Support adding a spare to a live md array with external metadata.
[safe/jmp/linux-2.6] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
56
57 /*
58  * Stripe cache
59  */
60
61 #define NR_STRIPES              256
62 #define STRIPE_SIZE             PAGE_SIZE
63 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD            1
66 #define BYPASS_THRESHOLD        1
67 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK               (NR_HASH - 1)
69
70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73  * order without overlap.  There may be several bio's per stripe+device, and
74  * a bio could span several devices.
75  * When walking this list for a particular stripe+device, we must never proceed
76  * beyond a bio that extends past this device, as the next bio might no longer
77  * be valid.
78  * This macro is used to determine the 'next' bio in the list, given the sector
79  * of the current stripe+device
80  */
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 /*
83  * The following can be used to debug the driver
84  */
85 #define RAID5_PARANOIA  1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 #else
89 # define CHECK_DEVLOCK()
90 #endif
91
92 #ifdef DEBUG
93 #define inline
94 #define __inline__
95 #endif
96
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98
99 #if !RAID6_USE_EMPTY_ZERO_PAGE
100 /* In .bss so it's zeroed */
101 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
102 #endif
103
104 static inline int raid6_next_disk(int disk, int raid_disks)
105 {
106         disk++;
107         return (disk < raid_disks) ? disk : 0;
108 }
109
110 static void return_io(struct bio *return_bi)
111 {
112         struct bio *bi = return_bi;
113         while (bi) {
114
115                 return_bi = bi->bi_next;
116                 bi->bi_next = NULL;
117                 bi->bi_size = 0;
118                 bio_endio(bi, 0);
119                 bi = return_bi;
120         }
121 }
122
123 static void print_raid5_conf (raid5_conf_t *conf);
124
125 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
126 {
127         if (atomic_dec_and_test(&sh->count)) {
128                 BUG_ON(!list_empty(&sh->lru));
129                 BUG_ON(atomic_read(&conf->active_stripes)==0);
130                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
131                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
132                                 list_add_tail(&sh->lru, &conf->delayed_list);
133                                 blk_plug_device(conf->mddev->queue);
134                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
135                                    sh->bm_seq - conf->seq_write > 0) {
136                                 list_add_tail(&sh->lru, &conf->bitmap_list);
137                                 blk_plug_device(conf->mddev->queue);
138                         } else {
139                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
140                                 list_add_tail(&sh->lru, &conf->handle_list);
141                         }
142                         md_wakeup_thread(conf->mddev->thread);
143                 } else {
144                         BUG_ON(sh->ops.pending);
145                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
146                                 atomic_dec(&conf->preread_active_stripes);
147                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
148                                         md_wakeup_thread(conf->mddev->thread);
149                         }
150                         atomic_dec(&conf->active_stripes);
151                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
152                                 list_add_tail(&sh->lru, &conf->inactive_list);
153                                 wake_up(&conf->wait_for_stripe);
154                                 if (conf->retry_read_aligned)
155                                         md_wakeup_thread(conf->mddev->thread);
156                         }
157                 }
158         }
159 }
160 static void release_stripe(struct stripe_head *sh)
161 {
162         raid5_conf_t *conf = sh->raid_conf;
163         unsigned long flags;
164
165         spin_lock_irqsave(&conf->device_lock, flags);
166         __release_stripe(conf, sh);
167         spin_unlock_irqrestore(&conf->device_lock, flags);
168 }
169
170 static inline void remove_hash(struct stripe_head *sh)
171 {
172         pr_debug("remove_hash(), stripe %llu\n",
173                 (unsigned long long)sh->sector);
174
175         hlist_del_init(&sh->hash);
176 }
177
178 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
179 {
180         struct hlist_head *hp = stripe_hash(conf, sh->sector);
181
182         pr_debug("insert_hash(), stripe %llu\n",
183                 (unsigned long long)sh->sector);
184
185         CHECK_DEVLOCK();
186         hlist_add_head(&sh->hash, hp);
187 }
188
189
190 /* find an idle stripe, make sure it is unhashed, and return it. */
191 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
192 {
193         struct stripe_head *sh = NULL;
194         struct list_head *first;
195
196         CHECK_DEVLOCK();
197         if (list_empty(&conf->inactive_list))
198                 goto out;
199         first = conf->inactive_list.next;
200         sh = list_entry(first, struct stripe_head, lru);
201         list_del_init(first);
202         remove_hash(sh);
203         atomic_inc(&conf->active_stripes);
204 out:
205         return sh;
206 }
207
208 static void shrink_buffers(struct stripe_head *sh, int num)
209 {
210         struct page *p;
211         int i;
212
213         for (i=0; i<num ; i++) {
214                 p = sh->dev[i].page;
215                 if (!p)
216                         continue;
217                 sh->dev[i].page = NULL;
218                 put_page(p);
219         }
220 }
221
222 static int grow_buffers(struct stripe_head *sh, int num)
223 {
224         int i;
225
226         for (i=0; i<num; i++) {
227                 struct page *page;
228
229                 if (!(page = alloc_page(GFP_KERNEL))) {
230                         return 1;
231                 }
232                 sh->dev[i].page = page;
233         }
234         return 0;
235 }
236
237 static void raid5_build_block (struct stripe_head *sh, int i);
238
239 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
240 {
241         raid5_conf_t *conf = sh->raid_conf;
242         int i;
243
244         BUG_ON(atomic_read(&sh->count) != 0);
245         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
246         BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
247
248         CHECK_DEVLOCK();
249         pr_debug("init_stripe called, stripe %llu\n",
250                 (unsigned long long)sh->sector);
251
252         remove_hash(sh);
253
254         sh->sector = sector;
255         sh->pd_idx = pd_idx;
256         sh->state = 0;
257
258         sh->disks = disks;
259
260         for (i = sh->disks; i--; ) {
261                 struct r5dev *dev = &sh->dev[i];
262
263                 if (dev->toread || dev->read || dev->towrite || dev->written ||
264                     test_bit(R5_LOCKED, &dev->flags)) {
265                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
266                                (unsigned long long)sh->sector, i, dev->toread,
267                                dev->read, dev->towrite, dev->written,
268                                test_bit(R5_LOCKED, &dev->flags));
269                         BUG();
270                 }
271                 dev->flags = 0;
272                 raid5_build_block(sh, i);
273         }
274         insert_hash(conf, sh);
275 }
276
277 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
278 {
279         struct stripe_head *sh;
280         struct hlist_node *hn;
281
282         CHECK_DEVLOCK();
283         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
284         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
285                 if (sh->sector == sector && sh->disks == disks)
286                         return sh;
287         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
288         return NULL;
289 }
290
291 static void unplug_slaves(mddev_t *mddev);
292 static void raid5_unplug_device(struct request_queue *q);
293
294 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
295                                              int pd_idx, int noblock)
296 {
297         struct stripe_head *sh;
298
299         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
300
301         spin_lock_irq(&conf->device_lock);
302
303         do {
304                 wait_event_lock_irq(conf->wait_for_stripe,
305                                     conf->quiesce == 0,
306                                     conf->device_lock, /* nothing */);
307                 sh = __find_stripe(conf, sector, disks);
308                 if (!sh) {
309                         if (!conf->inactive_blocked)
310                                 sh = get_free_stripe(conf);
311                         if (noblock && sh == NULL)
312                                 break;
313                         if (!sh) {
314                                 conf->inactive_blocked = 1;
315                                 wait_event_lock_irq(conf->wait_for_stripe,
316                                                     !list_empty(&conf->inactive_list) &&
317                                                     (atomic_read(&conf->active_stripes)
318                                                      < (conf->max_nr_stripes *3/4)
319                                                      || !conf->inactive_blocked),
320                                                     conf->device_lock,
321                                                     raid5_unplug_device(conf->mddev->queue)
322                                         );
323                                 conf->inactive_blocked = 0;
324                         } else
325                                 init_stripe(sh, sector, pd_idx, disks);
326                 } else {
327                         if (atomic_read(&sh->count)) {
328                           BUG_ON(!list_empty(&sh->lru));
329                         } else {
330                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
331                                         atomic_inc(&conf->active_stripes);
332                                 if (list_empty(&sh->lru) &&
333                                     !test_bit(STRIPE_EXPANDING, &sh->state))
334                                         BUG();
335                                 list_del_init(&sh->lru);
336                         }
337                 }
338         } while (sh == NULL);
339
340         if (sh)
341                 atomic_inc(&sh->count);
342
343         spin_unlock_irq(&conf->device_lock);
344         return sh;
345 }
346
347 /* test_and_ack_op() ensures that we only dequeue an operation once */
348 #define test_and_ack_op(op, pend) \
349 do {                                                    \
350         if (test_bit(op, &sh->ops.pending) &&           \
351                 !test_bit(op, &sh->ops.complete)) {     \
352                 if (test_and_set_bit(op, &sh->ops.ack)) \
353                         clear_bit(op, &pend);           \
354                 else                                    \
355                         ack++;                          \
356         } else                                          \
357                 clear_bit(op, &pend);                   \
358 } while (0)
359
360 /* find new work to run, do not resubmit work that is already
361  * in flight
362  */
363 static unsigned long get_stripe_work(struct stripe_head *sh)
364 {
365         unsigned long pending;
366         int ack = 0;
367
368         pending = sh->ops.pending;
369
370         test_and_ack_op(STRIPE_OP_BIOFILL, pending);
371         test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
372         test_and_ack_op(STRIPE_OP_PREXOR, pending);
373         test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
374         test_and_ack_op(STRIPE_OP_POSTXOR, pending);
375         test_and_ack_op(STRIPE_OP_CHECK, pending);
376         if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
377                 ack++;
378
379         sh->ops.count -= ack;
380         if (unlikely(sh->ops.count < 0)) {
381                 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
382                         "ops.complete: %#lx\n", pending, sh->ops.pending,
383                         sh->ops.ack, sh->ops.complete);
384                 BUG();
385         }
386
387         return pending;
388 }
389
390 static void
391 raid5_end_read_request(struct bio *bi, int error);
392 static void
393 raid5_end_write_request(struct bio *bi, int error);
394
395 static void ops_run_io(struct stripe_head *sh)
396 {
397         raid5_conf_t *conf = sh->raid_conf;
398         int i, disks = sh->disks;
399
400         might_sleep();
401
402         set_bit(STRIPE_IO_STARTED, &sh->state);
403         for (i = disks; i--; ) {
404                 int rw;
405                 struct bio *bi;
406                 mdk_rdev_t *rdev;
407                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
408                         rw = WRITE;
409                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
410                         rw = READ;
411                 else
412                         continue;
413
414                 bi = &sh->dev[i].req;
415
416                 bi->bi_rw = rw;
417                 if (rw == WRITE)
418                         bi->bi_end_io = raid5_end_write_request;
419                 else
420                         bi->bi_end_io = raid5_end_read_request;
421
422                 rcu_read_lock();
423                 rdev = rcu_dereference(conf->disks[i].rdev);
424                 if (rdev && test_bit(Faulty, &rdev->flags))
425                         rdev = NULL;
426                 if (rdev)
427                         atomic_inc(&rdev->nr_pending);
428                 rcu_read_unlock();
429
430                 if (rdev) {
431                         if (test_bit(STRIPE_SYNCING, &sh->state) ||
432                                 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
433                                 test_bit(STRIPE_EXPAND_READY, &sh->state))
434                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
435
436                         bi->bi_bdev = rdev->bdev;
437                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
438                                 __func__, (unsigned long long)sh->sector,
439                                 bi->bi_rw, i);
440                         atomic_inc(&sh->count);
441                         bi->bi_sector = sh->sector + rdev->data_offset;
442                         bi->bi_flags = 1 << BIO_UPTODATE;
443                         bi->bi_vcnt = 1;
444                         bi->bi_max_vecs = 1;
445                         bi->bi_idx = 0;
446                         bi->bi_io_vec = &sh->dev[i].vec;
447                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
448                         bi->bi_io_vec[0].bv_offset = 0;
449                         bi->bi_size = STRIPE_SIZE;
450                         bi->bi_next = NULL;
451                         if (rw == WRITE &&
452                             test_bit(R5_ReWrite, &sh->dev[i].flags))
453                                 atomic_add(STRIPE_SECTORS,
454                                         &rdev->corrected_errors);
455                         generic_make_request(bi);
456                 } else {
457                         if (rw == WRITE)
458                                 set_bit(STRIPE_DEGRADED, &sh->state);
459                         pr_debug("skip op %ld on disc %d for sector %llu\n",
460                                 bi->bi_rw, i, (unsigned long long)sh->sector);
461                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
462                         set_bit(STRIPE_HANDLE, &sh->state);
463                 }
464         }
465 }
466
467 static struct dma_async_tx_descriptor *
468 async_copy_data(int frombio, struct bio *bio, struct page *page,
469         sector_t sector, struct dma_async_tx_descriptor *tx)
470 {
471         struct bio_vec *bvl;
472         struct page *bio_page;
473         int i;
474         int page_offset;
475
476         if (bio->bi_sector >= sector)
477                 page_offset = (signed)(bio->bi_sector - sector) * 512;
478         else
479                 page_offset = (signed)(sector - bio->bi_sector) * -512;
480         bio_for_each_segment(bvl, bio, i) {
481                 int len = bio_iovec_idx(bio, i)->bv_len;
482                 int clen;
483                 int b_offset = 0;
484
485                 if (page_offset < 0) {
486                         b_offset = -page_offset;
487                         page_offset += b_offset;
488                         len -= b_offset;
489                 }
490
491                 if (len > 0 && page_offset + len > STRIPE_SIZE)
492                         clen = STRIPE_SIZE - page_offset;
493                 else
494                         clen = len;
495
496                 if (clen > 0) {
497                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
498                         bio_page = bio_iovec_idx(bio, i)->bv_page;
499                         if (frombio)
500                                 tx = async_memcpy(page, bio_page, page_offset,
501                                         b_offset, clen,
502                                         ASYNC_TX_DEP_ACK,
503                                         tx, NULL, NULL);
504                         else
505                                 tx = async_memcpy(bio_page, page, b_offset,
506                                         page_offset, clen,
