md/raid5: simplify raid5_compute_sector interface
[safe/jmp/linux-2.6] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/async_tx.h>
49 #include <linux/seq_file.h>
50 #include "md.h"
51 #include "raid5.h"
52 #include "raid6.h"
53 #include "bitmap.h"
54
55 /*
56  * Stripe cache
57  */
58
59 #define NR_STRIPES              256
60 #define STRIPE_SIZE             PAGE_SIZE
61 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
62 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
63 #define IO_THRESHOLD            1
64 #define BYPASS_THRESHOLD        1
65 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK               (NR_HASH - 1)
67
68 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
69
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71  * order without overlap.  There may be several bio's per stripe+device, and
72  * a bio could span several devices.
73  * When walking this list for a particular stripe+device, we must never proceed
74  * beyond a bio that extends past this device, as the next bio might no longer
75  * be valid.
76  * This macro is used to determine the 'next' bio in the list, given the sector
77  * of the current stripe+device
78  */
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80 /*
81  * The following can be used to debug the driver
82  */
83 #define RAID5_PARANOIA  1
84 #if RAID5_PARANOIA && defined(CONFIG_SMP)
85 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
86 #else
87 # define CHECK_DEVLOCK()
88 #endif
89
90 #ifdef DEBUG
91 #define inline
92 #define __inline__
93 #endif
94
95 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
96
97 #if !RAID6_USE_EMPTY_ZERO_PAGE
98 /* In .bss so it's zeroed */
99 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
100 #endif
101
102 /*
103  * We maintain a biased count of active stripes in the bottom 16 bits of
104  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
105  */
106 static inline int raid5_bi_phys_segments(struct bio *bio)
107 {
108         return bio->bi_phys_segments & 0xffff;
109 }
110
111 static inline int raid5_bi_hw_segments(struct bio *bio)
112 {
113         return (bio->bi_phys_segments >> 16) & 0xffff;
114 }
115
116 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
117 {
118         --bio->bi_phys_segments;
119         return raid5_bi_phys_segments(bio);
120 }
121
122 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
123 {
124         unsigned short val = raid5_bi_hw_segments(bio);
125
126         --val;
127         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
128         return val;
129 }
130
131 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
132 {
133         bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
134 }
135
136 /* Find first data disk in a raid6 stripe */
137 static inline int raid6_d0(struct stripe_head *sh)
138 {
139         if (sh->qd_idx == sh->disks - 1)
140                 return 0;
141         else
142                 return sh->qd_idx + 1;
143 }
144 static inline int raid6_next_disk(int disk, int raid_disks)
145 {
146         disk++;
147         return (disk < raid_disks) ? disk : 0;
148 }
149
150 /* When walking through the disks in a raid5, starting at raid6_d0,
151  * We need to map each disk to a 'slot', where the data disks are slot
152  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153  * is raid_disks-1.  This help does that mapping.
154  */
155 static int raid6_idx_to_slot(int idx, struct stripe_head *sh, int *count)
156 {
157         int slot;
158         if (idx == sh->pd_idx)
159                 return sh->disks - 2;
160         if (idx == sh->qd_idx)
161                 return sh->disks - 1;
162         slot = (*count)++;
163         return slot;
164 }
165
166 static void return_io(struct bio *return_bi)
167 {
168         struct bio *bi = return_bi;
169         while (bi) {
170
171                 return_bi = bi->bi_next;
172                 bi->bi_next = NULL;
173                 bi->bi_size = 0;
174                 bio_endio(bi, 0);
175                 bi = return_bi;
176         }
177 }
178
179 static void print_raid5_conf (raid5_conf_t *conf);
180
181 static int stripe_operations_active(struct stripe_head *sh)
182 {
183         return sh->check_state || sh->reconstruct_state ||
184                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
185                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
186 }
187
188 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
189 {
190         if (atomic_dec_and_test(&sh->count)) {
191                 BUG_ON(!list_empty(&sh->lru));
192                 BUG_ON(atomic_read(&conf->active_stripes)==0);
193                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
194                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
195                                 list_add_tail(&sh->lru, &conf->delayed_list);
196                                 blk_plug_device(conf->mddev->queue);
197                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
198                                    sh->bm_seq - conf->seq_write > 0) {
199                                 list_add_tail(&sh->lru, &conf->bitmap_list);
200                                 blk_plug_device(conf->mddev->queue);
201                         } else {
202                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
203                                 list_add_tail(&sh->lru, &conf->handle_list);
204                         }
205                         md_wakeup_thread(conf->mddev->thread);
206                 } else {
207                         BUG_ON(stripe_operations_active(sh));
208                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
209                                 atomic_dec(&conf->preread_active_stripes);
210                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
211                                         md_wakeup_thread(conf->mddev->thread);
212                         }
213                         atomic_dec(&conf->active_stripes);
214                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
215                                 list_add_tail(&sh->lru, &conf->inactive_list);
216                                 wake_up(&conf->wait_for_stripe);
217                                 if (conf->retry_read_aligned)
218                                         md_wakeup_thread(conf->mddev->thread);
219                         }
220                 }
221         }
222 }
223
224 static void release_stripe(struct stripe_head *sh)
225 {
226         raid5_conf_t *conf = sh->raid_conf;
227         unsigned long flags;
228
229         spin_lock_irqsave(&conf->device_lock, flags);
230         __release_stripe(conf, sh);
231         spin_unlock_irqrestore(&conf->device_lock, flags);
232 }
233
234 static inline void remove_hash(struct stripe_head *sh)
235 {
236         pr_debug("remove_hash(), stripe %llu\n",
237                 (unsigned long long)sh->sector);
238
239         hlist_del_init(&sh->hash);
240 }
241
242 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
243 {
244         struct hlist_head *hp = stripe_hash(conf, sh->sector);
245
246         pr_debug("insert_hash(), stripe %llu\n",
247                 (unsigned long long)sh->sector);
248
249         CHECK_DEVLOCK();
250         hlist_add_head(&sh->hash, hp);
251 }
252
253
254 /* find an idle stripe, make sure it is unhashed, and return it. */
255 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
256 {
257         struct stripe_head *sh = NULL;
258         struct list_head *first;
259
260         CHECK_DEVLOCK();
261         if (list_empty(&conf->inactive_list))
262                 goto out;
263         first = conf->inactive_list.next;
264         sh = list_entry(first, struct stripe_head, lru);
265         list_del_init(first);
266         remove_hash(sh);
267         atomic_inc(&conf->active_stripes);
268 out:
269         return sh;
270 }
271
272 static void shrink_buffers(struct stripe_head *sh, int num)
273 {
274         struct page *p;
275         int i;
276
277         for (i=0; i<num ; i++) {
278                 p = sh->dev[i].page;
279                 if (!p)
280                         continue;
281                 sh->dev[i].page = NULL;
282                 put_page(p);
283         }
284 }
285
286 static int grow_buffers(struct stripe_head *sh, int num)
287 {
288         int i;
289
290         for (i=0; i<num; i++) {
291                 struct page *page;
292
293                 if (!(page = alloc_page(GFP_KERNEL))) {
294                         return 1;
295                 }
296                 sh->dev[i].page = page;
297         }
298         return 0;
299 }
300
301 static void raid5_build_block(struct stripe_head *sh, int i);
302 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
303                             struct stripe_head *sh);
304
305 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
306 {
307         raid5_conf_t *conf = sh->raid_conf;
308         int i;
309
310         BUG_ON(atomic_read(&sh->count) != 0);
311         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
312         BUG_ON(stripe_operations_active(sh));
313
314         CHECK_DEVLOCK();
315         pr_debug("init_stripe called, stripe %llu\n",
316                 (unsigned long long)sh->sector);
317
318         remove_hash(sh);
319
320         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
321         sh->sector = sector;
322         stripe_set_idx(sector, conf, previous, sh);
323         sh->state = 0;
324
325
326         for (i = sh->disks; i--; ) {
327                 struct r5dev *dev = &sh->dev[i];
328
329                 if (dev->toread || dev->read || dev->towrite || dev->written ||
330                     test_bit(R5_LOCKED, &dev->flags)) {
331                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
332                                (unsigned long long)sh->sector, i, dev->toread,
333                                dev->read, dev->towrite, dev->written,
334                                test_bit(R5_LOCKED, &dev->flags));
335                         BUG();
336                 }
337                 dev->flags = 0;
338                 raid5_build_block(sh, i);
339         }
340         insert_hash(conf, sh);
341 }
342
343 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
344 {
345         struct stripe_head *sh;
346         struct hlist_node *hn;
347
348         CHECK_DEVLOCK();
349         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
350         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
351                 if (sh->sector == sector && sh->disks == disks)
352                         return sh;
353         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
354         return NULL;
355 }
356
357 static void unplug_slaves(mddev_t *mddev);
358 static void raid5_unplug_device(struct request_queue *q);
359
360 static struct stripe_head *
361 get_active_stripe(raid5_conf_t *conf, sector_t sector,
362                   int previous, int noblock)
363 {
364         struct stripe_head *sh;
365         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
366
367         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
368
369         spin_lock_irq(&conf->device_lock);
370
371         do {
372                 wait_event_lock_irq(conf->wait_for_stripe,
373                                     conf->quiesce == 0,
374                                     conf->device_lock, /* nothing */);
375                 sh = __find_stripe(conf, sector, disks);
376                 if (!sh) {
377                         if (!conf->inactive_blocked)
378                                 sh = get_free_stripe(conf);
379                         if (noblock && sh == NULL)
380                                 break;
381                         if (!sh) {
382                                 conf->inactive_blocked = 1;
383                                 wait_event_lock_irq(conf->wait_for_stripe,
384                                                     !list_empty(&conf->inactive_list) &&
385                                                     (atomic_read(&conf->active_stripes)
386                                                      < (conf->max_nr_stripes *3/4)
387                                                      || !conf->inactive_blocked),
388                                                     conf->device_lock,
389                                                     raid5_unplug_device(conf->mddev->queue)
390                                         );
391                                 conf->inactive_blocked = 0;
392                         } else
393                                 init_stripe(sh, sector, previous);
394                 } else {
395                         if (atomic_read(&sh->count)) {
396                           BUG_ON(!list_empty(&sh->lru));
397                         } else {
398                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
399                                         atomic_inc(&conf->active_stripes);
400                                 if (list_empty(&sh->lru) &&
401                                     !test_bit(STRIPE_EXPANDING, &sh->state))
402                                         BUG();
403                                 list_del_init(&sh->lru);
404                         }
405                 }
406         } while (sh == NULL);
407
408         if (sh)
409                 atomic_inc(&sh->count);
410
411         spin_unlock_irq(&conf->device_lock);
412         return sh;
413 }
414
415 static void
416 raid5_end_read_request(struct bio *bi, int error);
417 static void
418 raid5_end_write_request(struct bio *bi, int error);
419
420 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
421 {
422         raid5_conf_t *conf = sh->raid_conf;
423         int i, disks = sh->disks;
424
425         might_sleep();
426
427         for (i = disks; i--; ) {
428                 int rw;
429                 struct bio *bi;
430                 mdk_rdev_t *rdev;
431                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
432                         rw = WRITE;
433                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
434                         rw = READ;
435                 else
436                         continue;
437
438                 bi = &sh->dev[i].req;
439
440                 bi->bi_rw = rw;
441                 if (rw == WRITE)
442                         bi->bi_end_io = raid5_end_write_request;
443                 else
444                         bi->bi_end_io = raid5_end_read_request;
445
446                 rcu_read_lock();
447                 rdev = rcu_dereference(conf->disks[i].rdev);
448                 if (rdev && test_bit(Faulty, &rdev->flags))
449                         rdev = NULL;
450                 if (rdev)
451                         atomic_inc(&rdev->nr_pending);
452                 rcu_read_unlock();
453
454                 if (rdev) {
455                         if (s->syncing || s->expanding || s->expanded)
456                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
457
458                         set_bit(STRIPE_IO_STARTED, &sh->state);
459
460                         bi->bi_bdev = rdev->bdev;
461                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
462                                 __func__, (unsigned long long)sh->sector,
463                                 bi->bi_rw, i);
464                         atomic_inc(&sh->count);
465                         bi->bi_sector = sh->sector + rdev->data_offset;
466                         bi->bi_flags = 1 << BIO_UPTODATE;
467                         bi->bi_vcnt = 1;
468                         bi->bi_max_vecs = 1;
469                         bi->bi_idx = 0;
470                         bi->bi_io_vec = &sh->dev[i].vec;
471                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
472                         bi->bi_io_vec[0].bv_offset = 0;
473                         bi->bi_size = STRIPE_SIZE;
474                         bi->bi_next = NULL;
475                         if (rw == WRITE &&
476                             test_bit(R5_ReWrite, &sh->dev[i].flags))
477                                 atomic_add(STRIPE_SECTORS,
478                                         &rdev->corrected_errors);
479                         generic_make_request(bi);
480                 } else {
481                         if (rw == WRITE)
482                                 set_bit(STRIPE_DEGRADED, &sh->state);
483                         pr_debug("skip op %ld on disc %d for sector %llu\n",
484                                 bi->bi_rw, i, (unsigned long long)sh->sector);
485                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
486                         set_bit(STRIPE_HANDLE, &sh->state);
487                 }
488         }
489 }
490
491 static struct dma_async_tx_descriptor *
492 async_copy_data(int frombio, struct bio *bio, struct page *page,
493         sector_t sector, struct dma_async_tx_descriptor *tx)
494 {
495         struct bio_vec *bvl;
496         struct page *bio_page;
497         int i;
498         int page_offset;
499
500         if (bio->bi_sector >= sector)
501                 page_offset = (signed)(bio->bi_sector - sector) * 512;
502         else
503                 page_offset = (signed)(sector - bio->bi_sector) * -512;
504         bio_for_each_segment(bvl, bio, i) {
505                 int len = bio_iovec_idx(bio, i)->bv_len;
506                 int clen;
507                 int b_offset = 0;
508
509                 if (page_offset < 0) {
510                         b_offset = -page_offset;
511                         page_offset += b_offset;
512                         len -= b_offset;
513                 }
514
515                 if (len > 0 && page_offset + len > STRIPE_SIZE)
516                         clen = STRIPE_SIZE - page_offset;
517                 else
518                         clen = len;
519
520                 if (clen > 0) {
521                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
522                         bio_page = bio_iovec_idx(bio, i)->bv_page;
523                         if (frombio)
524                                 tx = async_memcpy(page, bio_page, page_offset,
525                                         b_offset, clen,
526                                         ASYNC_TX_DEP_ACK,
527                                         tx, NULL, NULL);
528                         else
529                                 tx = async_memcpy(bio_page, page, b_offset,
530                                         page_offset, clen,
531                                         ASYNC_TX_DEP_ACK,
532                                         tx, NULL, NULL);
533                 }
534                 if (clen < len) /* hit end of page */
535                         break;
536                 page_offset +=  len;
537         }
538
539         return tx;
540 }
541
542 static void ops_complete_biofill(void *stripe_head_ref)
543 {
544         struct stripe_head *sh = stripe_head_ref;
545         struct bio *return_bi = NULL;
546         raid5_conf_t *conf = sh->raid_conf;
547         int i;
548
549         pr_debug("%s: stripe %llu\n", __func__,
550                 (unsigned long long)sh->sector);
551
552         /* clear completed biofills */
553         spin_lock_irq(&conf->device_lock);
554         for (i = sh->disks; i--; ) {
555                 struct r5dev *dev = &sh->dev[i];
556
557                 /* acknowledge completion of a biofill operation */
558                 /* and check if we need to reply to a read request,
559                  * new R5_Wantfill requests are held off until
560                  * !STRIPE_BIOFILL_RUN
561                  */
562                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
563                         struct bio *rbi, *rbi2;
564
565                         BUG_ON(!dev->read);
566                         rbi = dev->read;
567                         dev->read = NULL;
568                         while (rbi && rbi->bi_sector <
569                                 dev->sector + STRIPE_SECTORS) {
570                                 rbi2 = r5_next_bio(rbi, dev->sector);
571                                 if (!raid5_dec_bi_phys_segments(rbi)) {
572                                         rbi->bi_next = return_bi;
573                                         return_bi = rbi;
574                                 }
575                                 rbi = rbi2;
576                         }
577                 }
578         }
579         spin_unlock_irq(&conf->device_lock);
580         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
581
582         return_io(return_bi);
583
584         set_bit(STRIPE_HANDLE, &sh->state);
585         release_stripe(sh);
586 }
587
588 static void ops_run_biofill(struct stripe_head *sh)
589 {
590         struct dma_async_tx_descriptor *tx = NULL;
591         raid5_conf_t *conf = sh->raid_conf;
592         int i;
593
594         pr_debug("%s: stripe %llu\n", __func__,
595                 (unsigned long long)sh->sector);
596
597         for (i = sh->disks; i--; ) {
598                 struct r5dev *dev = &sh->dev[i];
599                 if (test_bit(R5_Wantfill, &dev->flags)) {
600                         struct bio *rbi;
601                         spin_lock_irq(&conf->device_lock);
602                         dev->read = rbi = dev->toread;
603                         dev->toread = NULL;
604                         spin_unlock_irq(&conf->device_lock);
605                         while (rbi && rbi->bi_sector <
606                                 dev->sector + STRIPE_SECTORS) {
607                                 tx = async_copy_data(0, rbi, dev->page,
608                                         dev->sector, tx);
609                                 rbi = r5_next_bio(rbi, dev->sector);
610                         }
611                 }
612         }
613
614         atomic_inc(&sh->count);
615         async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
616                 ops_complete_biofill, sh);
617 }
618
619 static void ops_complete_compute5(void *stripe_head_ref)
620 {
621         struct stripe_head *sh = stripe_head_ref;
622         int target = sh->ops.target;
623         struct r5dev *tgt = &sh->dev[target];
624
625         pr_debug("%s: stripe %llu\n", __func__,
626                 (unsigned long long)sh->sector);
627
628         set_bit(R5_UPTODATE, &tgt->flags);
629         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
630         clear_bit(R5_Wantcompute, &tgt->flags);
631         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
632         if (sh->check_state == check_state_compute_run)
633                 sh->check_state = check_state_compute_result;
634         set_bit(STRIPE_HANDLE, &sh->state);
635         release_stripe(sh);
636 }
637
638 static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
639 {
640         /* kernel stack size limits the total number of disks */
641         int disks = sh->disks;
642         struct page *xor_srcs[disks];
643         int target = sh->ops.target;
644         struct r5dev *tgt = &sh->dev[target];
645         struct page *xor_dest = tgt->page;
646         int count = 0;
647         struct dma_async_tx_descriptor *tx;
648         int i;
649
650         pr_debug("%s: stripe %llu block: %d\n",
651                 __func__, (unsigned long long)sh->sector, target);
652         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
653
654         for (i = disks; i--; )
655                 if (i != target)
656                         xor_srcs[count++] = sh->dev[i].page;
657
658         atomic_inc(&sh->count);
659
660         if (unlikely(count == 1))
661                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
662                         0, NULL, ops_complete_compute5, sh);
663         else
664                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
665                         ASYNC_TX_XOR_ZERO_DST, NULL,
666                         ops_complete_compute5, sh);
667
668         return tx;
669 }
670
671 static void ops_complete_prexor(void *stripe_head_ref)
672 {
673         struct stripe_head *sh = stripe_head_ref;
674
675         pr_debug("%s: stripe %llu\n", __func__,
676                 (unsigned long long)sh->sector);
677 }
678
679 static struct dma_async_tx_descriptor *
680 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
681 {
682         /* kernel stack size limits the total number of disks */
683         int disks = sh->disks;
684         struct page *xor_srcs[disks];
685         int count = 0, pd_idx = sh->pd_idx, i;
686
687         /* existing parity data subtracted */
