWRITE, &dev->flags)
2448                     && i != pd_idx && i != qd_idx
2449                     && (!test_bit(R5_LOCKED, &dev->flags)
2450                             ) &&
2451                     !test_bit(R5_UPTODATE, &dev->flags)) {
2452                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2453                         else {
2454                                 pr_debug("raid6: must_compute: "
2455                                         "disk %d flags=%#lx\n", i, dev->flags);
2456                                 must_compute++;
2457                         }
2458                 }
2459         }
2460         pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2461                (unsigned long long)sh->sector, rcw, must_compute);
2462         set_bit(STRIPE_HANDLE, &sh->state);
2463
2464         if (rcw > 0)
2465                 /* want reconstruct write, but need to get some data */
2466                 for (i = disks; i--; ) {
2467                         struct r5dev *dev = &sh->dev[i];
2468                         if (!test_bit(R5_OVERWRITE, &dev->flags)
2469                             && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2470                             && !test_bit(R5_LOCKED, &dev->flags) &&
2471                             !test_bit(R5_UPTODATE, &dev->flags) &&
2472                             test_bit(R5_Insync, &dev->flags)) {
2473                                 if (
2474                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2475                                         pr_debug("Read_old stripe %llu "
2476                                                 "block %d for Reconstruct\n",
2477                                              (unsigned long long)sh->sector, i);
2478                                         set_bit(R5_LOCKED, &dev->flags);
2479                                         set_bit(R5_Wantread, &dev->flags);
2480                                         s->locked++;
2481                                 } else {
2482                                         pr_debug("Request delayed stripe %llu "
2483                                                 "block %d for Reconstruct\n",
2484                                              (unsigned long long)sh->sector, i);
2485                                         set_bit(STRIPE_DELAYED, &sh->state);
2486                                         set_bit(STRIPE_HANDLE, &sh->state);
2487                                 }
2488                         }
2489                 }
2490         /* now if nothing is locked, and if we have enough data, we can start a
2491          * write request
2492          */
2493         if (s->locked == 0 && rcw == 0 &&
2494             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2495                 if (must_compute > 0) {
2496                         /* We have failed blocks and need to compute them */
2497                         switch (s->failed) {
2498                         case 0:
2499                                 BUG();
2500                         case 1:
2501                                 compute_block_1(sh, r6s->failed_num[0], 0);
2502                                 break;
2503                         case 2:
2504                                 compute_block_2(sh, r6s->failed_num[0],
2505                                                 r6s->failed_num[1]);
2506                                 break;
2507                         default: /* This request should have been failed? */
2508                                 BUG();
2509                         }
2510                 }
2511
2512                 pr_debug("Computing parity for stripe %llu\n",
2513                         (unsigned long long)sh->sector);
2514                 compute_parity6(sh, RECONSTRUCT_WRITE);
2515                 /* now every locked buffer is ready to be written */
2516                 for (i = disks; i--; )
2517                         if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2518                                 pr_debug("Writing stripe %llu block %d\n",
2519                                        (unsigned long long)sh->sector, i);
2520                                 s->locked++;
2521                                 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2522                         }
2523                 if (s->locked == disks)
2524                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2525                                 atomic_inc(&conf->pending_full_writes);
2526                 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2527                 set_bit(STRIPE_INSYNC, &sh->state);
2528
2529                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2530                         atomic_dec(&conf->preread_active_stripes);
2531                         if (atomic_read(&conf->preread_active_stripes) <
2532                             IO_THRESHOLD)
2533                                 md_wakeup_thread(conf->mddev->thread);
2534                 }
2535         }
2536 }
2537
2538 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2539                                 struct stripe_head_state *s, int disks)
2540 {
2541         struct r5dev *dev = NULL;
2542
2543         set_bit(STRIPE_HANDLE, &sh->state);
2544
2545         switch (sh->check_state) {
2546         case check_state_idle:
2547                 /* start a new check operation if there are no failures */
2548                 if (s->failed == 0) {
2549                         BUG_ON(s->uptodate != disks);
2550                         sh->check_state = check_state_run;
2551                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2552                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2553                         s->uptodate--;
2554                         break;
2555                 }
2556                 dev = &sh->dev[s->failed_num];
2557                 /* fall through */
2558         case check_state_compute_result:
2559                 sh->check_state = check_state_idle;
2560                 if (!dev)
2561                         dev = &sh->dev[sh->pd_idx];
2562
2563                 /* check that a write has not made the stripe insync */
2564                 if (test_bit(STRIPE_INSYNC, &sh->state))
2565                         break;
2566
2567                 /* either failed parity check, or recovery is happening */
2568                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2569                 BUG_ON(s->uptodate != disks);
2570
2571                 set_bit(R5_LOCKED, &dev->flags);
2572                 s->locked++;
2573                 set_bit(R5_Wantwrite, &dev->flags);
2574
2575                 clear_bit(STRIPE_DEGRADED, &sh->state);
2576                 set_bit(STRIPE_INSYNC, &sh->state);
2577                 break;
2578         case check_state_run:
2579                 break; /* we will be called again upon completion */
2580         case check_state_check_result:
2581                 sh->check_state = check_state_idle;
2582
2583                 /* if a failure occurred during the check operation, leave
2584                  * STRIPE_INSYNC not set and let the stripe be handled again
2585                  */
2586                 if (s->failed)
2587                         break;
2588
2589                 /* handle a successful check operation, if parity is correct
2590                  * we are done.  Otherwise update the mismatch count and repair
2591                  * parity if !MD_RECOVERY_CHECK
2592                  */
2593                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2594                         /* parity is correct (on disc,
2595                          * not in buffer any more)
2596                          */
2597                         set_bit(STRIPE_INSYNC, &sh->state);
2598                 else {
2599                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2600                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2601                                 /* don't try to repair!! */
2602                                 set_bit(STRIPE_INSYNC, &sh->state);
2603                         else {
2604                                 sh->check_state = check_state_compute_run;
2605                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2606                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2607                                 set_bit(R5_Wantcompute,
2608                                         &sh->dev[sh->pd_idx].flags);
2609                                 sh->ops.target = sh->pd_idx;
2610                                 s->uptodate++;
2611                         }
2612                 }
2613                 break;
2614         case check_state_compute_run:
2615                 break;
2616         default:
2617                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2618                        __func__, sh->check_state,
2619                        (unsigned long long) sh->sector);
2620                 BUG();
2621         }
2622 }
2623
2624
2625 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2626                                   struct stripe_head_state *s,
2627                                   struct r6_state *r6s, int disks)
2628 {
2629         int update_p = 0, update_q = 0;
2630         struct r5dev *dev;
2631         int pd_idx = sh->pd_idx;
2632         int qd_idx = sh->qd_idx;
2633         unsigned long cpu;
2634         struct page *tmp_page;
2635
2636         set_bit(STRIPE_HANDLE, &sh->state);
2637
2638         BUG_ON(s->failed > 2);
2639         BUG_ON(s->uptodate < disks);
2640         /* Want to check and possibly repair P and Q.
2641          * However there could be one 'failed' device, in which
2642          * case we can only check one of them, possibly using the
2643          * other to generate missing data
2644          */
2645         cpu = get_cpu();
2646         tmp_page = per_cpu_ptr(conf->percpu, cpu)->spare_page;
2647         if (s->failed == r6s->q_failed) {
2648                 /* The only possible failed device holds 'Q', so it
2649                  * makes sense to check P (If anything else were failed,
2650                  * we would have used P to recreate it).
2651                  */
2652                 compute_block_1(sh, pd_idx, 1);
2653                 if (!page_is_zero(sh->dev[pd_idx].page)) {
2654                         compute_block_1(sh, pd_idx, 0);
2655                         update_p = 1;
2656                 }
2657         }
2658         if (!r6s->q_failed && s->failed < 2) {
2659                 /* q is not failed, and we didn't use it to generate
2660                  * anything, so it makes sense to check it
2661                  */
2662                 memcpy(page_address(tmp_page),
2663                        page_address(sh->dev[qd_idx].page),
2664                        STRIPE_SIZE);
2665                 compute_parity6(sh, UPDATE_PARITY);
2666                 if (memcmp(page_address(tmp_page),
2667                            page_address(sh->dev[qd_idx].page),
2668                            STRIPE_SIZE) != 0) {
2669                         clear_bit(STRIPE_INSYNC, &sh->state);
2670                         update_q = 1;
2671                 }
2672         }
2673         put_cpu();
2674
2675         if (update_p || update_q) {
2676                 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2677                 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2678                         /* don't try to repair!! */
2679                         update_p = update_q = 0;
2680         }
2681
2682         /* now write out any block on a failed drive,
2683          * or P or Q if they need it
2684          */
2685
2686         if (s->failed == 2) {
2687                 dev = &sh->dev[r6s->failed_num[1]];
2688                 s->locked++;
2689                 set_bit(R5_LOCKED, &dev->flags);
2690                 set_bit(R5_Wantwrite, &dev->flags);
2691         }
2692         if (s->failed >= 1) {
2693                 dev = &sh->dev[r6s->failed_num[0]];
2694                 s->locked++;
2695                 set_bit(R5_LOCKED, &dev->flags);
2696                 set_bit(R5_Wantwrite, &dev->flags);
2697         }
2698
2699         if (update_p) {
2700                 dev = &sh->dev[pd_idx];
2701                 s->locked++;
2702                 set_bit(R5_LOCKED, &dev->flags);
2703                 set_bit(R5_Wantwrite, &dev->flags);
2704         }
2705         if (update_q) {
2706                 dev = &sh->dev[qd_idx];
2707                 s->locked++;
2708                 set_bit(R5_LOCKED, &dev->flags);
2709                 set_bit(R5_Wantwrite, &dev->flags);
2710         }
2711         clear_bit(STRIPE_DEGRADED, &sh->state);
2712
2713         set_bit(STRIPE_INSYNC, &sh->state);
2714 }
2715
2716 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2717                                 struct r6_state *r6s)
2718 {
2719         int i;
2720
2721         /* We have read all the blocks in this stripe and now we need to
2722          * copy some of them into a target stripe for expand.
2723          */
2724         struct dma_async_tx_descriptor *tx = NULL;
2725         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2726         for (i = 0; i < sh->disks; i++)
2727                 if (i != sh->pd_idx && i != sh->qd_idx) {
2728                         int dd_idx, j;
2729                         struct stripe_head *sh2;
2730                         struct async_submit_ctl submit;
2731
2732                         sector_t bn = compute_blocknr(sh, i, 1);
2733                         sector_t s = raid5_compute_sector(conf, bn, 0,
2734                                                           &dd_idx, NULL);
2735                         sh2 = get_active_stripe(conf, s, 0, 1);
2736                         if (sh2 == NULL)
2737                                 /* so far only the early blocks of this stripe
2738                                  * have been requested.  When later blocks
2739                                  * get requested, we will try again
2740                                  */
2741                                 continue;
2742                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2743                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2744                                 /* must have already done this block */
2745                                 release_stripe(sh2);
2746                                 continue;
2747                         }
2748
2749                         /* place all the copies on one channel */
2750                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2751                         tx = async_memcpy(sh2->dev[dd_idx].page,
2752                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2753                                           &submit);
2754
2755                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2756                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2757                         for (j = 0; j < conf->raid_disks; j++)
2758                                 if (j != sh2->pd_idx &&
2759                                     (!r6s || j != sh2->qd_idx) &&
2760                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2761                                         break;
2762                         if (j == conf->raid_disks) {
2763                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2764                                 set_bit(STRIPE_HANDLE, &sh2->state);
2765                         }
2766                         release_stripe(sh2);
2767
2768                 }
2769         /* done submitting copies, wait for them to complete */
2770         if (tx) {
2771                 async_tx_ack(tx);
2772                 dma_wait_for_async_tx(tx);
2773         }
2774 }
2775
2776
2777 /*
2778  * handle_stripe - do things to a stripe.
2779  *
2780  * We lock the stripe and then examine the state of various bits
2781  * to see what needs to be done.
2782  * Possible results:
2783  *    return some read request which now have data
2784  *    return some write requests which are safely on disc
2785  *    schedule a read on some buffers
2786  *    schedule a write of some buffers
2787  *    return confirmation of parity correctness
2788  *
2789  * buffers are taken off read_list or write_list, and bh_cache buffers
2790  * get BH_Lock set before the stripe lock is released.