507                                         ASYNC_TX_DEP_ACK,
508                                         tx, NULL, NULL);
509                 }
510                 if (clen < len) /* hit end of page */
511                         break;
512                 page_offset +=  len;
513         }
514
515         return tx;
516 }
517
518 static void ops_complete_biofill(void *stripe_head_ref)
519 {
520         struct stripe_head *sh = stripe_head_ref;
521         struct bio *return_bi = NULL;
522         raid5_conf_t *conf = sh->raid_conf;
523         int i;
524
525         pr_debug("%s: stripe %llu\n", __func__,
526                 (unsigned long long)sh->sector);
527
528         /* clear completed biofills */
529         for (i = sh->disks; i--; ) {
530                 struct r5dev *dev = &sh->dev[i];
531
532                 /* acknowledge completion of a biofill operation */
533                 /* and check if we need to reply to a read request,
534                  * new R5_Wantfill requests are held off until
535                  * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
536                  */
537                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
538                         struct bio *rbi, *rbi2;
539
540                         /* The access to dev->read is outside of the
541                          * spin_lock_irq(&conf->device_lock), but is protected
542                          * by the STRIPE_OP_BIOFILL pending bit
543                          */
544                         BUG_ON(!dev->read);
545                         rbi = dev->read;
546                         dev->read = NULL;
547                         while (rbi && rbi->bi_sector <
548                                 dev->sector + STRIPE_SECTORS) {
549                                 rbi2 = r5_next_bio(rbi, dev->sector);
550                                 spin_lock_irq(&conf->device_lock);
551                                 if (--rbi->bi_phys_segments == 0) {
552                                         rbi->bi_next = return_bi;
553                                         return_bi = rbi;
554                                 }
555                                 spin_unlock_irq(&conf->device_lock);
556                                 rbi = rbi2;
557                         }
558                 }
559         }
560         set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
561
562         return_io(return_bi);
563
564         set_bit(STRIPE_HANDLE, &sh->state);
565         release_stripe(sh);
566 }
567
568 static void ops_run_biofill(struct stripe_head *sh)
569 {
570         struct dma_async_tx_descriptor *tx = NULL;
571         raid5_conf_t *conf = sh->raid_conf;
572         int i;
573
574         pr_debug("%s: stripe %llu\n", __func__,
575                 (unsigned long long)sh->sector);
576
577         for (i = sh->disks; i--; ) {
578                 struct r5dev *dev = &sh->dev[i];
579                 if (test_bit(R5_Wantfill, &dev->flags)) {
580                         struct bio *rbi;
581                         spin_lock_irq(&conf->device_lock);
582                         dev->read = rbi = dev->toread;
583                         dev->toread = NULL;
584                         spin_unlock_irq(&conf->device_lock);
585                         while (rbi && rbi->bi_sector <
586                                 dev->sector + STRIPE_SECTORS) {
587                                 tx = async_copy_data(0, rbi, dev->page,
588                                         dev->sector, tx);
589                                 rbi = r5_next_bio(rbi, dev->sector);
590                         }
591                 }
592         }
593
594         atomic_inc(&sh->count);
595         async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
596                 ops_complete_biofill, sh);
597 }
598
599 static void ops_complete_compute5(void *stripe_head_ref)
600 {
601         struct stripe_head *sh = stripe_head_ref;
602         int target = sh->ops.target;
603         struct r5dev *tgt = &sh->dev[target];
604
605         pr_debug("%s: stripe %llu\n", __func__,
606                 (unsigned long long)sh->sector);
607
608         set_bit(R5_UPTODATE, &tgt->flags);
609         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
610         clear_bit(R5_Wantcompute, &tgt->flags);
611         set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
612         set_bit(STRIPE_HANDLE, &sh->state);
613         release_stripe(sh);
614 }
615
616 static struct dma_async_tx_descriptor *
617 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
618 {
619         /* kernel stack size limits the total number of disks */
620         int disks = sh->disks;
621         struct page *xor_srcs[disks];
622         int target = sh->ops.target;
623         struct r5dev *tgt = &sh->dev[target];
624         struct page *xor_dest = tgt->page;
625         int count = 0;
626         struct dma_async_tx_descriptor *tx;
627         int i;
628
629         pr_debug("%s: stripe %llu block: %d\n",
630                 __func__, (unsigned long long)sh->sector, target);
631         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
632
633         for (i = disks; i--; )
634                 if (i != target)
635                         xor_srcs[count++] = sh->dev[i].page;
636
637         atomic_inc(&sh->count);
638
639         if (unlikely(count == 1))
640                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
641                         0, NULL, ops_complete_compute5, sh);
642         else
643                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
644                         ASYNC_TX_XOR_ZERO_DST, NULL,
645                         ops_complete_compute5, sh);
646
647         /* ack now if postxor is not set to be run */
648         if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
649                 async_tx_ack(tx);
650
651         return tx;
652 }
653
654 static void ops_complete_prexor(void *stripe_head_ref)
655 {
656         struct stripe_head *sh = stripe_head_ref;
657
658         pr_debug("%s: stripe %llu\n", __func__,
659                 (unsigned long long)sh->sector);
660
661         set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
662 }
663
664 static struct dma_async_tx_descriptor *
665 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
666 {
667         /* kernel stack size limits the total number of disks */
668         int disks = sh->disks;
669         struct page *xor_srcs[disks];
670         int count = 0, pd_idx = sh->pd_idx, i;
671
672         /* existing parity data subtracted */
673         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
674
675         pr_debug("%s: stripe %llu\n", __func__,
676                 (unsigned long long)sh->sector);
677
678         for (i = disks; i--; ) {
679                 struct r5dev *dev = &sh->dev[i];
680                 /* Only process blocks that are known to be uptodate */
681                 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
682                         xor_srcs[count++] = dev->page;
683         }
684
685         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
686                 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
687                 ops_complete_prexor, sh);
688
689         return tx;
690 }
691
692 static struct dma_async_tx_descriptor *
693 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
694                  unsigned long pending)
695 {
696         int disks = sh->disks;
697         int pd_idx = sh->pd_idx, i;
698
699         /* check if prexor is active which means only process blocks
700          * that are part of a read-modify-write (Wantprexor)
701          */
702         int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
703
704         pr_debug("%s: stripe %llu\n", __func__,
705                 (unsigned long long)sh->sector);
706
707         for (i = disks; i--; ) {
708                 struct r5dev *dev = &sh->dev[i];
709                 struct bio *chosen;
710                 int towrite;
711
712                 towrite = 0;
713                 if (prexor) { /* rmw */
714                         if (dev->towrite &&
715                             test_bit(R5_Wantprexor, &dev->flags))
716                                 towrite = 1;
717                 } else { /* rcw */
718                         if (i != pd_idx && dev->towrite &&
719                                 test_bit(R5_LOCKED, &dev->flags))
720                                 towrite = 1;
721                 }
722
723                 if (towrite) {
724                         struct bio *wbi;
725
726                         spin_lock(&sh->lock);
727                         chosen = dev->towrite;
728                         dev->towrite = NULL;
729                         BUG_ON(dev->written);
730                         wbi = dev->written = chosen;
731                         spin_unlock(&sh->lock);
732
733                         while (wbi && wbi->bi_sector <
734                                 dev->sector + STRIPE_SECTORS) {
735                                 tx = async_copy_data(1, wbi, dev->page,
736                                         dev->sector, tx);
737                                 wbi = r5_next_bio(wbi, dev->sector);
738                         }
739                 }
740         }
741
742         return tx;
743 }
744
745 static void ops_complete_postxor(void *stripe_head_ref)
746 {
747         struct stripe_head *sh = stripe_head_ref;
748
749         pr_debug("%s: stripe %llu\n", __func__,
750                 (unsigned long long)sh->sector);
751
752         set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
753         set_bit(STRIPE_HANDLE, &sh->state);
754         release_stripe(sh);
755 }
756
757 static void ops_complete_write(void *stripe_head_ref)
758 {
759         struct stripe_head *sh = stripe_head_ref;
760         int disks = sh->disks, i, pd_idx = sh->pd_idx;
761
762         pr_debug("%s: stripe %llu\n", __func__,
763                 (unsigned long long)sh->sector);
764
765         for (i = disks; i--; ) {
766                 struct r5dev *dev = &sh->dev[i];
767                 if (dev->written || i == pd_idx)
768                         set_bit(R5_UPTODATE, &dev->flags);
769         }
770
771         set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
772         set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
773
774         set_bit(STRIPE_HANDLE, &sh->state);
775         release_stripe(sh);
776 }
777
778 static void
779 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
780                 unsigned long pending)
781 {
782         /* kernel stack size limits the total number of disks */
783         int disks = sh->disks;
784         struct page *xor_srcs[disks];
785
786         int count = 0, pd_idx = sh->pd_idx, i;
787         struct page *xor_dest;
788         int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
789         unsigned long flags;
790         dma_async_tx_callback callback;
791
792         pr_debug("%s: stripe %llu\n", __func__,
793                 (unsigned long long)sh->sector);
794
795         /* check if prexor is active which means only process blocks
796          * that are part of a read-modify-write (written)
797          */
798         if (prexor) {
799                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
800                 for (i = disks; i--; ) {
801                         struct r5dev *dev = &sh->dev[i];
802                         if (dev->written)
803                                 xor_srcs[count++] = dev->page;
804                 }
805         } else {
806                 xor_dest = sh->dev[pd_idx].page;
807                 for (i = disks; i--; ) {
808                         struct r5dev *dev = &sh->dev[i];
809                         if (i != pd_idx)
810                                 xor_srcs[count++] = dev->page;
811                 }
812         }
813
814         /* check whether this postxor is part of a write */
815         callback = test_bit(STRIPE_OP_BIODRAIN, &pending) ?
816                 ops_complete_write : ops_complete_postxor;
817
818         /* 1/ if we prexor'd then the dest is reused as a source
819          * 2/ if we did not prexor then we are redoing the parity
820          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
821          * for the synchronous xor case
822          */
823         flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
824                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
825
826         atomic_inc(&sh->count);
827
828         if (unlikely(count == 1)) {
829                 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
830                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
831                         flags, tx, callback, sh);
832         } else
833                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
834                         flags, tx, callback, sh);
835 }
836
837 static void ops_complete_check(void *stripe_head_ref)
838 {
839         struct stripe_head *sh = stripe_head_ref;
840         int pd_idx = sh->pd_idx;
841
842         pr_debug("%s: stripe %llu\n", __func__,
843                 (unsigned long long)sh->sector);
844
845         if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
846                 sh->ops.zero_sum_result == 0)
847                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
848
849         set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
850         set_bit(STRIPE_HANDLE, &sh->state);
851         release_stripe(sh);
852 }
853
854 static void ops_run_check(struct stripe_head *sh)
855 {
856         /* kernel stack size limits the total number of disks */
857         int disks = sh->disks;
858         struct page *xor_srcs[disks];
859         struct dma_async_tx_descriptor *tx;
860
861         int count = 0, pd_idx = sh->pd_idx, i;
862         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
863
864         pr_debug("%s: stripe %llu\n", __func__,
865                 (unsigned long long)sh->sector);
866
867         for (i = disks; i--; ) {
868                 struct r5dev *dev = &sh->dev[i];
869                 if (i != pd_idx)
870                         xor_srcs[count++] = dev->page;
871         }
872
873         tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
874                 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
875
876         if (tx)
877                 set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
878         else
879                 clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
880
881         atomic_inc(&sh->count);
882         tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
883                 ops_complete_check, sh);
884 }
885
886 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
887 {
888         int overlap_clear = 0, i, disks = sh->disks;
889         struct dma_async_tx_descriptor *tx = NULL;
890
891         if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
892                 ops_run_biofill(sh);
893                 overlap_clear++;
894         }
895
896         if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
897                 tx = ops_run_compute5(sh, pending);
898
899         if (test_bit(STRIPE_OP_PREXOR, &pending))
900                 tx = ops_run_prexor(sh, tx);
901
902         if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
903                 tx = ops_run_biodrain(sh, tx, pending);
904                 overlap_clear++;
905         }
906
907         if (test_bit(STRIPE_OP_POSTXOR, &pending))
908                 ops_run_postxor(sh, tx, pending);
909
910         if (test_bit(STRIPE_OP_CHECK, &pending))
911                 ops_run_check(sh);
912
913         if (test_bit(STRIPE_OP_IO, &pending))
914                 ops_run_io(sh);
915
916         if (overlap_clear)
917                 for (i = disks; i--; ) {
918                         struct r5dev *dev = &sh->dev[i];
919                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
920                                 wake_up(&sh->raid_conf->wait_for_overlap);
921                 }
922 }
923
924 static int grow_one_stripe(raid5_conf_t *conf)
925 {
926         struct stripe_head *sh;
927         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
928         if (!sh)
929                 return 0;
930         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
931         sh->raid_conf = conf;
932         spin_lock_init(&sh->lock);
933
934         if (grow_buffers(sh, conf->raid_disks)) {
935                 shrink_buffers(sh, conf->raid_disks);
936                 kmem_cache_free(conf->slab_cache, sh);
937                 return 0;
938         }
939         sh->disks = conf->raid_disks;
940         /* we just created an active stripe so... */
941         atomic_set(&sh->count, 1);
942         atomic_inc(&conf->active_stripes);
943         INIT_LIST_HEAD(&sh->lru);
944         release_stripe(sh);
945         return 1;
946 }
947
948 static int grow_stripes(raid5_conf_t *conf, int num)
949 {
950         struct kmem_cache *sc;
951         int devs = conf->raid_disks;
952
953         sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
954         sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
955         conf->active_name = 0;
956         sc = kmem_cache_create(conf->cache_name[conf->active_name],
957                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
958                                0, 0, NULL);
959         if (!sc)
960                 return 1;
961         conf->slab_cache = sc;
962         conf->pool_size = devs;
963         while (num--)
964                 if (!grow_one_stripe(conf))
965                         return 1;
966         return 0;
967 }
968
969 #ifdef CONFIG_MD_RAID5_RESHAPE
970 static int resize_stripes(raid5_conf_t *conf, int newsize)
971 {
972         /* Make all the stripes able to hold 'newsize' devices.