688         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
689
690         pr_debug("%s: stripe %llu\n", __func__,
691                 (unsigned long long)sh->sector);
692
693         for (i = disks; i--; ) {
694                 struct r5dev *dev = &sh->dev[i];
695                 /* Only process blocks that are known to be uptodate */
696                 if (test_bit(R5_Wantdrain, &dev->flags))
697                         xor_srcs[count++] = dev->page;
698         }
699
700         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
701                 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
702                 ops_complete_prexor, sh);
703
704         return tx;
705 }
706
707 static struct dma_async_tx_descriptor *
708 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
709 {
710         int disks = sh->disks;
711         int i;
712
713         pr_debug("%s: stripe %llu\n", __func__,
714                 (unsigned long long)sh->sector);
715
716         for (i = disks; i--; ) {
717                 struct r5dev *dev = &sh->dev[i];
718                 struct bio *chosen;
719
720                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
721                         struct bio *wbi;
722
723                         spin_lock(&sh->lock);
724                         chosen = dev->towrite;
725                         dev->towrite = NULL;
726                         BUG_ON(dev->written);
727                         wbi = dev->written = chosen;
728                         spin_unlock(&sh->lock);
729
730                         while (wbi && wbi->bi_sector <
731                                 dev->sector + STRIPE_SECTORS) {
732                                 tx = async_copy_data(1, wbi, dev->page,
733                                         dev->sector, tx);
734                                 wbi = r5_next_bio(wbi, dev->sector);
735                         }
736                 }
737         }
738
739         return tx;
740 }
741
742 static void ops_complete_postxor(void *stripe_head_ref)
743 {
744         struct stripe_head *sh = stripe_head_ref;
745         int disks = sh->disks, i, pd_idx = sh->pd_idx;
746
747         pr_debug("%s: stripe %llu\n", __func__,
748                 (unsigned long long)sh->sector);
749
750         for (i = disks; i--; ) {
751                 struct r5dev *dev = &sh->dev[i];
752                 if (dev->written || i == pd_idx)
753                         set_bit(R5_UPTODATE, &dev->flags);
754         }
755
756         if (sh->reconstruct_state == reconstruct_state_drain_run)
757                 sh->reconstruct_state = reconstruct_state_drain_result;
758         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
759                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
760         else {
761                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
762                 sh->reconstruct_state = reconstruct_state_result;
763         }
764
765         set_bit(STRIPE_HANDLE, &sh->state);
766         release_stripe(sh);
767 }
768
769 static void
770 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
771 {
772         /* kernel stack size limits the total number of disks */
773         int disks = sh->disks;
774         struct page *xor_srcs[disks];
775
776         int count = 0, pd_idx = sh->pd_idx, i;
777         struct page *xor_dest;
778         int prexor = 0;
779         unsigned long flags;
780
781         pr_debug("%s: stripe %llu\n", __func__,
782                 (unsigned long long)sh->sector);
783
784         /* check if prexor is active which means only process blocks
785          * that are part of a read-modify-write (written)
786          */
787         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
788                 prexor = 1;
789                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
790                 for (i = disks; i--; ) {
791                         struct r5dev *dev = &sh->dev[i];
792                         if (dev->written)
793                                 xor_srcs[count++] = dev->page;
794                 }
795         } else {
796                 xor_dest = sh->dev[pd_idx].page;
797                 for (i = disks; i--; ) {
798                         struct r5dev *dev = &sh->dev[i];
799                         if (i != pd_idx)
800                                 xor_srcs[count++] = dev->page;
801                 }
802         }
803
804         /* 1/ if we prexor'd then the dest is reused as a source
805          * 2/ if we did not prexor then we are redoing the parity
806          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
807          * for the synchronous xor case
808          */
809         flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
810                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
811
812         atomic_inc(&sh->count);
813
814         if (unlikely(count == 1)) {
815                 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
816                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
817                         flags, tx, ops_complete_postxor, sh);
818         } else
819                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
820                         flags, tx, ops_complete_postxor, sh);
821 }
822
823 static void ops_complete_check(void *stripe_head_ref)
824 {
825         struct stripe_head *sh = stripe_head_ref;
826
827         pr_debug("%s: stripe %llu\n", __func__,
828                 (unsigned long long)sh->sector);
829
830         sh->check_state = check_state_check_result;
831         set_bit(STRIPE_HANDLE, &sh->state);
832         release_stripe(sh);
833 }
834
835 static void ops_run_check(struct stripe_head *sh)
836 {
837         /* kernel stack size limits the total number of disks */
838         int disks = sh->disks;
839         struct page *xor_srcs[disks];
840         struct dma_async_tx_descriptor *tx;
841
842         int count = 0, pd_idx = sh->pd_idx, i;
843         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
844
845         pr_debug("%s: stripe %llu\n", __func__,
846                 (unsigned long long)sh->sector);
847
848         for (i = disks; i--; ) {
849                 struct r5dev *dev = &sh->dev[i];
850                 if (i != pd_idx)
851                         xor_srcs[count++] = dev->page;
852         }
853
854         tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
855                 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
856
857         atomic_inc(&sh->count);
858         tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
859                 ops_complete_check, sh);
860 }
861
862 static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
863 {
864         int overlap_clear = 0, i, disks = sh->disks;
865         struct dma_async_tx_descriptor *tx = NULL;
866
867         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
868                 ops_run_biofill(sh);
869                 overlap_clear++;
870         }
871
872         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
873                 tx = ops_run_compute5(sh);
874                 /* terminate the chain if postxor is not set to be run */
875                 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
876                         async_tx_ack(tx);
877         }
878
879         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
880                 tx = ops_run_prexor(sh, tx);
881
882         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
883                 tx = ops_run_biodrain(sh, tx);
884                 overlap_clear++;
885         }
886
887         if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
888                 ops_run_postxor(sh, tx);
889
890         if (test_bit(STRIPE_OP_CHECK, &ops_request))
891                 ops_run_check(sh);
892
893         if (overlap_clear)
894                 for (i = disks; i--; ) {
895                         struct r5dev *dev = &sh->dev[i];
896                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
897                                 wake_up(&sh->raid_conf->wait_for_overlap);
898                 }
899 }
900
901 static int grow_one_stripe(raid5_conf_t *conf)
902 {
903         struct stripe_head *sh;
904         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
905         if (!sh)
906                 return 0;
907         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
908         sh->raid_conf = conf;
909         spin_lock_init(&sh->lock);
910
911         if (grow_buffers(sh, conf->raid_disks)) {
912                 shrink_buffers(sh, conf->raid_disks);
913                 kmem_cache_free(conf->slab_cache, sh);
914                 return 0;
915         }
916         sh->disks = conf->raid_disks;
917         /* we just created an active stripe so... */
918         atomic_set(&sh->count, 1);
919         atomic_inc(&conf->active_stripes);
920         INIT_LIST_HEAD(&sh->lru);
921         release_stripe(sh);
922         return 1;
923 }
924
925 static int grow_stripes(raid5_conf_t *conf, int num)
926 {
927         struct kmem_cache *sc;
928         int devs = conf->raid_disks;
929
930         sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
931         sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
932         conf->active_name = 0;
933         sc = kmem_cache_create(conf->cache_name[conf->active_name],
934                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
935                                0, 0, NULL);
936         if (!sc)
937                 return 1;
938         conf->slab_cache = sc;
939         conf->pool_size = devs;
940         while (num--)
941                 if (!grow_one_stripe(conf))
942                         return 1;
943         return 0;
944 }
945
946 #ifdef CONFIG_MD_RAID5_RESHAPE
947 static int resize_stripes(raid5_conf_t *conf, int newsize)
948 {
949         /* Make all the stripes able to hold 'newsize' devices.
950          * New slots in each stripe get 'page' set to a new page.
951          *
952          * This happens in stages:
953          * 1/ create a new kmem_cache and allocate the required number of
954          *    stripe_heads.
955          * 2/ gather all the old stripe_heads and tranfer the pages across
956          *    to the new stripe_heads.  This will have the side effect of
957          *    freezing the array as once all stripe_heads have been collected,
958          *    no IO will be possible.  Old stripe heads are freed once their
959          *    pages have been transferred over, and the old kmem_cache is
960          *    freed when all stripes are done.
961          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
962          *    we simple return a failre status - no need to clean anything up.
963          * 4/ allocate new pages for the new slots in the new stripe_heads.
964          *    If this fails, we don't bother trying the shrink the
965          *    stripe_heads down again, we just leave them as they are.
966          *    As each stripe_head is processed the new one is released into
967          *    active service.
968          *
969          * Once step2 is started, we cannot afford to wait for a write,
970          * so we use GFP_NOIO allocations.
971          */
972         struct stripe_head *osh, *nsh;
973         LIST_HEAD(newstripes);
974         struct disk_info *ndisks;
975         int err;
976         struct kmem_cache *sc;
977         int i;
978
979         if (newsize <= conf->pool_size)
980                 return 0; /* never bother to shrink */
981
982         err = md_allow_write(conf->mddev);
983         if (err)
984                 return err;
985
986         /* Step 1 */
987         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
988                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
989                                0, 0, NULL);
990         if (!sc)
991                 return -ENOMEM;
992
993         for (i = conf->max_nr_stripes; i; i--) {
994                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
995                 if (!nsh)
996                         break;
997
998                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
999
1000                 nsh->raid_conf = conf;
1001                 spin_lock_init(&nsh->lock);
1002
1003                 list_add(&nsh->lru, &newstripes);
1004         }
1005         if (i) {
1006                 /* didn't get enough, give up */
1007                 while (!list_empty(&newstripes)) {
1008                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1009                         list_del(&nsh->lru);
1010                         kmem_cache_free(sc, nsh);
1011                 }
1012                 kmem_cache_destroy(sc);
1013                 return -ENOMEM;
1014         }
1015         /* Step 2 - Must use GFP_NOIO now.
1016          * OK, we have enough stripes, start collecting inactive
1017          * stripes and copying them over
1018          */
1019         list_for_each_entry(nsh, &newstripes, lru) {
1020                 spin_lock_irq(&conf->device_lock);
1021                 wait_event_lock_irq(conf->wait_for_stripe,
1022                                     !list_empty(&conf->inactive_list),
1023                                     conf->device_lock,
1024                                     unplug_slaves(conf->mddev)
1025                         );
1026                 osh = get_free_stripe(conf);
1027                 spin_unlock_irq(&conf->device_lock);
1028                 atomic_set(&nsh->count, 1);
1029                 for(i=0; i<conf->pool_size; i++)
1030                         nsh->dev[i].page = osh->dev[i].page;
1031                 for( ; i<newsize; i++)
1032                         nsh->dev[i].page = NULL;
1033                 kmem_cache_free(conf->slab_cache, osh);
1034         }
1035         kmem_cache_destroy(conf->slab_cache);
1036
1037         /* Step 3.
1038          * At this point, we are holding all the stripes so the array
1039          * is completely stalled, so now is a good time to resize
1040          * conf->disks.
1041          */
1042         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1043         if (ndisks) {
1044                 for (i=0; i<conf->raid_disks; i++)
1045                         ndisks[i] = conf->disks[i];
1046                 kfree(conf->disks);
1047                 conf->disks = ndisks;
1048         } else
1049                 err = -ENOMEM;
1050
1051         /* Step 4, return new stripes to service */
1052         while(!list_empty(&newstripes)) {
1053                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1054                 list_del_init(&nsh->lru);
1055                 for (i=conf->raid_disks; i < newsize; i++)
1056                         if (nsh->dev[i].page == NULL) {
1057                                 struct page *p = alloc_page(GFP_NOIO);
1058                                 nsh->dev[i].page = p;
1059                                 if (!p)
1060                                         err = -ENOMEM;
1061                         }
1062                 release_stripe(nsh);
1063         }
1064         /* critical section pass, GFP_NOIO no longer needed */
1065
1066         conf->slab_cache = sc;
1067         conf->active_name = 1-conf->active_name;
1068         conf->pool_size = newsize;
1069         return err;
1070 }
1071 #endif
1072
1073 static int drop_one_stripe(raid5_conf_t *conf)
1074 {
1075         struct stripe_head *sh;
1076
1077         spin_lock_irq(&conf->device_lock);
1078         sh = get_free_stripe(conf);
1079         spin_unlock_irq(&conf->device_lock);
1080         if (!sh)
1081                 return 0;
1082         BUG_ON(atomic_read(&sh->count));
1083         shrink_buffers(sh, conf->pool_size);
1084         kmem_cache_free(conf->slab_cache, sh);
1085         atomic_dec(&conf->active_stripes);
1086         return 1;
1087 }
1088
1089 static void shrink_stripes(raid5_conf_t *conf)
1090 {
1091         while (drop_one_stripe(conf))
1092                 ;
1093
1094         if (conf->slab_cache)
1095                 kmem_cache_destroy(conf->slab_cache);
1096         conf->slab_cache = NULL;
1097 }
1098
1099 static void raid5_end_read_request(struct bio * bi, int error)
1100 {
1101         struct stripe_head *sh = bi->bi_private;
1102         raid5_conf_t *conf = sh->raid_conf;
1103         int disks = sh->disks, i;
1104         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1105         char b[BDEVNAME_SIZE];
1106         mdk_rdev_t *rdev;
1107
1108
1109         for (i=0 ; i<disks; i++)
1110                 if (bi == &sh->dev[i].req)
1111                         break;
1112
1113         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1114                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1115                 uptodate);
1116         if (i == disks) {
1117                 BUG();
1118                 return;
1119         }
1120
1121         if (uptodate) {
1122                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1123                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1124                         rdev = conf->disks[i].rdev;
1125                         printk_rl(KERN_INFO "raid5:%s: read error corrected"
1126                                   " (%lu sectors at %llu on %s)\n",
1127                                   mdname(conf->mddev), STRIPE_SECTORS,
1128                                   (unsigned long long)(sh->sector
1129                                                        + rdev->data_offset),
1130                                   bdevname(rdev->bdev, b));
1131                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1132                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1133                 }
1134                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1135                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1136         } else {
1137                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1138                 int retry = 0;
1139                 rdev = conf->disks[i].rdev;
1140
1141                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1142                 atomic_inc(&rdev->read_errors);
1143                 if (conf->mddev->degraded)
1144                         printk_rl(KERN_WARNING
1145                                   "raid5:%s: read error not correctable "
1146                                   "(sector %llu on %s).\n",
1147                                   mdname(conf->mddev),
1148                                   (unsigned long long)(sh->sector
1149                                                        + rdev->data_offset),
1150                                   bdn);
1151                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1152                         /* Oh, no!!! */
1153                         printk_rl(KERN_WARNING
1154                                   "raid5:%s: read error NOT corrected!! "
1155                                   "(sector %llu on %s).\n",
1156                                   mdname(conf->mddev),
1157                                   (unsigned long long)(sh->sector
1158                                                        + rdev->data_offset),
1159                                   bdn);
1160                 else if (atomic_read(&rdev->read_errors)
1161                          > conf->max_nr_stripes)
1162                         printk(KERN_WARNING
1163                                "raid5:%s: Too many read errors, failing device %s.\n",
1164                                mdname(conf->mddev), bdn);
1165                 else
1166                         retry = 1;
1167                 if (retry)
1168                         set_bit(R5_ReadError, &sh->dev[i].flags);
1169                 else {
1170                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1171                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1172                         md_error(conf->mddev, rdev);
1173                 }
1174         }
1175         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1176         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1177         set_bit(STRIPE_HANDLE, &sh->state);
1178         release_stripe(sh);
1179 }
1180
1181 static void raid5_end_write_request(struct bio *bi, int error)
1182 {
1183         struct stripe_head *sh = bi->bi_private;
1184         raid5_conf_t *conf = sh->raid_conf;
1185         int disks = sh->disks, i;
1186         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1187
1188         for (i=0 ; i<disks; i++)
1189                 if (bi == &sh->dev[i].req)
1190                         break;
1191
1192         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1193                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1194                 uptodate);
1195         if (i == disks) {
1196                 BUG();
1197                 return;
1198         }
1199
1200         if (!uptodate)
1201                 md_error(conf->mddev, conf->disks[i].rdev);
1202
1203         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1204         
1205         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1206         set_bit(STRIPE_HANDLE, &sh->state);
1207         release_stripe(sh);
1208 }
1209
1210
1211 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1212         
1213 static void raid5_build_block(struct stripe_head *sh, int i)
1214 {
1215         struct r5dev *dev = &sh->dev[i];
1216
1217         bio_init(&dev->req);
1218         dev->req.bi_io_vec = &dev->vec;
1219         dev->req.bi_vcnt++;
1220         dev->req.bi_max_vecs++;
1221         dev->vec.bv_page = dev->page;
1222         dev->vec.bv_len = STRIPE_SIZE;
1223         dev->vec.bv_offset = 0;
1224
1225         dev->req.bi_sector = sh->sector;
1226         dev->req.bi_private = sh;
1227
1228         dev->flags = 0;
1229         dev->sector = compute_blocknr(sh, i);
1230 }
1231
1232 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1233 {
1234         char b[BDEVNAME_SIZE];
1235         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1236         pr_debug("raid5: error called\n");
1237
1238         if (!test_bit(Faulty, &rdev->flags)) {
1239                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1240                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1241                         unsigned long flags;
1242                         spin_lock_irqsave(&conf->device_lock, flags);
1243                         mddev->degraded++;
1244                         spin_unlock_irqrestore(&conf->device_lock, flags);
1245                         /*
1246                          * if recovery was running, make sure it aborts.
1247                          */
1248                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1249                 }
1250                 set_bit(Faulty, &rdev->flags);
1251                 printk(KERN_ALERT
1252                        "raid5: Disk failure on %s, disabling device.\n"
1253                        "raid5: Operation continuing on %d devices.\n",
1254                        bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1255         }
1256 }
1257
1258 /*
1259  * Input: a 'big' sector number,
1260  * Output: index of the data and parity disk, and the sector # in them.
1261  */
1262 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1263                                      int previous, int *dd_idx,
1264                                      struct stripe_head *sh)
1265 {
1266         long stripe;
1267         unsigned long chunk_number;
1268         unsigned int chunk_offset;
1269         int pd_idx, qd_idx;
1270         sector_t new_sector;
1271         int sectors_per_chunk = conf->chunk_size >> 9;
1272         int raid_disks = previous ? conf->previous_raid_disks
1273                                   : conf->raid_disks;
1274         int data_disks = raid_disks - conf->max_degraded;
1275
1276         /* First compute the information on this sector */
1277
1278         /*
1279          * Compute the chunk number and the sector offset inside the chunk
1280          */
1281         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1282         chunk_number = r_sector;
1283         BUG_ON(r_sector != chunk_number);
1284
1285         /*
1286          * Compute the stripe number
1287          */
1288         stripe = chunk_number / data_disks;
1289
1290         /*
1291          * Compute the data disk and parity disk indexes inside the stripe
1292          */
1293         *dd_idx = chunk_number % data_disks;
1294
1295         /*
1296          * Select the parity disk based on the user selected algorithm.