2791  *
2792  */
2793
2794 static bool handle_stripe5(struct stripe_head *sh)
2795 {
2796         raid5_conf_t *conf = sh->raid_conf;
2797         int disks = sh->disks, i;
2798         struct bio *return_bi = NULL;
2799         struct stripe_head_state s;
2800         struct r5dev *dev;
2801         mdk_rdev_t *blocked_rdev = NULL;
2802         int prexor;
2803
2804         memset(&s, 0, sizeof(s));
2805         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2806                  "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2807                  atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2808                  sh->reconstruct_state);
2809
2810         spin_lock(&sh->lock);
2811         clear_bit(STRIPE_HANDLE, &sh->state);
2812         clear_bit(STRIPE_DELAYED, &sh->state);
2813
2814         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2815         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2816         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2817
2818         /* Now to look around and see what can be done */
2819         rcu_read_lock();
2820         for (i=disks; i--; ) {
2821                 mdk_rdev_t *rdev;
2822                 struct r5dev *dev = &sh->dev[i];
2823                 clear_bit(R5_Insync, &dev->flags);
2824
2825                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2826                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2827                         dev->towrite, dev->written);
2828
2829                 /* maybe we can request a biofill operation
2830                  *
2831                  * new wantfill requests are only permitted while
2832                  * ops_complete_biofill is guaranteed to be inactive
2833                  */
2834                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2835                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2836                         set_bit(R5_Wantfill, &dev->flags);
2837
2838                 /* now count some things */
2839                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2840                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2841                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2842
2843                 if (test_bit(R5_Wantfill, &dev->flags))
2844                         s.to_fill++;
2845                 else if (dev->toread)
2846                         s.to_read++;
2847                 if (dev->towrite) {
2848                         s.to_write++;
2849                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2850                                 s.non_overwrite++;
2851                 }
2852                 if (dev->written)
2853                         s.written++;
2854                 rdev = rcu_dereference(conf->disks[i].rdev);
2855                 if (blocked_rdev == NULL &&
2856                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2857                         blocked_rdev = rdev;
2858                         atomic_inc(&rdev->nr_pending);
2859                 }
2860                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2861                         /* The ReadError flag will just be confusing now */
2862                         clear_bit(R5_ReadError, &dev->flags);
2863                         clear_bit(R5_ReWrite, &dev->flags);
2864                 }
2865                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2866                     || test_bit(R5_ReadError, &dev->flags)) {
2867                         s.failed++;
2868                         s.failed_num = i;
2869                 } else
2870                         set_bit(R5_Insync, &dev->flags);
2871         }
2872         rcu_read_unlock();
2873
2874         if (unlikely(blocked_rdev)) {
2875                 if (s.syncing || s.expanding || s.expanded ||
2876                     s.to_write || s.written) {
2877                         set_bit(STRIPE_HANDLE, &sh->state);
2878                         goto unlock;
2879                 }
2880                 /* There is nothing for the blocked_rdev to block */
2881                 rdev_dec_pending(blocked_rdev, conf->mddev);
2882                 blocked_rdev = NULL;
2883         }
2884
2885         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2886                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2887                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2888         }
2889
2890         pr_debug("locked=%d uptodate=%d to_read=%d"
2891                 " to_write=%d failed=%d failed_num=%d\n",
2892                 s.locked, s.uptodate, s.to_read, s.to_write,
2893                 s.failed, s.failed_num);
2894         /* check if the array has lost two devices and, if so, some requests might
2895          * need to be failed
2896          */
2897         if (s.failed > 1 && s.to_read+s.to_write+s.written)
2898                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2899         if (s.failed > 1 && s.syncing) {
2900                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2901                 clear_bit(STRIPE_SYNCING, &sh->state);
2902                 s.syncing = 0;
2903         }
2904
2905         /* might be able to return some write requests if the parity block
2906          * is safe, or on a failed drive
2907          */
2908         dev = &sh->dev[sh->pd_idx];
2909         if ( s.written &&
2910              ((test_bit(R5_Insync, &dev->flags) &&
2911                !test_bit(R5_LOCKED, &dev->flags) &&
2912                test_bit(R5_UPTODATE, &dev->flags)) ||
2913                (s.failed == 1 && s.failed_num == sh->pd_idx)))
2914                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
2915
2916         /* Now we might consider reading some blocks, either to check/generate
2917          * parity, or to satisfy requests
2918          * or to load a block that is being partially written.
2919          */
2920         if (s.to_read || s.non_overwrite ||
2921             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2922                 handle_stripe_fill5(sh, &s, disks);
2923
2924         /* Now we check to see if any write operations have recently
2925          * completed
2926          */
2927         prexor = 0;
2928         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2929                 prexor = 1;
2930         if (sh->reconstruct_state == reconstruct_state_drain_result ||
2931             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2932                 sh->reconstruct_state = reconstruct_state_idle;
2933
2934                 /* All the 'written' buffers and the parity block are ready to
2935                  * be written back to disk
2936                  */
2937                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2938                 for (i = disks; i--; ) {
2939                         dev = &sh->dev[i];
2940                         if (test_bit(R5_LOCKED, &dev->flags) &&
2941                                 (i == sh->pd_idx || dev->written)) {
2942                                 pr_debug("Writing block %d\n", i);
2943                                 set_bit(R5_Wantwrite, &dev->flags);
2944                                 if (prexor)
2945                                         continue;
2946                                 if (!test_bit(R5_Insync, &dev->flags) ||
2947                                     (i == sh->pd_idx && s.failed == 0))
2948                                         set_bit(STRIPE_INSYNC, &sh->state);
2949                         }
2950                 }
2951                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2952                         atomic_dec(&conf->preread_active_stripes);
2953                         if (atomic_read(&conf->preread_active_stripes) <
2954                                 IO_THRESHOLD)
2955                                 md_wakeup_thread(conf->mddev->thread);
2956                 }
2957         }
2958
2959         /* Now to consider new write requests and what else, if anything
2960          * should be read.  We do not handle new writes when:
2961          * 1/ A 'write' operation (copy+xor) is already in flight.
2962          * 2/ A 'check' operation is in flight, as it may clobber the parity
2963          *    block.
2964          */
2965         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2966                 handle_stripe_dirtying5(conf, sh, &s, disks);
2967
2968         /* maybe we need to check and possibly fix the parity for this stripe
2969          * Any reads will already have been scheduled, so we just see if enough
2970          * data is available.  The parity check is held off while parity
2971          * dependent operations are in flight.
2972          */
2973         if (sh->check_state ||
2974             (s.syncing && s.locked == 0 &&
2975              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2976              !test_bit(STRIPE_INSYNC, &sh->state)))
2977                 handle_parity_checks5(conf, sh, &s, disks);
2978
2979         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2980                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2981                 clear_bit(STRIPE_SYNCING, &sh->state);
2982         }
2983
2984         /* If the failed drive is just a ReadError, then we might need to progress
2985          * the repair/check process
2986          */
2987         if (s.failed == 1 && !conf->mddev->ro &&
2988             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2989             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2990             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2991                 ) {
2992                 dev = &sh->dev[s.failed_num];
2993                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2994                         set_bit(R5_Wantwrite, &dev->flags);
2995                         set_bit(R5_ReWrite, &dev->flags);
2996                         set_bit(R5_LOCKED, &dev->flags);
2997                         s.locked++;
2998                 } else {
2999                         /* let's read it back */
3000                         set_bit(R5_Wantread, &dev->flags);
3001                         set_bit(R5_LOCKED, &dev->flags);
3002                         s.locked++;
3003                 }
3004         }
3005
3006         /* Finish reconstruct operations initiated by the expansion process */
3007         if (sh->reconstruct_state == reconstruct_state_result) {
3008                 struct stripe_head *sh2
3009                         = get_active_stripe(conf, sh->sector, 1, 1);
3010                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3011                         /* sh cannot be written until sh2 has been read.
3012                          * so arrange for sh to be delayed a little
3013                          */
3014                         set_bit(STRIPE_DELAYED, &sh->state);
3015                         set_bit(STRIPE_HANDLE, &sh->state);
3016                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3017                                               &sh2->state))
3018                                 atomic_inc(&conf->preread_active_stripes);
3019                         release_stripe(sh2);
3020                         goto unlock;
3021                 }
3022                 if (sh2)
3023                         release_stripe(sh2);
3024
3025                 sh->reconstruct_state = reconstruct_state_idle;
3026                 clear_bit(STRIPE_EXPANDING, &sh->state);
3027                 for (i = conf->raid_disks; i--; ) {
3028                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3029                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3030                         s.locked++;
3031                 }
3032         }
3033
3034         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3035             !sh->reconstruct_state) {
3036                 /* Need to write out all blocks after computing parity */
3037                 sh->disks = conf->raid_disks;
3038                 stripe_set_idx(sh->sector, conf, 0, sh);
3039                 schedule_reconstruction5(sh, &s, 1, 1);
3040         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3041                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3042                 atomic_dec(&conf->reshape_stripes);
3043                 wake_up(&conf->wait_for_overlap);
3044                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3045         }
3046
3047         if (s.expanding && s.locked == 0 &&
3048             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3049                 handle_stripe_expansion(conf, sh, NULL);
3050
3051  unlock:
3052         spin_unlock(&sh->lock);
3053
3054         /* wait for this device to become unblocked */
3055         if (unlikely(blocked_rdev))
3056                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3057
3058         if (s.ops_request)
3059                 raid5_run_ops(sh, s.ops_request);
3060
3061         ops_run_io(sh, &s);
3062
3063         return_io(return_bi);
3064
3065         return blocked_rdev == NULL;
3066 }
3067
3068 static bool handle_stripe6(struct stripe_head *sh)
3069 {
3070         raid5_conf_t *conf = sh->raid_conf;
3071         int disks = sh->disks;
3072         struct bio *return_bi = NULL;
3073         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3074         struct stripe_head_state s;
3075         struct r6_state r6s;
3076         struct r5dev *dev, *pdev, *qdev;
3077         mdk_rdev_t *blocked_rdev = NULL;
3078
3079         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3080                 "pd_idx=%d, qd_idx=%d\n",
3081                (unsigned long long)sh->sector, sh->state,
3082                atomic_read(&sh->count), pd_idx, qd_idx);
3083         memset(&s, 0, sizeof(s));
3084
3085         spin_lock(&sh->lock);
3086         clear_bit(STRIPE_HANDLE, &sh->state);
3087         clear_bit(STRIPE_DELAYED, &sh->state);
3088
3089         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3090         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3091         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3092         /* Now to look around and see what can be done */
3093
3094         rcu_read_lock();
3095         for (i=disks; i--; ) {
3096                 mdk_rdev_t *rdev;
3097                 dev = &sh->dev[i];
3098                 clear_bit(R5_Insync, &dev->flags);
3099
3100                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3101                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3102                 /* maybe we can reply to a read */
3103                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3104                         struct bio *rbi, *rbi2;
3105                         pr_debug("Return read for disc %d\n", i);
3106                         spin_lock_irq(&conf->device_lock);
3107                         rbi = dev->toread;
3108                         dev->toread = NULL;
3109                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
3110                                 wake_up(&conf->wait_for_overlap);
3111                         spin_unlock_irq(&conf->device_lock);
3112                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3113                                 copy_data(0, rbi, dev->page, dev->sector);
3114                                 rbi2 = r5_next_bio(rbi, dev->sector);
3115                                 spin_lock_irq(&conf->device_lock);
3116                                 if (!raid5_dec_bi_phys_segments(rbi)) {
3117                                         rbi->bi_next = return_bi;
3118                                         return_bi = rbi;
3119                                 }
3120                                 spin_unlock_irq(&conf->device_lock);
3121                                 rbi = rbi2;
3122                         }
3123                 }
3124
3125                 /* now count some things */
3126                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3127                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3128
3129
3130                 if (dev->toread)
3131                         s.to_read++;
3132                 if (dev->towrite) {
3133                         s.to_write++;
3134                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3135                                 s.non_overwrite++;
3136                 }
3137                 if (dev->written)
3138                         s.written++;
3139                 rdev = rcu_dereference(conf->disks[i].rdev);
3140                 if (blocked_rdev == NULL &&
3141                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3142                         blocked_rdev = rdev;
3143                         atomic_inc(&rdev->nr_pending);
3144                 }
3145                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3146                         /* The ReadError flag will just be confusing now */
3147                         clear_bit(R5_ReadError, &dev->flags);
3148                         clear_bit(R5_ReWrite, &dev->flags);
3149                 }
3150                 if (!rdev || !test_bit(In_sync, &rdev->flags)
3151                     || test_bit(R5_ReadError, &dev->flags)) {
3152                         if (s.failed < 2)
3153                                 r6s.failed_num[s.failed] = i;
3154                         s.failed++;
3155                 } else
3156                         set_bit(R5_Insync, &dev->flags);
3157         }
3158         rcu_read_unlock();
3159
3160         if (unlikely(blocked_rdev)) {
3161                 if (s.syncing || s.expanding || s.expanded ||
3162                     s.to_write || s.written) {
3163                         set_bit(STRIPE_HANDLE, &sh->state);
3164                         goto unlock;
3165                 }
3166                 /* There is nothing for the blocked_rdev to block */
3167                 rdev_dec_pending(blocked_rdev, conf->mddev);
3168                 blocked_rdev = NULL;
3169         }
3170
3171         pr_debug("locked=%d uptodate=%d to_read=%d"
3172                " to_write=%d failed=%d failed_num=%d,%d\n",
3173                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3174                r6s.failed_num[0], r6s.failed_num[1]);
3175         /* check if the array has lost >2 devices and, if so, some requests
3176          * might need to be failed
3177          */
3178         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3179                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3180         if (s.failed > 2 && s.syncing) {
3181                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3182                 clear_bit(STRIPE_SYNCING, &sh->state);
3183                 s.syncing = 0;
3184         }
3185
3186         /*
3187          * might be able to return some write requests if the parity blocks
3188          * are safe, or on a failed drive
3189          */
3190         pdev = &sh->dev[pd_idx];
3191         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3192                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3193         qdev = &sh->dev[qd_idx];
3194         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3195                 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3196
3197         if ( s.written &&
3198              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3199                              && !test_bit(R5_LOCKED, &pdev->flags)
3200                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3201              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3202                              && !test_bit(R5_LOCKED, &qdev->flags)
3203                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3204                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3205
3206         /* Now we might consider reading some blocks, either to check/generate
3207          * parity, or to satisfy requests
3208          * or to load a block that is being partially written.