973          * New slots in each stripe get 'page' set to a new page.
974          *
975          * This happens in stages:
976          * 1/ create a new kmem_cache and allocate the required number of
977          *    stripe_heads.
978          * 2/ gather all the old stripe_heads and tranfer the pages across
979          *    to the new stripe_heads.  This will have the side effect of
980          *    freezing the array as once all stripe_heads have been collected,
981          *    no IO will be possible.  Old stripe heads are freed once their
982          *    pages have been transferred over, and the old kmem_cache is
983          *    freed when all stripes are done.
984          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
985          *    we simple return a failre status - no need to clean anything up.
986          * 4/ allocate new pages for the new slots in the new stripe_heads.
987          *    If this fails, we don't bother trying the shrink the
988          *    stripe_heads down again, we just leave them as they are.
989          *    As each stripe_head is processed the new one is released into
990          *    active service.
991          *
992          * Once step2 is started, we cannot afford to wait for a write,
993          * so we use GFP_NOIO allocations.
994          */
995         struct stripe_head *osh, *nsh;
996         LIST_HEAD(newstripes);
997         struct disk_info *ndisks;
998         int err = 0;
999         struct kmem_cache *sc;
1000         int i;
1001
1002         if (newsize <= conf->pool_size)
1003                 return 0; /* never bother to shrink */
1004
1005         md_allow_write(conf->mddev);
1006
1007         /* Step 1 */
1008         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1009                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1010                                0, 0, NULL);
1011         if (!sc)
1012                 return -ENOMEM;
1013
1014         for (i = conf->max_nr_stripes; i; i--) {
1015                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1016                 if (!nsh)
1017                         break;
1018
1019                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1020
1021                 nsh->raid_conf = conf;
1022                 spin_lock_init(&nsh->lock);
1023
1024                 list_add(&nsh->lru, &newstripes);
1025         }
1026         if (i) {
1027                 /* didn't get enough, give up */
1028                 while (!list_empty(&newstripes)) {
1029                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1030                         list_del(&nsh->lru);
1031                         kmem_cache_free(sc, nsh);
1032                 }
1033                 kmem_cache_destroy(sc);
1034                 return -ENOMEM;
1035         }
1036         /* Step 2 - Must use GFP_NOIO now.
1037          * OK, we have enough stripes, start collecting inactive
1038          * stripes and copying them over
1039          */
1040         list_for_each_entry(nsh, &newstripes, lru) {
1041                 spin_lock_irq(&conf->device_lock);
1042                 wait_event_lock_irq(conf->wait_for_stripe,
1043                                     !list_empty(&conf->inactive_list),
1044                                     conf->device_lock,
1045                                     unplug_slaves(conf->mddev)
1046                         );
1047                 osh = get_free_stripe(conf);
1048                 spin_unlock_irq(&conf->device_lock);
1049                 atomic_set(&nsh->count, 1);
1050                 for(i=0; i<conf->pool_size; i++)
1051                         nsh->dev[i].page = osh->dev[i].page;
1052                 for( ; i<newsize; i++)
1053                         nsh->dev[i].page = NULL;
1054                 kmem_cache_free(conf->slab_cache, osh);
1055         }
1056         kmem_cache_destroy(conf->slab_cache);
1057
1058         /* Step 3.
1059          * At this point, we are holding all the stripes so the array
1060          * is completely stalled, so now is a good time to resize
1061          * conf->disks.
1062          */
1063         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1064         if (ndisks) {
1065                 for (i=0; i<conf->raid_disks; i++)
1066                         ndisks[i] = conf->disks[i];
1067                 kfree(conf->disks);
1068                 conf->disks = ndisks;
1069         } else
1070                 err = -ENOMEM;
1071
1072         /* Step 4, return new stripes to service */
1073         while(!list_empty(&newstripes)) {
1074                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1075                 list_del_init(&nsh->lru);
1076                 for (i=conf->raid_disks; i < newsize; i++)
1077                         if (nsh->dev[i].page == NULL) {
1078                                 struct page *p = alloc_page(GFP_NOIO);
1079                                 nsh->dev[i].page = p;
1080                                 if (!p)
1081                                         err = -ENOMEM;
1082                         }
1083                 release_stripe(nsh);
1084         }
1085         /* critical section pass, GFP_NOIO no longer needed */
1086
1087         conf->slab_cache = sc;
1088         conf->active_name = 1-conf->active_name;
1089         conf->pool_size = newsize;
1090         return err;
1091 }
1092 #endif
1093
1094 static int drop_one_stripe(raid5_conf_t *conf)
1095 {
1096         struct stripe_head *sh;
1097
1098         spin_lock_irq(&conf->device_lock);
1099         sh = get_free_stripe(conf);
1100         spin_unlock_irq(&conf->device_lock);
1101         if (!sh)
1102                 return 0;
1103         BUG_ON(atomic_read(&sh->count));
1104         shrink_buffers(sh, conf->pool_size);
1105         kmem_cache_free(conf->slab_cache, sh);
1106         atomic_dec(&conf->active_stripes);
1107         return 1;
1108 }
1109
1110 static void shrink_stripes(raid5_conf_t *conf)
1111 {
1112         while (drop_one_stripe(conf))
1113                 ;
1114
1115         if (conf->slab_cache)
1116                 kmem_cache_destroy(conf->slab_cache);
1117         conf->slab_cache = NULL;
1118 }
1119
1120 static void raid5_end_read_request(struct bio * bi, int error)
1121 {
1122         struct stripe_head *sh = bi->bi_private;
1123         raid5_conf_t *conf = sh->raid_conf;
1124         int disks = sh->disks, i;
1125         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1126         char b[BDEVNAME_SIZE];
1127         mdk_rdev_t *rdev;
1128
1129
1130         for (i=0 ; i<disks; i++)
1131                 if (bi == &sh->dev[i].req)
1132                         break;
1133
1134         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1135                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1136                 uptodate);
1137         if (i == disks) {
1138                 BUG();
1139                 return;
1140         }
1141
1142         if (uptodate) {
1143                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1144                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1145                         rdev = conf->disks[i].rdev;
1146                         printk_rl(KERN_INFO "raid5:%s: read error corrected"
1147                                   " (%lu sectors at %llu on %s)\n",
1148                                   mdname(conf->mddev), STRIPE_SECTORS,
1149                                   (unsigned long long)(sh->sector
1150                                                        + rdev->data_offset),
1151                                   bdevname(rdev->bdev, b));
1152                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1153                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1154                 }
1155                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1156                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1157         } else {
1158                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1159                 int retry = 0;
1160                 rdev = conf->disks[i].rdev;
1161
1162                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1163                 atomic_inc(&rdev->read_errors);
1164                 if (conf->mddev->degraded)
1165                         printk_rl(KERN_WARNING
1166                                   "raid5:%s: read error not correctable "
1167                                   "(sector %llu on %s).\n",
1168                                   mdname(conf->mddev),
1169                                   (unsigned long long)(sh->sector
1170                                                        + rdev->data_offset),
1171                                   bdn);
1172                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1173                         /* Oh, no!!! */
1174                         printk_rl(KERN_WARNING
1175                                   "raid5:%s: read error NOT corrected!! "
1176                                   "(sector %llu on %s).\n",
1177                                   mdname(conf->mddev),
1178                                   (unsigned long long)(sh->sector
1179                                                        + rdev->data_offset),
1180                                   bdn);
1181                 else if (atomic_read(&rdev->read_errors)
1182                          > conf->max_nr_stripes)
1183                         printk(KERN_WARNING
1184                                "raid5:%s: Too many read errors, failing device %s.\n",
1185                                mdname(conf->mddev), bdn);
1186                 else
1187                         retry = 1;
1188                 if (retry)
1189                         set_bit(R5_ReadError, &sh->dev[i].flags);
1190                 else {
1191                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1192                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1193                         md_error(conf->mddev, rdev);
1194                 }
1195         }
1196         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1197         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1198         set_bit(STRIPE_HANDLE, &sh->state);
1199         release_stripe(sh);
1200 }
1201
1202 static void raid5_end_write_request (struct bio *bi, int error)
1203 {
1204         struct stripe_head *sh = bi->bi_private;
1205         raid5_conf_t *conf = sh->raid_conf;
1206         int disks = sh->disks, i;
1207         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1208
1209         for (i=0 ; i<disks; i++)
1210                 if (bi == &sh->dev[i].req)
1211                         break;
1212
1213         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1214                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1215                 uptodate);
1216         if (i == disks) {
1217                 BUG();
1218                 return;
1219         }
1220
1221         if (!uptodate)
1222                 md_error(conf->mddev, conf->disks[i].rdev);
1223
1224         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1225         
1226         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1227         set_bit(STRIPE_HANDLE, &sh->state);
1228         release_stripe(sh);
1229 }
1230
1231
1232 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1233         
1234 static void raid5_build_block (struct stripe_head *sh, int i)
1235 {
1236         struct r5dev *dev = &sh->dev[i];
1237
1238         bio_init(&dev->req);
1239         dev->req.bi_io_vec = &dev->vec;
1240         dev->req.bi_vcnt++;
1241         dev->req.bi_max_vecs++;
1242         dev->vec.bv_page = dev->page;
1243         dev->vec.bv_len = STRIPE_SIZE;
1244         dev->vec.bv_offset = 0;
1245
1246         dev->req.bi_sector = sh->sector;
1247         dev->req.bi_private = sh;
1248
1249         dev->flags = 0;
1250         dev->sector = compute_blocknr(sh, i);
1251 }
1252
1253 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1254 {
1255         char b[BDEVNAME_SIZE];
1256         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1257         pr_debug("raid5: error called\n");
1258
1259         if (!test_bit(Faulty, &rdev->flags)) {
1260                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1261                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1262                         unsigned long flags;
1263                         spin_lock_irqsave(&conf->device_lock, flags);
1264                         mddev->degraded++;
1265                         spin_unlock_irqrestore(&conf->device_lock, flags);
1266                         /*
1267                          * if recovery was running, make sure it aborts.
1268                          */
1269                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1270                 }
1271                 set_bit(Faulty, &rdev->flags);
1272                 printk (KERN_ALERT
1273                         "raid5: Disk failure on %s, disabling device.\n"
1274                         "raid5: Operation continuing on %d devices.\n",
1275                         bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1276         }
1277 }
1278
1279 /*
1280  * Input: a 'big' sector number,
1281  * Output: index of the data and parity disk, and the sector # in them.
1282  */
1283 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1284                         unsigned int data_disks, unsigned int * dd_idx,
1285                         unsigned int * pd_idx, raid5_conf_t *conf)
1286 {
1287         long stripe;
1288         unsigned long chunk_number;
1289         unsigned int chunk_offset;
1290         sector_t new_sector;
1291         int sectors_per_chunk = conf->chunk_size >> 9;
1292
1293         /* First compute the information on this sector */
1294
1295         /*
1296          * Compute the chunk number and the sector offset inside the chunk
1297          */
1298         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1299         chunk_number = r_sector;
1300         BUG_ON(r_sector != chunk_number);
1301
1302         /*
1303          * Compute the stripe number
1304          */
1305         stripe = chunk_number / data_disks;
1306
1307         /*
1308          * Compute the data disk and parity disk indexes inside the stripe
1309          */
1310         *dd_idx = chunk_number % data_disks;
1311
1312         /*
1313          * Select the parity disk based on the user selected algorithm.