1297          */
1298         pd_idx = qd_idx = ~0;
1299         switch(conf->level) {
1300         case 4:
1301                 pd_idx = data_disks;
1302                 break;
1303         case 5:
1304                 switch (conf->algorithm) {
1305                 case ALGORITHM_LEFT_ASYMMETRIC:
1306                         pd_idx = data_disks - stripe % raid_disks;
1307                         if (*dd_idx >= pd_idx)
1308                                 (*dd_idx)++;
1309                         break;
1310                 case ALGORITHM_RIGHT_ASYMMETRIC:
1311                         pd_idx = stripe % raid_disks;
1312                         if (*dd_idx >= pd_idx)
1313                                 (*dd_idx)++;
1314                         break;
1315                 case ALGORITHM_LEFT_SYMMETRIC:
1316                         pd_idx = data_disks - stripe % raid_disks;
1317                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1318                         break;
1319                 case ALGORITHM_RIGHT_SYMMETRIC:
1320                         pd_idx = stripe % raid_disks;
1321                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1322                         break;
1323                 default:
1324                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1325                                 conf->algorithm);
1326                 }
1327                 break;
1328         case 6:
1329
1330                 /**** FIX THIS ****/
1331                 switch (conf->algorithm) {
1332                 case ALGORITHM_LEFT_ASYMMETRIC:
1333                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1334                         qd_idx = pd_idx + 1;
1335                         if (pd_idx == raid_disks-1) {
1336                                 (*dd_idx)++;    /* Q D D D P */
1337                                 qd_idx = 0;
1338                         } else if (*dd_idx >= pd_idx)
1339                                 (*dd_idx) += 2; /* D D P Q D */
1340                         break;
1341                 case ALGORITHM_RIGHT_ASYMMETRIC:
1342                         pd_idx = stripe % raid_disks;
1343                         qd_idx = pd_idx + 1;
1344                         if (pd_idx == raid_disks-1) {
1345                                 (*dd_idx)++;    /* Q D D D P */
1346                                 qd_idx = 0;
1347                         } else if (*dd_idx >= pd_idx)
1348                                 (*dd_idx) += 2; /* D D P Q D */
1349                         break;
1350                 case ALGORITHM_LEFT_SYMMETRIC:
1351                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1352                         qd_idx = (pd_idx + 1) % raid_disks;
1353                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1354                         break;
1355                 case ALGORITHM_RIGHT_SYMMETRIC:
1356                         pd_idx = stripe % raid_disks;
1357                         qd_idx = (pd_idx + 1) % raid_disks;
1358                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1359                         break;
1360                 default:
1361                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1362                                conf->algorithm);
1363                 }
1364                 break;
1365         }
1366
1367         if (sh) {
1368                 sh->pd_idx = pd_idx;
1369                 sh->qd_idx = qd_idx;
1370         }
1371         /*
1372          * Finally, compute the new sector number
1373          */
1374         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1375         return new_sector;
1376 }
1377
1378
1379 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1380 {
1381         raid5_conf_t *conf = sh->raid_conf;
1382         int raid_disks = sh->disks;
1383         int data_disks = raid_disks - conf->max_degraded;
1384         sector_t new_sector = sh->sector, check;
1385         int sectors_per_chunk = conf->chunk_size >> 9;
1386         sector_t stripe;
1387         int chunk_offset;
1388         int chunk_number, dummy1, dd_idx = i;
1389         sector_t r_sector;
1390         struct stripe_head sh2;
1391
1392
1393         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1394         stripe = new_sector;
1395         BUG_ON(new_sector != stripe);
1396
1397         if (i == sh->pd_idx)
1398                 return 0;
1399         switch(conf->level) {
1400         case 4: break;
1401         case 5:
1402                 switch (conf->algorithm) {
1403                 case ALGORITHM_LEFT_ASYMMETRIC:
1404                 case ALGORITHM_RIGHT_ASYMMETRIC:
1405                         if (i > sh->pd_idx)
1406                                 i--;
1407                         break;
1408                 case ALGORITHM_LEFT_SYMMETRIC:
1409                 case ALGORITHM_RIGHT_SYMMETRIC:
1410                         if (i < sh->pd_idx)
1411                                 i += raid_disks;
1412                         i -= (sh->pd_idx + 1);
1413                         break;
1414                 default:
1415                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1416                                conf->algorithm);
1417                 }
1418                 break;
1419         case 6:
1420                 if (i == sh->qd_idx)
1421                         return 0; /* It is the Q disk */
1422                 switch (conf->algorithm) {
1423                 case ALGORITHM_LEFT_ASYMMETRIC:
1424                 case ALGORITHM_RIGHT_ASYMMETRIC:
1425                         if (sh->pd_idx == raid_disks-1)
1426                                 i--;    /* Q D D D P */
1427                         else if (i > sh->pd_idx)
1428                                 i -= 2; /* D D P Q D */
1429                         break;
1430                 case ALGORITHM_LEFT_SYMMETRIC:
1431                 case ALGORITHM_RIGHT_SYMMETRIC:
1432                         if (sh->pd_idx == raid_disks-1)
1433                                 i--; /* Q D D D P */
1434                         else {
1435                                 /* D D P Q D */
1436                                 if (i < sh->pd_idx)
1437                                         i += raid_disks;
1438                                 i -= (sh->pd_idx + 2);
1439                         }
1440                         break;
1441                 default:
1442                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1443                                conf->algorithm);
1444                 }
1445                 break;
1446         }
1447
1448         chunk_number = stripe * data_disks + i;
1449         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1450
1451         check = raid5_compute_sector(conf, r_sector,
1452                                      (raid_disks != conf->raid_disks),
1453                                      &dummy1, &sh2);
1454         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1455                 || sh2.qd_idx != sh->qd_idx) {
1456                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1457                 return 0;
1458         }
1459         return r_sector;
1460 }
1461
1462
1463
1464 /*
1465  * Copy data between a page in the stripe cache, and one or more bion
1466  * The page could align with the middle of the bio, or there could be
1467  * several bion, each with several bio_vecs, which cover part of the page
1468  * Multiple bion are linked together on bi_next.  There may be extras
1469  * at the end of this list.  We ignore them.
1470  */
1471 static void copy_data(int frombio, struct bio *bio,
1472                      struct page *page,
1473                      sector_t sector)
1474 {
1475         char *pa = page_address(page);
1476         struct bio_vec *bvl;
1477         int i;
1478         int page_offset;
1479
1480         if (bio->bi_sector >= sector)
1481                 page_offset = (signed)(bio->bi_sector - sector) * 512;
1482         else
1483                 page_offset = (signed)(sector - bio->bi_sector) * -512;
1484         bio_for_each_segment(bvl, bio, i) {
1485                 int len = bio_iovec_idx(bio,i)->bv_len;
1486                 int clen;
1487                 int b_offset = 0;
1488
1489                 if (page_offset < 0) {
1490                         b_offset = -page_offset;
1491                         page_offset += b_offset;
1492                         len -= b_offset;
1493                 }
1494
1495                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1496                         clen = STRIPE_SIZE - page_offset;
1497                 else clen = len;
1498
1499                 if (clen > 0) {
1500                         char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1501                         if (frombio)
1502                                 memcpy(pa+page_offset, ba+b_offset, clen);
1503                         else
1504                                 memcpy(ba+b_offset, pa+page_offset, clen);
1505                         __bio_kunmap_atomic(ba, KM_USER0);
1506                 }
1507                 if (clen < len) /* hit end of page */
1508                         break;
1509                 page_offset +=  len;
1510         }
1511 }
1512
1513 #define check_xor()     do {                                              \
1514                                 if (count == MAX_XOR_BLOCKS) {            \
1515                                 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1516                                 count = 0;                                \
1517                            }                                              \
1518                         } while(0)
1519
1520 static void compute_parity6(struct stripe_head *sh, int method)
1521 {
1522         raid5_conf_t *conf = sh->raid_conf;
1523         int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1524         struct bio *chosen;
1525         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1526         void *ptrs[disks];
1527
1528         pd_idx = sh->pd_idx;
1529         qd_idx = sh->qd_idx;
1530         d0_idx = raid6_d0(sh);
1531
1532         pr_debug("compute_parity, stripe %llu, method %d\n",
1533                 (unsigned long long)sh->sector, method);
1534
1535         switch(method) {
1536         case READ_MODIFY_WRITE:
1537                 BUG();          /* READ_MODIFY_WRITE N/A for RAID-6 */
1538         case RECONSTRUCT_WRITE:
1539                 for (i= disks; i-- ;)
1540                         if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1541                                 chosen = sh->dev[i].towrite;
1542                                 sh->dev[i].towrite = NULL;
1543
1544                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1545                                         wake_up(&conf->wait_for_overlap);
1546
1547                                 BUG_ON(sh->dev[i].written);
1548                                 sh->dev[i].written = chosen;
1549                         }
1550                 break;
1551         case CHECK_PARITY:
1552                 BUG();          /* Not implemented yet */
1553         }
1554
1555         for (i = disks; i--;)
1556                 if (sh->dev[i].written) {
1557                         sector_t sector = sh->dev[i].sector;
1558                         struct bio *wbi = sh->dev[i].written;
1559                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1560                                 copy_data(1, wbi, sh->dev[i].page, sector);
1561                                 wbi = r5_next_bio(wbi, sector);
1562                         }
1563
1564                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1565                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1566                 }
1567
1568         /* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
1569         /* FIX: Is this ordering of drives even remotely optimal? */
1570         count = 0;
1571         i = d0_idx;
1572         do {
1573                 int slot = raid6_idx_to_slot(i, sh, &count);
1574                 ptrs[slot] = page_address(sh->dev[i].page);
1575                 if (slot < sh->disks - 2 &&
1576                     !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1577                         printk(KERN_ERR "block %d/%d not uptodate "
1578                                "on parity calc\n", i, count);
1579                         BUG();
1580                 }
1581                 i = raid6_next_disk(i, disks);
1582         } while (i != d0_idx);
1583         BUG_ON(count+2 != disks);
1584
1585         raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1586
1587         switch(method) {
1588         case RECONSTRUCT_WRITE:
1589                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1590                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1591                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1592                 set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1593                 break;
1594         case UPDATE_PARITY:
1595                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1596                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1597                 break;
1598         }
1599 }
1600
1601
1602 /* Compute one missing block */
1603 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1604 {
1605         int i, count, disks = sh->disks;
1606         void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1607         int qd_idx = sh->qd_idx;
1608
1609         pr_debug("compute_block_1, stripe %llu, idx %d\n",
1610                 (unsigned long long)sh->sector, dd_idx);
1611
1612         if ( dd_idx == qd_idx ) {
1613                 /* We're actually computing the Q drive */
1614                 compute_parity6(sh, UPDATE_PARITY);
1615         } else {
1616                 dest = page_address(sh->dev[dd_idx].page);
1617                 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1618                 count = 0;
1619                 for (i = disks ; i--; ) {
1620                         if (i == dd_idx || i == qd_idx)
1621                                 continue;
1622                         p = page_address(sh->dev[i].page);
1623                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1624                                 ptr[count++] = p;
1625                         else
1626                                 printk("compute_block() %d, stripe %llu, %d"
1627                                        " not present\n", dd_idx,
1628                                        (unsigned long long)sh->sector, i);
1629
1630                         check_xor();
1631                 }
1632                 if (count)
1633                         xor_blocks(count, STRIPE_SIZE, dest, ptr);
1634                 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1635                 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1636         }
1637 }
1638
1639 /* Compute two missing blocks */
1640 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1641 {
1642         int i, count, disks = sh->disks;
1643         int d0_idx = raid6_d0(sh);
1644         int faila = -1, failb = -1;
1645         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1646         void *ptrs[disks];
1647
1648         count = 0;
1649         i = d0_idx;
1650         do {
1651                 int slot;
1652                 slot = raid6_idx_to_slot(i, sh, &count);
1653                 ptrs[slot] = page_address(sh->dev[i].page);
1654                 if (i == dd_idx1)
1655                         faila = slot;
1656                 if (i == dd_idx2)
1657                         failb = slot;
1658                 i = raid6_next_disk(i, disks);
1659         } while (i != d0_idx);
1660         BUG_ON(count+2 != disks);
1661
1662         BUG_ON(faila == failb);
1663         if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1664
1665         pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1666                  (unsigned long long)sh->sector, dd_idx1, dd_idx2,
1667                  faila, failb);
1668
1669         if ( failb == disks-1 ) {
1670                 /* Q disk is one of the missing disks */
1671                 if ( faila == disks-2 ) {
1672                         /* Missing P+Q, just recompute */
1673                         compute_parity6(sh, UPDATE_PARITY);
1674                         return;
1675                 } else {
1676                         /* We're missing D+Q; recompute D from P */
1677                         compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
1678                                              dd_idx2 : dd_idx1),
1679                                         0);
1680                         compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1681                         return;
1682                 }
1683         }
1684
1685         /* We're missing D+P or D+D; */
1686         if (failb == disks-2) {
1687                 /* We're missing D+P. */
1688                 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1689         } else {
1690                 /* We're missing D+D. */
1691                 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1692         }
1693
1694         /* Both the above update both missing blocks */
1695         set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1696         set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1697 }
1698
1699 static void
1700 schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1701                          int rcw, int expand)
1702 {
1703         int i, pd_idx = sh->pd_idx, disks = sh->disks;
1704
1705         if (rcw) {
1706                 /* if we are not expanding this is a proper write request, and
1707                  * there will be bios with new data to be drained into the
1708                  * stripe cache
1709                  */
1710                 if (!expand) {
1711                         sh->reconstruct_state = reconstruct_state_drain_run;
1712                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1713                 } else
1714                         sh->reconstruct_state = reconstruct_state_run;
1715
1716                 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1717
1718                 for (i = disks; i--; ) {
1719                         struct r5dev *dev = &sh->dev[i];
1720
1721                         if (dev->towrite) {
1722                                 set_bit(R5_LOCKED, &dev->flags);
1723                                 set_bit(R5_Wantdrain, &dev->flags);
1724                                 if (!expand)
1725                                         clear_bit(R5_UPTODATE, &dev->flags);
1726                                 s->locked++;
1727                         }
1728                 }
1729                 if (s->locked + 1 == disks)
1730                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1731                                 atomic_inc(&sh->raid_conf->pending_full_writes);
1732         } else {
1733                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1734                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1735
1736                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1737                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1738                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1739                 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1740
1741                 for (i = disks; i--; ) {
1742                         struct r5dev *dev = &sh->dev[i];
1743                         if (i == pd_idx)
1744                                 continue;
1745
1746                         if (dev->towrite &&
1747                             (test_bit(R5_UPTODATE, &dev->flags) ||
1748                              test_bit(R5_Wantcompute, &dev->flags))) {
1749                                 set_bit(R5_Wantdrain, &dev->flags);
1750                                 set_bit(R5_LOCKED, &dev->flags);
1751                                 clear_bit(R5_UPTODATE, &dev->flags);
1752                                 s->locked++;
1753                         }
1754                 }
1755         }
1756
1757         /* keep the parity disk locked while asynchronous operations
1758          * are in flight
1759          */
1760         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1761         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1762         s->locked++;
1763
1764         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1765                 __func__, (unsigned long long)sh->sector,
1766                 s->locked, s->ops_request);
1767 }
1768
1769 /*
1770  * Each stripe/dev can have one or more bion attached.
1771  * toread/towrite point to the first in a chain.
1772  * The bi_next chain must be in order.
1773  */
1774 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1775 {
1776         struct bio **bip;
1777         raid5_conf_t *conf = sh->raid_conf;
1778         int firstwrite=0;
1779
1780         pr_debug("adding bh b#%llu to stripe s#%llu\n",
1781                 (unsigned long long)bi->bi_sector,
1782                 (unsigned long long)sh->sector);
1783
1784
1785         spin_lock(&sh->lock);
1786         spin_lock_irq(&conf->device_lock);
1787         if (forwrite) {
1788                 bip = &sh->dev[dd_idx].towrite;
1789                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1790                         firstwrite = 1;
1791         } else
1792                 bip = &sh->dev[dd_idx].toread;
1793         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1794                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1795                         goto overlap;
1796                 bip = & (*bip)->bi_next;
1797         }
1798         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1799                 goto overlap;
1800
1801         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1802         if (*bip)
1803                 bi->bi_next = *bip;
1804         *bip = bi;
1805         bi->bi_phys_segments++;
1806         spin_unlock_irq(&conf->device_lock);
1807         spin_unlock(&sh->lock);
1808
1809         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1810                 (unsigned long long)bi->bi_sector,
1811                 (unsigned long long)sh->sector, dd_idx);
1812
1813         if (conf->mddev->bitmap && firstwrite) {
1814                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1815                                   STRIPE_SECTORS, 0);
1816                 sh->bm_seq = conf->seq_flush+1;
1817                 set_bit(STRIPE_BIT_DELAY, &sh->state);
1818         }
1819
1820         if (forwrite) {
1821                 /* check if page is covered */
1822                 sector_t sector = sh->dev[dd_idx].sector;
1823                 for (bi=sh->dev[dd_idx].towrite;
1824                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1825                              bi && bi->bi_sector <= sector;
1826                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1827                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1828                                 sector = bi->bi_sector + (bi->bi_size>>9);
1829                 }
1830                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1831                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1832         }
1833         return 1;
1834
1835  overlap:
1836         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1837         spin_unlock_irq(&conf->device_lock);
1838         spin_unlock(&sh->lock);
1839         return 0;
1840 }
1841
1842 static void end_reshape(raid5_conf_t *conf);
1843
1844 static int page_is_zero(struct page *p)
1845 {
1846         char *a = page_address(p);
1847         return ((*(u32*)a) == 0 &&
1848                 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1849 }
1850
1851 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
1852                             struct stripe_head *sh)
1853 {
1854         int sectors_per_chunk = conf->chunk_size >> 9;
1855         int dd_idx;
1856         int chunk_offset = sector_div(stripe, sectors_per_chunk);
1857         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1858
1859         raid5_compute_sector(conf,
1860                              stripe * (disks - conf->max_degraded)
1861                              *sectors_per_chunk + chunk_offset,
1862                              previous,
1863                              &dd_idx, sh);
1864 }
1865
1866 static void
1867 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
1868                                 struct stripe_head_state *s, int disks,
1869                                 struct bio **return_bi)
1870 {
1871         int i;
1872         for (i = disks; i--; ) {
1873                 struct bio *bi;
1874                 int bitmap_end = 0;
1875
1876                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1877                         mdk_rdev_t *rdev;
1878                         rcu_read_lock();
1879                         rdev = rcu_dereference(conf->disks[i].rdev);
1880                         if (rdev && test_bit(In_sync, &rdev->flags))
1881                                 /* multiple read failures in one stripe */
1882                                 md_error(conf->mddev, rdev);
1883                         rcu_read_unlock();
1884                 }
1885                 spin_lock_irq(&conf->device_lock);
1886                 /* fail all writes first */
1887                 bi = sh->dev[i].towrite;
1888                 sh->dev[i].towrite = NULL;
1889                 if (bi) {
1890                         s->to_write--;
1891                         bitmap_end = 1;
1892                 }
1893
1894                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1895                         wake_up(&conf->wait_for_overlap);
1896
1897                 while (bi && bi->bi_sector <
1898                         sh->dev[i].sector + STRIPE_SECTORS) {
1899                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1900                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1901                         if (!raid5_dec_bi_phys_segments(bi)) {
1902                                 md_write_end(conf->mddev);
1903                                 bi->bi_next = *return_bi;
1904                                 *return_bi = bi;
1905                         }
1906                         bi = nextbi;
1907                 }
1908                 /* and fail all 'written' */
1909                 bi = sh->dev[i].written;
1910                 sh->dev[i].written = NULL;
1911                 if (bi) bitmap_end = 1;
1912                 while (bi && bi->bi_sector <
1913                        sh->dev[i].sector + STRIPE_SECTORS) {
1914                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1915                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1916                         if (!raid5_dec_bi_phys_segments(bi)) {
1917                                 md_write_end(conf->mddev);
1918                                 bi->bi_next = *return_bi;
1919                                 *return_bi = bi;
1920                         }
1921                         bi = bi2;
1922                 }
1923
1924                 /* fail any reads if this device is non-operational and
1925                  * the data has not reached the cache yet.
1926                  */
1927                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1928                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1929                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
1930                         bi = sh->dev[i].toread;
1931                         sh->dev[i].toread = NULL;
1932                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1933                                 wake_up(&conf->wait_for_overlap);
1934                         if (bi) s->to_read--;
1935                         while (bi && bi->bi_sector <
1936                                sh->dev[i].sector + STRIPE_SECTORS) {
1937                                 struct bio *nextbi =
1938                                         r5_next_bio(bi, sh->dev[i].sector);
1939                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1940                                 if (!raid5_dec_bi_phys_segments(bi)) {
1941                                         bi->bi_next = *return_bi;
1942                                         *return_bi = bi;
1943                                 }
1944                                 bi = nextbi;
1945                         }
1946                 }
1947                 spin_unlock_irq(&conf->device_lock);
1948                 if (bitmap_end)
1949                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1950                                         STRIPE_SECTORS, 0, 0);
1951         }
1952
1953         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1954                 if (atomic_dec_and_test(&conf->pending_full_writes))
1955                         md_wakeup_thread(conf->mddev->thread);
1956 }
1957
1958 /* fetch_block5 - checks the given member device to see if its data needs
1959  * to be read or computed to satisfy a request.