3209          */
3210         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3211             (s.syncing && (s.uptodate < disks)) || s.expanding)
3212                 handle_stripe_fill6(sh, &s, &r6s, disks);
3213
3214         /* now to consider writing and what else, if anything should be read */
3215         if (s.to_write)
3216                 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3217
3218         /* maybe we need to check and possibly fix the parity for this stripe
3219          * Any reads will already have been scheduled, so we just see if enough
3220          * data is available
3221          */
3222         if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3223                 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3224
3225         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3226                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3227                 clear_bit(STRIPE_SYNCING, &sh->state);
3228         }
3229
3230         /* If the failed drives are just a ReadError, then we might need
3231          * to progress the repair/check process
3232          */
3233         if (s.failed <= 2 && !conf->mddev->ro)
3234                 for (i = 0; i < s.failed; i++) {
3235                         dev = &sh->dev[r6s.failed_num[i]];
3236                         if (test_bit(R5_ReadError, &dev->flags)
3237                             && !test_bit(R5_LOCKED, &dev->flags)
3238                             && test_bit(R5_UPTODATE, &dev->flags)
3239                                 ) {
3240                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3241                                         set_bit(R5_Wantwrite, &dev->flags);
3242                                         set_bit(R5_ReWrite, &dev->flags);
3243                                         set_bit(R5_LOCKED, &dev->flags);
3244                                 } else {
3245                                         /* let's read it back */
3246                                         set_bit(R5_Wantread, &dev->flags);
3247                                         set_bit(R5_LOCKED, &dev->flags);
3248                                 }
3249                         }
3250                 }
3251
3252         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3253                 struct stripe_head *sh2
3254                         = get_active_stripe(conf, sh->sector, 1, 1);
3255                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3256                         /* sh cannot be written until sh2 has been read.
3257                          * so arrange for sh to be delayed a little
3258                          */
3259                         set_bit(STRIPE_DELAYED, &sh->state);
3260                         set_bit(STRIPE_HANDLE, &sh->state);
3261                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3262                                               &sh2->state))
3263                                 atomic_inc(&conf->preread_active_stripes);
3264                         release_stripe(sh2);
3265                         goto unlock;
3266                 }
3267                 if (sh2)
3268                         release_stripe(sh2);
3269
3270                 /* Need to write out all blocks after computing P&Q */
3271                 sh->disks = conf->raid_disks;
3272                 stripe_set_idx(sh->sector, conf, 0, sh);
3273                 compute_parity6(sh, RECONSTRUCT_WRITE);
3274                 for (i = conf->raid_disks ; i-- ;  ) {
3275                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3276                         s.locked++;
3277                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3278                 }
3279                 clear_bit(STRIPE_EXPANDING, &sh->state);
3280         } else if (s.expanded) {
3281                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3282                 atomic_dec(&conf->reshape_stripes);
3283                 wake_up(&conf->wait_for_overlap);
3284                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3285         }
3286
3287         if (s.expanding && s.locked == 0 &&
3288             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3289                 handle_stripe_expansion(conf, sh, &r6s);
3290
3291  unlock:
3292         spin_unlock(&sh->lock);
3293
3294         /* wait for this device to become unblocked */
3295         if (unlikely(blocked_rdev))
3296                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3297
3298         ops_run_io(sh, &s);
3299
3300         return_io(return_bi);
3301
3302         return blocked_rdev == NULL;
3303 }
3304
3305 /* returns true if the stripe was handled */
3306 static bool handle_stripe(struct stripe_head *sh)
3307 {
3308         if (sh->raid_conf->level == 6)
3309                 return handle_stripe6(sh);
3310         else
3311                 return handle_stripe5(sh);
3312 }
3313
3314 static void raid5_activate_delayed(raid5_conf_t *conf)
3315 {
3316         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3317                 while (!list_empty(&conf->delayed_list)) {
3318                         struct list_head *l = conf->delayed_list.next;
3319                         struct stripe_head *sh;
3320                         sh = list_entry(l, struct stripe_head, lru);
3321                         list_del_init(l);
3322                         clear_bit(STRIPE_DELAYED, &sh->state);
3323                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3324                                 atomic_inc(&conf->preread_active_stripes);
3325                         list_add_tail(&sh->lru, &conf->hold_list);
3326                 }
3327         } else
3328                 blk_plug_device(conf->mddev->queue);
3329 }
3330
3331 static void activate_bit_delay(raid5_conf_t *conf)
3332 {
3333         /* device_lock is held */
3334         struct list_head head;
3335         list_add(&head, &conf->bitmap_list);
3336         list_del_init(&conf->bitmap_list);
3337         while (!list_empty(&head)) {
3338                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3339                 list_del_init(&sh->lru);
3340                 atomic_inc(&sh->count);
3341                 __release_stripe(conf, sh);
3342         }
3343 }
3344
3345 static void unplug_slaves(mddev_t *mddev)
3346 {
3347         raid5_conf_t *conf = mddev_to_conf(mddev);
3348         int i;
3349
3350         rcu_read_lock();
3351         for (i=0; i<mddev->raid_disks; i++) {
3352                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3353                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3354                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3355
3356                         atomic_inc(&rdev->nr_pending);
3357                         rcu_read_unlock();
3358
3359                         blk_unplug(r_queue);
3360
3361                         rdev_dec_pending(rdev, mddev);
3362                         rcu_read_lock();
3363                 }
3364         }
3365         rcu_read_unlock();
3366 }
3367
3368 static void raid5_unplug_device(struct request_queue *q)
3369 {
3370         mddev_t *mddev = q->queuedata;
3371         raid5_conf_t *conf = mddev_to_conf(mddev);
3372         unsigned long flags;
3373
3374         spin_lock_irqsave(&conf->device_lock, flags);
3375
3376         if (blk_remove_plug(q)) {
3377                 conf->seq_flush++;
3378                 raid5_activate_delayed(conf);
3379         }
3380         md_wakeup_thread(mddev->thread);
3381
3382         spin_unlock_irqrestore(&conf->device_lock, flags);
3383
3384         unplug_slaves(mddev);
3385 }
3386
3387 static int raid5_congested(void *data, int bits)
3388 {
3389         mddev_t *mddev = data;
3390         raid5_conf_t *conf = mddev_to_conf(mddev);
3391
3392         /* No difference between reads and writes.  Just check
3393          * how busy the stripe_cache is
3394          */
3395         if (conf->inactive_blocked)
3396                 return 1;
3397         if (conf->quiesce)
3398                 return 1;
3399         if (list_empty_careful(&conf->inactive_list))
3400                 return 1;
3401
3402         return 0;
3403 }
3404
3405 /* We want read requests to align with chunks where possible,
3406  * but write requests don't need to.
3407  */
3408 static int raid5_mergeable_bvec(struct request_queue *q,
3409                                 struct bvec_merge_data *bvm,
3410                                 struct bio_vec *biovec)
3411 {
3412         mddev_t *mddev = q->queuedata;
3413         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3414         int max;
3415         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3416         unsigned int bio_sectors = bvm->bi_size >> 9;
3417
3418         if ((bvm->bi_rw & 1) == WRITE)
3419                 return biovec->bv_len; /* always allow writes to be mergeable */
3420
3421         if (mddev->new_chunk < mddev->chunk_size)
3422                 chunk_sectors = mddev->new_chunk >> 9;
3423         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3424         if (max < 0) max = 0;
3425         if (max <= biovec->bv_len && bio_sectors == 0)
3426                 return biovec->bv_len;
3427         else
3428                 return max;
3429 }
3430
3431
3432 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3433 {
3434         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3435         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3436         unsigned int bio_sectors = bio->bi_size >> 9;
3437
3438         if (mddev->new_chunk < mddev->chunk_size)
3439                 chunk_sectors = mddev->new_chunk >> 9;
3440         return  chunk_sectors >=
3441                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3442 }
3443
3444 /*
3445  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3446  *  later sampled by raid5d.
3447  */
3448 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3449 {
3450         unsigned long flags;
3451
3452         spin_lock_irqsave(&conf->device_lock, flags);
3453
3454         bi->bi_next = conf->retry_read_aligned_list;
3455         conf->retry_read_aligned_list = bi;
3456
3457         spin_unlock_irqrestore(&conf->device_lock, flags);
3458         md_wakeup_thread(conf->mddev->thread);
3459 }
3460
3461
3462 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3463 {
3464         struct bio *bi;
3465
3466         bi = conf->retry_read_aligned;
3467         if (bi) {
3468                 conf->retry_read_aligned = NULL;
3469                 return bi;
3470         }
3471         bi = conf->retry_read_aligned_list;
3472         if(bi) {
3473                 conf->retry_read_aligned_list = bi->bi_next;
3474                 bi->bi_next = NULL;
3475                 /*
3476                  * this sets the active strip count to 1 and the processed
3477                  * strip count to zero (upper 8 bits)
3478                  */
3479                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3480         }
3481
3482         return bi;
3483 }
3484
3485
3486 /*
3487  *  The "raid5_align_endio" should check if the read succeeded and if it
3488  *  did, call bio_endio on the original bio (having bio_put the new bio
3489  *  first).
3490  *  If the read failed..
3491  */
3492 static void raid5_align_endio(struct bio *bi, int error)
3493 {
3494         struct bio* raid_bi  = bi->bi_private;
3495         mddev_t *mddev;
3496         raid5_conf_t *conf;
3497         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3498         mdk_rdev_t *rdev;
3499
3500         bio_put(bi);
3501
3502         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3503         conf = mddev_to_conf(mddev);
3504         rdev = (void*)raid_bi->bi_next;
3505         raid_bi->bi_next = NULL;
3506
3507         rdev_dec_pending(rdev, conf->mddev);
3508
3509         if (!error && uptodate) {
3510                 bio_endio(raid_bi, 0);
3511                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3512                         wake_up(&conf->wait_for_stripe);
3513                 return;
3514         }
3515
3516
3517         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3518
3519         add_bio_to_retry(raid_bi, conf);
3520 }
3521
3522 static int bio_fits_rdev(struct bio *bi)
3523 {
3524         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3525
3526         if ((bi->bi_size>>9) > q->max_sectors)
3527                 return 0;
3528         blk_recount_segments(q, bi);
3529         if (bi->bi_phys_segments > q->max_phys_segments)
3530                 return 0;
3531
3532         if (q->merge_bvec_fn)
3533                 /* it's too hard to apply the merge_bvec_fn at this stage,
3534                  * just just give up
3535                  */
3536                 return 0;
3537
3538         return 1;
3539 }
3540
3541
3542 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3543 {
3544         mddev_t *mddev = q->queuedata;
3545         raid5_conf_t *conf = mddev_to_conf(mddev);
3546         unsigned int dd_idx;
3547         struct bio* align_bi;
3548         mdk_rdev_t *rdev;
3549
3550         if (!in_chunk_boundary(mddev, raid_bio)) {
3551                 pr_debug("chunk_aligned_read : non aligned\n");
3552                 return 0;
3553         }
3554         /*
3555          * use bio_clone to make a copy of the bio
3556          */
3557         align_bi = bio_clone(raid_bio, GFP_NOIO);
3558         if (!align_bi)
3559                 return 0;
3560         /*
3561          *   set bi_end_io to a new function, and set bi_private to the
3562          *     original bio.
3563          */
3564         align_bi->bi_end_io  = raid5_align_endio;
3565         align_bi->bi_private = raid_bio;
3566         /*
3567          *      compute position
3568          */
3569         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3570                                                     0,
3571                                                     &dd_idx, NULL);
3572
3573         rcu_read_lock();
3574         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3575         if (rdev && test_bit(In_sync, &rdev->flags)) {
3576                 atomic_inc(&rdev->nr_pending);
3577                 rcu_read_unlock();
3578                 raid_bio->bi_next = (void*)rdev;
3579                 align_bi->bi_bdev =  rdev->bdev;
3580                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3581                 align_bi->bi_sector += rdev->data_offset;
3582
3583                 if (!bio_fits_rdev(align_bi)) {
3584                         /* too big in some way */
3585                         bio_put(align_bi);
3586                         rdev_dec_pending(rdev, mddev);
3587                         return 0;
3588                 }
3589
3590                 spin_lock_irq(&conf->device_lock);
3591                 wait_event_lock_irq(conf->wait_for_stripe,
3592                                     conf->quiesce == 0,
3593                                     conf->device_lock, /* nothing */);
3594                 atomic_inc(&conf->active_aligned_reads);
3595                 spin_unlock_irq(&conf->device_lock);
3596
3597                 generic_make_request(align_bi);
3598                 return 1;
3599         } else {
3600                 rcu_read_unlock();
3601                 bio_put(align_bi);
3602                 return 0;
3603         }
3604 }
3605
3606 /* __get_priority_stripe - get the next stripe to process
3607  *
3608  * Full stripe writes are allowed to pass preread active stripes up until
3609  * the bypass_threshold is exceeded.  In general the bypass_count
3610  * increments when the handle_list is handled before the hold_list; however, it
3611  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3612  * stripe with in flight i/o.  The bypass_count will be reset when the
3613  * head of the hold_list has changed, i.e. the head was promoted to the
3614  * handle_list.