1314          */
1315         switch(conf->level) {
1316         case 4:
1317                 *pd_idx = data_disks;
1318                 break;
1319         case 5:
1320                 switch (conf->algorithm) {
1321                 case ALGORITHM_LEFT_ASYMMETRIC:
1322                         *pd_idx = data_disks - stripe % raid_disks;
1323                         if (*dd_idx >= *pd_idx)
1324                                 (*dd_idx)++;
1325                         break;
1326                 case ALGORITHM_RIGHT_ASYMMETRIC:
1327                         *pd_idx = stripe % raid_disks;
1328                         if (*dd_idx >= *pd_idx)
1329                                 (*dd_idx)++;
1330                         break;
1331                 case ALGORITHM_LEFT_SYMMETRIC:
1332                         *pd_idx = data_disks - stripe % raid_disks;
1333                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1334                         break;
1335                 case ALGORITHM_RIGHT_SYMMETRIC:
1336                         *pd_idx = stripe % raid_disks;
1337                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1338                         break;
1339                 default:
1340                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1341                                 conf->algorithm);
1342                 }
1343                 break;
1344         case 6:
1345
1346                 /**** FIX THIS ****/
1347                 switch (conf->algorithm) {
1348                 case ALGORITHM_LEFT_ASYMMETRIC:
1349                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1350                         if (*pd_idx == raid_disks-1)
1351                                 (*dd_idx)++;    /* Q D D D P */
1352                         else if (*dd_idx >= *pd_idx)
1353                                 (*dd_idx) += 2; /* D D P Q D */
1354                         break;
1355                 case ALGORITHM_RIGHT_ASYMMETRIC:
1356                         *pd_idx = stripe % raid_disks;
1357                         if (*pd_idx == raid_disks-1)
1358                                 (*dd_idx)++;    /* Q D D D P */
1359                         else if (*dd_idx >= *pd_idx)
1360                                 (*dd_idx) += 2; /* D D P Q D */
1361                         break;
1362                 case ALGORITHM_LEFT_SYMMETRIC:
1363                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1364                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1365                         break;
1366                 case ALGORITHM_RIGHT_SYMMETRIC:
1367                         *pd_idx = stripe % raid_disks;
1368                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1369                         break;
1370                 default:
1371                         printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1372                                 conf->algorithm);
1373                 }
1374                 break;
1375         }
1376
1377         /*
1378          * Finally, compute the new sector number
1379          */
1380         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1381         return new_sector;
1382 }
1383
1384
1385 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1386 {
1387         raid5_conf_t *conf = sh->raid_conf;
1388         int raid_disks = sh->disks;
1389         int data_disks = raid_disks - conf->max_degraded;
1390         sector_t new_sector = sh->sector, check;
1391         int sectors_per_chunk = conf->chunk_size >> 9;
1392         sector_t stripe;
1393         int chunk_offset;
1394         int chunk_number, dummy1, dummy2, dd_idx = i;
1395         sector_t r_sector;
1396
1397
1398         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1399         stripe = new_sector;
1400         BUG_ON(new_sector != stripe);
1401
1402         if (i == sh->pd_idx)
1403                 return 0;
1404         switch(conf->level) {
1405         case 4: break;
1406         case 5:
1407                 switch (conf->algorithm) {
1408                 case ALGORITHM_LEFT_ASYMMETRIC:
1409                 case ALGORITHM_RIGHT_ASYMMETRIC:
1410                         if (i > sh->pd_idx)
1411                                 i--;
1412                         break;
1413                 case ALGORITHM_LEFT_SYMMETRIC:
1414                 case ALGORITHM_RIGHT_SYMMETRIC:
1415                         if (i < sh->pd_idx)
1416                                 i += raid_disks;
1417                         i -= (sh->pd_idx + 1);
1418                         break;
1419                 default:
1420                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1421                                conf->algorithm);
1422                 }
1423                 break;
1424         case 6:
1425                 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1426                         return 0; /* It is the Q disk */
1427                 switch (conf->algorithm) {
1428                 case ALGORITHM_LEFT_ASYMMETRIC:
1429                 case ALGORITHM_RIGHT_ASYMMETRIC:
1430                         if (sh->pd_idx == raid_disks-1)
1431                                 i--;    /* Q D D D P */
1432                         else if (i > sh->pd_idx)
1433                                 i -= 2; /* D D P Q D */
1434                         break;
1435                 case ALGORITHM_LEFT_SYMMETRIC:
1436                 case ALGORITHM_RIGHT_SYMMETRIC:
1437                         if (sh->pd_idx == raid_disks-1)
1438                                 i--; /* Q D D D P */
1439                         else {
1440                                 /* D D P Q D */
1441                                 if (i < sh->pd_idx)
1442                                         i += raid_disks;
1443                                 i -= (sh->pd_idx + 2);
1444                         }
1445                         break;
1446                 default:
1447                         printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1448                                 conf->algorithm);
1449                 }
1450                 break;
1451         }
1452
1453         chunk_number = stripe * data_disks + i;
1454         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1455
1456         check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1457         if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1458                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1459                 return 0;
1460         }
1461         return r_sector;
1462 }
1463
1464
1465
1466 /*
1467  * Copy data between a page in the stripe cache, and one or more bion
1468  * The page could align with the middle of the bio, or there could be
1469  * several bion, each with several bio_vecs, which cover part of the page
1470  * Multiple bion are linked together on bi_next.  There may be extras
1471  * at the end of this list.  We ignore them.
1472  */
1473 static void copy_data(int frombio, struct bio *bio,
1474                      struct page *page,
1475                      sector_t sector)
1476 {
1477         char *pa = page_address(page);
1478         struct bio_vec *bvl;
1479         int i;
1480         int page_offset;
1481
1482         if (bio->bi_sector >= sector)
1483                 page_offset = (signed)(bio->bi_sector - sector) * 512;
1484         else
1485                 page_offset = (signed)(sector - bio->bi_sector) * -512;
1486         bio_for_each_segment(bvl, bio, i) {
1487                 int len = bio_iovec_idx(bio,i)->bv_len;
1488                 int clen;
1489                 int b_offset = 0;
1490
1491                 if (page_offset < 0) {
1492                         b_offset = -page_offset;
1493                         page_offset += b_offset;
1494                         len -= b_offset;
1495                 }
1496
1497                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1498                         clen = STRIPE_SIZE - page_offset;
1499                 else clen = len;
1500
1501                 if (clen > 0) {
1502                         char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1503                         if (frombio)
1504                                 memcpy(pa+page_offset, ba+b_offset, clen);
1505                         else
1506                                 memcpy(ba+b_offset, pa+page_offset, clen);
1507                         __bio_kunmap_atomic(ba, KM_USER0);
1508                 }
1509                 if (clen < len) /* hit end of page */
1510                         break;
1511                 page_offset +=  len;
1512         }
1513 }
1514
1515 #define check_xor()     do {                                              \
1516                                 if (count == MAX_XOR_BLOCKS) {            \
1517                                 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1518                                 count = 0;                                \
1519                            }                                              \
1520                         } while(0)
1521
1522 static void compute_parity6(struct stripe_head *sh, int method)
1523 {
1524         raid6_conf_t *conf = sh->raid_conf;
1525         int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1526         struct bio *chosen;
1527         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1528         void *ptrs[disks];
1529
1530         qd_idx = raid6_next_disk(pd_idx, disks);
1531         d0_idx = raid6_next_disk(qd_idx, disks);
1532
1533         pr_debug("compute_parity, stripe %llu, method %d\n",
1534                 (unsigned long long)sh->sector, method);
1535
1536         switch(method) {
1537         case READ_MODIFY_WRITE:
1538                 BUG();          /* READ_MODIFY_WRITE N/A for RAID-6 */
1539         case RECONSTRUCT_WRITE:
1540                 for (i= disks; i-- ;)
1541                         if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1542                                 chosen = sh->dev[i].towrite;
1543                                 sh->dev[i].towrite = NULL;
1544
1545                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1546                                         wake_up(&conf->wait_for_overlap);
1547
1548                                 BUG_ON(sh->dev[i].written);
1549                                 sh->dev[i].written = chosen;
1550                         }
1551                 break;
1552         case CHECK_PARITY:
1553                 BUG();          /* Not implemented yet */
1554         }
1555
1556         for (i = disks; i--;)
1557                 if (sh->dev[i].written) {
1558                         sector_t sector = sh->dev[i].sector;
1559                         struct bio *wbi = sh->dev[i].written;
1560                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1561                                 copy_data(1, wbi, sh->dev[i].page, sector);
1562                                 wbi = r5_next_bio(wbi, sector);
1563                         }
1564
1565                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1566                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1567                 }
1568
1569 //      switch(method) {
1570 //      case RECONSTRUCT_WRITE:
1571 //      case CHECK_PARITY:
1572 //      case UPDATE_PARITY:
1573                 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1574                 /* FIX: Is this ordering of drives even remotely optimal? */
1575                 count = 0;
1576                 i = d0_idx;
1577                 do {
1578                         ptrs[count++] = page_address(sh->dev[i].page);
1579                         if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1580                                 printk("block %d/%d not uptodate on parity calc\n", i,count);
1581                         i = raid6_next_disk(i, disks);
1582                 } while ( i != d0_idx );
1583 //              break;
1584 //      }
1585
1586         raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1587
1588         switch(method) {
1589         case RECONSTRUCT_WRITE:
1590                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1591                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1592                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1593                 set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1594                 break;
1595         case UPDATE_PARITY:
1596                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1597                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1598                 break;
1599         }
1600 }
1601
1602
1603 /* Compute one missing block */
1604 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1605 {
1606         int i, count, disks = sh->disks;
1607         void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1608         int pd_idx = sh->pd_idx;
1609         int qd_idx = raid6_next_disk(pd_idx, disks);
1610
1611         pr_debug("compute_block_1, stripe %llu, idx %d\n",
1612                 (unsigned long long)sh->sector, dd_idx);
1613
1614         if ( dd_idx == qd_idx ) {
1615                 /* We're actually computing the Q drive */
1616                 compute_parity6(sh, UPDATE_PARITY);
1617         } else {
1618                 dest = page_address(sh->dev[dd_idx].page);
1619                 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1620                 count = 0;
1621                 for (i = disks ; i--; ) {
1622                         if (i == dd_idx || i == qd_idx)
1623                                 continue;
1624                         p = page_address(sh->dev[i].page);
1625                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1626                                 ptr[count++] = p;
1627                         else
1628                                 printk("compute_block() %d, stripe %llu, %d"
1629                                        " not present\n", dd_idx,
1630                                        (unsigned long long)sh->sector, i);
1631
1632                         check_xor();
1633                 }
1634                 if (count)
1635                         xor_blocks(count, STRIPE_SIZE, dest, ptr);
1636                 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1637                 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1638         }
1639 }
1640
1641 /* Compute two missing blocks */
1642 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1643 {
1644         int i, count, disks = sh->disks;
1645         int pd_idx = sh->pd_idx;
1646         int qd_idx = raid6_next_disk(pd_idx, disks);
1647         int d0_idx = raid6_next_disk(qd_idx, disks);
1648         int faila, failb;
1649
1650         /* faila and failb are disk numbers relative to d0_idx */
1651         /* pd_idx become disks-2 and qd_idx become disks-1 */
1652         faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1653         failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1654
1655         BUG_ON(faila == failb);
1656         if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1657
1658         pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1659                (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1660
1661         if ( failb == disks-1 ) {
1662                 /* Q disk is one of the missing disks */
1663                 if ( faila == disks-2 ) {
1664                         /* Missing P+Q, just recompute */
1665                         compute_parity6(sh, UPDATE_PARITY);
1666                         return;
1667                 } else {
1668                         /* We're missing D+Q; recompute D from P */
1669                         compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1670                         compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1671                         return;
1672                 }
1673         }
1674
1675         /* We're missing D+P or D+D; build pointer table */
1676         {
1677                 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1678                 void *ptrs[disks];
1679
1680                 count = 0;
1681                 i = d0_idx;
1682                 do {
1683                         ptrs[count++] = page_address(sh->dev[i].page);
1684                         i = raid6_next_disk(i, disks);
1685                         if (i != dd_idx1 && i != dd_idx2 &&
1686                             !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1687                                 printk("compute_2 with missing block %d/%d\n", count, i);
1688                 } while ( i != d0_idx );
1689
1690                 if ( failb == disks-2 ) {
1691                         /* We're missing D+P. */
1692                         raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1693                 } else {
1694                         /* We're missing D+D. */
1695                         raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1696                 }
1697
1698                 /* Both the above update both missing blocks */
1699                 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1700                 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1701         }
1702 }
1703
1704 static int
1705 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1706 {
1707         int i, pd_idx = sh->pd_idx, disks = sh->disks;
1708         int locked = 0;
1709
1710         if (rcw) {
1711                 /* if we are not expanding this is a proper write request, and
1712                  * there will be bios with new data to be drained into the
1713                  * stripe cache
1714                  */
1715                 if (!expand) {
1716                         set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1717                         sh->ops.count++;
1718                 }
1719
1720                 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1721                 sh->ops.count++;
1722
1723                 for (i = disks; i--; ) {
1724                         struct r5dev *dev = &sh->dev[i];
1725
1726                         if (dev->towrite) {
1727                                 set_bit(R5_LOCKED, &dev->flags);
1728                                 if (!expand)
1729                                         clear_bit(R5_UPTODATE, &dev->flags);
1730                                 locked++;
1731                         }
1732                 }
1733                 if (locked + 1 == disks)
1734                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1735                                 atomic_inc(&sh->raid_conf->pending_full_writes);
1736         } else {
1737                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1738                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1739
1740                 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1741                 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1742                 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1743
1744                 sh->ops.count += 3;
1745
1746                 for (i = disks; i--; ) {
1747                         struct r5dev *dev = &sh->dev[i];
1748                         if (i == pd_idx)
1749                                 continue;
1750
1751                         /* For a read-modify write there may be blocks that are
1752                          * locked for reading while others are ready to be
1753                          * written so we distinguish these blocks by the
1754                          * R5_Wantprexor bit
1755                          */
1756                         if (dev->towrite &&
1757                             (test_bit(R5_UPTODATE, &dev->flags) ||
1758                             test_bit(R5_Wantcompute, &dev->flags))) {
1759                                 set_bit(R5_Wantprexor, &dev->flags);
1760                                 set_bit(R5_LOCKED, &dev->flags);
1761                                 clear_bit(R5_UPTODATE, &dev->flags);
1762                                 locked++;
1763                         }
1764                 }
1765         }
1766
1767         /* keep the parity disk locked while asynchronous operations
1768          * are in flight
1769          */
1770         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1771         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1772         locked++;
1773
1774         pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1775                 __func__, (unsigned long long)sh->sector,
1776                 locked, sh->ops.pending);
1777
1778         return locked;
1779 }
1780
1781 /*
1782  * Each stripe/dev can have one or more bion attached.