1960  *
1961  * Returns 1 when no more member devices need to be checked, otherwise returns
1962  * 0 to tell the loop in handle_stripe_fill5 to continue
1963  */
1964 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
1965                         int disk_idx, int disks)
1966 {
1967         struct r5dev *dev = &sh->dev[disk_idx];
1968         struct r5dev *failed_dev = &sh->dev[s->failed_num];
1969
1970         /* is the data in this block needed, and can we get it? */
1971         if (!test_bit(R5_LOCKED, &dev->flags) &&
1972             !test_bit(R5_UPTODATE, &dev->flags) &&
1973             (dev->toread ||
1974              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1975              s->syncing || s->expanding ||
1976              (s->failed &&
1977               (failed_dev->toread ||
1978                (failed_dev->towrite &&
1979                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
1980                 /* We would like to get this block, possibly by computing it,
1981                  * otherwise read it if the backing disk is insync
1982                  */
1983                 if ((s->uptodate == disks - 1) &&
1984                     (s->failed && disk_idx == s->failed_num)) {
1985                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
1986                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
1987                         set_bit(R5_Wantcompute, &dev->flags);
1988                         sh->ops.target = disk_idx;
1989                         s->req_compute = 1;
1990                         /* Careful: from this point on 'uptodate' is in the eye
1991                          * of raid5_run_ops which services 'compute' operations
1992                          * before writes. R5_Wantcompute flags a block that will
1993                          * be R5_UPTODATE by the time it is needed for a
1994                          * subsequent operation.
1995                          */
1996                         s->uptodate++;
1997                         return 1; /* uptodate + compute == disks */
1998                 } else if (test_bit(R5_Insync, &dev->flags)) {
1999                         set_bit(R5_LOCKED, &dev->flags);
2000                         set_bit(R5_Wantread, &dev->flags);
2001                         s->locked++;
2002                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2003                                 s->syncing);
2004                 }
2005         }
2006
2007         return 0;
2008 }
2009
2010 /**
2011  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2012  */
2013 static void handle_stripe_fill5(struct stripe_head *sh,
2014                         struct stripe_head_state *s, int disks)
2015 {
2016         int i;
2017
2018         /* look for blocks to read/compute, skip this if a compute
2019          * is already in flight, or if the stripe contents are in the
2020          * midst of changing due to a write
2021          */
2022         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2023             !sh->reconstruct_state)
2024                 for (i = disks; i--; )
2025                         if (fetch_block5(sh, s, i, disks))
2026                                 break;
2027         set_bit(STRIPE_HANDLE, &sh->state);
2028 }
2029
2030 static void handle_stripe_fill6(struct stripe_head *sh,
2031                         struct stripe_head_state *s, struct r6_state *r6s,
2032                         int disks)
2033 {
2034         int i;
2035         for (i = disks; i--; ) {
2036                 struct r5dev *dev = &sh->dev[i];
2037                 if (!test_bit(R5_LOCKED, &dev->flags) &&
2038                     !test_bit(R5_UPTODATE, &dev->flags) &&
2039                     (dev->toread || (dev->towrite &&
2040                      !test_bit(R5_OVERWRITE, &dev->flags)) ||
2041                      s->syncing || s->expanding ||
2042                      (s->failed >= 1 &&
2043                       (sh->dev[r6s->failed_num[0]].toread ||
2044                        s->to_write)) ||
2045                      (s->failed >= 2 &&
2046                       (sh->dev[r6s->failed_num[1]].toread ||
2047                        s->to_write)))) {
2048                         /* we would like to get this block, possibly
2049                          * by computing it, but we might not be able to
2050                          */
2051                         if ((s->uptodate == disks - 1) &&
2052                             (s->failed && (i == r6s->failed_num[0] ||
2053                                            i == r6s->failed_num[1]))) {
2054                                 pr_debug("Computing stripe %llu block %d\n",
2055                                        (unsigned long long)sh->sector, i);
2056                                 compute_block_1(sh, i, 0);
2057                                 s->uptodate++;
2058                         } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2059                                 /* Computing 2-failure is *very* expensive; only
2060                                  * do it if failed >= 2
2061                                  */
2062                                 int other;
2063                                 for (other = disks; other--; ) {
2064                                         if (other == i)
2065                                                 continue;
2066                                         if (!test_bit(R5_UPTODATE,
2067                                               &sh->dev[other].flags))
2068                                                 break;
2069                                 }
2070                                 BUG_ON(other < 0);
2071                                 pr_debug("Computing stripe %llu blocks %d,%d\n",
2072                                        (unsigned long long)sh->sector,
2073                                        i, other);
2074                                 compute_block_2(sh, i, other);
2075                                 s->uptodate += 2;
2076                         } else if (test_bit(R5_Insync, &dev->flags)) {
2077                                 set_bit(R5_LOCKED, &dev->flags);
2078                                 set_bit(R5_Wantread, &dev->flags);
2079                                 s->locked++;
2080                                 pr_debug("Reading block %d (sync=%d)\n",
2081                                         i, s->syncing);
2082                         }
2083                 }
2084         }
2085         set_bit(STRIPE_HANDLE, &sh->state);
2086 }
2087
2088
2089 /* handle_stripe_clean_event
2090  * any written block on an uptodate or failed drive can be returned.
2091  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2092  * never LOCKED, so we don't need to test 'failed' directly.
2093  */
2094 static void handle_stripe_clean_event(raid5_conf_t *conf,
2095         struct stripe_head *sh, int disks, struct bio **return_bi)
2096 {
2097         int i;
2098         struct r5dev *dev;
2099
2100         for (i = disks; i--; )
2101                 if (sh->dev[i].written) {
2102                         dev = &sh->dev[i];
2103                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2104                                 test_bit(R5_UPTODATE, &dev->flags)) {
2105                                 /* We can return any write requests */
2106                                 struct bio *wbi, *wbi2;
2107                                 int bitmap_end = 0;
2108                                 pr_debug("Return write for disc %d\n", i);
2109                                 spin_lock_irq(&conf->device_lock);
2110                                 wbi = dev->written;
2111                                 dev->written = NULL;
2112                                 while (wbi && wbi->bi_sector <
2113                                         dev->sector + STRIPE_SECTORS) {
2114                                         wbi2 = r5_next_bio(wbi, dev->sector);
2115                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2116                                                 md_write_end(conf->mddev);
2117                                                 wbi->bi_next = *return_bi;
2118                                                 *return_bi = wbi;
2119                                         }
2120                                         wbi = wbi2;
2121                                 }
2122                                 if (dev->towrite == NULL)
2123                                         bitmap_end = 1;
2124                                 spin_unlock_irq(&conf->device_lock);
2125                                 if (bitmap_end)
2126                                         bitmap_endwrite(conf->mddev->bitmap,
2127                                                         sh->sector,
2128                                                         STRIPE_SECTORS,
2129                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2130                                                         0);
2131                         }
2132                 }
2133
2134         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2135                 if (atomic_dec_and_test(&conf->pending_full_writes))
2136                         md_wakeup_thread(conf->mddev->thread);
2137 }
2138
2139 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2140                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2141 {
2142         int rmw = 0, rcw = 0, i;
2143         for (i = disks; i--; ) {
2144                 /* would I have to read this buffer for read_modify_write */
2145                 struct r5dev *dev = &sh->dev[i];
2146                 if ((dev->towrite || i == sh->pd_idx) &&
2147                     !test_bit(R5_LOCKED, &dev->flags) &&
2148                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2149                       test_bit(R5_Wantcompute, &dev->flags))) {
2150                         if (test_bit(R5_Insync, &dev->flags))
2151                                 rmw++;
2152                         else
2153                                 rmw += 2*disks;  /* cannot read it */
2154                 }
2155                 /* Would I have to read this buffer for reconstruct_write */
2156                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2157                     !test_bit(R5_LOCKED, &dev->flags) &&
2158                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2159                     test_bit(R5_Wantcompute, &dev->flags))) {
2160                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2161                         else
2162                                 rcw += 2*disks;
2163                 }
2164         }
2165         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2166                 (unsigned long long)sh->sector, rmw, rcw);
2167         set_bit(STRIPE_HANDLE, &sh->state);
2168         if (rmw < rcw && rmw > 0)
2169                 /* prefer read-modify-write, but need to get some data */
2170                 for (i = disks; i--; ) {
2171                         struct r5dev *dev = &sh->dev[i];
2172                         if ((dev->towrite || i == sh->pd_idx) &&
2173                             !test_bit(R5_LOCKED, &dev->flags) &&
2174                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2175                             test_bit(R5_Wantcompute, &dev->flags)) &&
2176                             test_bit(R5_Insync, &dev->flags)) {
2177                                 if (
2178                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2179                                         pr_debug("Read_old block "
2180                                                 "%d for r-m-w\n", i);
2181                                         set_bit(R5_LOCKED, &dev->flags);
2182                                         set_bit(R5_Wantread, &dev->flags);
2183                                         s->locked++;
2184                                 } else {
2185                                         set_bit(STRIPE_DELAYED, &sh->state);
2186                                         set_bit(STRIPE_HANDLE, &sh->state);
2187                                 }
2188                         }
2189                 }
2190         if (rcw <= rmw && rcw > 0)
2191                 /* want reconstruct write, but need to get some data */
2192                 for (i = disks; i--; ) {
2193                         struct r5dev *dev = &sh->dev[i];
2194                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2195                             i != sh->pd_idx &&
2196                             !test_bit(R5_LOCKED, &dev->flags) &&
2197                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2198                             test_bit(R5_Wantcompute, &dev->flags)) &&
2199                             test_bit(R5_Insync, &dev->flags)) {
2200                                 if (
2201                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2202                                         pr_debug("Read_old block "
2203                                                 "%d for Reconstruct\n", i);
2204                                         set_bit(R5_LOCKED, &dev->flags);
2205                                         set_bit(R5_Wantread, &dev->flags);
2206                                         s->locked++;
2207                                 } else {
2208                                         set_bit(STRIPE_DELAYED, &sh->state);
2209                                         set_bit(STRIPE_HANDLE, &sh->state);
2210                                 }
2211                         }
2212                 }
2213         /* now if nothing is locked, and if we have enough data,
2214          * we can start a write request
2215          */
2216         /* since handle_stripe can be called at any time we need to handle the
2217          * case where a compute block operation has been submitted and then a
2218          * subsequent call wants to start a write request.  raid5_run_ops only
2219          * handles the case where compute block and postxor are requested
2220          * simultaneously.  If this is not the case then new writes need to be
2221          * held off until the compute completes.
2222          */
2223         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2224             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2225             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2226                 schedule_reconstruction5(sh, s, rcw == 0, 0);
2227 }
2228
2229 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2230                 struct stripe_head *sh, struct stripe_head_state *s,
2231                 struct r6_state *r6s, int disks)
2232 {
2233         int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2234         int qd_idx = r6s->qd_idx;
2235         for (i = disks; i--; ) {
2236                 struct r5dev *dev = &sh->dev[i];
2237                 /* Would I have to read this buffer for reconstruct_write */
2238                 if (!test_bit(R5_OVERWRITE, &dev->flags)
2239                     && i != pd_idx && i != qd_idx
2240                     && (!test_bit(R5_LOCKED, &dev->flags)
2241                             ) &&
2242                     !test_bit(R5_UPTODATE, &dev->flags)) {
2243                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2244                         else {
2245                                 pr_debug("raid6: must_compute: "
2246                                         "disk %d flags=%#lx\n", i, dev->flags);
2247                                 must_compute++;
2248                         }
2249                 }
2250         }
2251         pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2252                (unsigned long long)sh->sector, rcw, must_compute);
2253         set_bit(STRIPE_HANDLE, &sh->state);
2254
2255         if (rcw > 0)
2256                 /* want reconstruct write, but need to get some data */
2257                 for (i = disks; i--; ) {
2258                         struct r5dev *dev = &sh->dev[i];
2259                         if (!test_bit(R5_OVERWRITE, &dev->flags)
2260                             && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2261                             && !test_bit(R5_LOCKED, &dev->flags) &&
2262                             !test_bit(R5_UPTODATE, &dev->flags) &&
2263                             test_bit(R5_Insync, &dev->flags)) {
2264                                 if (
2265                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2266                                         pr_debug("Read_old stripe %llu "
2267                                                 "block %d for Reconstruct\n",
2268                                              (unsigned long long)sh->sector, i);
2269                                         set_bit(R5_LOCKED, &dev->flags);
2270                                         set_bit(R5_Wantread, &dev->flags);
2271                                         s->locked++;
2272                                 } else {
2273                                         pr_debug("Request delayed stripe %llu "
2274                                                 "block %d for Reconstruct\n",
2275                                              (unsigned long long)sh->sector, i);
2276                                         set_bit(STRIPE_DELAYED, &sh->state);
2277                                         set_bit(STRIPE_HANDLE, &sh->state);
2278                                 }
2279                         }
2280                 }
2281         /* now if nothing is locked, and if we have enough data, we can start a
2282          * write request
2283          */
2284         if (s->locked == 0 && rcw == 0 &&
2285             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2286                 if (must_compute > 0) {
2287                         /* We have failed blocks and need to compute them */
2288                         switch (s->failed) {
2289                         case 0:
2290                                 BUG();
2291                         case 1:
2292                                 compute_block_1(sh, r6s->failed_num[0], 0);
2293                                 break;
2294                         case 2:
2295                                 compute_block_2(sh, r6s->failed_num[0],
2296                                                 r6s->failed_num[1]);
2297                                 break;
2298                         default: /* This request should have been failed? */
2299                                 BUG();
2300                         }
2301                 }
2302
2303                 pr_debug("Computing parity for stripe %llu\n",
2304                         (unsigned long long)sh->sector);
2305                 compute_parity6(sh, RECONSTRUCT_WRITE);
2306                 /* now every locked buffer is ready to be written */
2307                 for (i = disks; i--; )
2308                         if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2309                                 pr_debug("Writing stripe %llu block %d\n",
2310                                        (unsigned long long)sh->sector, i);
2311                                 s->locked++;
2312                                 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2313                         }
2314                 if (s->locked == disks)
2315                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2316                                 atomic_inc(&conf->pending_full_writes);
2317                 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2318                 set_bit(STRIPE_INSYNC, &sh->state);
2319
2320                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2321                         atomic_dec(&conf->preread_active_stripes);
2322                         if (atomic_read(&conf->preread_active_stripes) <
2323                             IO_THRESHOLD)
2324                                 md_wakeup_thread(conf->mddev->thread);
2325                 }
2326         }
2327 }
2328
2329 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2330                                 struct stripe_head_state *s, int disks)
2331 {
2332         struct r5dev *dev = NULL;
2333
2334         set_bit(STRIPE_HANDLE, &sh->state);
2335
2336         switch (sh->check_state) {
2337         case check_state_idle:
2338                 /* start a new check operation if there are no failures */
2339                 if (s->failed == 0) {
2340                         BUG_ON(s->uptodate != disks);
2341                         sh->check_state = check_state_run;
2342                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2343                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2344                         s->uptodate--;
2345                         break;
2346                 }
2347                 dev = &sh->dev[s->failed_num];
2348                 /* fall through */
2349         case check_state_compute_result:
2350                 sh->check_state = check_state_idle;
2351                 if (!dev)
2352                         dev = &sh->dev[sh->pd_idx];
2353
2354                 /* check that a write has not made the stripe insync */
2355                 if (test_bit(STRIPE_INSYNC, &sh->state))
2356                         break;
2357
2358                 /* either failed parity check, or recovery is happening */
2359                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2360                 BUG_ON(s->uptodate != disks);
2361
2362                 set_bit(R5_LOCKED, &dev->flags);
2363                 s->locked++;
2364                 set_bit(R5_Wantwrite, &dev->flags);
2365
2366                 clear_bit(STRIPE_DEGRADED, &sh->state);
2367                 set_bit(STRIPE_INSYNC, &sh->state);
2368                 break;
2369         case check_state_run:
2370                 break; /* we will be called again upon completion */
2371         case check_state_check_result:
2372                 sh->check_state = check_state_idle;
2373
2374                 /* if a failure occurred during the check operation, leave
2375                  * STRIPE_INSYNC not set and let the stripe be handled again
2376                  */
2377                 if (s->failed)
2378                         break;
2379
2380                 /* handle a successful check operation, if parity is correct
2381                  * we are done.  Otherwise update the mismatch count and repair
2382                  * parity if !MD_RECOVERY_CHECK
2383                  */
2384                 if (sh->ops.zero_sum_result == 0)
2385                         /* parity is correct (on disc,
2386                          * not in buffer any more)
2387                          */
2388                         set_bit(STRIPE_INSYNC, &sh->state);
2389                 else {
2390                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2391                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2392                                 /* don't try to repair!! */
2393                                 set_bit(STRIPE_INSYNC, &sh->state);
2394                         else {
2395                                 sh->check_state = check_state_compute_run;
2396                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2397                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2398                                 set_bit(R5_Wantcompute,
2399                                         &sh->dev[sh->pd_idx].flags);
2400                                 sh->ops.target = sh->pd_idx;
2401                                 s->uptodate++;
2402                         }
2403                 }
2404                 break;
2405         case check_state_compute_run:
2406                 break;
2407         default:
2408                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2409                        __func__, sh->check_state,
2410                        (unsigned long long) sh->sector);
2411                 BUG();
2412         }
2413 }
2414
2415
2416 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2417                                 struct stripe_head_state *s,
2418                                 struct r6_state *r6s, struct page *tmp_page,
2419                                 int disks)
2420 {
2421         int update_p = 0, update_q = 0;
2422         struct r5dev *dev;
2423         int pd_idx = sh->pd_idx;
2424         int qd_idx = r6s->qd_idx;
2425
2426         set_bit(STRIPE_HANDLE, &sh->state);
2427
2428         BUG_ON(s->failed > 2);
2429         BUG_ON(s->uptodate < disks);
2430         /* Want to check and possibly repair P and Q.
2431          * However there could be one 'failed' device, in which
2432          * case we can only check one of them, possibly using the
2433          * other to generate missing data
2434          */
2435
2436         /* If !tmp_page, we cannot do the calculations,
2437          * but as we have set STRIPE_HANDLE, we will soon be called
2438          * by stripe_handle with a tmp_page - just wait until then.
2439          */
2440         if (tmp_page) {
2441                 if (s->failed == r6s->q_failed) {
2442                         /* The only possible failed device holds 'Q', so it
2443                          * makes sense to check P (If anything else were failed,
2444                          * we would have used P to recreate it).