3615  */
3616 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3617 {
3618         struct stripe_head *sh;
3619
3620         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3621                   __func__,
3622                   list_empty(&conf->handle_list) ? "empty" : "busy",
3623                   list_empty(&conf->hold_list) ? "empty" : "busy",
3624                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3625
3626         if (!list_empty(&conf->handle_list)) {
3627                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3628
3629                 if (list_empty(&conf->hold_list))
3630                         conf->bypass_count = 0;
3631                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3632                         if (conf->hold_list.next == conf->last_hold)
3633                                 conf->bypass_count++;
3634                         else {
3635                                 conf->last_hold = conf->hold_list.next;
3636                                 conf->bypass_count -= conf->bypass_threshold;
3637                                 if (conf->bypass_count < 0)
3638                                         conf->bypass_count = 0;
3639                         }
3640                 }
3641         } else if (!list_empty(&conf->hold_list) &&
3642                    ((conf->bypass_threshold &&
3643                      conf->bypass_count > conf->bypass_threshold) ||
3644                     atomic_read(&conf->pending_full_writes) == 0)) {
3645                 sh = list_entry(conf->hold_list.next,
3646                                 typeof(*sh), lru);
3647                 conf->bypass_count -= conf->bypass_threshold;
3648                 if (conf->bypass_count < 0)
3649                         conf->bypass_count = 0;
3650         } else
3651                 return NULL;
3652
3653         list_del_init(&sh->lru);
3654         atomic_inc(&sh->count);
3655         BUG_ON(atomic_read(&sh->count) != 1);
3656         return sh;
3657 }
3658
3659 static int make_request(struct request_queue *q, struct bio * bi)
3660 {
3661         mddev_t *mddev = q->queuedata;
3662         raid5_conf_t *conf = mddev_to_conf(mddev);
3663         int dd_idx;
3664         sector_t new_sector;
3665         sector_t logical_sector, last_sector;
3666         struct stripe_head *sh;
3667         const int rw = bio_data_dir(bi);
3668         int cpu, remaining;
3669
3670         if (unlikely(bio_barrier(bi))) {
3671                 bio_endio(bi, -EOPNOTSUPP);
3672                 return 0;
3673         }
3674
3675         md_write_start(mddev, bi);
3676
3677         cpu = part_stat_lock();
3678         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3679         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3680                       bio_sectors(bi));
3681         part_stat_unlock();
3682
3683         if (rw == READ &&
3684              mddev->reshape_position == MaxSector &&
3685              chunk_aligned_read(q,bi))
3686                 return 0;
3687
3688         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3689         last_sector = bi->bi_sector + (bi->bi_size>>9);
3690         bi->bi_next = NULL;
3691         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3692
3693         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3694                 DEFINE_WAIT(w);
3695                 int disks, data_disks;
3696                 int previous;
3697
3698         retry:
3699                 previous = 0;
3700                 disks = conf->raid_disks;
3701                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3702                 if (unlikely(conf->reshape_progress != MaxSector)) {
3703                         /* spinlock is needed as reshape_progress may be
3704                          * 64bit on a 32bit platform, and so it might be
3705                          * possible to see a half-updated value
3706                          * Ofcourse reshape_progress could change after
3707                          * the lock is dropped, so once we get a reference
3708                          * to the stripe that we think it is, we will have
3709                          * to check again.
3710                          */
3711                         spin_lock_irq(&conf->device_lock);
3712                         if (mddev->delta_disks < 0
3713                             ? logical_sector < conf->reshape_progress
3714                             : logical_sector >= conf->reshape_progress) {
3715                                 disks = conf->previous_raid_disks;
3716                                 previous = 1;
3717                         } else {
3718                                 if (mddev->delta_disks < 0
3719                                     ? logical_sector < conf->reshape_safe
3720                                     : logical_sector >= conf->reshape_safe) {
3721                                         spin_unlock_irq(&conf->device_lock);
3722                                         schedule();
3723                                         goto retry;
3724                                 }
3725                         }
3726                         spin_unlock_irq(&conf->device_lock);
3727                 }
3728                 data_disks = disks - conf->max_degraded;
3729
3730                 new_sector = raid5_compute_sector(conf, logical_sector,
3731                                                   previous,
3732                                                   &dd_idx, NULL);
3733                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3734                         (unsigned long long)new_sector, 
3735                         (unsigned long long)logical_sector);
3736
3737                 sh = get_active_stripe(conf, new_sector, previous,
3738                                        (bi->bi_rw&RWA_MASK));
3739                 if (sh) {
3740                         if (unlikely(previous)) {
3741                                 /* expansion might have moved on while waiting for a
3742                                  * stripe, so we must do the range check again.
3743                                  * Expansion could still move past after this
3744                                  * test, but as we are holding a reference to
3745                                  * 'sh', we know that if that happens,
3746                                  *  STRIPE_EXPANDING will get set and the expansion
3747                                  * won't proceed until we finish with the stripe.
3748                                  */
3749                                 int must_retry = 0;
3750                                 spin_lock_irq(&conf->device_lock);
3751                                 if (mddev->delta_disks < 0
3752                                     ? logical_sector >= conf->reshape_progress
3753                                     : logical_sector < conf->reshape_progress)
3754                                         /* mismatch, need to try again */
3755                                         must_retry = 1;
3756                                 spin_unlock_irq(&conf->device_lock);
3757                                 if (must_retry) {
3758                                         release_stripe(sh);
3759                                         goto retry;
3760                                 }
3761                         }
3762                         /* FIXME what if we get a false positive because these
3763                          * are being updated.
3764                          */
3765                         if (logical_sector >= mddev->suspend_lo &&
3766                             logical_sector < mddev->suspend_hi) {
3767                                 release_stripe(sh);
3768                                 schedule();
3769                                 goto retry;
3770                         }
3771
3772                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3773                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3774                                 /* Stripe is busy expanding or
3775                                  * add failed due to overlap.  Flush everything
3776                                  * and wait a while
3777                                  */
3778                                 raid5_unplug_device(mddev->queue);
3779                                 release_stripe(sh);
3780                                 schedule();
3781                                 goto retry;
3782                         }
3783                         finish_wait(&conf->wait_for_overlap, &w);
3784                         set_bit(STRIPE_HANDLE, &sh->state);
3785                         clear_bit(STRIPE_DELAYED, &sh->state);
3786                         release_stripe(sh);
3787                 } else {
3788                         /* cannot get stripe for read-ahead, just give-up */
3789                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3790                         finish_wait(&conf->wait_for_overlap, &w);
3791                         break;
3792                 }
3793                         
3794         }
3795         spin_lock_irq(&conf->device_lock);
3796         remaining = raid5_dec_bi_phys_segments(bi);
3797         spin_unlock_irq(&conf->device_lock);
3798         if (remaining == 0) {
3799
3800                 if ( rw == WRITE )
3801                         md_write_end(mddev);
3802
3803                 bio_endio(bi, 0);
3804         }
3805         return 0;
3806 }
3807
3808 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3809
3810 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3811 {
3812         /* reshaping is quite different to recovery/resync so it is
3813          * handled quite separately ... here.
3814          *
3815          * On each call to sync_request, we gather one chunk worth of
3816          * destination stripes and flag them as expanding.
3817          * Then we find all the source stripes and request reads.
3818          * As the reads complete, handle_stripe will copy the data
3819          * into the destination stripe and release that stripe.
3820          */
3821         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3822         struct stripe_head *sh;
3823         sector_t first_sector, last_sector;
3824         int raid_disks = conf->previous_raid_disks;
3825         int data_disks = raid_disks - conf->max_degraded;
3826         int new_data_disks = conf->raid_disks - conf->max_degraded;
3827         int i;
3828         int dd_idx;
3829         sector_t writepos, readpos, safepos;
3830         sector_t stripe_addr;
3831         int reshape_sectors;
3832         struct list_head stripes;
3833
3834         if (sector_nr == 0) {
3835                 /* If restarting in the middle, skip the initial sectors */
3836                 if (mddev->delta_disks < 0 &&
3837                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3838                         sector_nr = raid5_size(mddev, 0, 0)
3839                                 - conf->reshape_progress;
3840                 } else if (mddev->delta_disks > 0 &&
3841                            conf->reshape_progress > 0)
3842                         sector_nr = conf->reshape_progress;
3843                 sector_div(sector_nr, new_data_disks);
3844                 if (sector_nr) {
3845                         *skipped = 1;
3846                         return sector_nr;
3847                 }
3848         }
3849
3850         /* We need to process a full chunk at a time.
3851          * If old and new chunk sizes differ, we need to process the
3852          * largest of these
3853          */
3854         if (mddev->new_chunk > mddev->chunk_size)
3855                 reshape_sectors = mddev->new_chunk / 512;
3856         else
3857                 reshape_sectors = mddev->chunk_size / 512;
3858
3859         /* we update the metadata when there is more than 3Meg
3860          * in the block range (that is rather arbitrary, should
3861          * probably be time based) or when the data about to be
3862          * copied would over-write the source of the data at
3863          * the front of the range.
3864          * i.e. one new_stripe along from reshape_progress new_maps
3865          * to after where reshape_safe old_maps to
3866          */
3867         writepos = conf->reshape_progress;
3868         sector_div(writepos, new_data_disks);
3869         readpos = conf->reshape_progress;
3870         sector_div(readpos, data_disks);
3871         safepos = conf->reshape_safe;
3872         sector_div(safepos, data_disks);
3873         if (mddev->delta_disks < 0) {
3874                 writepos -= reshape_sectors;
3875                 readpos += reshape_sectors;
3876                 safepos += reshape_sectors;
3877         } else {
3878                 writepos += reshape_sectors;
3879                 readpos -= reshape_sectors;
3880                 safepos -= reshape_sectors;
3881         }
3882
3883         /* 'writepos' is the most advanced device address we might write.
3884          * 'readpos' is the least advanced device address we might read.
3885          * 'safepos' is the least address recorded in the metadata as having
3886          *     been reshaped.
3887          * If 'readpos' is behind 'writepos', then there is no way that we can
3888          * ensure safety in the face of a crash - that must be done by userspace
3889          * making a backup of the data.  So in that case there is no particular
3890          * rush to update metadata.
3891          * Otherwise if 'safepos' is behind 'writepos', then we really need to
3892          * update the metadata to advance 'safepos' to match 'readpos' so that
3893          * we can be safe in the event of a crash.
3894          * So we insist on updating metadata if safepos is behind writepos and
3895          * readpos is beyond writepos.
3896          * In any case, update the metadata every 10 seconds.
3897          * Maybe that number should be configurable, but I'm not sure it is
3898          * worth it.... maybe it could be a multiple of safemode_delay???
3899          */
3900         if ((mddev->delta_disks < 0
3901              ? (safepos > writepos && readpos < writepos)
3902              : (safepos < writepos && readpos > writepos)) ||
3903             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3904                 /* Cannot proceed until we've updated the superblock... */
3905                 wait_event(conf->wait_for_overlap,
3906                            atomic_read(&conf->reshape_stripes)==0);
3907                 mddev->reshape_position = conf->reshape_progress;
3908                 conf->reshape_checkpoint = jiffies;
3909                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3910                 md_wakeup_thread(mddev->thread);
3911                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3912                            kthread_should_stop());
3913                 spin_lock_irq(&conf->device_lock);
3914                 conf->reshape_safe = mddev->reshape_position;
3915                 spin_unlock_irq(&conf->device_lock);
3916                 wake_up(&conf->wait_for_overlap);
3917         }
3918
3919         if (mddev->delta_disks < 0) {
3920                 BUG_ON(conf->reshape_progress == 0);
3921                 stripe_addr = writepos;
3922                 BUG_ON((mddev->dev_sectors &
3923                         ~((sector_t)reshape_sectors - 1))
3924                        - reshape_sectors - stripe_addr
3925                        != sector_nr);
3926         } else {
3927                 BUG_ON(writepos != sector_nr + reshape_sectors);
3928                 stripe_addr = sector_nr;
3929         }
3930         INIT_LIST_HEAD(&stripes);
3931         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3932                 int j;
3933                 int skipped = 0;
3934                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0);
3935                 set_bit(STRIPE_EXPANDING, &sh->state);
3936                 atomic_inc(&conf->reshape_stripes);
3937                 /* If any of this stripe is beyond the end of the old
3938                  * array, then we need to zero those blocks
3939                  */
3940                 for (j=sh->disks; j--;) {
3941                         sector_t s;
3942                         if (j == sh->pd_idx)
3943                                 continue;
3944                         if (conf->level == 6 &&
3945                             j == sh->qd_idx)
3946                                 continue;
3947                         s = compute_blocknr(sh, j, 0);
3948                         if (s < raid5_size(mddev, 0, 0)) {
3949                                 skipped = 1;
3950                                 continue;
3951                         }
3952                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3953                         set_bit(R5_Expanded, &sh->dev[j].flags);
3954                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3955                 }
3956                 if (!skipped) {
3957                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3958                         set_bit(STRIPE_HANDLE, &sh->state);
3959                 }
3960                 list_add(&sh->lru, &stripes);
3961         }
3962         spin_lock_irq(&conf->device_lock);
3963         if (mddev->delta_disks < 0)
3964                 conf->reshape_progress -= reshape_sectors * new_data_disks;
3965         else
3966                 conf->reshape_progress += reshape_sectors * new_data_disks;
3967         spin_unlock_irq(&conf->device_lock);
3968         /* Ok, those stripe are ready. We can start scheduling
3969          * reads on the source stripes.