1783  * toread/towrite point to the first in a chain.
1784  * The bi_next chain must be in order.
1785  */
1786 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1787 {
1788         struct bio **bip;
1789         raid5_conf_t *conf = sh->raid_conf;
1790         int firstwrite=0;
1791
1792         pr_debug("adding bh b#%llu to stripe s#%llu\n",
1793                 (unsigned long long)bi->bi_sector,
1794                 (unsigned long long)sh->sector);
1795
1796
1797         spin_lock(&sh->lock);
1798         spin_lock_irq(&conf->device_lock);
1799         if (forwrite) {
1800                 bip = &sh->dev[dd_idx].towrite;
1801                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1802                         firstwrite = 1;
1803         } else
1804                 bip = &sh->dev[dd_idx].toread;
1805         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1806                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1807                         goto overlap;
1808                 bip = & (*bip)->bi_next;
1809         }
1810         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1811                 goto overlap;
1812
1813         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1814         if (*bip)
1815                 bi->bi_next = *bip;
1816         *bip = bi;
1817         bi->bi_phys_segments ++;
1818         spin_unlock_irq(&conf->device_lock);
1819         spin_unlock(&sh->lock);
1820
1821         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1822                 (unsigned long long)bi->bi_sector,
1823                 (unsigned long long)sh->sector, dd_idx);
1824
1825         if (conf->mddev->bitmap && firstwrite) {
1826                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1827                                   STRIPE_SECTORS, 0);
1828                 sh->bm_seq = conf->seq_flush+1;
1829                 set_bit(STRIPE_BIT_DELAY, &sh->state);
1830         }
1831
1832         if (forwrite) {
1833                 /* check if page is covered */
1834                 sector_t sector = sh->dev[dd_idx].sector;
1835                 for (bi=sh->dev[dd_idx].towrite;
1836                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1837                              bi && bi->bi_sector <= sector;
1838                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1839                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1840                                 sector = bi->bi_sector + (bi->bi_size>>9);
1841                 }
1842                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1843                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1844         }
1845         return 1;
1846
1847  overlap:
1848         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1849         spin_unlock_irq(&conf->device_lock);
1850         spin_unlock(&sh->lock);
1851         return 0;
1852 }
1853
1854 static void end_reshape(raid5_conf_t *conf);
1855
1856 static int page_is_zero(struct page *p)
1857 {
1858         char *a = page_address(p);
1859         return ((*(u32*)a) == 0 &&
1860                 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1861 }
1862
1863 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1864 {
1865         int sectors_per_chunk = conf->chunk_size >> 9;
1866         int pd_idx, dd_idx;
1867         int chunk_offset = sector_div(stripe, sectors_per_chunk);
1868
1869         raid5_compute_sector(stripe * (disks - conf->max_degraded)
1870                              *sectors_per_chunk + chunk_offset,
1871                              disks, disks - conf->max_degraded,
1872                              &dd_idx, &pd_idx, conf);
1873         return pd_idx;
1874 }
1875
1876 static void
1877 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1878                                 struct stripe_head_state *s, int disks,
1879                                 struct bio **return_bi)
1880 {
1881         int i;
1882         for (i = disks; i--; ) {
1883                 struct bio *bi;
1884                 int bitmap_end = 0;
1885
1886                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1887                         mdk_rdev_t *rdev;
1888                         rcu_read_lock();
1889                         rdev = rcu_dereference(conf->disks[i].rdev);
1890                         if (rdev && test_bit(In_sync, &rdev->flags))
1891                                 /* multiple read failures in one stripe */
1892                                 md_error(conf->mddev, rdev);
1893                         rcu_read_unlock();
1894                 }
1895                 spin_lock_irq(&conf->device_lock);
1896                 /* fail all writes first */
1897                 bi = sh->dev[i].towrite;
1898                 sh->dev[i].towrite = NULL;
1899                 if (bi) {
1900                         s->to_write--;
1901                         bitmap_end = 1;
1902                 }
1903
1904                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1905                         wake_up(&conf->wait_for_overlap);
1906
1907                 while (bi && bi->bi_sector <
1908                         sh->dev[i].sector + STRIPE_SECTORS) {
1909                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1910                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1911                         if (--bi->bi_phys_segments == 0) {
1912                                 md_write_end(conf->mddev);
1913                                 bi->bi_next = *return_bi;
1914                                 *return_bi = bi;
1915                         }
1916                         bi = nextbi;
1917                 }
1918                 /* and fail all 'written' */
1919                 bi = sh->dev[i].written;
1920                 sh->dev[i].written = NULL;
1921                 if (bi) bitmap_end = 1;
1922                 while (bi && bi->bi_sector <
1923                        sh->dev[i].sector + STRIPE_SECTORS) {
1924                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1925                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1926                         if (--bi->bi_phys_segments == 0) {
1927                                 md_write_end(conf->mddev);
1928                                 bi->bi_next = *return_bi;
1929                                 *return_bi = bi;
1930                         }
1931                         bi = bi2;
1932                 }
1933
1934                 /* fail any reads if this device is non-operational and
1935                  * the data has not reached the cache yet.
1936                  */
1937                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1938                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1939                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
1940                         bi = sh->dev[i].toread;
1941                         sh->dev[i].toread = NULL;
1942                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1943                                 wake_up(&conf->wait_for_overlap);
1944                         if (bi) s->to_read--;
1945                         while (bi && bi->bi_sector <
1946                                sh->dev[i].sector + STRIPE_SECTORS) {
1947                                 struct bio *nextbi =
1948                                         r5_next_bio(bi, sh->dev[i].sector);
1949                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1950                                 if (--bi->bi_phys_segments == 0) {
1951                                         bi->bi_next = *return_bi;
1952                                         *return_bi = bi;
1953                                 }
1954                                 bi = nextbi;
1955                         }
1956                 }
1957                 spin_unlock_irq(&conf->device_lock);
1958                 if (bitmap_end)
1959                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1960                                         STRIPE_SECTORS, 0, 0);
1961         }
1962
1963         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1964                 if (atomic_dec_and_test(&conf->pending_full_writes))
1965                         md_wakeup_thread(conf->mddev->thread);
1966 }
1967
1968 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1969  * to process
1970  */
1971 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1972                         struct stripe_head_state *s, int disk_idx, int disks)
1973 {
1974         struct r5dev *dev = &sh->dev[disk_idx];
1975         struct r5dev *failed_dev = &sh->dev[s->failed_num];
1976
1977         /* don't schedule compute operations or reads on the parity block while
1978          * a check is in flight
1979          */
1980         if ((disk_idx == sh->pd_idx) &&
1981              test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1982                 return ~0;
1983
1984         /* is the data in this block needed, and can we get it? */
1985         if (!test_bit(R5_LOCKED, &dev->flags) &&
1986             !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1987             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1988              s->syncing || s->expanding || (s->failed &&
1989              (failed_dev->toread || (failed_dev->towrite &&
1990              !test_bit(R5_OVERWRITE, &failed_dev->flags)
1991              ))))) {
1992                 /* 1/ We would like to get this block, possibly by computing it,
1993                  * but we might not be able to.
1994                  *
1995                  * 2/ Since parity check operations potentially make the parity
1996                  * block !uptodate it will need to be refreshed before any
1997                  * compute operations on data disks are scheduled.
1998                  *
1999                  * 3/ We hold off parity block re-reads until check operations
2000                  * have quiesced.
2001                  */
2002                 if ((s->uptodate == disks - 1) &&
2003                     (s->failed && disk_idx == s->failed_num) &&
2004                     !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2005                         set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2006                         set_bit(R5_Wantcompute, &dev->flags);
2007                         sh->ops.target = disk_idx;
2008                         s->req_compute = 1;
2009                         sh->ops.count++;
2010                         /* Careful: from this point on 'uptodate' is in the eye
2011                          * of raid5_run_ops which services 'compute' operations
2012                          * before writes. R5_Wantcompute flags a block that will
2013                          * be R5_UPTODATE by the time it is needed for a
2014                          * subsequent operation.
2015                          */
2016                         s->uptodate++;
2017                         return 0; /* uptodate + compute == disks */
2018                 } else if ((s->uptodate < disks - 1) &&
2019                         test_bit(R5_Insync, &dev->flags)) {
2020                         /* Note: we hold off compute operations while checks are
2021                          * in flight, but we still prefer 'compute' over 'read'
2022                          * hence we only read if (uptodate < * disks-1)
2023                          */
2024                         set_bit(R5_LOCKED, &dev->flags);
2025                         set_bit(R5_Wantread, &dev->flags);
2026                         if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2027                                 sh->ops.count++;
2028                         s->locked++;
2029                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2030                                 s->syncing);
2031                 }
2032         }
2033
2034         return ~0;
2035 }
2036
2037 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2038                         struct stripe_head_state *s, int disks)
2039 {
2040         int i;
2041
2042         /* Clear completed compute operations.  Parity recovery
2043          * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2044          * later on in this routine
2045          */
2046         if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2047                 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2048                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2049                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2050                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2051         }
2052
2053         /* look for blocks to read/compute, skip this if a compute
2054          * is already in flight, or if the stripe contents are in the
2055          * midst of changing due to a write
2056          */
2057         if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2058                 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2059                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2060                 for (i = disks; i--; )
2061                         if (__handle_issuing_new_read_requests5(
2062                                 sh, s, i, disks) == 0)
2063                                 break;
2064         }
2065         set_bit(STRIPE_HANDLE, &sh->state);
2066 }
2067
2068 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2069                         struct stripe_head_state *s, struct r6_state *r6s,
2070                         int disks)
2071 {
2072         int i;
2073         for (i = disks; i--; ) {
2074                 struct r5dev *dev = &sh->dev[i];
2075                 if (!test_bit(R5_LOCKED, &dev->flags) &&
2076                     !test_bit(R5_UPTODATE, &dev->flags) &&
2077                     (dev->toread || (dev->towrite &&
2078                      !test_bit(R5_OVERWRITE, &dev->flags)) ||
2079                      s->syncing || s->expanding ||
2080                      (s->failed >= 1 &&
2081                       (sh->dev[r6s->failed_num[0]].toread ||
2082                        s->to_write)) ||
2083                      (s->failed >= 2 &&
2084                       (sh->dev[r6s->failed_num[1]].toread ||
2085                        s->to_write)))) {
2086                         /* we would like to get this block, possibly
2087                          * by computing it, but we might not be able to
2088                          */
2089                         if ((s->uptodate == disks - 1) &&
2090                             (s->failed && (i == r6s->failed_num[0] ||
2091                                            i == r6s->failed_num[1]))) {
2092                                 pr_debug("Computing stripe %llu block %d\n",
2093                                        (unsigned long long)sh->sector, i);
2094                                 compute_block_1(sh, i, 0);
2095                                 s->uptodate++;
2096                         } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2097                                 /* Computing 2-failure is *very* expensive; only
2098                                  * do it if failed >= 2
2099                                  */
2100                                 int other;
2101                                 for (other = disks; other--; ) {
2102                                         if (other == i)
2103                                                 continue;
2104                                         if (!test_bit(R5_UPTODATE,
2105                                               &sh->dev[other].flags))
2106                                                 break;
2107                                 }
2108                                 BUG_ON(other < 0);
2109                                 pr_debug("Computing stripe %llu blocks %d,%d\n",
2110                                        (unsigned long long)sh->sector,
2111                                        i, other);
2112                                 compute_block_2(sh, i, other);
2113                                 s->uptodate += 2;
2114                         } else if (test_bit(R5_Insync, &dev->flags)) {
2115                                 set_bit(R5_LOCKED, &dev->flags);
2116                                 set_bit(R5_Wantread, &dev->flags);
2117                                 s->locked++;
2118                                 pr_debug("Reading block %d (sync=%d)\n",
2119                                         i, s->syncing);
2120                         }
2121                 }
2122         }
2123         set_bit(STRIPE_HANDLE, &sh->state);
2124 }
2125
2126
2127 /* handle_completed_write_requests
2128  * any written block on an uptodate or failed drive can be returned.
2129  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2130  * never LOCKED, so we don't need to test 'failed' directly.