2445                          */
2446                         compute_block_1(sh, pd_idx, 1);
2447                         if (!page_is_zero(sh->dev[pd_idx].page)) {
2448                                 compute_block_1(sh, pd_idx, 0);
2449                                 update_p = 1;
2450                         }
2451                 }
2452                 if (!r6s->q_failed && s->failed < 2) {
2453                         /* q is not failed, and we didn't use it to generate
2454                          * anything, so it makes sense to check it
2455                          */
2456                         memcpy(page_address(tmp_page),
2457                                page_address(sh->dev[qd_idx].page),
2458                                STRIPE_SIZE);
2459                         compute_parity6(sh, UPDATE_PARITY);
2460                         if (memcmp(page_address(tmp_page),
2461                                    page_address(sh->dev[qd_idx].page),
2462                                    STRIPE_SIZE) != 0) {
2463                                 clear_bit(STRIPE_INSYNC, &sh->state);
2464                                 update_q = 1;
2465                         }
2466                 }
2467                 if (update_p || update_q) {
2468                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2469                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2470                                 /* don't try to repair!! */
2471                                 update_p = update_q = 0;
2472                 }
2473
2474                 /* now write out any block on a failed drive,
2475                  * or P or Q if they need it
2476                  */
2477
2478                 if (s->failed == 2) {
2479                         dev = &sh->dev[r6s->failed_num[1]];
2480                         s->locked++;
2481                         set_bit(R5_LOCKED, &dev->flags);
2482                         set_bit(R5_Wantwrite, &dev->flags);
2483                 }
2484                 if (s->failed >= 1) {
2485                         dev = &sh->dev[r6s->failed_num[0]];
2486                         s->locked++;
2487                         set_bit(R5_LOCKED, &dev->flags);
2488                         set_bit(R5_Wantwrite, &dev->flags);
2489                 }
2490
2491                 if (update_p) {
2492                         dev = &sh->dev[pd_idx];
2493                         s->locked++;
2494                         set_bit(R5_LOCKED, &dev->flags);
2495                         set_bit(R5_Wantwrite, &dev->flags);
2496                 }
2497                 if (update_q) {
2498                         dev = &sh->dev[qd_idx];
2499                         s->locked++;
2500                         set_bit(R5_LOCKED, &dev->flags);
2501                         set_bit(R5_Wantwrite, &dev->flags);
2502                 }
2503                 clear_bit(STRIPE_DEGRADED, &sh->state);
2504
2505                 set_bit(STRIPE_INSYNC, &sh->state);
2506         }
2507 }
2508
2509 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2510                                 struct r6_state *r6s)
2511 {
2512         int i;
2513
2514         /* We have read all the blocks in this stripe and now we need to
2515          * copy some of them into a target stripe for expand.
2516          */
2517         struct dma_async_tx_descriptor *tx = NULL;
2518         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2519         for (i = 0; i < sh->disks; i++)
2520                 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2521                         int dd_idx, j;
2522                         struct stripe_head *sh2;
2523
2524                         sector_t bn = compute_blocknr(sh, i);
2525                         sector_t s = raid5_compute_sector(conf, bn, 0,
2526                                                           &dd_idx, NULL);
2527                         sh2 = get_active_stripe(conf, s, 0, 1);
2528                         if (sh2 == NULL)
2529                                 /* so far only the early blocks of this stripe
2530                                  * have been requested.  When later blocks
2531                                  * get requested, we will try again
2532                                  */
2533                                 continue;
2534                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2535                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2536                                 /* must have already done this block */
2537                                 release_stripe(sh2);
2538                                 continue;
2539                         }
2540
2541                         /* place all the copies on one channel */
2542                         tx = async_memcpy(sh2->dev[dd_idx].page,
2543                                 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2544                                 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2545
2546                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2547                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2548                         for (j = 0; j < conf->raid_disks; j++)
2549                                 if (j != sh2->pd_idx &&
2550                                     (!r6s || j != sh2->qd_idx) &&
2551                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2552                                         break;
2553                         if (j == conf->raid_disks) {
2554                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2555                                 set_bit(STRIPE_HANDLE, &sh2->state);
2556                         }
2557                         release_stripe(sh2);
2558
2559                 }
2560         /* done submitting copies, wait for them to complete */
2561         if (tx) {
2562                 async_tx_ack(tx);
2563                 dma_wait_for_async_tx(tx);
2564         }
2565 }
2566
2567
2568 /*
2569  * handle_stripe - do things to a stripe.
2570  *
2571  * We lock the stripe and then examine the state of various bits
2572  * to see what needs to be done.
2573  * Possible results:
2574  *    return some read request which now have data
2575  *    return some write requests which are safely on disc
2576  *    schedule a read on some buffers
2577  *    schedule a write of some buffers
2578  *    return confirmation of parity correctness
2579  *
2580  * buffers are taken off read_list or write_list, and bh_cache buffers
2581  * get BH_Lock set before the stripe lock is released.
2582  *
2583  */
2584
2585 static bool handle_stripe5(struct stripe_head *sh)
2586 {
2587         raid5_conf_t *conf = sh->raid_conf;
2588         int disks = sh->disks, i;
2589         struct bio *return_bi = NULL;
2590         struct stripe_head_state s;
2591         struct r5dev *dev;
2592         mdk_rdev_t *blocked_rdev = NULL;
2593         int prexor;
2594
2595         memset(&s, 0, sizeof(s));
2596         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2597                  "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2598                  atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2599                  sh->reconstruct_state);
2600
2601         spin_lock(&sh->lock);
2602         clear_bit(STRIPE_HANDLE, &sh->state);
2603         clear_bit(STRIPE_DELAYED, &sh->state);
2604
2605         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2606         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2607         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2608
2609         /* Now to look around and see what can be done */
2610         rcu_read_lock();
2611         for (i=disks; i--; ) {
2612                 mdk_rdev_t *rdev;
2613                 struct r5dev *dev = &sh->dev[i];
2614                 clear_bit(R5_Insync, &dev->flags);
2615
2616                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2617                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2618                         dev->towrite, dev->written);
2619
2620                 /* maybe we can request a biofill operation
2621                  *
2622                  * new wantfill requests are only permitted while
2623                  * ops_complete_biofill is guaranteed to be inactive
2624                  */
2625                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2626                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2627                         set_bit(R5_Wantfill, &dev->flags);
2628
2629                 /* now count some things */
2630                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2631                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2632                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2633
2634                 if (test_bit(R5_Wantfill, &dev->flags))
2635                         s.to_fill++;
2636                 else if (dev->toread)
2637                         s.to_read++;
2638                 if (dev->towrite) {
2639                         s.to_write++;
2640                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2641                                 s.non_overwrite++;
2642                 }
2643                 if (dev->written)
2644                         s.written++;
2645                 rdev = rcu_dereference(conf->disks[i].rdev);
2646                 if (blocked_rdev == NULL &&
2647                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2648                         blocked_rdev = rdev;
2649                         atomic_inc(&rdev->nr_pending);
2650                 }
2651                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2652                         /* The ReadError flag will just be confusing now */
2653                         clear_bit(R5_ReadError, &dev->flags);
2654                         clear_bit(R5_ReWrite, &dev->flags);
2655                 }
2656                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2657                     || test_bit(R5_ReadError, &dev->flags)) {
2658                         s.failed++;
2659                         s.failed_num = i;
2660                 } else
2661                         set_bit(R5_Insync, &dev->flags);
2662         }
2663         rcu_read_unlock();
2664
2665         if (unlikely(blocked_rdev)) {
2666                 if (s.syncing || s.expanding || s.expanded ||
2667                     s.to_write || s.written) {
2668                         set_bit(STRIPE_HANDLE, &sh->state);
2669                         goto unlock;
2670                 }
2671                 /* There is nothing for the blocked_rdev to block */
2672                 rdev_dec_pending(blocked_rdev, conf->mddev);
2673                 blocked_rdev = NULL;
2674         }
2675
2676         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2677                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2678                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2679         }
2680
2681         pr_debug("locked=%d uptodate=%d to_read=%d"
2682                 " to_write=%d failed=%d failed_num=%d\n",
2683                 s.locked, s.uptodate, s.to_read, s.to_write,
2684                 s.failed, s.failed_num);
2685         /* check if the array has lost two devices and, if so, some requests might
2686          * need to be failed
2687          */
2688         if (s.failed > 1 && s.to_read+s.to_write+s.written)
2689                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2690         if (s.failed > 1 && s.syncing) {
2691                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2692                 clear_bit(STRIPE_SYNCING, &sh->state);
2693                 s.syncing = 0;
2694         }
2695
2696         /* might be able to return some write requests if the parity block
2697          * is safe, or on a failed drive
2698          */
2699         dev = &sh->dev[sh->pd_idx];
2700         if ( s.written &&
2701              ((test_bit(R5_Insync, &dev->flags) &&
2702                !test_bit(R5_LOCKED, &dev->flags) &&
2703                test_bit(R5_UPTODATE, &dev->flags)) ||
2704                (s.failed == 1 && s.failed_num == sh->pd_idx)))
2705                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
2706
2707         /* Now we might consider reading some blocks, either to check/generate
2708          * parity, or to satisfy requests
2709          * or to load a block that is being partially written.
2710          */
2711         if (s.to_read || s.non_overwrite ||
2712             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2713                 handle_stripe_fill5(sh, &s, disks);
2714
2715         /* Now we check to see if any write operations have recently
2716          * completed
2717          */
2718         prexor = 0;
2719         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2720                 prexor = 1;
2721         if (sh->reconstruct_state == reconstruct_state_drain_result ||
2722             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2723                 sh->reconstruct_state = reconstruct_state_idle;
2724
2725                 /* All the 'written' buffers and the parity block are ready to
2726                  * be written back to disk
2727                  */
2728                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2729                 for (i = disks; i--; ) {
2730                         dev = &sh->dev[i];
2731                         if (test_bit(R5_LOCKED, &dev->flags) &&
2732                                 (i == sh->pd_idx || dev->written)) {
2733                                 pr_debug("Writing block %d\n", i);
2734                                 set_bit(R5_Wantwrite, &dev->flags);
2735                                 if (prexor)
2736                                         continue;
2737                                 if (!test_bit(R5_Insync, &dev->flags) ||
2738                                     (i == sh->pd_idx && s.failed == 0))
2739                                         set_bit(STRIPE_INSYNC, &sh->state);
2740                         }
2741                 }
2742                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2743                         atomic_dec(&conf->preread_active_stripes);
2744                         if (atomic_read(&conf->preread_active_stripes) <
2745                                 IO_THRESHOLD)
2746                                 md_wakeup_thread(conf->mddev->thread);
2747                 }
2748         }
2749
2750         /* Now to consider new write requests and what else, if anything
2751          * should be read.  We do not handle new writes when:
2752          * 1/ A 'write' operation (copy+xor) is already in flight.
2753          * 2/ A 'check' operation is in flight, as it may clobber the parity
2754          *    block.
2755          */
2756         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2757                 handle_stripe_dirtying5(conf, sh, &s, disks);
2758
2759         /* maybe we need to check and possibly fix the parity for this stripe
2760          * Any reads will already have been scheduled, so we just see if enough
2761          * data is available.  The parity check is held off while parity
2762          * dependent operations are in flight.
2763          */
2764         if (sh->check_state ||
2765             (s.syncing && s.locked == 0 &&
2766              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2767              !test_bit(STRIPE_INSYNC, &sh->state)))
2768                 handle_parity_checks5(conf, sh, &s, disks);
2769
2770         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2771                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2772                 clear_bit(STRIPE_SYNCING, &sh->state);
2773         }
2774
2775         /* If the failed drive is just a ReadError, then we might need to progress
2776          * the repair/check process
2777          */
2778         if (s.failed == 1 && !conf->mddev->ro &&
2779             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2780             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2781             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2782                 ) {
2783                 dev = &sh->dev[s.failed_num];
2784                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2785                         set_bit(R5_Wantwrite, &dev->flags);
2786                         set_bit(R5_ReWrite, &dev->flags);
2787                         set_bit(R5_LOCKED, &dev->flags);
2788                         s.locked++;
2789                 } else {
2790                         /* let's read it back */
2791                         set_bit(R5_Wantread, &dev->flags);
2792                         set_bit(R5_LOCKED, &dev->flags);
2793                         s.locked++;
2794                 }
2795         }
2796
2797         /* Finish reconstruct operations initiated by the expansion process */
2798         if (sh->reconstruct_state == reconstruct_state_result) {
2799                 sh->reconstruct_state = reconstruct_state_idle;
2800                 clear_bit(STRIPE_EXPANDING, &sh->state);
2801                 for (i = conf->raid_disks; i--; ) {
2802                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
2803                         set_bit(R5_LOCKED, &sh->dev[i].flags);
2804                         s.locked++;
2805                 }
2806         }
2807
2808         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2809             !sh->reconstruct_state) {
2810                 /* Need to write out all blocks after computing parity */
2811                 sh->disks = conf->raid_disks;
2812                 stripe_set_idx(sh->sector, conf, 0, sh);
2813                 schedule_reconstruction5(sh, &s, 1, 1);
2814         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2815                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2816                 atomic_dec(&conf->reshape_stripes);
2817                 wake_up(&conf->wait_for_overlap);
2818                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2819         }
2820
2821         if (s.expanding && s.locked == 0 &&
2822             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2823                 handle_stripe_expansion(conf, sh, NULL);
2824
2825  unlock:
2826         spin_unlock(&sh->lock);
2827
2828         /* wait for this device to become unblocked */
2829         if (unlikely(blocked_rdev))
2830                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2831
2832         if (s.ops_request)
2833                 raid5_run_ops(sh, s.ops_request);
2834
2835         ops_run_io(sh, &s);
2836
2837         return_io(return_bi);
2838
2839         return blocked_rdev == NULL;
2840 }
2841
2842 static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2843 {
2844         raid5_conf_t *conf = sh->raid_conf;
2845         int disks = sh->disks;
2846         struct bio *return_bi = NULL;
2847         int i, pd_idx = sh->pd_idx;
2848         struct stripe_head_state s;
2849         struct r6_state r6s;
2850         struct r5dev *dev, *pdev, *qdev;
2851         mdk_rdev_t *blocked_rdev = NULL;
2852
2853         r6s.qd_idx = sh->qd_idx;
2854         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2855                 "pd_idx=%d, qd_idx=%d\n",
2856                (unsigned long long)sh->sector, sh->state,
2857                atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2858         memset(&s, 0, sizeof(s));
2859
2860         spin_lock(&sh->lock);
2861         clear_bit(STRIPE_HANDLE, &sh->state);
2862         clear_bit(STRIPE_DELAYED, &sh->state);
2863
2864         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2865         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2866         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2867         /* Now to look around and see what can be done */
2868
2869         rcu_read_lock();
2870         for (i=disks; i--; ) {
2871                 mdk_rdev_t *rdev;
2872                 dev = &sh->dev[i];
2873                 clear_bit(R5_Insync, &dev->flags);
2874
2875                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2876                         i, dev->flags, dev->toread, dev->towrite, dev->written);
2877                 /* maybe we can reply to a read */
2878                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2879                         struct bio *rbi, *rbi2;
2880                         pr_debug("Return read for disc %d\n", i);
2881                         spin_lock_irq(&conf->device_lock);
2882                         rbi = dev->toread;
2883                         dev->toread = NULL;
2884                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
2885                                 wake_up(&conf->wait_for_overlap);
2886                         spin_unlock_irq(&conf->device_lock);
2887                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2888                                 copy_data(0, rbi, dev->page, dev->sector);
2889                                 rbi2 = r5_next_bio(rbi, dev->sector);
2890                                 spin_lock_irq(&conf->device_lock);
2891                                 if (!raid5_dec_bi_phys_segments(rbi)) {
2892                                         rbi->bi_next = return_bi;
2893                                         return_bi = rbi;
2894                                 }
2895                                 spin_unlock_irq(&conf->device_lock);
2896                                 rbi = rbi2;
2897                         }
2898                 }
2899
2900                 /* now count some things */
2901                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2902                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2903
2904
2905                 if (dev->toread)
2906                         s.to_read++;
2907                 if (dev->towrite) {
2908                         s.to_write++;
2909                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2910                                 s.non_overwrite++;
2911                 }
2912                 if (dev->written)
2913                         s.written++;
2914                 rdev = rcu_dereference(conf->disks[i].rdev);
2915                 if (blocked_rdev == NULL &&
2916                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2917                         blocked_rdev = rdev;
2918                         atomic_inc(&rdev->nr_pending);
2919                 }
2920                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2921                         /* The ReadError flag will just be confusing now */
2922                         clear_bit(R5_ReadError, &dev->flags);
2923                         clear_bit(R5_ReWrite, &dev->flags);
2924                 }
2925                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2926                     || test_bit(R5_ReadError, &dev->flags)) {
2927                         if (s.failed < 2)
2928                                 r6s.failed_num[s.failed] = i;
2929                         s.failed++;
2930                 } else
2931                         set_bit(R5_Insync, &dev->flags);
2932         }
2933         rcu_read_unlock();
2934
2935         if (unlikely(blocked_rdev)) {
2936                 if (s.syncing || s.expanding || s.expanded ||
2937                     s.to_write || s.written) {
2938                         set_bit(STRIPE_HANDLE, &sh->state);
2939                         goto unlock;
2940                 }
2941                 /* There is nothing for the blocked_rdev to block */
2942                 rdev_dec_pending(blocked_rdev, conf->mddev);
2943                 blocked_rdev = NULL;
2944         }
2945
2946         pr_debug("locked=%d uptodate=%d to_read=%d"
2947                " to_write=%d failed=%d failed_num=%d,%d\n",
2948                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2949                r6s.failed_num[0], r6s.failed_num[1]);
2950         /* check if the array has lost >2 devices and, if so, some requests
2951          * might need to be failed
2952          */
2953         if (s.failed > 2 && s.to_read+s.to_write+s.written)
2954                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2955         if (s.failed > 2 && s.syncing) {
2956                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2957                 clear_bit(STRIPE_SYNCING, &sh->state);
2958                 s.syncing = 0;
2959         }
2960
2961         /*
2962          * might be able to return some write requests if the parity blocks
2963          * are safe, or on a failed drive
2964          */
2965         pdev = &sh->dev[pd_idx];
2966         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2967                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2968         qdev = &sh->dev[r6s.qd_idx];
2969         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2970                 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2971
2972         if ( s.written &&
2973              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
2974                              && !test_bit(R5_LOCKED, &pdev->flags)
2975                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2976              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
2977                              && !test_bit(R5_LOCKED, &qdev->flags)
2978                              && test_bit(R5_UPTODATE, &qdev->flags)))))
2979                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
2980
2981         /* Now we might consider reading some blocks, either to check/generate
2982          * parity, or to satisfy requests
2983          * or to load a block that is being partially written.