3970          * The source stripes are determined by mapping the first and last
3971          * block on the destination stripes.
3972          */
3973         first_sector =
3974                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
3975                                      1, &dd_idx, NULL);
3976         last_sector =
3977                 raid5_compute_sector(conf, ((stripe_addr+conf->chunk_size/512)
3978                                             *(new_data_disks) - 1),
3979                                      1, &dd_idx, NULL);
3980         if (last_sector >= mddev->dev_sectors)
3981                 last_sector = mddev->dev_sectors - 1;
3982         while (first_sector <= last_sector) {
3983                 sh = get_active_stripe(conf, first_sector, 1, 0);
3984                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3985                 set_bit(STRIPE_HANDLE, &sh->state);
3986                 release_stripe(sh);
3987                 first_sector += STRIPE_SECTORS;
3988         }
3989         /* Now that the sources are clearly marked, we can release
3990          * the destination stripes
3991          */
3992         while (!list_empty(&stripes)) {
3993                 sh = list_entry(stripes.next, struct stripe_head, lru);
3994                 list_del_init(&sh->lru);
3995                 release_stripe(sh);
3996         }
3997         /* If this takes us to the resync_max point where we have to pause,
3998          * then we need to write out the superblock.
3999          */
4000         sector_nr += reshape_sectors;
4001         if (sector_nr >= mddev->resync_max) {
4002                 /* Cannot proceed until we've updated the superblock... */
4003                 wait_event(conf->wait_for_overlap,
4004                            atomic_read(&conf->reshape_stripes) == 0);
4005                 mddev->reshape_position = conf->reshape_progress;
4006                 conf->reshape_checkpoint = jiffies;
4007                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4008                 md_wakeup_thread(mddev->thread);
4009                 wait_event(mddev->sb_wait,
4010                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4011                            || kthread_should_stop());
4012                 spin_lock_irq(&conf->device_lock);
4013                 conf->reshape_safe = mddev->reshape_position;
4014                 spin_unlock_irq(&conf->device_lock);
4015                 wake_up(&conf->wait_for_overlap);
4016         }
4017         return reshape_sectors;
4018 }
4019
4020 /* FIXME go_faster isn't used */
4021 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4022 {
4023         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4024         struct stripe_head *sh;
4025         sector_t max_sector = mddev->dev_sectors;
4026         int sync_blocks;
4027         int still_degraded = 0;
4028         int i;
4029
4030         if (sector_nr >= max_sector) {
4031                 /* just being told to finish up .. nothing much to do */
4032                 unplug_slaves(mddev);
4033
4034                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4035                         end_reshape(conf);
4036                         return 0;
4037                 }
4038
4039                 if (mddev->curr_resync < max_sector) /* aborted */
4040                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4041                                         &sync_blocks, 1);
4042                 else /* completed sync */
4043                         conf->fullsync = 0;
4044                 bitmap_close_sync(mddev->bitmap);
4045
4046                 return 0;
4047         }
4048
4049         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4050                 return reshape_request(mddev, sector_nr, skipped);
4051
4052         /* No need to check resync_max as we never do more than one
4053          * stripe, and as resync_max will always be on a chunk boundary,
4054          * if the check in md_do_sync didn't fire, there is no chance
4055          * of overstepping resync_max here
4056          */
4057
4058         /* if there is too many failed drives and we are trying
4059          * to resync, then assert that we are finished, because there is
4060          * nothing we can do.
4061          */
4062         if (mddev->degraded >= conf->max_degraded &&
4063             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4064                 sector_t rv = mddev->dev_sectors - sector_nr;
4065                 *skipped = 1;
4066                 return rv;
4067         }
4068         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4069             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4070             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4071                 /* we can skip this block, and probably more */
4072                 sync_blocks /= STRIPE_SECTORS;
4073                 *skipped = 1;
4074                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4075         }
4076
4077
4078         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4079
4080         sh = get_active_stripe(conf, sector_nr, 0, 1);
4081         if (sh == NULL) {
4082                 sh = get_active_stripe(conf, sector_nr, 0, 0);
4083                 /* make sure we don't swamp the stripe cache if someone else
4084                  * is trying to get access
4085                  */
4086                 schedule_timeout_uninterruptible(1);
4087         }
4088         /* Need to check if array will still be degraded after recovery/resync
4089          * We don't need to check the 'failed' flag as when that gets set,
4090          * recovery aborts.
4091          */
4092         for (i=0; i<mddev->raid_disks; i++)
4093                 if (conf->disks[i].rdev == NULL)
4094                         still_degraded = 1;
4095
4096         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4097
4098         spin_lock(&sh->lock);
4099         set_bit(STRIPE_SYNCING, &sh->state);
4100         clear_bit(STRIPE_INSYNC, &sh->state);
4101         spin_unlock(&sh->lock);
4102
4103         /* wait for any blocked device to be handled */
4104         while (unlikely(!handle_stripe(sh)))
4105                 ;
4106         release_stripe(sh);
4107
4108         return STRIPE_SECTORS;
4109 }
4110
4111 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4112 {
4113         /* We may not be able to submit a whole bio at once as there
4114          * may not be enough stripe_heads available.
4115          * We cannot pre-allocate enough stripe_heads as we may need
4116          * more than exist in the cache (if we allow ever large chunks).
4117          * So we do one stripe head at a time and record in
4118          * ->bi_hw_segments how many have been done.
4119          *
4120          * We *know* that this entire raid_bio is in one chunk, so
4121          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4122          */
4123         struct stripe_head *sh;
4124         int dd_idx;
4125         sector_t sector, logical_sector, last_sector;
4126         int scnt = 0;
4127         int remaining;
4128         int handled = 0;
4129
4130         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4131         sector = raid5_compute_sector(conf, logical_sector,
4132                                       0, &dd_idx, NULL);
4133         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4134
4135         for (; logical_sector < last_sector;
4136              logical_sector += STRIPE_SECTORS,
4137                      sector += STRIPE_SECTORS,
4138                      scnt++) {
4139
4140                 if (scnt < raid5_bi_hw_segments(raid_bio))
4141                         /* already done this stripe */
4142                         continue;
4143
4144                 sh = get_active_stripe(conf, sector, 0, 1);
4145
4146                 if (!sh) {
4147                         /* failed to get a stripe - must wait */
4148                         raid5_set_bi_hw_segments(raid_bio, scnt);
4149                         conf->retry_read_aligned = raid_bio;
4150                         return handled;
4151                 }
4152
4153                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4154                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4155                         release_stripe(sh);
4156                         raid5_set_bi_hw_segments(raid_bio, scnt);
4157                         conf->retry_read_aligned = raid_bio;
4158                         return handled;
4159                 }
4160
4161                 handle_stripe(sh);
4162                 release_stripe(sh);
4163                 handled++;
4164         }
4165         spin_lock_irq(&conf->device_lock);
4166         remaining = raid5_dec_bi_phys_segments(raid_bio);
4167         spin_unlock_irq(&conf->device_lock);
4168         if (remaining == 0)
4169                 bio_endio(raid_bio, 0);
4170         if (atomic_dec_and_test(&conf->active_aligned_reads))
4171                 wake_up(&conf->wait_for_stripe);
4172         return handled;
4173 }
4174
4175
4176
4177 /*
4178  * This is our raid5 kernel thread.
4179  *
4180  * We scan the hash table for stripes which can be handled now.
4181  * During the scan, completed stripes are saved for us by the interrupt
4182  * handler, so that they will not have to wait for our next wakeup.
4183  */
4184 static void raid5d(mddev_t *mddev)
4185 {
4186         struct stripe_head *sh;
4187         raid5_conf_t *conf = mddev_to_conf(mddev);
4188         int handled;
4189
4190         pr_debug("+++ raid5d active\n");
4191
4192         md_check_recovery(mddev);
4193
4194         handled = 0;
4195         spin_lock_irq(&conf->device_lock);
4196         while (1) {
4197                 struct bio *bio;
4198
4199                 if (conf->seq_flush != conf->seq_write) {
4200                         int seq = conf->seq_flush;
4201                         spin_unlock_irq(&conf->device_lock);
4202                         bitmap_unplug(mddev->bitmap);
4203                         spin_lock_irq(&conf->device_lock);
4204                         conf->seq_write = seq;
4205                         activate_bit_delay(conf);
4206                 }
4207
4208                 while ((bio = remove_bio_from_retry(conf))) {
4209                         int ok;
4210                         spin_unlock_irq(&conf->device_lock);
4211                         ok = retry_aligned_read(conf, bio);
4212                         spin_lock_irq(&conf->device_lock);
4213                         if (!ok)
4214                                 break;
4215                         handled++;
4216                 }
4217
4218                 sh = __get_priority_stripe(conf);
4219
4220                 if (!sh)
4221                         break;
4222                 spin_unlock_irq(&conf->device_lock);
4223                 
4224                 handled++;
4225                 handle_stripe(sh);
4226                 release_stripe(sh);
4227
4228                 spin_lock_irq(&conf->device_lock);
4229         }
4230         pr_debug("%d stripes handled\n", handled);
4231
4232         spin_unlock_irq(&conf->device_lock);
4233
4234         async_tx_issue_pending_all();
4235         unplug_slaves(mddev);
4236
4237         pr_debug("--- raid5d inactive\n");
4238 }
4239
4240 static ssize_t
4241 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4242 {
4243         raid5_conf_t *conf = mddev_to_conf(mddev);
4244         if (conf)
4245                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4246         else
4247                 return 0;
4248 }
4249
4250 static ssize_t
4251 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4252 {
4253         raid5_conf_t *conf = mddev_to_conf(mddev);
4254         unsigned long new;
4255         int err;
4256
4257         if (len >= PAGE_SIZE)
4258                 return -EINVAL;
4259         if (!conf)
4260                 return -ENODEV;
4261
4262         if (strict_strtoul(page, 10, &new))
4263                 return -EINVAL;
4264         if (new <= 16 || new > 32768)
4265                 return -EINVAL;
4266         while (new < conf->max_nr_stripes) {
4267                 if (drop_one_stripe(conf))
4268                         conf->max_nr_stripes--;
4269                 else
4270                         break;
4271         }
4272         err = md_allow_write(mddev);
4273         if (err)
4274                 return err;
4275         while (new > conf->max_nr_stripes) {
4276                 if (grow_one_stripe(conf))
4277                         conf->max_nr_stripes++;
4278                 else break;
4279         }
4280         return len;
4281 }
4282
4283 static struct md_sysfs_entry
4284 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4285                                 raid5_show_stripe_cache_size,
4286                                 raid5_store_stripe_cache_size);
4287
4288 static ssize_t
4289 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4290 {
4291         raid5_conf_t *conf = mddev_to_conf(mddev);
4292         if (conf)
4293                 return sprintf(page, "%d\n", conf->bypass_threshold);
4294         else
4295                 return 0;
4296 }
4297
4298 static ssize_t
4299 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4300 {
4301         raid5_conf_t *conf = mddev_to_conf(mddev);
4302         unsigned long new;
4303         if (len >= PAGE_SIZE)
4304                 return -EINVAL;
4305         if (!conf)
4306                 return -ENODEV;
4307
4308         if (strict_strtoul(page, 10, &new))
4309                 return -EINVAL;
4310         if (new > conf->max_nr_stripes)
4311                 return -EINVAL;
4312         conf->bypass_threshold = new;
4313         return len;
4314 }
4315
4316 static struct md_sysfs_entry
4317 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4318                                         S_IRUGO | S_IWUSR,
4319                                         raid5_show_preread_threshold,
4320                                         raid5_store_preread_threshold);
4321
4322 static ssize_t