2131  */
2132 static void handle_completed_write_requests(raid5_conf_t *conf,
2133         struct stripe_head *sh, int disks, struct bio **return_bi)
2134 {
2135         int i;
2136         struct r5dev *dev;
2137
2138         for (i = disks; i--; )
2139                 if (sh->dev[i].written) {
2140                         dev = &sh->dev[i];
2141                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2142                                 test_bit(R5_UPTODATE, &dev->flags)) {
2143                                 /* We can return any write requests */
2144                                 struct bio *wbi, *wbi2;
2145                                 int bitmap_end = 0;
2146                                 pr_debug("Return write for disc %d\n", i);
2147                                 spin_lock_irq(&conf->device_lock);
2148                                 wbi = dev->written;
2149                                 dev->written = NULL;
2150                                 while (wbi && wbi->bi_sector <
2151                                         dev->sector + STRIPE_SECTORS) {
2152                                         wbi2 = r5_next_bio(wbi, dev->sector);
2153                                         if (--wbi->bi_phys_segments == 0) {
2154                                                 md_write_end(conf->mddev);
2155                                                 wbi->bi_next = *return_bi;
2156                                                 *return_bi = wbi;
2157                                         }
2158                                         wbi = wbi2;
2159                                 }
2160                                 if (dev->towrite == NULL)
2161                                         bitmap_end = 1;
2162                                 spin_unlock_irq(&conf->device_lock);
2163                                 if (bitmap_end)
2164                                         bitmap_endwrite(conf->mddev->bitmap,
2165                                                         sh->sector,
2166                                                         STRIPE_SECTORS,
2167                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2168                                                         0);
2169                         }
2170                 }
2171
2172         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2173                 if (atomic_dec_and_test(&conf->pending_full_writes))
2174                         md_wakeup_thread(conf->mddev->thread);
2175 }
2176
2177 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2178                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2179 {
2180         int rmw = 0, rcw = 0, i;
2181         for (i = disks; i--; ) {
2182                 /* would I have to read this buffer for read_modify_write */
2183                 struct r5dev *dev = &sh->dev[i];
2184                 if ((dev->towrite || i == sh->pd_idx) &&
2185                     !test_bit(R5_LOCKED, &dev->flags) &&
2186                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2187                       test_bit(R5_Wantcompute, &dev->flags))) {
2188                         if (test_bit(R5_Insync, &dev->flags))
2189                                 rmw++;
2190                         else
2191                                 rmw += 2*disks;  /* cannot read it */
2192                 }
2193                 /* Would I have to read this buffer for reconstruct_write */
2194                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2195                     !test_bit(R5_LOCKED, &dev->flags) &&
2196                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2197                     test_bit(R5_Wantcompute, &dev->flags))) {
2198                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2199                         else
2200                                 rcw += 2*disks;
2201                 }
2202         }
2203         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2204                 (unsigned long long)sh->sector, rmw, rcw);
2205         set_bit(STRIPE_HANDLE, &sh->state);
2206         if (rmw < rcw && rmw > 0)
2207                 /* prefer read-modify-write, but need to get some data */
2208                 for (i = disks; i--; ) {
2209                         struct r5dev *dev = &sh->dev[i];
2210                         if ((dev->towrite || i == sh->pd_idx) &&
2211                             !test_bit(R5_LOCKED, &dev->flags) &&
2212                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2213                             test_bit(R5_Wantcompute, &dev->flags)) &&
2214                             test_bit(R5_Insync, &dev->flags)) {
2215                                 if (
2216                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2217                                         pr_debug("Read_old block "
2218                                                 "%d for r-m-w\n", i);
2219                                         set_bit(R5_LOCKED, &dev->flags);
2220                                         set_bit(R5_Wantread, &dev->flags);
2221                                         if (!test_and_set_bit(
2222                                                 STRIPE_OP_IO, &sh->ops.pending))
2223                                                 sh->ops.count++;
2224                                         s->locked++;
2225                                 } else {
2226                                         set_bit(STRIPE_DELAYED, &sh->state);
2227                                         set_bit(STRIPE_HANDLE, &sh->state);
2228                                 }
2229                         }
2230                 }
2231         if (rcw <= rmw && rcw > 0)
2232                 /* want reconstruct write, but need to get some data */
2233                 for (i = disks; i--; ) {
2234                         struct r5dev *dev = &sh->dev[i];
2235                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2236                             i != sh->pd_idx &&
2237                             !test_bit(R5_LOCKED, &dev->flags) &&
2238                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2239                             test_bit(R5_Wantcompute, &dev->flags)) &&
2240                             test_bit(R5_Insync, &dev->flags)) {
2241                                 if (
2242                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2243                                         pr_debug("Read_old block "
2244                                                 "%d for Reconstruct\n", i);
2245                                         set_bit(R5_LOCKED, &dev->flags);
2246                                         set_bit(R5_Wantread, &dev->flags);
2247                                         if (!test_and_set_bit(
2248                                                 STRIPE_OP_IO, &sh->ops.pending))
2249                                                 sh->ops.count++;
2250                                         s->locked++;
2251                                 } else {
2252                                         set_bit(STRIPE_DELAYED, &sh->state);
2253                                         set_bit(STRIPE_HANDLE, &sh->state);
2254                                 }
2255                         }
2256                 }
2257         /* now if nothing is locked, and if we have enough data,
2258          * we can start a write request
2259          */
2260         /* since handle_stripe can be called at any time we need to handle the
2261          * case where a compute block operation has been submitted and then a
2262          * subsequent call wants to start a write request.  raid5_run_ops only
2263          * handles the case where compute block and postxor are requested
2264          * simultaneously.  If this is not the case then new writes need to be
2265          * held off until the compute completes.
2266          */
2267         if ((s->req_compute ||
2268             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2269                 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2270                 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2271                 s->locked += handle_write_operations5(sh, rcw == 0, 0);
2272 }
2273
2274 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2275                 struct stripe_head *sh, struct stripe_head_state *s,
2276                 struct r6_state *r6s, int disks)
2277 {
2278         int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2279         int qd_idx = r6s->qd_idx;
2280         for (i = disks; i--; ) {
2281                 struct r5dev *dev = &sh->dev[i];
2282                 /* Would I have to read this buffer for reconstruct_write */
2283                 if (!test_bit(R5_OVERWRITE, &dev->flags)
2284                     && i != pd_idx && i != qd_idx
2285                     && (!test_bit(R5_LOCKED, &dev->flags)
2286                             ) &&
2287                     !test_bit(R5_UPTODATE, &dev->flags)) {
2288                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2289                         else {
2290                                 pr_debug("raid6: must_compute: "
2291                                         "disk %d flags=%#lx\n", i, dev->flags);
2292                                 must_compute++;
2293                         }
2294                 }
2295         }
2296         pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2297                (unsigned long long)sh->sector, rcw, must_compute);
2298         set_bit(STRIPE_HANDLE, &sh->state);
2299
2300         if (rcw > 0)
2301                 /* want reconstruct write, but need to get some data */
2302                 for (i = disks; i--; ) {
2303                         struct r5dev *dev = &sh->dev[i];
2304                         if (!test_bit(R5_OVERWRITE, &dev->flags)
2305                             && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2306                             && !test_bit(R5_LOCKED, &dev->flags) &&
2307                             !test_bit(R5_UPTODATE, &dev->flags) &&
2308                             test_bit(R5_Insync, &dev->flags)) {
2309                                 if (
2310                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2311                                         pr_debug("Read_old stripe %llu "
2312                                                 "block %d for Reconstruct\n",
2313                                              (unsigned long long)sh->sector, i);
2314                                         set_bit(R5_LOCKED, &dev->flags);
2315                                         set_bit(R5_Wantread, &dev->flags);
2316                                         s->locked++;
2317                                 } else {
2318                                         pr_debug("Request delayed stripe %llu "
2319                                                 "block %d for Reconstruct\n",
2320                                              (unsigned long long)sh->sector, i);
2321                                         set_bit(STRIPE_DELAYED, &sh->state);
2322                                         set_bit(STRIPE_HANDLE, &sh->state);
2323                                 }
2324                         }
2325                 }
2326         /* now if nothing is locked, and if we have enough data, we can start a
2327          * write request
2328          */
2329         if (s->locked == 0 && rcw == 0 &&
2330             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2331                 if (must_compute > 0) {
2332                         /* We have failed blocks and need to compute them */
2333                         switch (s->failed) {
2334                         case 0:
2335                                 BUG();
2336                         case 1:
2337                                 compute_block_1(sh, r6s->failed_num[0], 0);
2338                                 break;
2339                         case 2:
2340                                 compute_block_2(sh, r6s->failed_num[0],
2341                                                 r6s->failed_num[1]);
2342                                 break;
2343                         default: /* This request should have been failed? */
2344                                 BUG();
2345                         }
2346                 }
2347
2348                 pr_debug("Computing parity for stripe %llu\n",
2349                         (unsigned long long)sh->sector);
2350                 compute_parity6(sh, RECONSTRUCT_WRITE);
2351                 /* now every locked buffer is ready to be written */
2352                 for (i = disks; i--; )
2353                         if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2354                                 pr_debug("Writing stripe %llu block %d\n",
2355                                        (unsigned long long)sh->sector, i);
2356                                 s->locked++;
2357                                 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2358                         }
2359                 if (s->locked == disks)
2360                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2361                                 atomic_inc(&conf->pending_full_writes);
2362                 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2363                 set_bit(STRIPE_INSYNC, &sh->state);
2364
2365                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2366                         atomic_dec(&conf->preread_active_stripes);
2367                         if (atomic_read(&conf->preread_active_stripes) <
2368                             IO_THRESHOLD)
2369                                 md_wakeup_thread(conf->mddev->thread);
2370                 }
2371         }
2372 }
2373
2374 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2375                                 struct stripe_head_state *s, int disks)
2376 {
2377         int canceled_check = 0;
2378
2379         set_bit(STRIPE_HANDLE, &sh->state);
2380
2381         /* complete a check operation */
2382         if (test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2383                 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2384                 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2385                 if (s->failed == 0) {
2386                         if (sh->ops.zero_sum_result == 0)
2387                                 /* parity is correct (on disc,
2388                                  * not in buffer any more)
2389                                  */
2390                                 set_bit(STRIPE_INSYNC, &sh->state);
2391                         else {
2392                                 conf->mddev->resync_mismatches +=
2393                                         STRIPE_SECTORS;
2394                                 if (test_bit(
2395                                      MD_RECOVERY_CHECK, &conf->mddev->recovery))
2396                                         /* don't try to repair!! */
2397                                         set_bit(STRIPE_INSYNC, &sh->state);
2398                                 else {
2399                                         set_bit(STRIPE_OP_COMPUTE_BLK,
2400                                                 &sh->ops.pending);
2401                                         set_bit(STRIPE_OP_MOD_REPAIR_PD,
2402                                                 &sh->ops.pending);
2403                                         set_bit(R5_Wantcompute,
2404                                                 &sh->dev[sh->pd_idx].flags);
2405                                         sh->ops.target = sh->pd_idx;
2406                                         sh->ops.count++;
2407                                         s->uptodate++;
2408                                 }
2409                         }
2410                 } else
2411                         canceled_check = 1; /* STRIPE_INSYNC is not set */
2412         }
2413
2414         /* start a new check operation if there are no failures, the stripe is
2415          * not insync, and a repair is not in flight
2416          */
2417         if (s->failed == 0 &&
2418             !test_bit(STRIPE_INSYNC, &sh->state) &&
2419             !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2420                 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2421                         BUG_ON(s->uptodate != disks);
2422                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2423                         sh->ops.count++;
2424                         s->uptodate--;
2425                 }
2426         }
2427
2428         /* check if we can clear a parity disk reconstruct */
2429         if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2430             test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2431
2432                 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2433                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2434                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2435                 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2436         }
2437
2438
2439         /* Wait for check parity and compute block operations to complete
2440          * before write-back.  If a failure occurred while the check operation
2441          * was in flight we need to cycle this stripe through handle_stripe
2442          * since the parity block may not be uptodate
2443          */
2444         if (!canceled_check && !test_bit(STRIPE_INSYNC, &sh->state) &&
2445             !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2446             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2447                 struct r5dev *dev;
2448                 /* either failed parity check, or recovery is happening */
2449                 if (s->failed == 0)
2450                         s->failed_num = sh->pd_idx;
2451                 dev = &sh->dev[s->failed_num];
2452                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2453                 BUG_ON(s->uptodate != disks);
2454
2455                 set_bit(R5_LOCKED, &dev->flags);
2456                 set_bit(R5_Wantwrite, &dev->flags);
2457                 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2458                         sh->ops.count++;
2459
2460                 clear_bit(STRIPE_DEGRADED, &sh->state);
2461                 s->locked++;
2462                 set_bit(STRIPE_INSYNC, &sh->state);
2463         }
2464 }
2465
2466
2467 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2468                                 struct stripe_head_state *s,
2469                                 struct r6_state *r6s, struct page *tmp_page,
2470                                 int disks)
2471 {
2472         int update_p = 0, update_q = 0;
2473         struct r5dev *dev;
2474         int pd_idx = sh->pd_idx;
2475         int qd_idx = r6s->qd_idx;
2476
2477         set_bit(STRIPE_HANDLE, &sh->state);
2478
2479         BUG_ON(s->failed > 2);
2480         BUG_ON(s->uptodate < disks);
2481         /* Want to check and possibly repair P and Q.