2984          */
2985         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
2986             (s.syncing && (s.uptodate < disks)) || s.expanding)
2987                 handle_stripe_fill6(sh, &s, &r6s, disks);
2988
2989         /* now to consider writing and what else, if anything should be read */
2990         if (s.to_write)
2991                 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
2992
2993         /* maybe we need to check and possibly fix the parity for this stripe
2994          * Any reads will already have been scheduled, so we just see if enough
2995          * data is available
2996          */
2997         if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
2998                 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
2999
3000         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3001                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3002                 clear_bit(STRIPE_SYNCING, &sh->state);
3003         }
3004
3005         /* If the failed drives are just a ReadError, then we might need
3006          * to progress the repair/check process
3007          */
3008         if (s.failed <= 2 && !conf->mddev->ro)
3009                 for (i = 0; i < s.failed; i++) {
3010                         dev = &sh->dev[r6s.failed_num[i]];
3011                         if (test_bit(R5_ReadError, &dev->flags)
3012                             && !test_bit(R5_LOCKED, &dev->flags)
3013                             && test_bit(R5_UPTODATE, &dev->flags)
3014                                 ) {
3015                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3016                                         set_bit(R5_Wantwrite, &dev->flags);
3017                                         set_bit(R5_ReWrite, &dev->flags);
3018                                         set_bit(R5_LOCKED, &dev->flags);
3019                                 } else {
3020                                         /* let's read it back */
3021                                         set_bit(R5_Wantread, &dev->flags);
3022                                         set_bit(R5_LOCKED, &dev->flags);
3023                                 }
3024                         }
3025                 }
3026
3027         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3028                 /* Need to write out all blocks after computing P&Q */
3029                 sh->disks = conf->raid_disks;
3030                 stripe_set_idx(sh->sector, conf, 0, sh);
3031                 compute_parity6(sh, RECONSTRUCT_WRITE);
3032                 for (i = conf->raid_disks ; i-- ;  ) {
3033                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3034                         s.locked++;
3035                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3036                 }
3037                 clear_bit(STRIPE_EXPANDING, &sh->state);
3038         } else if (s.expanded) {
3039                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3040                 atomic_dec(&conf->reshape_stripes);
3041                 wake_up(&conf->wait_for_overlap);
3042                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3043         }
3044
3045         if (s.expanding && s.locked == 0 &&
3046             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3047                 handle_stripe_expansion(conf, sh, &r6s);
3048
3049  unlock:
3050         spin_unlock(&sh->lock);
3051
3052         /* wait for this device to become unblocked */
3053         if (unlikely(blocked_rdev))
3054                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3055
3056         ops_run_io(sh, &s);
3057
3058         return_io(return_bi);
3059
3060         return blocked_rdev == NULL;
3061 }
3062
3063 /* returns true if the stripe was handled */
3064 static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3065 {
3066         if (sh->raid_conf->level == 6)
3067                 return handle_stripe6(sh, tmp_page);
3068         else
3069                 return handle_stripe5(sh);
3070 }
3071
3072
3073
3074 static void raid5_activate_delayed(raid5_conf_t *conf)
3075 {
3076         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3077                 while (!list_empty(&conf->delayed_list)) {
3078                         struct list_head *l = conf->delayed_list.next;
3079                         struct stripe_head *sh;
3080                         sh = list_entry(l, struct stripe_head, lru);
3081                         list_del_init(l);
3082                         clear_bit(STRIPE_DELAYED, &sh->state);
3083                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3084                                 atomic_inc(&conf->preread_active_stripes);
3085                         list_add_tail(&sh->lru, &conf->hold_list);
3086                 }
3087         } else
3088                 blk_plug_device(conf->mddev->queue);
3089 }
3090
3091 static void activate_bit_delay(raid5_conf_t *conf)
3092 {
3093         /* device_lock is held */
3094         struct list_head head;
3095         list_add(&head, &conf->bitmap_list);
3096         list_del_init(&conf->bitmap_list);
3097         while (!list_empty(&head)) {
3098                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3099                 list_del_init(&sh->lru);
3100                 atomic_inc(&sh->count);
3101                 __release_stripe(conf, sh);
3102         }
3103 }
3104
3105 static void unplug_slaves(mddev_t *mddev)
3106 {
3107         raid5_conf_t *conf = mddev_to_conf(mddev);
3108         int i;
3109
3110         rcu_read_lock();
3111         for (i=0; i<mddev->raid_disks; i++) {
3112                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3113                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3114                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3115
3116                         atomic_inc(&rdev->nr_pending);
3117                         rcu_read_unlock();
3118
3119                         blk_unplug(r_queue);
3120
3121                         rdev_dec_pending(rdev, mddev);
3122                         rcu_read_lock();
3123                 }
3124         }
3125         rcu_read_unlock();
3126 }
3127
3128 static void raid5_unplug_device(struct request_queue *q)
3129 {
3130         mddev_t *mddev = q->queuedata;
3131         raid5_conf_t *conf = mddev_to_conf(mddev);
3132         unsigned long flags;
3133
3134         spin_lock_irqsave(&conf->device_lock, flags);
3135
3136         if (blk_remove_plug(q)) {
3137                 conf->seq_flush++;
3138                 raid5_activate_delayed(conf);
3139         }
3140         md_wakeup_thread(mddev->thread);
3141
3142         spin_unlock_irqrestore(&conf->device_lock, flags);
3143
3144         unplug_slaves(mddev);
3145 }
3146
3147 static int raid5_congested(void *data, int bits)
3148 {
3149         mddev_t *mddev = data;
3150         raid5_conf_t *conf = mddev_to_conf(mddev);
3151
3152         /* No difference between reads and writes.  Just check
3153          * how busy the stripe_cache is
3154          */
3155         if (conf->inactive_blocked)
3156                 return 1;
3157         if (conf->quiesce)
3158                 return 1;
3159         if (list_empty_careful(&conf->inactive_list))
3160                 return 1;
3161
3162         return 0;
3163 }
3164
3165 /* We want read requests to align with chunks where possible,
3166  * but write requests don't need to.
3167  */
3168 static int raid5_mergeable_bvec(struct request_queue *q,
3169                                 struct bvec_merge_data *bvm,
3170                                 struct bio_vec *biovec)
3171 {
3172         mddev_t *mddev = q->queuedata;
3173         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3174         int max;
3175         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3176         unsigned int bio_sectors = bvm->bi_size >> 9;
3177
3178         if ((bvm->bi_rw & 1) == WRITE)
3179                 return biovec->bv_len; /* always allow writes to be mergeable */
3180
3181         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3182         if (max < 0) max = 0;
3183         if (max <= biovec->bv_len && bio_sectors == 0)
3184                 return biovec->bv_len;
3185         else
3186                 return max;
3187 }
3188
3189
3190 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3191 {
3192         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3193         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3194         unsigned int bio_sectors = bio->bi_size >> 9;
3195
3196         return  chunk_sectors >=
3197                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3198 }
3199
3200 /*
3201  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3202  *  later sampled by raid5d.
3203  */
3204 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3205 {
3206         unsigned long flags;
3207
3208         spin_lock_irqsave(&conf->device_lock, flags);
3209
3210         bi->bi_next = conf->retry_read_aligned_list;
3211         conf->retry_read_aligned_list = bi;
3212
3213         spin_unlock_irqrestore(&conf->device_lock, flags);
3214         md_wakeup_thread(conf->mddev->thread);
3215 }
3216
3217
3218 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3219 {
3220         struct bio *bi;
3221
3222         bi = conf->retry_read_aligned;
3223         if (bi) {
3224                 conf->retry_read_aligned = NULL;
3225                 return bi;
3226         }
3227         bi = conf->retry_read_aligned_list;
3228         if(bi) {
3229                 conf->retry_read_aligned_list = bi->bi_next;
3230                 bi->bi_next = NULL;
3231                 /*
3232                  * this sets the active strip count to 1 and the processed
3233                  * strip count to zero (upper 8 bits)
3234                  */
3235                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3236         }
3237
3238         return bi;
3239 }
3240
3241
3242 /*
3243  *  The "raid5_align_endio" should check if the read succeeded and if it
3244  *  did, call bio_endio on the original bio (having bio_put the new bio
3245  *  first).
3246  *  If the read failed..
3247  */
3248 static void raid5_align_endio(struct bio *bi, int error)
3249 {
3250         struct bio* raid_bi  = bi->bi_private;
3251         mddev_t *mddev;
3252         raid5_conf_t *conf;
3253         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3254         mdk_rdev_t *rdev;
3255
3256         bio_put(bi);
3257
3258         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3259         conf = mddev_to_conf(mddev);
3260         rdev = (void*)raid_bi->bi_next;
3261         raid_bi->bi_next = NULL;
3262
3263         rdev_dec_pending(rdev, conf->mddev);
3264
3265         if (!error && uptodate) {
3266                 bio_endio(raid_bi, 0);
3267                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3268                         wake_up(&conf->wait_for_stripe);
3269                 return;
3270         }
3271
3272
3273         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3274
3275         add_bio_to_retry(raid_bi, conf);
3276 }
3277
3278 static int bio_fits_rdev(struct bio *bi)
3279 {
3280         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3281
3282         if ((bi->bi_size>>9) > q->max_sectors)
3283                 return 0;
3284         blk_recount_segments(q, bi);
3285         if (bi->bi_phys_segments > q->max_phys_segments)
3286                 return 0;
3287
3288         if (q->merge_bvec_fn)
3289                 /* it's too hard to apply the merge_bvec_fn at this stage,
3290                  * just just give up
3291                  */
3292                 return 0;
3293
3294         return 1;
3295 }
3296
3297
3298 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3299 {
3300         mddev_t *mddev = q->queuedata;
3301         raid5_conf_t *conf = mddev_to_conf(mddev);
3302         unsigned int dd_idx;
3303         struct bio* align_bi;
3304         mdk_rdev_t *rdev;
3305
3306         if (!in_chunk_boundary(mddev, raid_bio)) {
3307                 pr_debug("chunk_aligned_read : non aligned\n");
3308                 return 0;
3309         }
3310         /*
3311          * use bio_clone to make a copy of the bio
3312          */
3313         align_bi = bio_clone(raid_bio, GFP_NOIO);
3314         if (!align_bi)
3315                 return 0;
3316         /*
3317          *   set bi_end_io to a new function, and set bi_private to the
3318          *     original bio.
3319          */
3320         align_bi->bi_end_io  = raid5_align_endio;
3321         align_bi->bi_private = raid_bio;
3322         /*
3323          *      compute position
3324          */
3325         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3326                                                     0,
3327                                                     &dd_idx, NULL);
3328
3329         rcu_read_lock();
3330         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3331         if (rdev && test_bit(In_sync, &rdev->flags)) {
3332                 atomic_inc(&rdev->nr_pending);
3333                 rcu_read_unlock();
3334                 raid_bio->bi_next = (void*)rdev;
3335                 align_bi->bi_bdev =  rdev->bdev;
3336                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3337                 align_bi->bi_sector += rdev->data_offset;
3338
3339                 if (!bio_fits_rdev(align_bi)) {
3340                         /* too big in some way */
3341                         bio_put(align_bi);
3342                         rdev_dec_pending(rdev, mddev);
3343                         return 0;
3344                 }
3345
3346                 spin_lock_irq(&conf->device_lock);
3347                 wait_event_lock_irq(conf->wait_for_stripe,
3348                                     conf->quiesce == 0,
3349                                     conf->device_lock, /* nothing */);
3350                 atomic_inc(&conf->active_aligned_reads);
3351                 spin_unlock_irq(&conf->device_lock);
3352
3353                 generic_make_request(align_bi);
3354                 return 1;
3355         } else {
3356                 rcu_read_unlock();
3357                 bio_put(align_bi);
3358                 return 0;
3359         }
3360 }
3361
3362 /* __get_priority_stripe - get the next stripe to process
3363  *
3364  * Full stripe writes are allowed to pass preread active stripes up until
3365  * the bypass_threshold is exceeded.  In general the bypass_count
3366  * increments when the handle_list is handled before the hold_list; however, it
3367  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3368  * stripe with in flight i/o.  The bypass_count will be reset when the
3369  * head of the hold_list has changed, i.e. the head was promoted to the
3370  * handle_list.
3371  */
3372 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3373 {
3374         struct stripe_head *sh;
3375
3376         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3377                   __func__,
3378                   list_empty(&conf->handle_list) ? "empty" : "busy",
3379                   list_empty(&conf->hold_list) ? "empty" : "busy",
3380                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3381
3382         if (!list_empty(&conf->handle_list)) {
3383                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3384
3385                 if (list_empty(&conf->hold_list))
3386                         conf->bypass_count = 0;
3387                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3388                         if (conf->hold_list.next == conf->last_hold)
3389                                 conf->bypass_count++;
3390                         else {
3391                                 conf->last_hold = conf->hold_list.next;
3392                                 conf->bypass_count -= conf->bypass_threshold;
3393                                 if (conf->bypass_count < 0)
3394                                         conf->bypass_count = 0;
3395                         }
3396                 }
3397         } else if (!list_empty(&conf->hold_list) &&
3398                    ((conf->bypass_threshold &&
3399                      conf->bypass_count > conf->bypass_threshold) ||
3400                     atomic_read(&conf->pending_full_writes) == 0)) {
3401                 sh = list_entry(conf->hold_list.next,
3402                                 typeof(*sh), lru);
3403                 conf->bypass_count -= conf->bypass_threshold;
3404                 if (conf->bypass_count < 0)
3405                         conf->bypass_count = 0;
3406         } else
3407                 return NULL;
3408
3409         list_del_init(&sh->lru);
3410         atomic_inc(&sh->count);
3411         BUG_ON(atomic_read(&sh->count) != 1);
3412         return sh;
3413 }
3414
3415 static int make_request(struct request_queue *q, struct bio * bi)
3416 {
3417         mddev_t *mddev = q->queuedata;
3418         raid5_conf_t *conf = mddev_to_conf(mddev);
3419         int dd_idx;
3420         sector_t new_sector;
3421         sector_t logical_sector, last_sector;
3422         struct stripe_head *sh;
3423         const int rw = bio_data_dir(bi);
3424         int cpu, remaining;
3425
3426         if (unlikely(bio_barrier(bi))) {
3427                 bio_endio(bi, -EOPNOTSUPP);
3428                 return 0;
3429         }
3430
3431         md_write_start(mddev, bi);
3432
3433         cpu = part_stat_lock();
3434         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3435         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3436                       bio_sectors(bi));
3437         part_stat_unlock();
3438
3439         if (rw == READ &&
3440              mddev->reshape_position == MaxSector &&
3441              chunk_aligned_read(q,bi))
3442                 return 0;
3443
3444         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3445         last_sector = bi->bi_sector + (bi->bi_size>>9);
3446         bi->bi_next = NULL;
3447         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3448
3449         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3450                 DEFINE_WAIT(w);
3451                 int disks, data_disks;
3452                 int previous;
3453
3454         retry:
3455                 previous = 0;
3456                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3457                 if (likely(conf->expand_progress == MaxSector))
3458                         disks = conf->raid_disks;
3459                 else {
3460                         /* spinlock is needed as expand_progress may be
3461                          * 64bit on a 32bit platform, and so it might be
3462                          * possible to see a half-updated value
3463                          * Ofcourse expand_progress could change after
3464                          * the lock is dropped, so once we get a reference
3465                          * to the stripe that we think it is, we will have
3466                          * to check again.
3467                          */
3468                         spin_lock_irq(&conf->device_lock);
3469                         disks = conf->raid_disks;
3470                         if (logical_sector >= conf->expand_progress) {
3471                                 disks = conf->previous_raid_disks;
3472                                 previous = 1;
3473                         } else {
3474                                 if (logical_sector >= conf->expand_lo) {
3475                                         spin_unlock_irq(&conf->device_lock);
3476                                         schedule();
3477                                         goto retry;
3478                                 }
3479                         }
3480                         spin_unlock_irq(&conf->device_lock);
3481                 }
3482                 data_disks = disks - conf->max_degraded;
3483
3484                 new_sector = raid5_compute_sector(conf, logical_sector,
3485                                                   previous,
3486                                                   &dd_idx, NULL);
3487                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3488                         (unsigned long long)new_sector, 
3489                         (unsigned long long)logical_sector);
3490
3491                 sh = get_active_stripe(conf, new_sector, previous,
3492                                        (bi->bi_rw&RWA_MASK));
3493                 if (sh) {
3494                         if (unlikely(conf->expand_progress != MaxSector)) {
3495                                 /* expansion might have moved on while waiting for a
3496                                  * stripe, so we must do the range check again.
3497                                  * Expansion could still move past after this
3498                                  * test, but as we are holding a reference to
3499                                  * 'sh', we know that if that happens,
3500                                  *  STRIPE_EXPANDING will get set and the expansion
3501                                  * won't proceed until we finish with the stripe.
3502                                  */
3503                                 int must_retry = 0;
3504                                 spin_lock_irq(&conf->device_lock);
3505                                 if (logical_sector <  conf->expand_progress &&
3506                                     disks == conf->previous_raid_disks)
3507                                         /* mismatch, need to try again */
3508                                         must_retry = 1;
3509                                 spin_unlock_irq(&conf->device_lock);
3510                                 if (must_retry) {
3511                                         release_stripe(sh);
3512                                         goto retry;
3513                                 }
3514                         }
3515                         /* FIXME what if we get a false positive because these
3516                          * are being updated.
3517                          */
3518                         if (logical_sector >= mddev->suspend_lo &&
3519                             logical_sector < mddev->suspend_hi) {
3520                                 release_stripe(sh);
3521                                 schedule();
3522                                 goto retry;
3523                         }
3524
3525                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3526                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3527                                 /* Stripe is busy expanding or
3528                                  * add failed due to overlap.  Flush everything
3529                                  * and wait a while
3530                                  */
3531                                 raid5_unplug_device(mddev->queue);
3532                                 release_stripe(sh);
3533                                 schedule();
3534                                 goto retry;
3535                         }
3536                         finish_wait(&conf->wait_for_overlap, &w);
3537                         set_bit(STRIPE_HANDLE, &sh->state);
3538                         clear_bit(STRIPE_DELAYED, &sh->state);
3539                         release_stripe(sh);
3540                 } else {
3541                         /* cannot get stripe for read-ahead, just give-up */
3542                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3543                         finish_wait(&conf->wait_for_overlap, &w);
3544                         break;
3545                 }
3546                         
3547         }
3548         spin_lock_irq(&conf->device_lock);
3549         remaining = raid5_dec_bi_phys_segments(bi);
3550         spin_unlock_irq(&conf->device_lock);
3551         if (remaining == 0) {
3552
3553                 if ( rw == WRITE )
3554                         md_write_end(mddev);
3555
3556                 bio_endio(bi, 0);
3557         }
3558         return 0;
3559 }
3560
3561 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3562 {
3563         /* reshaping is quite different to recovery/resync so it is
3564          * handled quite separately ... here.
3565          *
3566          * On each call to sync_request, we gather one chunk worth of
3567          * destination stripes and flag them as expanding.
3568          * Then we find all the source stripes and request reads.
3569          * As the reads complete, handle_stripe will copy the data
3570          * into the destination stripe and release that stripe.
3571          */
3572         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3573         struct stripe_head *sh;
3574         sector_t first_sector, last_sector;
3575         int raid_disks = conf->previous_raid_disks;
3576         int data_disks = raid_disks - conf->max_degraded;
3577         int new_data_disks = conf->raid_disks - conf->max_degraded;
3578         int i;
3579         int dd_idx;
3580         sector_t writepos, safepos, gap;
3581
3582         if (sector_nr == 0 &&
3583             conf->expand_progress != 0) {
3584                 /* restarting in the middle, skip the initial sectors */
3585                 sector_nr = conf->expand_progress;
3586                 sector_div(sector_nr, new_data_disks);
3587                 *skipped = 1;
3588                 return sector_nr;
3589         }
3590
3591         /* we update the metadata when there is more than 3Meg
3592          * in the block range (that is rather arbitrary, should
3593          * probably be time based) or when the data about to be
3594          * copied would over-write the source of the data at
3595          * the front of the range.
3596          * i.e. one new_stripe forward from expand_progress new_maps
3597          * to after where expand_lo old_maps to
3598          */
3599         writepos = conf->expand_progress +
3600                 conf->chunk_size/512*(new_data_disks);
3601         sector_div(writepos, new_data_disks);
3602         safepos = conf->expand_lo;
3603         sector_div(safepos, data_disks);
3604         gap = conf->expand_progress - conf->expand_lo;
3605
3606         if (writepos >= safepos ||
3607             gap > (new_data_disks)*3000*2 /*3Meg*/) {
3608                 /* Cannot proceed until we've updated the superblock... */
3609                 wait_event(conf->wait_for_overlap,
3610                            atomic_read(&conf->reshape_stripes)==0);
3611                 mddev->reshape_position = conf->expand_progress;
3612                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3613                 md_wakeup_thread(mddev->thread);
3614                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3615                            kthread_should_stop());
3616                 spin_lock_irq(&conf->device_lock);
3617                 conf->expand_lo = mddev->reshape_position;
3618                 spin_unlock_irq(&conf->device_lock);
3619                 wake_up(&conf->wait_for_overlap);
3620         }
3621
3622         for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3623                 int j;
3624                 int skipped = 0;
3625                 sh = get_active_stripe(conf, sector_nr+i, 0, 0);
3626                 set_bit(STRIPE_EXPANDING, &sh->state);
3627                 atomic_inc(&conf->reshape_stripes);
3628                 /* If any of this stripe is beyond the end of the old
3629                  * array, then we need to zero those blocks
3630                  */
3631                 for (j=sh->disks; j--;) {
3632                         sector_t s;
3633                         if (j == sh->pd_idx)
3634                                 continue;
3635                         if (conf->level == 6 &&
3636                             j == sh->qd_idx)
3637                                 continue;
3638                         s = compute_blocknr(sh, j);
3639                         if (s < mddev->array_sectors) {
3640                                 skipped = 1;
3641                                 continue;
3642                         }
3643                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3644                         set_bit(R5_Expanded, &sh->dev[j].flags);
3645                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3646                 }
3647                 if (!skipped) {
3648                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3649                         set_bit(STRIPE_HANDLE, &sh->state);
3650                 }
3651                 release_stripe(sh);
3652         }
3653         spin_lock_irq(&conf->device_lock);
3654         conf->expand_progress = (sector_nr + i) * new_data_disks;
3655         spin_unlock_irq(&conf->device_lock);
3656         /* Ok, those stripe are ready. We can start scheduling
3657          * reads on the source stripes.