4323 stripe_cache_active_show(mddev_t *mddev, char *page)
4324 {
4325         raid5_conf_t *conf = mddev_to_conf(mddev);
4326         if (conf)
4327                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4328         else
4329                 return 0;
4330 }
4331
4332 static struct md_sysfs_entry
4333 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4334
4335 static struct attribute *raid5_attrs[] =  {
4336         &raid5_stripecache_size.attr,
4337         &raid5_stripecache_active.attr,
4338         &raid5_preread_bypass_threshold.attr,
4339         NULL,
4340 };
4341 static struct attribute_group raid5_attrs_group = {
4342         .name = NULL,
4343         .attrs = raid5_attrs,
4344 };
4345
4346 static sector_t
4347 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4348 {
4349         raid5_conf_t *conf = mddev_to_conf(mddev);
4350
4351         if (!sectors)
4352                 sectors = mddev->dev_sectors;
4353         if (!raid_disks) {
4354                 /* size is defined by the smallest of previous and new size */
4355                 if (conf->raid_disks < conf->previous_raid_disks)
4356                         raid_disks = conf->raid_disks;
4357                 else
4358                         raid_disks = conf->previous_raid_disks;
4359         }
4360
4361         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4362         sectors &= ~((sector_t)mddev->new_chunk/512 - 1);
4363         return sectors * (raid_disks - conf->max_degraded);
4364 }
4365
4366 static void raid5_free_percpu(raid5_conf_t *conf)
4367 {
4368         struct raid5_percpu *percpu;
4369         unsigned long cpu;
4370
4371         if (!conf->percpu)
4372                 return;
4373
4374         get_online_cpus();
4375         for_each_possible_cpu(cpu) {
4376                 percpu = per_cpu_ptr(conf->percpu, cpu);
4377                 safe_put_page(percpu->spare_page);
4378                 kfree(percpu->scribble);
4379         }
4380 #ifdef CONFIG_HOTPLUG_CPU
4381         unregister_cpu_notifier(&conf->cpu_notify);
4382 #endif
4383         put_online_cpus();
4384
4385         free_percpu(conf->percpu);
4386 }
4387
4388 static void free_conf(raid5_conf_t *conf)
4389 {
4390         shrink_stripes(conf);
4391         raid5_free_percpu(conf);
4392         kfree(conf->disks);
4393         kfree(conf->stripe_hashtbl);
4394         kfree(conf);
4395 }
4396
4397 #ifdef CONFIG_HOTPLUG_CPU
4398 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4399                               void *hcpu)
4400 {
4401         raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4402         long cpu = (long)hcpu;
4403         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4404
4405         switch (action) {
4406         case CPU_UP_PREPARE:
4407         case CPU_UP_PREPARE_FROZEN:
4408                 if (conf->level == 6 && !percpu->spare_page)
4409                         percpu->spare_page = alloc_page(GFP_KERNEL);
4410                 if (!percpu->scribble)
4411                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4412
4413                 if (!percpu->scribble ||
4414                     (conf->level == 6 && !percpu->spare_page)) {
4415                         safe_put_page(percpu->spare_page);
4416                         kfree(percpu->scribble);
4417                         pr_err("%s: failed memory allocation for cpu%ld\n",
4418                                __func__, cpu);
4419                         return NOTIFY_BAD;
4420                 }
4421                 break;
4422         case CPU_DEAD:
4423         case CPU_DEAD_FROZEN:
4424                 safe_put_page(percpu->spare_page);
4425                 kfree(percpu->scribble);
4426                 percpu->spare_page = NULL;
4427                 percpu->scribble = NULL;
4428                 break;
4429         default:
4430                 break;
4431         }
4432         return NOTIFY_OK;
4433 }
4434 #endif
4435
4436 static int raid5_alloc_percpu(raid5_conf_t *conf)
4437 {
4438         unsigned long cpu;
4439         struct page *spare_page;
4440         struct raid5_percpu *allcpus;
4441         void *scribble;
4442         int err;
4443
4444         allcpus = alloc_percpu(struct raid5_percpu);
4445         if (!allcpus)
4446                 return -ENOMEM;
4447         conf->percpu = allcpus;
4448
4449         get_online_cpus();
4450         err = 0;
4451         for_each_present_cpu(cpu) {
4452                 if (conf->level == 6) {
4453                         spare_page = alloc_page(GFP_KERNEL);
4454                         if (!spare_page) {
4455                                 err = -ENOMEM;
4456                                 break;
4457                         }
4458                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4459                 }
4460                 scribble = kmalloc(scribble_len(conf->raid_disks), GFP_KERNEL);
4461                 if (!scribble) {
4462                         err = -ENOMEM;
4463                         break;
4464                 }
4465                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4466         }
4467 #ifdef CONFIG_HOTPLUG_CPU
4468         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4469         conf->cpu_notify.priority = 0;
4470         if (err == 0)
4471                 err = register_cpu_notifier(&conf->cpu_notify);
4472 #endif
4473         put_online_cpus();
4474
4475         return err;
4476 }
4477
4478 static raid5_conf_t *setup_conf(mddev_t *mddev)
4479 {
4480         raid5_conf_t *conf;
4481         int raid_disk, memory;
4482         mdk_rdev_t *rdev;
4483         struct disk_info *disk;
4484
4485         if (mddev->new_level != 5
4486             && mddev->new_level != 4
4487             && mddev->new_level != 6) {
4488                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4489                        mdname(mddev), mddev->new_level);
4490                 return ERR_PTR(-EIO);
4491         }
4492         if ((mddev->new_level == 5
4493              && !algorithm_valid_raid5(mddev->new_layout)) ||
4494             (mddev->new_level == 6
4495              && !algorithm_valid_raid6(mddev->new_layout))) {
4496                 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4497                        mdname(mddev), mddev->new_layout);
4498                 return ERR_PTR(-EIO);
4499         }
4500         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4501                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4502                        mdname(mddev), mddev->raid_disks);
4503                 return ERR_PTR(-EINVAL);
4504         }
4505
4506         if (!mddev->new_chunk || mddev->new_chunk % PAGE_SIZE) {
4507                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4508                         mddev->new_chunk, mdname(mddev));
4509                 return ERR_PTR(-EINVAL);
4510         }
4511
4512         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4513         if (conf == NULL)
4514                 goto abort;
4515
4516         conf->raid_disks = mddev->raid_disks;
4517         conf->scribble_len = scribble_len(conf->raid_disks);
4518         if (mddev->reshape_position == MaxSector)
4519                 conf->previous_raid_disks = mddev->raid_disks;
4520         else
4521                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4522
4523         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4524                               GFP_KERNEL);
4525         if (!conf->disks)
4526                 goto abort;
4527
4528         conf->mddev = mddev;
4529
4530         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4531                 goto abort;
4532
4533         conf->level = mddev->new_level;
4534         if (raid5_alloc_percpu(conf) != 0)
4535                 goto abort;
4536
4537         spin_lock_init(&conf->device_lock);
4538         init_waitqueue_head(&conf->wait_for_stripe);
4539         init_waitqueue_head(&conf->wait_for_overlap);
4540         INIT_LIST_HEAD(&conf->handle_list);
4541         INIT_LIST_HEAD(&conf->hold_list);
4542         INIT_LIST_HEAD(&conf->delayed_list);
4543         INIT_LIST_HEAD(&conf->bitmap_list);
4544         INIT_LIST_HEAD(&conf->inactive_list);
4545         atomic_set(&conf->active_stripes, 0);
4546         atomic_set(&conf->preread_active_stripes, 0);
4547         atomic_set(&conf->active_aligned_reads, 0);
4548         conf->bypass_threshold = BYPASS_THRESHOLD;
4549
4550         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4551
4552         list_for_each_entry(rdev, &mddev->disks, same_set) {
4553                 raid_disk = rdev->raid_disk;
4554                 if (raid_disk >= conf->raid_disks
4555                     || raid_disk < 0)
4556                         continue;
4557                 disk = conf->disks + raid_disk;
4558
4559                 disk->rdev = rdev;
4560
4561                 if (test_bit(In_sync, &rdev->flags)) {
4562                         char b[BDEVNAME_SIZE];
4563                         printk(KERN_INFO "raid5: device %s operational as raid"
4564                                 " disk %d\n", bdevname(rdev->bdev,b),
4565                                 raid_disk);
4566                 } else
4567                         /* Cannot rely on bitmap to complete recovery */
4568                         conf->fullsync = 1;
4569         }
4570
4571         conf->chunk_size = mddev->new_chunk;
4572         if (conf->level == 6)
4573                 conf->max_degraded = 2;
4574         else
4575                 conf->max_degraded = 1;
4576         conf->algorithm = mddev->new_layout;
4577         conf->max_nr_stripes = NR_STRIPES;
4578         conf->reshape_progress = mddev->reshape_position;
4579         if (conf->reshape_progress != MaxSector) {
4580                 conf->prev_chunk = mddev->chunk_size;
4581                 conf->prev_algo = mddev->layout;
4582         }
4583
4584         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4585                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4586         if (grow_stripes(conf, conf->max_nr_stripes)) {
4587                 printk(KERN_ERR
4588                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4589                 goto abort;
4590         } else
4591                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4592                         memory, mdname(mddev));
4593
4594         conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4595         if (!conf->thread) {
4596                 printk(KERN_ERR
4597                        "raid5: couldn't allocate thread for %s\n",
4598                        mdname(mddev));
4599                 goto abort;
4600         }
4601
4602         return conf;
4603
4604  abort:
4605         if (conf) {
4606                 free_conf(conf);
4607                 return ERR_PTR(-EIO);
4608         } else
4609                 return ERR_PTR(-ENOMEM);
4610 }
4611
4612 static int run(mddev_t *mddev)
4613 {
4614         raid5_conf_t *conf;
4615         int working_disks = 0;
4616         mdk_rdev_t *rdev;
4617
4618         if (mddev->reshape_position != MaxSector) {
4619                 /* Check that we can continue the reshape.
4620                  * Currently only disks can change, it must
4621                  * increase, and we must be past the point where
4622                  * a stripe over-writes itself
4623                  */
4624                 sector_t here_new, here_old;
4625                 int old_disks;
4626                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4627
4628                 if (mddev->new_level != mddev->level) {
4629                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4630                                "required - aborting.\n",
4631                                mdname(mddev));
4632                         return -EINVAL;
4633                 }
4634                 old_disks = mddev->raid_disks - mddev->delta_disks;
4635                 /* reshape_position must be on a new-stripe boundary, and one
4636                  * further up in new geometry must map after here in old
4637                  * geometry.
4638                  */
4639                 here_new = mddev->reshape_position;
4640                 if (sector_div(here_new, (mddev->new_chunk>>9)*
4641                                (mddev->raid_disks - max_degraded))) {
4642                         printk(KERN_ERR "raid5: reshape_position not "
4643                                "on a stripe boundary\n");
4644                         return -EINVAL;
4645                 }
4646                 /* here_new is the stripe we will write to */
4647                 here_old = mddev->reshape_position;
4648                 sector_div(here_old, (mddev->chunk_size>>9)*
4649                            (old_disks-max_degraded));
4650                 /* here_old is the first stripe that we might need to read
4651                  * from */
4652                 if (here_new >= here_old) {
4653                         /* Reading from the same stripe as writing to - bad */
4654                         printk(KERN_ERR "raid5: reshape_position too early for "
4655                                "auto-recovery - aborting.\n");
4656                         return -EINVAL;
4657                 }
4658                 printk(KERN_INFO "raid5: reshape will continue\n");
4659                 /* OK, we should be able to continue; */
4660         } else {
4661                 BUG_ON(mddev->level != mddev->new_level);
4662                 BUG_ON(mddev->layout != mddev->new_layout);
4663                 BUG_ON(mddev->chunk_size != mddev->new_chunk);
4664                 BUG_ON(mddev->delta_disks != 0);
4665         }
4666
4667         if (mddev->private == NULL)
4668                 conf = setup_conf(mddev);
4669         else
4670                 conf = mddev->private;
4671
4672         if (IS_ERR(conf))
4673                 return PTR_ERR(conf);
4674
4675         mddev->thread = conf->thread;
4676         conf->thread = NULL;
4677         mddev->private = conf;
4678
4679         /*
4680          * 0 for a fully functional array, 1 or 2 for a degraded array.