2482          * However there could be one 'failed' device, in which
2483          * case we can only check one of them, possibly using the
2484          * other to generate missing data
2485          */
2486
2487         /* If !tmp_page, we cannot do the calculations,
2488          * but as we have set STRIPE_HANDLE, we will soon be called
2489          * by stripe_handle with a tmp_page - just wait until then.
2490          */
2491         if (tmp_page) {
2492                 if (s->failed == r6s->q_failed) {
2493                         /* The only possible failed device holds 'Q', so it
2494                          * makes sense to check P (If anything else were failed,
2495                          * we would have used P to recreate it).
2496                          */
2497                         compute_block_1(sh, pd_idx, 1);
2498                         if (!page_is_zero(sh->dev[pd_idx].page)) {
2499                                 compute_block_1(sh, pd_idx, 0);
2500                                 update_p = 1;
2501                         }
2502                 }
2503                 if (!r6s->q_failed && s->failed < 2) {
2504                         /* q is not failed, and we didn't use it to generate
2505                          * anything, so it makes sense to check it
2506                          */
2507                         memcpy(page_address(tmp_page),
2508                                page_address(sh->dev[qd_idx].page),
2509                                STRIPE_SIZE);
2510                         compute_parity6(sh, UPDATE_PARITY);
2511                         if (memcmp(page_address(tmp_page),
2512                                    page_address(sh->dev[qd_idx].page),
2513                                    STRIPE_SIZE) != 0) {
2514                                 clear_bit(STRIPE_INSYNC, &sh->state);
2515                                 update_q = 1;
2516                         }
2517                 }
2518                 if (update_p || update_q) {
2519                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2520                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2521                                 /* don't try to repair!! */
2522                                 update_p = update_q = 0;
2523                 }
2524
2525                 /* now write out any block on a failed drive,
2526                  * or P or Q if they need it
2527                  */
2528
2529                 if (s->failed == 2) {
2530                         dev = &sh->dev[r6s->failed_num[1]];
2531                         s->locked++;
2532                         set_bit(R5_LOCKED, &dev->flags);
2533                         set_bit(R5_Wantwrite, &dev->flags);
2534                 }
2535                 if (s->failed >= 1) {
2536                         dev = &sh->dev[r6s->failed_num[0]];
2537                         s->locked++;
2538                         set_bit(R5_LOCKED, &dev->flags);
2539                         set_bit(R5_Wantwrite, &dev->flags);
2540                 }
2541
2542                 if (update_p) {
2543                         dev = &sh->dev[pd_idx];
2544                         s->locked++;
2545                         set_bit(R5_LOCKED, &dev->flags);
2546                         set_bit(R5_Wantwrite, &dev->flags);
2547                 }
2548                 if (update_q) {
2549                         dev = &sh->dev[qd_idx];
2550                         s->locked++;
2551                         set_bit(R5_LOCKED, &dev->flags);
2552                         set_bit(R5_Wantwrite, &dev->flags);
2553                 }
2554                 clear_bit(STRIPE_DEGRADED, &sh->state);
2555
2556                 set_bit(STRIPE_INSYNC, &sh->state);
2557         }
2558 }
2559
2560 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2561                                 struct r6_state *r6s)
2562 {
2563         int i;
2564
2565         /* We have read all the blocks in this stripe and now we need to
2566          * copy some of them into a target stripe for expand.
2567          */
2568         struct dma_async_tx_descriptor *tx = NULL;
2569         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2570         for (i = 0; i < sh->disks; i++)
2571                 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2572                         int dd_idx, pd_idx, j;
2573                         struct stripe_head *sh2;
2574
2575                         sector_t bn = compute_blocknr(sh, i);
2576                         sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2577                                                 conf->raid_disks -
2578                                                 conf->max_degraded, &dd_idx,
2579                                                 &pd_idx, conf);
2580                         sh2 = get_active_stripe(conf, s, conf->raid_disks,
2581                                                 pd_idx, 1);
2582                         if (sh2 == NULL)
2583                                 /* so far only the early blocks of this stripe
2584                                  * have been requested.  When later blocks
2585                                  * get requested, we will try again
2586                                  */
2587                                 continue;
2588                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2589                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2590                                 /* must have already done this block */
2591                                 release_stripe(sh2);
2592                                 continue;
2593                         }
2594
2595                         /* place all the copies on one channel */
2596                         tx = async_memcpy(sh2->dev[dd_idx].page,
2597                                 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2598                                 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2599
2600                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2601                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2602                         for (j = 0; j < conf->raid_disks; j++)
2603                                 if (j != sh2->pd_idx &&
2604                                     (!r6s || j != raid6_next_disk(sh2->pd_idx,
2605                                                                  sh2->disks)) &&
2606                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2607                                         break;
2608                         if (j == conf->raid_disks) {
2609                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2610                                 set_bit(STRIPE_HANDLE, &sh2->state);
2611                         }
2612                         release_stripe(sh2);
2613
2614                 }
2615         /* done submitting copies, wait for them to complete */
2616         if (tx) {
2617                 async_tx_ack(tx);
2618                 dma_wait_for_async_tx(tx);
2619         }
2620 }
2621
2622
2623 /*
2624  * handle_stripe - do things to a stripe.
2625  *
2626  * We lock the stripe and then examine the state of various bits
2627  * to see what needs to be done.
2628  * Possible results:
2629  *    return some read request which now have data
2630  *    return some write requests which are safely on disc
2631  *    schedule a read on some buffers
2632  *    schedule a write of some buffers
2633  *    return confirmation of parity correctness
2634  *
2635  * buffers are taken off read_list or write_list, and bh_cache buffers
2636  * get BH_Lock set before the stripe lock is released.
2637  *
2638  */
2639
2640 static void handle_stripe5(struct stripe_head *sh)
2641 {
2642         raid5_conf_t *conf = sh->raid_conf;
2643         int disks = sh->disks, i;
2644         struct bio *return_bi = NULL;
2645         struct stripe_head_state s;
2646         struct r5dev *dev;
2647         unsigned long pending = 0;
2648         mdk_rdev_t *blocked_rdev = NULL;
2649         int prexor;
2650
2651         memset(&s, 0, sizeof(s));
2652         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2653                 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2654                 atomic_read(&sh->count), sh->pd_idx,
2655                 sh->ops.pending, sh->ops.ack, sh->ops.complete);
2656
2657         spin_lock(&sh->lock);
2658         clear_bit(STRIPE_HANDLE, &sh->state);
2659         clear_bit(STRIPE_DELAYED, &sh->state);
2660
2661         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2662         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2663         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2664         /* Now to look around and see what can be done */
2665
2666         /* clean-up completed biofill operations */
2667         if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
2668                 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
2669                 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
2670                 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
2671         }
2672
2673         rcu_read_lock();
2674         for (i=disks; i--; ) {
2675                 mdk_rdev_t *rdev;
2676                 struct r5dev *dev = &sh->dev[i];
2677                 clear_bit(R5_Insync, &dev->flags);
2678
2679                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2680                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2681                         dev->towrite, dev->written);
2682
2683                 /* maybe we can request a biofill operation
2684                  *
2685                  * new wantfill requests are only permitted while
2686                  * STRIPE_OP_BIOFILL is clear
2687                  */
2688                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2689                         !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2690                         set_bit(R5_Wantfill, &dev->flags);
2691
2692                 /* now count some things */
2693                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2694                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2695                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2696
2697                 if (test_bit(R5_Wantfill, &dev->flags))
2698                         s.to_fill++;
2699                 else if (dev->toread)
2700                         s.to_read++;
2701                 if (dev->towrite) {
2702                         s.to_write++;
2703                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2704                                 s.non_overwrite++;
2705                 }
2706                 if (dev->written)
2707                         s.written++;
2708                 rdev = rcu_dereference(conf->disks[i].rdev);
2709                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2710                         blocked_rdev = rdev;
2711                         atomic_inc(&rdev->nr_pending);
2712                         break;
2713                 }
2714                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2715                         /* The ReadError flag will just be confusing now */
2716                         clear_bit(R5_ReadError, &dev->flags);
2717                         clear_bit(R5_ReWrite, &dev->flags);
2718                 }
2719                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2720                     || test_bit(R5_ReadError, &dev->flags)) {
2721                         s.failed++;
2722                         s.failed_num = i;
2723                 } else
2724                         set_bit(R5_Insync, &dev->flags);
2725         }
2726         rcu_read_unlock();
2727
2728         if (unlikely(blocked_rdev)) {
2729                 set_bit(STRIPE_HANDLE, &sh->state);
2730                 goto unlock;
2731         }
2732
2733         if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2734                 sh->ops.count++;
2735
2736         pr_debug("locked=%d uptodate=%d to_read=%d"
2737                 " to_write=%d failed=%d failed_num=%d\n",
2738                 s.locked, s.uptodate, s.to_read, s.to_write,
2739                 s.failed, s.failed_num);
2740         /* check if the array has lost two devices and, if so, some requests might
2741          * need to be failed
2742          */
2743         if (s.failed > 1 && s.to_read+s.to_write+s.written)
2744                 handle_requests_to_failed_array(conf, sh, &s, disks,
2745                                                 &return_bi);
2746         if (s.failed > 1 && s.syncing) {
2747                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2748                 clear_bit(STRIPE_SYNCING, &sh->state);
2749                 s.syncing = 0;
2750         }
2751
2752         /* might be able to return some write requests if the parity block
2753          * is safe, or on a failed drive
2754          */
2755         dev = &sh->dev[sh->pd_idx];
2756         if ( s.written &&
2757              ((test_bit(R5_Insync, &dev->flags) &&
2758                !test_bit(R5_LOCKED, &dev->flags) &&
2759                test_bit(R5_UPTODATE, &dev->flags)) ||
2760                (s.failed == 1 && s.failed_num == sh->pd_idx)))
2761                 handle_completed_write_requests(conf, sh, disks, &return_bi);
2762
2763         /* Now we might consider reading some blocks, either to check/generate
2764          * parity, or to satisfy requests
2765          * or to load a block that is being partially written.
2766          */
2767         if (s.to_read || s.non_overwrite ||
2768             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2769             test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2770                 handle_issuing_new_read_requests5(sh, &s, disks);
2771
2772         /* Now we check to see if any write operations have recently
2773          * completed
2774          */
2775
2776         /* leave prexor set until postxor is done, allows us to distinguish
2777          * a rmw from a rcw during biodrain
2778          */
2779         prexor = 0;
2780         if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2781                 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2782
2783                 prexor = 1;
2784                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2785                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2786                 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2787
2788                 for (i = disks; i--; )
2789                         clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2790         }
2791
2792         /* if only POSTXOR is set then this is an 'expand' postxor */
2793         if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2794                 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2795
2796                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2797                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2798                 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2799
2800                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2801                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2802                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2803
2804                 /* All the 'written' buffers and the parity block are ready to
2805                  * be written back to disk
2806                  */
2807                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2808                 for (i = disks; i--; ) {
2809                         dev = &sh->dev[i];
2810                         if (test_bit(R5_LOCKED, &dev->flags) &&
2811                                 (i == sh->pd_idx || dev->written)) {
2812                                 pr_debug("Writing block %d\n", i);
2813                                 set_bit(R5_Wantwrite, &dev->flags);
2814                                 if (!test_and_set_bit(
2815                                     STRIPE_OP_IO, &sh->ops.pending))
2816                                         sh->ops.count++;
2817                                 if (prexor)
2818                                         continue;
2819                                 if (!test_bit(R5_Insync, &dev->flags) ||
2820                                     (i == sh->pd_idx && s.failed == 0))
2821                                         set_bit(STRIPE_INSYNC, &sh->state);
2822                         }
2823                 }
2824                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2825                         atomic_dec(&conf->preread_active_stripes);
2826                         if (atomic_read(&conf->preread_active_stripes) <
2827                                 IO_THRESHOLD)
2828                                 md_wakeup_thread(conf->mddev->thread);
2829                 }
2830         }
2831
2832         /* Now to consider new write requests and what else, if anything
2833          * should be read.  We do not handle new writes when:
2834          * 1/ A 'write' operation (copy+xor) is already in flight.
2835          * 2/ A 'check' operation is in flight, as it may clobber the parity
2836          *    block.
2837          */
2838         if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2839                           !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2840                 handle_issuing_new_write_requests5(conf, sh, &s, disks);
2841
2842         /* maybe we need to check and possibly fix the parity for this stripe
2843          * Any reads will already have been scheduled, so we just see if enough
2844          * data is available.  The parity check is held off while parity
2845          * dependent operations are in flight.