3658          * The source stripes are determined by mapping the first and last
3659          * block on the destination stripes.
3660          */
3661         first_sector =
3662                 raid5_compute_sector(conf, sector_nr*(new_data_disks),
3663                                      1, &dd_idx, NULL);
3664         last_sector =
3665                 raid5_compute_sector(conf, ((sector_nr+conf->chunk_size/512)
3666                                             *(new_data_disks) - 1),
3667                                      1, &dd_idx, NULL);
3668         if (last_sector >= mddev->dev_sectors)
3669                 last_sector = mddev->dev_sectors - 1;
3670         while (first_sector <= last_sector) {
3671                 sh = get_active_stripe(conf, first_sector, 1, 0);
3672                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3673                 set_bit(STRIPE_HANDLE, &sh->state);
3674                 release_stripe(sh);
3675                 first_sector += STRIPE_SECTORS;
3676         }
3677         /* If this takes us to the resync_max point where we have to pause,
3678          * then we need to write out the superblock.
3679          */
3680         sector_nr += conf->chunk_size>>9;
3681         if (sector_nr >= mddev->resync_max) {
3682                 /* Cannot proceed until we've updated the superblock... */
3683                 wait_event(conf->wait_for_overlap,
3684                            atomic_read(&conf->reshape_stripes) == 0);
3685                 mddev->reshape_position = conf->expand_progress;
3686                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3687                 md_wakeup_thread(mddev->thread);
3688                 wait_event(mddev->sb_wait,
3689                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3690                            || kthread_should_stop());
3691                 spin_lock_irq(&conf->device_lock);
3692                 conf->expand_lo = mddev->reshape_position;
3693                 spin_unlock_irq(&conf->device_lock);
3694                 wake_up(&conf->wait_for_overlap);
3695         }
3696         return conf->chunk_size>>9;
3697 }
3698
3699 /* FIXME go_faster isn't used */
3700 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3701 {
3702         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3703         struct stripe_head *sh;
3704         sector_t max_sector = mddev->dev_sectors;
3705         int sync_blocks;
3706         int still_degraded = 0;
3707         int i;
3708
3709         if (sector_nr >= max_sector) {
3710                 /* just being told to finish up .. nothing much to do */
3711                 unplug_slaves(mddev);
3712                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3713                         end_reshape(conf);
3714                         return 0;
3715                 }
3716
3717                 if (mddev->curr_resync < max_sector) /* aborted */
3718                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3719                                         &sync_blocks, 1);
3720                 else /* completed sync */
3721                         conf->fullsync = 0;
3722                 bitmap_close_sync(mddev->bitmap);
3723
3724                 return 0;
3725         }
3726
3727         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3728                 return reshape_request(mddev, sector_nr, skipped);
3729
3730         /* No need to check resync_max as we never do more than one
3731          * stripe, and as resync_max will always be on a chunk boundary,
3732          * if the check in md_do_sync didn't fire, there is no chance
3733          * of overstepping resync_max here
3734          */
3735
3736         /* if there is too many failed drives and we are trying
3737          * to resync, then assert that we are finished, because there is
3738          * nothing we can do.
3739          */
3740         if (mddev->degraded >= conf->max_degraded &&
3741             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3742                 sector_t rv = mddev->dev_sectors - sector_nr;
3743                 *skipped = 1;
3744                 return rv;
3745         }
3746         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3747             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3748             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3749                 /* we can skip this block, and probably more */
3750                 sync_blocks /= STRIPE_SECTORS;
3751                 *skipped = 1;
3752                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3753         }
3754
3755
3756         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3757
3758         sh = get_active_stripe(conf, sector_nr, 0, 1);
3759         if (sh == NULL) {
3760                 sh = get_active_stripe(conf, sector_nr, 0, 0);
3761                 /* make sure we don't swamp the stripe cache if someone else
3762                  * is trying to get access
3763                  */
3764                 schedule_timeout_uninterruptible(1);
3765         }
3766         /* Need to check if array will still be degraded after recovery/resync
3767          * We don't need to check the 'failed' flag as when that gets set,
3768          * recovery aborts.
3769          */
3770         for (i=0; i<mddev->raid_disks; i++)
3771                 if (conf->disks[i].rdev == NULL)
3772                         still_degraded = 1;
3773
3774         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3775
3776         spin_lock(&sh->lock);
3777         set_bit(STRIPE_SYNCING, &sh->state);
3778         clear_bit(STRIPE_INSYNC, &sh->state);
3779         spin_unlock(&sh->lock);
3780
3781         /* wait for any blocked device to be handled */
3782         while(unlikely(!handle_stripe(sh, NULL)))
3783                 ;
3784         release_stripe(sh);
3785
3786         return STRIPE_SECTORS;
3787 }
3788
3789 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3790 {
3791         /* We may not be able to submit a whole bio at once as there
3792          * may not be enough stripe_heads available.
3793          * We cannot pre-allocate enough stripe_heads as we may need
3794          * more than exist in the cache (if we allow ever large chunks).
3795          * So we do one stripe head at a time and record in
3796          * ->bi_hw_segments how many have been done.
3797          *
3798          * We *know* that this entire raid_bio is in one chunk, so
3799          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3800          */
3801         struct stripe_head *sh;
3802         int dd_idx;
3803         sector_t sector, logical_sector, last_sector;
3804         int scnt = 0;
3805         int remaining;
3806         int handled = 0;
3807
3808         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3809         sector = raid5_compute_sector(conf, logical_sector,
3810                                       0, &dd_idx, NULL);
3811         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3812
3813         for (; logical_sector < last_sector;
3814              logical_sector += STRIPE_SECTORS,
3815                      sector += STRIPE_SECTORS,
3816                      scnt++) {
3817
3818                 if (scnt < raid5_bi_hw_segments(raid_bio))
3819                         /* already done this stripe */
3820                         continue;
3821
3822                 sh = get_active_stripe(conf, sector, 0, 1);
3823
3824                 if (!sh) {
3825                         /* failed to get a stripe - must wait */
3826                         raid5_set_bi_hw_segments(raid_bio, scnt);
3827                         conf->retry_read_aligned = raid_bio;
3828                         return handled;
3829                 }
3830
3831                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3832                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3833                         release_stripe(sh);
3834                         raid5_set_bi_hw_segments(raid_bio, scnt);
3835                         conf->retry_read_aligned = raid_bio;
3836                         return handled;
3837                 }
3838
3839                 handle_stripe(sh, NULL);
3840                 release_stripe(sh);
3841                 handled++;
3842         }
3843         spin_lock_irq(&conf->device_lock);
3844         remaining = raid5_dec_bi_phys_segments(raid_bio);
3845         spin_unlock_irq(&conf->device_lock);
3846         if (remaining == 0)
3847                 bio_endio(raid_bio, 0);
3848         if (atomic_dec_and_test(&conf->active_aligned_reads))
3849                 wake_up(&conf->wait_for_stripe);
3850         return handled;
3851 }
3852
3853
3854
3855 /*
3856  * This is our raid5 kernel thread.
3857  *
3858  * We scan the hash table for stripes which can be handled now.
3859  * During the scan, completed stripes are saved for us by the interrupt
3860  * handler, so that they will not have to wait for our next wakeup.
3861  */
3862 static void raid5d(mddev_t *mddev)
3863 {
3864         struct stripe_head *sh;
3865         raid5_conf_t *conf = mddev_to_conf(mddev);
3866         int handled;
3867
3868         pr_debug("+++ raid5d active\n");
3869
3870         md_check_recovery(mddev);
3871
3872         handled = 0;
3873         spin_lock_irq(&conf->device_lock);
3874         while (1) {
3875                 struct bio *bio;
3876
3877                 if (conf->seq_flush != conf->seq_write) {
3878                         int seq = conf->seq_flush;
3879                         spin_unlock_irq(&conf->device_lock);
3880                         bitmap_unplug(mddev->bitmap);
3881                         spin_lock_irq(&conf->device_lock);
3882                         conf->seq_write = seq;
3883                         activate_bit_delay(conf);
3884                 }
3885
3886                 while ((bio = remove_bio_from_retry(conf))) {
3887                         int ok;
3888                         spin_unlock_irq(&conf->device_lock);
3889                         ok = retry_aligned_read(conf, bio);
3890                         spin_lock_irq(&conf->device_lock);
3891                         if (!ok)
3892                                 break;
3893                         handled++;
3894                 }
3895
3896                 sh = __get_priority_stripe(conf);
3897
3898                 if (!sh)
3899                         break;
3900                 spin_unlock_irq(&conf->device_lock);
3901                 
3902                 handled++;
3903                 handle_stripe(sh, conf->spare_page);
3904                 release_stripe(sh);
3905
3906                 spin_lock_irq(&conf->device_lock);
3907         }
3908         pr_debug("%d stripes handled\n", handled);
3909
3910         spin_unlock_irq(&conf->device_lock);
3911
3912         async_tx_issue_pending_all();
3913         unplug_slaves(mddev);
3914
3915         pr_debug("--- raid5d inactive\n");
3916 }
3917
3918 static ssize_t
3919 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3920 {
3921         raid5_conf_t *conf = mddev_to_conf(mddev);
3922         if (conf)
3923                 return sprintf(page, "%d\n", conf->max_nr_stripes);
3924         else
3925                 return 0;
3926 }
3927
3928 static ssize_t
3929 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3930 {
3931         raid5_conf_t *conf = mddev_to_conf(mddev);
3932         unsigned long new;
3933         int err;
3934
3935         if (len >= PAGE_SIZE)
3936                 return -EINVAL;
3937         if (!conf)
3938                 return -ENODEV;
3939
3940         if (strict_strtoul(page, 10, &new))
3941                 return -EINVAL;
3942         if (new <= 16 || new > 32768)
3943                 return -EINVAL;
3944         while (new < conf->max_nr_stripes) {
3945                 if (drop_one_stripe(conf))
3946                         conf->max_nr_stripes--;
3947                 else
3948                         break;
3949         }
3950         err = md_allow_write(mddev);
3951         if (err)
3952                 return err;
3953         while (new > conf->max_nr_stripes) {
3954                 if (grow_one_stripe(conf))
3955                         conf->max_nr_stripes++;
3956                 else break;
3957         }
3958         return len;
3959 }
3960
3961 static struct md_sysfs_entry
3962 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3963                                 raid5_show_stripe_cache_size,
3964                                 raid5_store_stripe_cache_size);
3965
3966 static ssize_t
3967 raid5_show_preread_threshold(mddev_t *mddev, char *page)
3968 {
3969         raid5_conf_t *conf = mddev_to_conf(mddev);
3970         if (conf)
3971                 return sprintf(page, "%d\n", conf->bypass_threshold);
3972         else
3973                 return 0;
3974 }
3975
3976 static ssize_t
3977 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
3978 {
3979         raid5_conf_t *conf = mddev_to_conf(mddev);
3980         unsigned long new;
3981         if (len >= PAGE_SIZE)
3982                 return -EINVAL;
3983         if (!conf)
3984                 return -ENODEV;
3985
3986         if (strict_strtoul(page, 10, &new))
3987                 return -EINVAL;
3988         if (new > conf->max_nr_stripes)
3989                 return -EINVAL;
3990         conf->bypass_threshold = new;
3991         return len;
3992 }
3993
3994 static struct md_sysfs_entry
3995 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
3996                                         S_IRUGO | S_IWUSR,
3997                                         raid5_show_preread_threshold,
3998                                         raid5_store_preread_threshold);
3999
4000 static ssize_t
4001 stripe_cache_active_show(mddev_t *mddev, char *page)
4002 {
4003         raid5_conf_t *conf = mddev_to_conf(mddev);
4004         if (conf)
4005                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4006         else
4007                 return 0;
4008 }
4009
4010 static struct md_sysfs_entry
4011 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4012
4013 static struct attribute *raid5_attrs[] =  {
4014         &raid5_stripecache_size.attr,
4015         &raid5_stripecache_active.attr,
4016         &raid5_preread_bypass_threshold.attr,
4017         NULL,
4018 };
4019 static struct attribute_group raid5_attrs_group = {
4020         .name = NULL,
4021         .attrs = raid5_attrs,
4022 };
4023
4024 static int run(mddev_t *mddev)
4025 {
4026         raid5_conf_t *conf;
4027         int raid_disk, memory;
4028         mdk_rdev_t *rdev;
4029         struct disk_info *disk;
4030         int working_disks = 0;
4031
4032         if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4033                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4034                        mdname(mddev), mddev->level);
4035                 return -EIO;
4036         }
4037
4038         if (mddev->chunk_size < PAGE_SIZE) {
4039                 printk(KERN_ERR "md/raid5: chunk_size must be at least "
4040                        "PAGE_SIZE but %d < %ld\n",
4041                        mddev->chunk_size, PAGE_SIZE);
4042                 return -EINVAL;
4043         }
4044
4045         if (mddev->reshape_position != MaxSector) {
4046                 /* Check that we can continue the reshape.
4047                  * Currently only disks can change, it must
4048                  * increase, and we must be past the point where
4049                  * a stripe over-writes itself
4050                  */
4051                 sector_t here_new, here_old;
4052                 int old_disks;
4053                 int max_degraded = (mddev->level == 5 ? 1 : 2);
4054
4055                 if (mddev->new_level != mddev->level ||
4056                     mddev->new_layout != mddev->layout ||
4057                     mddev->new_chunk != mddev->chunk_size) {
4058                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4059                                "required - aborting.\n",
4060                                mdname(mddev));
4061                         return -EINVAL;
4062                 }
4063                 if (mddev->delta_disks <= 0) {
4064                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4065                                "(reduce disks) required - aborting.\n",
4066                                mdname(mddev));
4067                         return -EINVAL;
4068                 }
4069                 old_disks = mddev->raid_disks - mddev->delta_disks;
4070                 /* reshape_position must be on a new-stripe boundary, and one
4071                  * further up in new geometry must map after here in old
4072                  * geometry.
4073                  */
4074                 here_new = mddev->reshape_position;
4075                 if (sector_div(here_new, (mddev->chunk_size>>9)*
4076                                (mddev->raid_disks - max_degraded))) {
4077                         printk(KERN_ERR "raid5: reshape_position not "
4078                                "on a stripe boundary\n");
4079                         return -EINVAL;
4080                 }
4081                 /* here_new is the stripe we will write to */
4082                 here_old = mddev->reshape_position;
4083                 sector_div(here_old, (mddev->chunk_size>>9)*
4084                            (old_disks-max_degraded));
4085                 /* here_old is the first stripe that we might need to read
4086                  * from */
4087                 if (here_new >= here_old) {
4088                         /* Reading from the same stripe as writing to - bad */
4089                         printk(KERN_ERR "raid5: reshape_position too early for "
4090                                "auto-recovery - aborting.\n");
4091                         return -EINVAL;
4092                 }
4093                 printk(KERN_INFO "raid5: reshape will continue\n");
4094                 /* OK, we should be able to continue; */
4095         }
4096
4097
4098         mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4099         if ((conf = mddev->private) == NULL)
4100                 goto abort;
4101         if (mddev->reshape_position == MaxSector) {
4102                 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4103         } else {
4104                 conf->raid_disks = mddev->raid_disks;
4105                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4106         }
4107
4108         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4109                               GFP_KERNEL);
4110         if (!conf->disks)
4111                 goto abort;
4112
4113         conf->mddev = mddev;
4114
4115         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4116                 goto abort;
4117
4118         if (mddev->level == 6) {
4119                 conf->spare_page = alloc_page(GFP_KERNEL);
4120                 if (!conf->spare_page)
4121                         goto abort;
4122         }
4123         spin_lock_init(&conf->device_lock);
4124         mddev->queue->queue_lock = &conf->device_lock;
4125         init_waitqueue_head(&conf->wait_for_stripe);
4126         init_waitqueue_head(&conf->wait_for_overlap);
4127         INIT_LIST_HEAD(&conf->handle_list);
4128         INIT_LIST_HEAD(&conf->hold_list);
4129         INIT_LIST_HEAD(&conf->delayed_list);
4130         INIT_LIST_HEAD(&conf->bitmap_list);
4131         INIT_LIST_HEAD(&conf->inactive_list);
4132         atomic_set(&conf->active_stripes, 0);
4133         atomic_set(&conf->preread_active_stripes, 0);
4134         atomic_set(&conf->active_aligned_reads, 0);
4135         conf->bypass_threshold = BYPASS_THRESHOLD;
4136
4137         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4138
4139         list_for_each_entry(rdev, &mddev->disks, same_set) {
4140                 raid_disk = rdev->raid_disk;
4141                 if (raid_disk >= conf->raid_disks
4142                     || raid_disk < 0)
4143                         continue;
4144                 disk = conf->disks + raid_disk;
4145
4146                 disk->rdev = rdev;
4147
4148                 if (test_bit(In_sync, &rdev->flags)) {
4149                         char b[BDEVNAME_SIZE];
4150                         printk(KERN_INFO "raid5: device %s operational as raid"
4151                                 " disk %d\n", bdevname(rdev->bdev,b),
4152                                 raid_disk);
4153                         working_disks++;
4154                 } else
4155                         /* Cannot rely on bitmap to complete recovery */
4156                         conf->fullsync = 1;
4157         }
4158
4159         /*
4160          * 0 for a fully functional array, 1 or 2 for a degraded array.