4681          */
4682         list_for_each_entry(rdev, &mddev->disks, same_set)
4683                 if (rdev->raid_disk >= 0 &&
4684                     test_bit(In_sync, &rdev->flags))
4685                         working_disks++;
4686
4687         mddev->degraded = conf->raid_disks - working_disks;
4688
4689         if (mddev->degraded > conf->max_degraded) {
4690                 printk(KERN_ERR "raid5: not enough operational devices for %s"
4691                         " (%d/%d failed)\n",
4692                         mdname(mddev), mddev->degraded, conf->raid_disks);
4693                 goto abort;
4694         }
4695
4696         /* device size must be a multiple of chunk size */
4697         mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
4698         mddev->resync_max_sectors = mddev->dev_sectors;
4699
4700         if (mddev->degraded > 0 &&
4701             mddev->recovery_cp != MaxSector) {
4702                 if (mddev->ok_start_degraded)
4703                         printk(KERN_WARNING
4704                                "raid5: starting dirty degraded array: %s"
4705                                "- data corruption possible.\n",
4706                                mdname(mddev));
4707                 else {
4708                         printk(KERN_ERR
4709                                "raid5: cannot start dirty degraded array for %s\n",
4710                                mdname(mddev));
4711                         goto abort;
4712                 }
4713         }
4714
4715         if (mddev->degraded == 0)
4716                 printk("raid5: raid level %d set %s active with %d out of %d"
4717                        " devices, algorithm %d\n", conf->level, mdname(mddev),
4718                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4719                        mddev->new_layout);
4720         else
4721                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4722                         " out of %d devices, algorithm %d\n", conf->level,
4723                         mdname(mddev), mddev->raid_disks - mddev->degraded,
4724                         mddev->raid_disks, mddev->new_layout);
4725
4726         print_raid5_conf(conf);
4727
4728         if (conf->reshape_progress != MaxSector) {
4729                 printk("...ok start reshape thread\n");
4730                 conf->reshape_safe = conf->reshape_progress;
4731                 atomic_set(&conf->reshape_stripes, 0);
4732                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4733                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4734                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4735                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4736                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4737                                                         "%s_reshape");
4738         }
4739
4740         /* read-ahead size must cover two whole stripes, which is
4741          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4742          */
4743         {
4744                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4745                 int stripe = data_disks *
4746                         (mddev->chunk_size / PAGE_SIZE);
4747                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4748                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4749         }
4750
4751         /* Ok, everything is just fine now */
4752         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4753                 printk(KERN_WARNING
4754                        "raid5: failed to create sysfs attributes for %s\n",
4755                        mdname(mddev));
4756
4757         mddev->queue->queue_lock = &conf->device_lock;
4758
4759         mddev->queue->unplug_fn = raid5_unplug_device;
4760         mddev->queue->backing_dev_info.congested_data = mddev;
4761         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4762
4763         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4764
4765         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4766
4767         return 0;
4768 abort:
4769         md_unregister_thread(mddev->thread);
4770         mddev->thread = NULL;
4771         if (conf) {
4772                 print_raid5_conf(conf);
4773                 free_conf(conf);
4774         }
4775         mddev->private = NULL;
4776         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4777         return -EIO;
4778 }
4779
4780
4781
4782 static int stop(mddev_t *mddev)
4783 {
4784         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4785
4786         md_unregister_thread(mddev->thread);
4787         mddev->thread = NULL;
4788         mddev->queue->backing_dev_info.congested_fn = NULL;
4789         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4790         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4791         free_conf(conf);
4792         mddev->private = NULL;
4793         return 0;
4794 }
4795
4796 #ifdef DEBUG
4797 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4798 {
4799         int i;
4800
4801         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4802                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4803         seq_printf(seq, "sh %llu,  count %d.\n",
4804                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4805         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4806         for (i = 0; i < sh->disks; i++) {
4807                 seq_printf(seq, "(cache%d: %p %ld) ",
4808                            i, sh->dev[i].page, sh->dev[i].flags);
4809         }
4810         seq_printf(seq, "\n");
4811 }
4812
4813 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4814 {
4815         struct stripe_head *sh;
4816         struct hlist_node *hn;
4817         int i;
4818
4819         spin_lock_irq(&conf->device_lock);
4820         for (i = 0; i < NR_HASH; i++) {
4821                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4822                         if (sh->raid_conf != conf)
4823                                 continue;
4824                         print_sh(seq, sh);
4825                 }
4826         }
4827         spin_unlock_irq(&conf->device_lock);
4828 }
4829 #endif
4830
4831 static void status(struct seq_file *seq, mddev_t *mddev)
4832 {
4833         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4834         int i;
4835
4836         seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4837         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4838         for (i = 0; i < conf->raid_disks; i++)
4839                 seq_printf (seq, "%s",
4840                                conf->disks[i].rdev &&
4841                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4842         seq_printf (seq, "]");
4843 #ifdef DEBUG
4844         seq_printf (seq, "\n");
4845         printall(seq, conf);
4846 #endif
4847 }
4848
4849 static void print_raid5_conf (raid5_conf_t *conf)
4850 {
4851         int i;
4852         struct disk_info *tmp;
4853
4854         printk("RAID5 conf printout:\n");
4855         if (!conf) {
4856                 printk("(conf==NULL)\n");
4857                 return;
4858         }
4859         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4860                  conf->raid_disks - conf->mddev->degraded);
4861
4862         for (i = 0; i < conf->raid_disks; i++) {
4863                 char b[BDEVNAME_SIZE];
4864                 tmp = conf->disks + i;
4865                 if (tmp->rdev)
4866                 printk(" disk %d, o:%d, dev:%s\n",
4867                         i, !test_bit(Faulty, &tmp->rdev->flags),
4868                         bdevname(tmp->rdev->bdev,b));
4869         }
4870 }
4871
4872 static int raid5_spare_active(mddev_t *mddev)
4873 {
4874         int i;
4875         raid5_conf_t *conf = mddev->private;
4876         struct disk_info *tmp;
4877
4878         for (i = 0; i < conf->raid_disks; i++) {
4879                 tmp = conf->disks + i;
4880                 if (tmp->rdev
4881                     && !test_bit(Faulty, &tmp->rdev->flags)
4882                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4883                         unsigned long flags;
4884                         spin_lock_irqsave(&conf->device_lock, flags);
4885                         mddev->degraded--;
4886                         spin_unlock_irqrestore(&conf->device_lock, flags);
4887                 }
4888         }
4889         print_raid5_conf(conf);
4890         return 0;
4891 }
4892
4893 static int raid5_remove_disk(mddev_t *mddev, int number)
4894 {
4895         raid5_conf_t *conf = mddev->private;
4896         int err = 0;
4897         mdk_rdev_t *rdev;
4898         struct disk_info *p = conf->disks + number;
4899
4900         print_raid5_conf(conf);
4901         rdev = p->rdev;
4902         if (rdev) {
4903                 if (number >= conf->raid_disks &&
4904                     conf->reshape_progress == MaxSector)
4905                         clear_bit(In_sync, &rdev->flags);
4906
4907                 if (test_bit(In_sync, &rdev->flags) ||
4908                     atomic_read(&rdev->nr_pending)) {
4909                         err = -EBUSY;
4910                         goto abort;
4911                 }
4912                 /* Only remove non-faulty devices if recovery
4913                  * isn't possible.
4914                  */
4915                 if (!test_bit(Faulty, &rdev->flags) &&
4916                     mddev->degraded <= conf->max_degraded &&
4917                     number < conf->raid_disks) {
4918                         err = -EBUSY;
4919                         goto abort;
4920                 }
4921                 p->rdev = NULL;
4922                 synchronize_rcu();
4923                 if (atomic_read(&rdev->nr_pending)) {
4924                         /* lost the race, try later */
4925                         err = -EBUSY;
4926                         p->rdev = rdev;
4927                 }
4928         }
4929 abort:
4930
4931         print_raid5_conf(conf);
4932         return err;
4933 }
4934
4935 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4936 {
4937         raid5_conf_t *conf = mddev->private;
4938         int err = -EEXIST;
4939         int disk;
4940         struct disk_info *p;
4941         int first = 0;
4942         int last = conf->raid_disks - 1;
4943
4944         if (mddev->degraded > conf->max_degraded)
4945                 /* no point adding a device */
4946                 return -EINVAL;
4947
4948         if (rdev->raid_disk >= 0)
4949                 first = last = rdev->raid_disk;
4950
4951         /*
4952          * find the disk ... but prefer rdev->saved_raid_disk
4953          * if possible.
4954          */
4955         if (rdev->saved_raid_disk >= 0 &&
4956             rdev->saved_raid_disk >= first &&
4957             conf->disks[rdev->saved_raid_disk].rdev == NULL)
4958                 disk = rdev->saved_raid_disk;
4959         else
4960                 disk = first;
4961         for ( ; disk <= last ; disk++)
4962                 if ((p=conf->disks + disk)->rdev == NULL) {
4963                         clear_bit(In_sync, &rdev->flags);
4964                         rdev->raid_disk = disk;
4965                         err = 0;
4966                         if (rdev->saved_raid_disk != disk)
4967                                 conf->fullsync = 1;
4968                         rcu_assign_pointer(p->rdev, rdev);
4969                         break;
4970                 }
4971         print_raid5_conf(conf);
4972         return err;
4973 }
4974
4975 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4976 {
4977         /* no resync is happening, and there is enough space
4978          * on all devices, so we can resize.
4979          * We need to make sure resync covers any new space.
4980          * If the array is shrinking we should possibly wait until
4981          * any io in the removed space completes, but it hardly seems
4982          * worth it.
4983          */
4984         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4985         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
4986                                                mddev->raid_disks));
4987         if (mddev->array_sectors >
4988             raid5_size(mddev, sectors, mddev->raid_disks))
4989                 return -EINVAL;
4990         set_capacity(mddev->gendisk, mddev->array_sectors);
4991         mddev->changed = 1;
4992         if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
4993                 mddev->recovery_cp = mddev->dev_sectors;
4994                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4995         }
4996         mddev->dev_sectors = sectors;
4997         mddev->resync_max_sectors = sectors;
4998         return 0;
4999 }
5000
5001 static int raid5_check_reshape(mddev_t *mddev)
5002 {
5003         raid5_conf_t *conf = mddev_to_conf(mddev);
5004
5005         if (mddev->delta_disks == 0 &&
5006             mddev->new_layout == mddev->layout &&
5007             mddev->new_chunk == mddev->chunk_size)
5008                 return -EINVAL; /* nothing to do */
5009         if (mddev->bitmap)
5010                 /* Cannot grow a bitmap yet */
5011                 return -EBUSY;
5012         if (mddev->degraded > conf->max_degraded)
5013                 return -EINVAL;
5014         if (mddev->delta_disks < 0) {
5015                 /* We might be able to shrink, but the devices must
5016                  * be made bigger first.
5017                  * For raid6, 4 is the minimum size.
5018                  * Otherwise 2 is the minimum
5019                  */
5020                 int min = 2;
5021                 if (mddev->level == 6)
5022                         min = 4;
5023                 if (mddev->raid_disks + mddev->delta_disks < min)
5024                         return -EINVAL;
5025         }
5026
5027         /* Can only proceed if there are plenty of stripe_heads.
5028          * We need a minimum of one full stripe,, and for sensible progress
5029          * it is best to have about 4 times that.
5030          * If we require 4 times, then the default 256 4K stripe_heads will
5031          * allow for chunk sizes up to 256K, which is probably OK.
5032          * If the chunk size is greater, user-space should request more
5033          * stripe_heads first.
5034          */
5035         if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
5036             (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
5037                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
5038                        (max(mddev->chunk_size, mddev->new_chunk)
5039                         / STRIPE_SIZE)*4);
5040                 return -ENOSPC;
5041         }
5042
5043         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5044 }
5045
5046 static int raid5_start_reshape(mddev_t *mddev)
5047 {
5048         raid5_conf_t *conf = mddev_to_conf(mddev);
5049         mdk_rdev_t *rdev;
5050         int spares = 0;
5051         int added_devices = 0;
5052         unsigned long flags;
5053
5054         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5055                 return -EBUSY;
5056
5057         list_for_each_entry(rdev, &mddev->disks, same_set)
5058                 if (rdev->raid_disk < 0 &&
5059                     !test_bit(Faulty, &rdev->flags))
5060                         spares++;
5061
5062         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5063                 /* Not enough devices even to make a degraded array
5064                  * of that size
5065                  */
5066                 return -EINVAL;
5067
5068         /* Refuse to reduce size of the array.  Any reductions in
5069          * array size must be through explicit setting of array_size
5070          * attribute.
5071          */
5072         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5073             < mddev->array_sectors) {
5074                 printk(KERN_ERR "md: %s: array size must be reduced "
5075                        "before number of disks\n", mdname(mddev));
5076                 return -EINVAL;
5077         }
5078
5079         atomic_set(&conf->reshape_stripes, 0);
5080         spin_lock_irq(&conf->device_lock);
5081         conf->previous_raid_disks = conf->raid_disks;
5082         conf->raid_disks += mddev->delta_disks;
5083         conf->prev_chunk = conf->chunk_size;
5084         conf->chunk_size = mddev->new_chunk;
5085         conf->prev_algo = conf->algorithm;
5086         conf->algorithm = mddev->new_layout;
5087         if (mddev->delta_disks < 0)
5088                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5089         else
5090                 conf->reshape_progress = 0;
5091         conf->reshape_safe = conf->reshape_progress;
5092         conf->generation++;
5093         spin_unlock_irq(&conf->device_lock);
5094
5095         /* Add some new drives, as many as will fit.
5096          * We know there are enough to make the newly sized array work.
5097          */
5098         list_for_each_entry(rdev, &mddev->disks, same_set)
5099                 if (rdev->raid_disk < 0 &&
5100                     !test_bit(Faulty, &rdev->flags)) {
5101                         if (raid5_add_disk(mddev, rdev) == 0) {
5102                                 char nm[20];
5103                                 set_bit(In_sync, &rdev->flags);
5104                                 added_devices++;
5105                                 rdev->recovery_offset = 0;
5106                                 sprintf(nm, "rd%d", rdev->raid_disk);
5107                                 if (sysfs_create_link(&mddev->kobj,
5108                                                       &rdev->kobj, nm))
5109                                         printk(KERN_WARNING
5110                                                "raid5: failed to create "
5111                                                " link %s for %s\n",
5112                                                nm, mdname(mddev));
5113                         } else
5114                                 break;
5115                 }
5116
5117         if (mddev->delta_disks > 0) {
5118                 spin_lock_irqsave(&conf->device_lock, flags);
5119                 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
5120                         - added_devices;
5121                 spin_unlock_irqrestore(&conf->device_lock, flags);
5122         }
5123         mddev->raid_disks = conf->raid_disks;
5124         mddev->reshape_position = 0;
5125         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5126
5127         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5128         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5129         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5130         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5131         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5132                                                 "%s_reshape");
5133         if (!mddev->sync_thread) {
5134                 mddev->recovery = 0;
5135                 spin_lock_irq(&conf->device_lock);
5136                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5137                 conf->reshape_progress = MaxSector;
5138                 spin_unlock_irq(&conf->device_lock);
5139                 return -EAGAIN;
5140         }
5141         conf->reshape_checkpoint = jiffies;
5142         md_wakeup_thread(mddev->sync_thread);
5143         md_new_event(mddev);
5144         return 0;
5145 }
5146
5147 /* This is called from the reshape thread and should make any
5148  * changes needed in 'conf'
5149  */
5150 static void end_reshape(raid5_conf_t *conf)
5151 {
5152
5153         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5154
5155                 spin_lock_irq(&conf->device_lock);
5156                 conf->previous_raid_disks = conf->raid_disks;
5157                 conf->reshape_progress = MaxSector;
5158                 spin_unlock_irq(&conf->device_lock);
5159                 wake_up(&conf->wait_for_overlap);
5160
5161                 /* read-ahead size must cover two whole stripes, which is
5162                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5163                  */
5164                 {
5165                         int data_disks = conf->raid_disks - conf->max_degraded;
5166                         int stripe = data_disks * (conf->chunk_size
5167                                                    / PAGE_SIZE);
5168                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5169                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5170                 }
5171         }
5172 }
5173
5174 /* This is called from the raid5d thread with mddev_lock held.
5175  * It makes config changes to the device.
5176  */
5177 static void raid5_finish_reshape(mddev_t *mddev)
5178 {
5179         struct block_device *bdev;
5180         raid5_conf_t *conf = mddev_to_conf(mddev);
5181
5182         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5183
5184                 if (mddev->delta_disks > 0) {
5185                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5186                         set_capacity(mddev->gendisk, mddev->array_sectors);
5187                         mddev->changed = 1;
5188
5189                         bdev = bdget_disk(mddev->gendisk, 0);
5190                         if (bdev) {
5191                                 mutex_lock(&bdev->bd_inode->i_mutex);
5192                                 i_size_write(bdev->bd_inode,
5193                                              (loff_t)mddev->array_sectors << 9);
5194                                 mutex_unlock(&bdev->bd_inode->i_mutex);
5195                                 bdput(bdev);
5196                         }
5197                 } else {
5198                         int d;
5199                         mddev->degraded = conf->raid_disks;
5200                         for (d = 0; d < conf->raid_disks ; d++)
5201                                 if (conf->disks[d].rdev &&
5202                                     test_bit(In_sync,
5203                                              &conf->disks[d].rdev->flags))
5204                                         mddev->degraded--;
5205                         for (d = conf->raid_disks ;
5206                              d < conf->raid_disks - mddev->delta_disks;
5207                              d++)
5208                                 raid5_remove_disk(mddev, d);
5209                 }
5210                 mddev->layout = conf->algorithm;
5211                 mddev->chunk_size = conf->chunk_size;
5212                 mddev->reshape_position = MaxSector;
5213                 mddev->delta_disks = 0;
5214         }
5215 }
5216
5217 static void raid5_quiesce(mddev_t *mddev, int state)
5218 {
5219         raid5_conf_t *conf = mddev_to_conf(mddev);
5220
5221         switch(state) {
5222         case 2: /* resume for a suspend */
5223                 wake_up(&conf->wait_for_overlap);
5224                 break;
5225
5226         case 1: /* stop all writes */
5227                 spin_lock_irq(&conf->device_lock);
5228                 conf->quiesce = 1;
5229                 wait_event_lock_irq(conf->wait_for_stripe,
5230                                     atomic_read(&conf->active_stripes) == 0 &&
5231                                     atomic_read(&conf->active_aligned_reads) == 0,
5232                                     conf->device_lock, /* nothing */);
5233                 spin_unlock_irq(&conf->device_lock);
5234                 break;
5235
5236         case 0: /* re-enable writes */
5237                 spin_lock_irq(&conf->device_lock);
5238                 conf->quiesce = 0;
5239                 wake_up(&conf->wait_for_stripe);
5240                 wake_up(&conf->wait_for_overlap);
5241                 spin_unlock_irq(&conf->device_lock);
5242                 break;
5243         }
5244 }
5245
5246
5247 static void *raid5_takeover_raid1(mddev_t *mddev)
5248 {
5249         int chunksect;
5250
5251         if (mddev->raid_disks != 2 ||
5252             mddev->degraded > 1)
5253                 return ERR_PTR(-EINVAL);
5254
5255         /* Should check if there are write-behind devices? */
5256
5257         chunksect = 64*2; /* 64K by default */
5258
5259         /* The array must be an exact multiple of chunksize */
5260         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5261                 chunksect >>= 1;
5262
5263         if ((chunksect<<9) < STRIPE_SIZE)
5264                 /* array size does not allow a suitable chunk size */
5265                 return ERR_PTR(-EINVAL);
5266
5267         mddev->new_level = 5;
5268         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5269         mddev->new_chunk = chunksect << 9;
5270
5271         return setup_conf(mddev);
5272 }
5273
5274 static void *raid5_takeover_raid6(mddev_t *mddev)
5275 {
5276         int new_layout;
5277
5278         switch (mddev->layout) {
5279         case ALGORITHM_LEFT_ASYMMETRIC_6:
5280                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5281                 break;
5282         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5283                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5284                 break;
5285         case ALGORITHM_LEFT_SYMMETRIC_6:
5286                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5287                 break;
5288         case ALGORITHM_RIGHT_SYMMETRIC_6:
5289                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5290                 break;
5291         case ALGORITHM_PARITY_0_6:
5292                 new_layout = ALGORITHM_PARITY_0;
5293                 break;
5294         case ALGORITHM_PARITY_N:
5295                 new_layout = ALGORITHM_PARITY_N;
5296                 break;
5297         default:
5298                 return ERR_PTR(-EINVAL);
5299         }
5300         mddev->new_level = 5;
5301         mddev->new_layout = new_layout;
5302         mddev->delta_disks = -1;
5303         mddev->raid_disks -= 1;
5304         return setup_conf(mddev);
5305 }
5306
5307
5308 static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5309 {
5310         /* For a 2-drive array, the layout and chunk size can be changed
5311          * immediately as not restriping is needed.
5312          * For larger arrays we record the new value - after validation
5313          * to be used by a reshape pass.
5314          */
5315         raid5_conf_t *conf = mddev_to_conf(mddev);
5316
5317         if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
5318                 return -EINVAL;
5319         if (new_chunk > 0) {
5320                 if (new_chunk & (new_chunk-1))
5321                         /* not a power of 2 */
5322                         return -EINVAL;
5323                 if (new_chunk < PAGE_SIZE)
5324                         return -EINVAL;
5325                 if (mddev->array_sectors & ((new_chunk>>9)-1))
5326                         /* not factor of array size */
5327                         return -EINVAL;
5328         }
5329
5330         /* They look valid */
5331
5332         if (mddev->raid_disks == 2) {
5333
5334                 if (new_layout >= 0) {
5335                         conf->algorithm = new_layout;
5336                         mddev->layout = mddev->new_layout = new_layout;
5337                 }
5338                 if (new_chunk > 0) {
5339                         conf->chunk_size = new_chunk;
5340                         mddev->chunk_size = mddev->new_chunk = new_chunk;
5341                 }
5342                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5343                 md_wakeup_thread(mddev->thread);
5344         } else {
5345                 if (new_layout >= 0)
5346                         mddev->new_layout = new_layout;
5347                 if (new_chunk > 0)
5348                         mddev->new_chunk = new_chunk;
5349         }
5350         return 0;
5351 }
5352
5353 static int raid6_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5354 {
5355         if (new_layout >= 0 && !algorithm_valid_raid6(new_layout))
5356                 return -EINVAL;
5357         if (new_chunk > 0) {
5358                 if (new_chunk & (new_chunk-1))
5359                         /* not a power of 2 */
5360                         return -EINVAL;
5361                 if (new_chunk < PAGE_SIZE)
5362                         return -EINVAL;
5363                 if (mddev->array_sectors & ((new_chunk>>9)-1))
5364                         /* not factor of array size */
5365                         return -EINVAL;
5366         }
5367
5368         /* They look valid */
5369
5370         if (new_layout >= 0)
5371                 mddev->new_layout = new_layout;
5372         if (new_chunk > 0)
5373                 mddev->new_chunk = new_chunk;
5374
5375         return 0;
5376 }
5377
5378 static void *raid5_takeover(mddev_t *mddev)
5379 {
5380         /* raid5 can take over:
5381          *  raid0 - if all devices are the same - make it a raid4 layout
5382          *  raid1 - if there are two drives.  We need to know the chunk size
5383          *  raid4 - trivial - just use a raid4 layout.
5384          *  raid6 - Providing it is a *_6 layout
5385          *
5386          * For now, just do raid1
5387          */
5388
5389         if (mddev->level == 1)
5390                 return raid5_takeover_raid1(mddev);
5391         if (mddev->level == 4) {
5392                 mddev->new_layout = ALGORITHM_PARITY_N;
5393                 mddev->new_level = 5;
5394                 return setup_conf(mddev);
5395         }
5396         if (mddev->level == 6)
5397                 return raid5_takeover_raid6(mddev);
5398
5399         return ERR_PTR(-EINVAL);
5400 }
5401
5402
5403 static struct mdk_personality raid5_personality;
5404
5405 static void *raid6_takeover(mddev_t *mddev)
5406 {
5407         /* Currently can only take over a raid5.  We map the
5408          * personality to an equivalent raid6 personality
5409          * with the Q block at the end.
5410          */
5411         int new_layout;
5412
5413         if (mddev->pers != &raid5_personality)
5414                 return ERR_PTR(-EINVAL);
5415         if (mddev->degraded > 1)
5416                 return ERR_PTR(-EINVAL);
5417         if (mddev->raid_disks > 253)
5418                 return ERR_PTR(-EINVAL);
5419         if (mddev->raid_disks < 3)
5420                 return ERR_PTR(-EINVAL);
5421
5422         switch (mddev->layout) {
5423         case ALGORITHM_LEFT_ASYMMETRIC:
5424                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5425                 break;
5426         case ALGORITHM_RIGHT_ASYMMETRIC:
5427                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5428                 break;
5429         case ALGORITHM_LEFT_SYMMETRIC:
5430                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5431                 break;
5432         case ALGORITHM_RIGHT_SYMMETRIC:
5433                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5434                 break;
5435         case ALGORITHM_PARITY_0:
5436                 new_layout = ALGORITHM_PARITY_0_6;
5437                 break;
5438         case ALGORITHM_PARITY_N:
5439                 new_layout = ALGORITHM_PARITY_N;
5440                 break;
5441         default:
5442                 return ERR_PTR(-EINVAL);
5443         }
5444         mddev->new_level = 6;
5445         mddev->new_layout = new_layout;
5446         mddev->delta_disks = 1;
5447         mddev->raid_disks += 1;
5448         return setup_conf(mddev);
5449 }
5450
5451
5452 static struct mdk_personality raid6_personality =
5453 {
5454         .name           = "raid6",
5455         .level          = 6,
5456         .owner          = THIS_MODULE,
5457         .make_request   = make_request,
5458         .run            = run,
5459         .stop           = stop,
5460         .status         = status,
5461         .error_handler  = error,
5462         .hot_add_disk   = raid5_add_disk,
5463         .hot_remove_disk= raid5_remove_disk,
5464         .spare_active   = raid5_spare_active,
5465         .sync_request   = sync_request,
5466         .resize         = raid5_resize,
5467         .size           = raid5_size,
5468         .check_reshape  = raid5_check_reshape,
5469         .start_reshape  = raid5_start_reshape,
5470         .finish_reshape = raid5_finish_reshape,
5471         .quiesce        = raid5_quiesce,
5472         .takeover       = raid6_takeover,
5473         .reconfig       = raid6_reconfig,
5474 };
5475 static struct mdk_personality raid5_personality =
5476 {
5477         .name           = "raid5",
5478         .level          = 5,
5479         .owner          = THIS_MODULE,
5480         .make_request   = make_request,
5481         .run            = run,
5482         .stop           = stop,
5483         .status         = status,
5484         .error_handler  = error,
5485         .hot_add_disk   = raid5_add_disk,
5486         .hot_remove_disk= raid5_remove_disk,
5487         .spare_active   = raid5_spare_active,
5488         .sync_request   = sync_request,
5489         .resize         = raid5_resize,
5490         .size           = raid5_size,
5491         .check_reshape  = raid5_check_reshape,
5492         .start_reshape  = raid5_start_reshape,
5493         .finish_reshape = raid5_finish_reshape,
5494         .quiesce        = raid5_quiesce,
5495         .takeover       = raid5_takeover,
5496         .reconfig       = raid5_reconfig,
5497 };
5498
5499 static struct mdk_personality raid4_personality =
5500 {
5501         .name           = "raid4",
5502         .level          = 4,
5503         .owner          = THIS_MODULE,
5504         .make_request   = make_request,
5505         .run            = run,
5506         .stop           = stop,
5507         .status         = status,
5508         .error_handler  = error,
5509         .hot_add_disk   = raid5_add_disk,
5510         .hot_remove_disk= raid5_remove_disk,
5511         .spare_active   = raid5_spare_active,
5512         .sync_request   = sync_request,
5513         .resize         = raid5_resize,
5514         .size           = raid5_size,
5515         .check_reshape  = raid5_check_reshape,
5516         .start_reshape  = raid5_start_reshape,
5517         .finish_reshape = raid5_finish_reshape,
5518         .quiesce        = raid5_quiesce,
5519 };
5520
5521 static int __init raid5_init(void)
5522 {
5523         register_md_personality(&raid6_personality);
5524         register_md_personality(&raid5_personality);
5525         register_md_personality(&raid4_personality);
5526         return 0;
5527 }
5528
5529 static void raid5_exit(void)
5530 {
5531         unregister_md_personality(&raid6_personality);
5532         unregister_md_personality(&raid5_personality);
5533         unregister_md_personality(&raid4_personality);
5534 }
5535
5536 module_init(raid5_init);
5537 module_exit(raid5_exit);
5538 MODULE_LICENSE("GPL");
5539 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5540 MODULE_ALIAS("md-raid5");
5541 MODULE_ALIAS("md-raid4");
5542 MODULE_ALIAS("md-level-5");
5543 MODULE_ALIAS("md-level-4");
5544 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5545 MODULE_ALIAS("md-raid6");
5546 MODULE_ALIAS("md-level-6");
5547
5548 /* This used to be two separate modules, they were: */
5549 MODULE_ALIAS("raid5");
5550 MODULE_ALIAS("raid6");