4161          */
4162         mddev->degraded = conf->raid_disks - working_disks;
4163         conf->mddev = mddev;
4164         conf->chunk_size = mddev->chunk_size;
4165         conf->level = mddev->level;
4166         if (conf->level == 6)
4167                 conf->max_degraded = 2;
4168         else
4169                 conf->max_degraded = 1;
4170         conf->algorithm = mddev->layout;
4171         conf->max_nr_stripes = NR_STRIPES;
4172         conf->expand_progress = mddev->reshape_position;
4173
4174         /* device size must be a multiple of chunk size */
4175         mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
4176         mddev->resync_max_sectors = mddev->dev_sectors;
4177
4178         if (conf->level == 6 && conf->raid_disks < 4) {
4179                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4180                        mdname(mddev), conf->raid_disks);
4181                 goto abort;
4182         }
4183         if (!conf->chunk_size || conf->chunk_size % 4) {
4184                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4185                         conf->chunk_size, mdname(mddev));
4186                 goto abort;
4187         }
4188         if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4189                 printk(KERN_ERR 
4190                         "raid5: unsupported parity algorithm %d for %s\n",
4191                         conf->algorithm, mdname(mddev));
4192                 goto abort;
4193         }
4194         if (mddev->degraded > conf->max_degraded) {
4195                 printk(KERN_ERR "raid5: not enough operational devices for %s"
4196                         " (%d/%d failed)\n",
4197                         mdname(mddev), mddev->degraded, conf->raid_disks);
4198                 goto abort;
4199         }
4200
4201         if (mddev->degraded > 0 &&
4202             mddev->recovery_cp != MaxSector) {
4203                 if (mddev->ok_start_degraded)
4204                         printk(KERN_WARNING
4205                                "raid5: starting dirty degraded array: %s"
4206                                "- data corruption possible.\n",
4207                                mdname(mddev));
4208                 else {
4209                         printk(KERN_ERR
4210                                "raid5: cannot start dirty degraded array for %s\n",
4211                                mdname(mddev));
4212                         goto abort;
4213                 }
4214         }
4215
4216         {
4217                 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4218                 if (!mddev->thread) {
4219                         printk(KERN_ERR 
4220                                 "raid5: couldn't allocate thread for %s\n",
4221                                 mdname(mddev));
4222                         goto abort;
4223                 }
4224         }
4225         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4226                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4227         if (grow_stripes(conf, conf->max_nr_stripes)) {
4228                 printk(KERN_ERR 
4229                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4230                 shrink_stripes(conf);
4231                 md_unregister_thread(mddev->thread);
4232                 goto abort;
4233         } else
4234                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4235                         memory, mdname(mddev));
4236
4237         if (mddev->degraded == 0)
4238                 printk("raid5: raid level %d set %s active with %d out of %d"
4239                         " devices, algorithm %d\n", conf->level, mdname(mddev), 
4240                         mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4241                         conf->algorithm);
4242         else
4243                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4244                         " out of %d devices, algorithm %d\n", conf->level,
4245                         mdname(mddev), mddev->raid_disks - mddev->degraded,
4246                         mddev->raid_disks, conf->algorithm);
4247
4248         print_raid5_conf(conf);
4249
4250         if (conf->expand_progress != MaxSector) {
4251                 printk("...ok start reshape thread\n");
4252                 conf->expand_lo = conf->expand_progress;
4253                 atomic_set(&conf->reshape_stripes, 0);
4254                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4255                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4256                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4257                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4258                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4259                                                         "%s_reshape");
4260         }
4261
4262         /* read-ahead size must cover two whole stripes, which is
4263          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4264          */
4265         {
4266                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4267                 int stripe = data_disks *
4268                         (mddev->chunk_size / PAGE_SIZE);
4269                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4270                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4271         }
4272
4273         /* Ok, everything is just fine now */
4274         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4275                 printk(KERN_WARNING
4276                        "raid5: failed to create sysfs attributes for %s\n",
4277                        mdname(mddev));
4278
4279         mddev->queue->unplug_fn = raid5_unplug_device;
4280         mddev->queue->backing_dev_info.congested_data = mddev;
4281         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4282
4283         mddev->array_sectors = mddev->dev_sectors *
4284                 (conf->previous_raid_disks - conf->max_degraded);
4285
4286         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4287
4288         return 0;
4289 abort:
4290         if (conf) {
4291                 print_raid5_conf(conf);
4292                 safe_put_page(conf->spare_page);
4293                 kfree(conf->disks);
4294                 kfree(conf->stripe_hashtbl);
4295                 kfree(conf);
4296         }
4297         mddev->private = NULL;
4298         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4299         return -EIO;
4300 }
4301
4302
4303
4304 static int stop(mddev_t *mddev)
4305 {
4306         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4307
4308         md_unregister_thread(mddev->thread);
4309         mddev->thread = NULL;
4310         shrink_stripes(conf);
4311         kfree(conf->stripe_hashtbl);
4312         mddev->queue->backing_dev_info.congested_fn = NULL;
4313         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4314         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4315         kfree(conf->disks);
4316         kfree(conf);
4317         mddev->private = NULL;
4318         return 0;
4319 }
4320
4321 #ifdef DEBUG
4322 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4323 {
4324         int i;
4325
4326         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4327                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4328         seq_printf(seq, "sh %llu,  count %d.\n",
4329                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4330         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4331         for (i = 0; i < sh->disks; i++) {
4332                 seq_printf(seq, "(cache%d: %p %ld) ",
4333                            i, sh->dev[i].page, sh->dev[i].flags);
4334         }
4335         seq_printf(seq, "\n");
4336 }
4337
4338 static void printall(struct seq_file *seq, raid5_conf_t *conf)
4339 {
4340         struct stripe_head *sh;
4341         struct hlist_node *hn;
4342         int i;
4343
4344         spin_lock_irq(&conf->device_lock);
4345         for (i = 0; i < NR_HASH; i++) {
4346                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4347                         if (sh->raid_conf != conf)
4348                                 continue;
4349                         print_sh(seq, sh);
4350                 }
4351         }
4352         spin_unlock_irq(&conf->device_lock);
4353 }
4354 #endif
4355
4356 static void status(struct seq_file *seq, mddev_t *mddev)
4357 {
4358         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4359         int i;
4360
4361         seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4362         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4363         for (i = 0; i < conf->raid_disks; i++)
4364                 seq_printf (seq, "%s",
4365                                conf->disks[i].rdev &&
4366                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4367         seq_printf (seq, "]");
4368 #ifdef DEBUG
4369         seq_printf (seq, "\n");
4370         printall(seq, conf);
4371 #endif
4372 }
4373
4374 static void print_raid5_conf (raid5_conf_t *conf)
4375 {
4376         int i;
4377         struct disk_info *tmp;
4378
4379         printk("RAID5 conf printout:\n");
4380         if (!conf) {
4381                 printk("(conf==NULL)\n");
4382                 return;
4383         }
4384         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4385                  conf->raid_disks - conf->mddev->degraded);
4386
4387         for (i = 0; i < conf->raid_disks; i++) {
4388                 char b[BDEVNAME_SIZE];
4389                 tmp = conf->disks + i;
4390                 if (tmp->rdev)
4391                 printk(" disk %d, o:%d, dev:%s\n",
4392                         i, !test_bit(Faulty, &tmp->rdev->flags),
4393                         bdevname(tmp->rdev->bdev,b));
4394         }
4395 }
4396
4397 static int raid5_spare_active(mddev_t *mddev)
4398 {
4399         int i;
4400         raid5_conf_t *conf = mddev->private;
4401         struct disk_info *tmp;
4402
4403         for (i = 0; i < conf->raid_disks; i++) {
4404                 tmp = conf->disks + i;
4405                 if (tmp->rdev
4406                     && !test_bit(Faulty, &tmp->rdev->flags)
4407                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4408                         unsigned long flags;
4409                         spin_lock_irqsave(&conf->device_lock, flags);
4410                         mddev->degraded--;
4411                         spin_unlock_irqrestore(&conf->device_lock, flags);
4412                 }
4413         }
4414         print_raid5_conf(conf);
4415         return 0;
4416 }
4417
4418 static int raid5_remove_disk(mddev_t *mddev, int number)
4419 {
4420         raid5_conf_t *conf = mddev->private;
4421         int err = 0;
4422         mdk_rdev_t *rdev;
4423         struct disk_info *p = conf->disks + number;
4424
4425         print_raid5_conf(conf);
4426         rdev = p->rdev;
4427         if (rdev) {
4428                 if (test_bit(In_sync, &rdev->flags) ||
4429                     atomic_read(&rdev->nr_pending)) {
4430                         err = -EBUSY;
4431                         goto abort;
4432                 }
4433                 /* Only remove non-faulty devices if recovery
4434                  * isn't possible.
4435                  */
4436                 if (!test_bit(Faulty, &rdev->flags) &&
4437                     mddev->degraded <= conf->max_degraded) {
4438                         err = -EBUSY;
4439                         goto abort;
4440                 }
4441                 p->rdev = NULL;
4442                 synchronize_rcu();
4443                 if (atomic_read(&rdev->nr_pending)) {
4444                         /* lost the race, try later */
4445                         err = -EBUSY;
4446                         p->rdev = rdev;
4447                 }
4448         }
4449 abort:
4450
4451         print_raid5_conf(conf);
4452         return err;
4453 }
4454
4455 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4456 {
4457         raid5_conf_t *conf = mddev->private;
4458         int err = -EEXIST;
4459         int disk;
4460         struct disk_info *p;
4461         int first = 0;
4462         int last = conf->raid_disks - 1;
4463
4464         if (mddev->degraded > conf->max_degraded)
4465                 /* no point adding a device */
4466                 return -EINVAL;
4467
4468         if (rdev->raid_disk >= 0)
4469                 first = last = rdev->raid_disk;
4470
4471         /*
4472          * find the disk ... but prefer rdev->saved_raid_disk
4473          * if possible.
4474          */
4475         if (rdev->saved_raid_disk >= 0 &&
4476             rdev->saved_raid_disk >= first &&
4477             conf->disks[rdev->saved_raid_disk].rdev == NULL)
4478                 disk = rdev->saved_raid_disk;
4479         else
4480                 disk = first;
4481         for ( ; disk <= last ; disk++)
4482                 if ((p=conf->disks + disk)->rdev == NULL) {
4483                         clear_bit(In_sync, &rdev->flags);
4484                         rdev->raid_disk = disk;
4485                         err = 0;
4486                         if (rdev->saved_raid_disk != disk)
4487                                 conf->fullsync = 1;
4488                         rcu_assign_pointer(p->rdev, rdev);
4489                         break;
4490                 }
4491         print_raid5_conf(conf);
4492         return err;
4493 }
4494
4495 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4496 {
4497         /* no resync is happening, and there is enough space
4498          * on all devices, so we can resize.
4499          * We need to make sure resync covers any new space.
4500          * If the array is shrinking we should possibly wait until
4501          * any io in the removed space completes, but it hardly seems
4502          * worth it.
4503          */
4504         raid5_conf_t *conf = mddev_to_conf(mddev);
4505
4506         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4507         mddev->array_sectors = sectors * (mddev->raid_disks
4508                                           - conf->max_degraded);
4509         set_capacity(mddev->gendisk, mddev->array_sectors);
4510         mddev->changed = 1;
4511         if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
4512                 mddev->recovery_cp = mddev->dev_sectors;
4513                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4514         }
4515         mddev->dev_sectors = sectors;
4516         mddev->resync_max_sectors = sectors;
4517         return 0;
4518 }
4519
4520 #ifdef CONFIG_MD_RAID5_RESHAPE
4521 static int raid5_check_reshape(mddev_t *mddev)
4522 {
4523         raid5_conf_t *conf = mddev_to_conf(mddev);
4524         int err;
4525
4526         if (mddev->delta_disks < 0 ||
4527             mddev->new_level != mddev->level)
4528                 return -EINVAL; /* Cannot shrink array or change level yet */
4529         if (mddev->delta_disks == 0)
4530                 return 0; /* nothing to do */
4531         if (mddev->bitmap)
4532                 /* Cannot grow a bitmap yet */
4533                 return -EBUSY;
4534
4535         /* Can only proceed if there are plenty of stripe_heads.
4536          * We need a minimum of one full stripe,, and for sensible progress
4537          * it is best to have about 4 times that.
4538          * If we require 4 times, then the default 256 4K stripe_heads will
4539          * allow for chunk sizes up to 256K, which is probably OK.
4540          * If the chunk size is greater, user-space should request more
4541          * stripe_heads first.
4542          */
4543         if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4544             (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4545                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4546                        (mddev->chunk_size / STRIPE_SIZE)*4);
4547                 return -ENOSPC;
4548         }
4549
4550         err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4551         if (err)
4552                 return err;
4553
4554         if (mddev->degraded > conf->max_degraded)
4555                 return -EINVAL;
4556         /* looks like we might be able to manage this */
4557         return 0;
4558 }
4559
4560 static int raid5_start_reshape(mddev_t *mddev)
4561 {
4562         raid5_conf_t *conf = mddev_to_conf(mddev);
4563         mdk_rdev_t *rdev;
4564         int spares = 0;
4565         int added_devices = 0;
4566         unsigned long flags;
4567
4568         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4569                 return -EBUSY;
4570
4571         list_for_each_entry(rdev, &mddev->disks, same_set)
4572                 if (rdev->raid_disk < 0 &&
4573                     !test_bit(Faulty, &rdev->flags))
4574                         spares++;
4575
4576         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4577                 /* Not enough devices even to make a degraded array
4578                  * of that size
4579                  */
4580                 return -EINVAL;
4581
4582         atomic_set(&conf->reshape_stripes, 0);
4583         spin_lock_irq(&conf->device_lock);
4584         conf->previous_raid_disks = conf->raid_disks;
4585         conf->raid_disks += mddev->delta_disks;
4586         conf->expand_progress = 0;
4587         conf->expand_lo = 0;
4588         spin_unlock_irq(&conf->device_lock);
4589
4590         /* Add some new drives, as many as will fit.
4591          * We know there are enough to make the newly sized array work.
4592          */
4593         list_for_each_entry(rdev, &mddev->disks, same_set)
4594                 if (rdev->raid_disk < 0 &&
4595                     !test_bit(Faulty, &rdev->flags)) {
4596                         if (raid5_add_disk(mddev, rdev) == 0) {
4597                                 char nm[20];
4598                                 set_bit(In_sync, &rdev->flags);
4599                                 added_devices++;
4600                                 rdev->recovery_offset = 0;
4601                                 sprintf(nm, "rd%d", rdev->raid_disk);
4602                                 if (sysfs_create_link(&mddev->kobj,
4603                                                       &rdev->kobj, nm))
4604                                         printk(KERN_WARNING
4605                                                "raid5: failed to create "
4606                                                " link %s for %s\n",
4607                                                nm, mdname(mddev));
4608                         } else
4609                                 break;
4610                 }
4611
4612         spin_lock_irqsave(&conf->device_lock, flags);
4613         mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4614         spin_unlock_irqrestore(&conf->device_lock, flags);
4615         mddev->raid_disks = conf->raid_disks;
4616         mddev->reshape_position = 0;
4617         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4618
4619         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4620         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4621         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4622         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4623         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4624                                                 "%s_reshape");
4625         if (!mddev->sync_thread) {
4626                 mddev->recovery = 0;
4627                 spin_lock_irq(&conf->device_lock);
4628                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4629                 conf->expand_progress = MaxSector;
4630                 spin_unlock_irq(&conf->device_lock);
4631                 return -EAGAIN;
4632         }
4633         md_wakeup_thread(mddev->sync_thread);
4634         md_new_event(mddev);
4635         return 0;
4636 }
4637 #endif
4638
4639 static void end_reshape(raid5_conf_t *conf)
4640 {
4641         struct block_device *bdev;
4642
4643         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4644                 conf->mddev->array_sectors = conf->mddev->dev_sectors *
4645                         (conf->raid_disks - conf->max_degraded);
4646                 set_capacity(conf->mddev->gendisk, conf->mddev->array_sectors);
4647                 conf->mddev->changed = 1;
4648
4649                 bdev = bdget_disk(conf->mddev->gendisk, 0);
4650                 if (bdev) {
4651                         mutex_lock(&bdev->bd_inode->i_mutex);
4652                         i_size_write(bdev->bd_inode,
4653                                      (loff_t)conf->mddev->array_sectors << 9);
4654                         mutex_unlock(&bdev->bd_inode->i_mutex);
4655                         bdput(bdev);
4656                 }
4657                 spin_lock_irq(&conf->device_lock);
4658                 conf->expand_progress = MaxSector;
4659                 spin_unlock_irq(&conf->device_lock);
4660                 conf->mddev->reshape_position = MaxSector;
4661
4662                 /* read-ahead size must cover two whole stripes, which is
4663                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4664                  */
4665                 {
4666                         int data_disks = conf->previous_raid_disks - conf->max_degraded;
4667                         int stripe = data_disks *
4668                                 (conf->mddev->chunk_size / PAGE_SIZE);
4669                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4670                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4671                 }
4672         }
4673 }
4674
4675 static void raid5_quiesce(mddev_t *mddev, int state)
4676 {
4677         raid5_conf_t *conf = mddev_to_conf(mddev);
4678
4679         switch(state) {
4680         case 2: /* resume for a suspend */
4681                 wake_up(&conf->wait_for_overlap);
4682                 break;
4683
4684         case 1: /* stop all writes */
4685                 spin_lock_irq(&conf->device_lock);
4686                 conf->quiesce = 1;
4687                 wait_event_lock_irq(conf->wait_for_stripe,
4688                                     atomic_read(&conf->active_stripes) == 0 &&
4689                                     atomic_read(&conf->active_aligned_reads) == 0,
4690                                     conf->device_lock, /* nothing */);
4691                 spin_unlock_irq(&conf->device_lock);
4692                 break;
4693
4694         case 0: /* re-enable writes */
4695                 spin_lock_irq(&conf->device_lock);
4696                 conf->quiesce = 0;
4697                 wake_up(&conf->wait_for_stripe);
4698                 wake_up(&conf->wait_for_overlap);
4699                 spin_unlock_irq(&conf->device_lock);
4700                 break;
4701         }
4702 }
4703
4704 static struct mdk_personality raid6_personality =
4705 {
4706         .name           = "raid6",
4707         .level          = 6,
4708         .owner          = THIS_MODULE,
4709         .make_request   = make_request,
4710         .run            = run,
4711         .stop           = stop,
4712         .status         = status,
4713         .error_handler  = error,
4714         .hot_add_disk   = raid5_add_disk,
4715         .hot_remove_disk= raid5_remove_disk,
4716         .spare_active   = raid5_spare_active,
4717         .sync_request   = sync_request,
4718         .resize         = raid5_resize,
4719 #ifdef CONFIG_MD_RAID5_RESHAPE
4720         .check_reshape  = raid5_check_reshape,
4721         .start_reshape  = raid5_start_reshape,
4722 #endif
4723         .quiesce        = raid5_quiesce,
4724 };
4725 static struct mdk_personality raid5_personality =
4726 {
4727         .name           = "raid5",
4728         .level          = 5,
4729         .owner          = THIS_MODULE,
4730         .make_request   = make_request,
4731         .run            = run,
4732         .stop           = stop,
4733         .status         = status,
4734         .error_handler  = error,
4735         .hot_add_disk   = raid5_add_disk,
4736         .hot_remove_disk= raid5_remove_disk,
4737         .spare_active   = raid5_spare_active,
4738         .sync_request   = sync_request,
4739         .resize         = raid5_resize,
4740 #ifdef CONFIG_MD_RAID5_RESHAPE
4741         .check_reshape  = raid5_check_reshape,
4742         .start_reshape  = raid5_start_reshape,
4743 #endif
4744         .quiesce        = raid5_quiesce,
4745 };
4746
4747 static struct mdk_personality raid4_personality =
4748 {
4749         .name           = "raid4",
4750         .level          = 4,
4751         .owner          = THIS_MODULE,
4752         .make_request   = make_request,
4753         .run            = run,
4754         .stop           = stop,
4755         .status         = status,
4756         .error_handler  = error,
4757         .hot_add_disk   = raid5_add_disk,
4758         .hot_remove_disk= raid5_remove_disk,
4759         .spare_active   = raid5_spare_active,
4760         .sync_request   = sync_request,
4761         .resize         = raid5_resize,
4762 #ifdef CONFIG_MD_RAID5_RESHAPE
4763         .check_reshape  = raid5_check_reshape,
4764         .start_reshape  = raid5_start_reshape,
4765 #endif
4766         .quiesce        = raid5_quiesce,
4767 };
4768
4769 static int __init raid5_init(void)
4770 {
4771         int e;
4772
4773         e = raid6_select_algo();
4774         if ( e )
4775                 return e;
4776         register_md_personality(&raid6_personality);
4777         register_md_personality(&raid5_personality);
4778         register_md_personality(&raid4_personality);
4779         return 0;
4780 }
4781
4782 static void raid5_exit(void)
4783 {
4784         unregister_md_personality(&raid6_personality);
4785         unregister_md_personality(&raid5_personality);
4786         unregister_md_personality(&raid4_personality);
4787 }
4788
4789 module_init(raid5_init);
4790 module_exit(raid5_exit);
4791 MODULE_LICENSE("GPL");
4792 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4793 MODULE_ALIAS("md-raid5");
4794 MODULE_ALIAS("md-raid4");
4795 MODULE_ALIAS("md-level-5");
4796 MODULE_ALIAS("md-level-4");
4797 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4798 MODULE_ALIAS("md-raid6");
4799 MODULE_ALIAS("md-level-6");
4800
4801 /* This used to be two separate modules, they were: */
4802 MODULE_ALIAS("raid5");
4803 MODULE_ALIAS("raid6");