2846          */
2847         if ((s.syncing && s.locked == 0 &&
2848              !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2849              !test_bit(STRIPE_INSYNC, &sh->state)) ||
2850               test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2851               test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2852                 handle_parity_checks5(conf, sh, &s, disks);
2853
2854         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2855                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2856                 clear_bit(STRIPE_SYNCING, &sh->state);
2857         }
2858
2859         /* If the failed drive is just a ReadError, then we might need to progress
2860          * the repair/check process
2861          */
2862         if (s.failed == 1 && !conf->mddev->ro &&
2863             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2864             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2865             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2866                 ) {
2867                 dev = &sh->dev[s.failed_num];
2868                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2869                         set_bit(R5_Wantwrite, &dev->flags);
2870                         if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2871                                 sh->ops.count++;
2872                         set_bit(R5_ReWrite, &dev->flags);
2873                         set_bit(R5_LOCKED, &dev->flags);
2874                         s.locked++;
2875                 } else {
2876                         /* let's read it back */
2877                         set_bit(R5_Wantread, &dev->flags);
2878                         if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2879                                 sh->ops.count++;
2880                         set_bit(R5_LOCKED, &dev->flags);
2881                         s.locked++;
2882                 }
2883         }
2884
2885         /* Finish postxor operations initiated by the expansion
2886          * process
2887          */
2888         if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2889                 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2890
2891                 clear_bit(STRIPE_EXPANDING, &sh->state);
2892
2893                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2894                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2895                 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2896
2897                 for (i = conf->raid_disks; i--; ) {
2898                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
2899                         set_bit(R5_LOCKED, &dev->flags);
2900                         s.locked++;
2901                         if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2902                                 sh->ops.count++;
2903                 }
2904         }
2905
2906         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2907                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2908                 /* Need to write out all blocks after computing parity */
2909                 sh->disks = conf->raid_disks;
2910                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2911                         conf->raid_disks);
2912                 s.locked += handle_write_operations5(sh, 1, 1);
2913         } else if (s.expanded &&
2914                    s.locked == 0 &&
2915                 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2916                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2917                 atomic_dec(&conf->reshape_stripes);
2918                 wake_up(&conf->wait_for_overlap);
2919                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2920         }
2921
2922         if (s.expanding && s.locked == 0 &&
2923             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2924                 handle_stripe_expansion(conf, sh, NULL);
2925
2926         if (sh->ops.count)
2927                 pending = get_stripe_work(sh);
2928
2929  unlock:
2930         spin_unlock(&sh->lock);
2931
2932         /* wait for this device to become unblocked */
2933         if (unlikely(blocked_rdev))
2934                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2935
2936         if (pending)
2937                 raid5_run_ops(sh, pending);
2938
2939         return_io(return_bi);
2940
2941 }
2942
2943 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2944 {
2945         raid6_conf_t *conf = sh->raid_conf;
2946         int disks = sh->disks;
2947         struct bio *return_bi = NULL;
2948         int i, pd_idx = sh->pd_idx;
2949         struct stripe_head_state s;
2950         struct r6_state r6s;
2951         struct r5dev *dev, *pdev, *qdev;
2952         mdk_rdev_t *blocked_rdev = NULL;
2953
2954         r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2955         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2956                 "pd_idx=%d, qd_idx=%d\n",
2957                (unsigned long long)sh->sector, sh->state,
2958                atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2959         memset(&s, 0, sizeof(s));
2960
2961         spin_lock(&sh->lock);
2962         clear_bit(STRIPE_HANDLE, &sh->state);
2963         clear_bit(STRIPE_DELAYED, &sh->state);
2964
2965         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2966         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2967         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2968         /* Now to look around and see what can be done */
2969
2970         rcu_read_lock();
2971         for (i=disks; i--; ) {
2972                 mdk_rdev_t *rdev;
2973                 dev = &sh->dev[i];
2974                 clear_bit(R5_Insync, &dev->flags);
2975
2976                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2977                         i, dev->flags, dev->toread, dev->towrite, dev->written);
2978                 /* maybe we can reply to a read */
2979                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2980                         struct bio *rbi, *rbi2;
2981                         pr_debug("Return read for disc %d\n", i);
2982                         spin_lock_irq(&conf->device_lock);
2983                         rbi = dev->toread;
2984                         dev->toread = NULL;
2985                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
2986                                 wake_up(&conf->wait_for_overlap);
2987                         spin_unlock_irq(&conf->device_lock);
2988                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2989                                 copy_data(0, rbi, dev->page, dev->sector);
2990                                 rbi2 = r5_next_bio(rbi, dev->sector);
2991                                 spin_lock_irq(&conf->device_lock);
2992                                 if (--rbi->bi_phys_segments == 0) {
2993                                         rbi->bi_next = return_bi;
2994                                         return_bi = rbi;
2995                                 }
2996                                 spin_unlock_irq(&conf->device_lock);
2997                                 rbi = rbi2;
2998                         }
2999                 }
3000
3001                 /* now count some things */
3002                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3003                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3004
3005
3006                 if (dev->toread)
3007                         s.to_read++;
3008                 if (dev->towrite) {
3009                         s.to_write++;
3010                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3011                                 s.non_overwrite++;
3012                 }
3013                 if (dev->written)
3014                         s.written++;
3015                 rdev = rcu_dereference(conf->disks[i].rdev);
3016                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3017                         blocked_rdev = rdev;
3018                         atomic_inc(&rdev->nr_pending);
3019                         break;
3020                 }
3021                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3022                         /* The ReadError flag will just be confusing now */
3023                         clear_bit(R5_ReadError, &dev->flags);
3024                         clear_bit(R5_ReWrite, &dev->flags);
3025                 }
3026                 if (!rdev || !test_bit(In_sync, &rdev->flags)
3027                     || test_bit(R5_ReadError, &dev->flags)) {
3028                         if (s.failed < 2)
3029                                 r6s.failed_num[s.failed] = i;
3030                         s.failed++;
3031                 } else
3032                         set_bit(R5_Insync, &dev->flags);
3033         }
3034         rcu_read_unlock();
3035
3036         if (unlikely(blocked_rdev)) {
3037                 set_bit(STRIPE_HANDLE, &sh->state);
3038                 goto unlock;
3039         }
3040         pr_debug("locked=%d uptodate=%d to_read=%d"
3041                " to_write=%d failed=%d failed_num=%d,%d\n",
3042                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3043                r6s.failed_num[0], r6s.failed_num[1]);
3044         /* check if the array has lost >2 devices and, if so, some requests
3045          * might need to be failed
3046          */
3047         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3048                 handle_requests_to_failed_array(conf, sh, &s, disks,
3049                                                 &return_bi);
3050         if (s.failed > 2 && s.syncing) {
3051                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3052                 clear_bit(STRIPE_SYNCING, &sh->state);
3053                 s.syncing = 0;
3054         }
3055
3056         /*
3057          * might be able to return some write requests if the parity blocks
3058          * are safe, or on a failed drive
3059          */
3060         pdev = &sh->dev[pd_idx];
3061         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3062                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3063         qdev = &sh->dev[r6s.qd_idx];
3064         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
3065                 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
3066
3067         if ( s.written &&
3068              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3069                              && !test_bit(R5_LOCKED, &pdev->flags)
3070                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3071              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3072                              && !test_bit(R5_LOCKED, &qdev->flags)
3073                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3074                 handle_completed_write_requests(conf, sh, disks, &return_bi);
3075
3076         /* Now we might consider reading some blocks, either to check/generate
3077          * parity, or to satisfy requests
3078          * or to load a block that is being partially written.
3079          */
3080         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3081             (s.syncing && (s.uptodate < disks)) || s.expanding)
3082                 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3083
3084         /* now to consider writing and what else, if anything should be read */
3085         if (s.to_write)
3086                 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3087
3088         /* maybe we need to check and possibly fix the parity for this stripe
3089          * Any reads will already have been scheduled, so we just see if enough
3090          * data is available
3091          */
3092         if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3093                 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3094
3095         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3096                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3097                 clear_bit(STRIPE_SYNCING, &sh->state);
3098         }
3099
3100         /* If the failed drives are just a ReadError, then we might need
3101          * to progress the repair/check process
3102          */
3103         if (s.failed <= 2 && !conf->mddev->ro)
3104                 for (i = 0; i < s.failed; i++) {
3105                         dev = &sh->dev[r6s.failed_num[i]];
3106                         if (test_bit(R5_ReadError, &dev->flags)
3107                             && !test_bit(R5_LOCKED, &dev->flags)
3108                             && test_bit(R5_UPTODATE, &dev->flags)
3109                                 ) {
3110                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3111                                         set_bit(R5_Wantwrite, &dev->flags);
3112                                         set_bit(R5_ReWrite, &dev->flags);
3113                                         set_bit(R5_LOCKED, &dev->flags);
3114                                 } else {
3115                                         /* let's read it back */
3116                                         set_bit(R5_Wantread, &dev->flags);
3117                                         set_bit(R5_LOCKED, &dev->flags);
3118                                 }
3119                         }
3120                 }
3121
3122         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3123                 /* Need to write out all blocks after computing P&Q */
3124                 sh->disks = conf->raid_disks;
3125                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3126                                              conf->raid_disks);
3127                 compute_parity6(sh, RECONSTRUCT_WRITE);
3128                 for (i = conf->raid_disks ; i-- ;  ) {
3129                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3130                         s.locked++;
3131                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3132                 }
3133                 clear_bit(STRIPE_EXPANDING, &sh->state);
3134         } else if (s.expanded) {
3135                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3136                 atomic_dec(&conf->reshape_stripes);
3137                 wake_up(&conf->wait_for_overlap);
3138                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3139         }
3140
3141         if (s.expanding && s.locked == 0 &&
3142             !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
3143                 handle_stripe_expansion(conf, sh, &r6s);
3144
3145  unlock:
3146         spin_unlock(&sh->lock);
3147
3148         /* wait for this device to become unblocked */
3149         if (unlikely(blocked_rdev))
3150                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3151
3152         return_io(return_bi);
3153
3154         for (i=disks; i-- ;) {
3155                 int rw;
3156                 struct bio *bi;
3157                 mdk_rdev_t *rdev;
3158                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3159                         rw = WRITE;
3160                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3161                         rw = READ;
3162                 else
3163                         continue;
3164
3165                 set_bit(STRIPE_IO_STARTED, &sh->state);
3166
3167                 bi = &sh->dev[i].req;
3168
3169                 bi->bi_rw = rw;
3170                 if (rw == WRITE)
3171                         bi->bi_end_io = raid5_end_write_request;
3172                 else
3173                         bi->bi_end_io = raid5_end_read_request;
3174
3175                 rcu_read_lock();
3176                 rdev = rcu_dereference(conf->disks[i].rdev);
3177                 if (rdev && test_bit(Faulty, &rdev->flags))
3178                         rdev = NULL;
3179                 if (rdev)
3180                         atomic_inc(&rdev->nr_pending);
3181                 rcu_read_unlock();
3182
3183                 if (rdev) {
3184                         if (s.syncing || s.expanding || s.expanded)
3185                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3186
3187                         bi->bi_bdev = rdev->bdev;
3188                         pr_debug("for %llu schedule op %ld on disc %d\n",
3189                                 (unsigned long long)sh->sector, bi->bi_rw, i);
3190                         atomic_inc(&sh->count);
3191                         bi->bi_sector = sh->sector + rdev->data_offset;
3192                         bi->bi_flags = 1 << BIO_UPTODATE;
3193                         bi->bi_vcnt = 1;
3194                         bi->bi_max_vecs = 1;
3195                         bi->bi_idx = 0;
3196                         bi->bi_io_vec = &sh->dev[i].vec;
3197                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3198                         bi->bi_io_vec[0].bv_offset = 0;
3199                         bi->bi_size = STRIPE_SIZE;
3200                         bi->bi_next = NULL;
3201                         if (rw == WRITE &&
3202                             test_bit(R5_ReWrite, &sh->dev[i].flags))
3203                                 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3204                         generic_make_request(bi);
3205                 } else {
3206                         if (rw == WRITE)
3207                                 set_bit(STRIPE_DEGRADED, &sh->state);
3208                         pr_debug("skip op %ld on disc %d for sector %llu\n",
3209                                 bi->bi_rw, i, (unsigned long long)sh->sector);
3210                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
3211                         set_bit(STRIPE_HANDLE, &sh->state);
3212                 }
3213         }
3214 }
3215
3216 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3217 {
3218         if (sh->raid_conf->level == 6)
3219                 handle_stripe6(sh, tmp_page);
3220         else
3221                 handle_stripe5(sh);
3222 }
3223
3224
3225
3226 static void raid5_activate_delayed(raid5_conf_t *conf)
3227 {
3228         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3229                 while (!list_empty(&conf->delayed_list)) {
3230                         struct list_head *l = conf->delayed_list.next;
3231                         struct stripe_head *sh;
3232                         sh = list_entry(l, struct stripe_head, lru);
3233                         list_del_init(l);
3234                         clear_bit(STRIPE_DELAYED, &sh->state);
3235                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3236                                 atomic_inc(&conf->preread_active_stripes);
3237                         list_add_tail(&sh->lru, &conf->hold_list);
3238                 }
3239         } else
3240                 blk_plug_device(conf->mddev->queue);
3241 }
3242
3243 static void activate_bit_delay(raid5_conf_t *conf)
3244 {
3245         /* device_lock is held */
3246         struct list_head head;
3247         list_add(&head, &conf->bitmap_list);
3248         list_del_init(&conf->bitmap_list);
3249         while (!list_empty(&head)) {
3250                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3251                 list_del_init(&sh->lru);
3252                 atomic_inc(&sh->count);
3253                 __release_stripe(conf, sh);
3254         }
3255 }
3256
3257 static void unplug_slaves(mddev_t *mddev)
3258 {
3259         raid5_conf_t *conf = mddev_to_conf(mddev);
3260         int i;
3261
3262         rcu_read_lock();
3263         for (i=0; i<mddev->raid_disks; i++) {
3264                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3265                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3266                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3267
3268                         atomic_inc(&rdev->nr_pending);
3269                         rcu_read_unlock();
3270
3271                         blk_unplug(r_queue);
3272
3273                         rdev_dec_pending(rdev, mddev);
3274                         rcu_read_lock();
3275                 }
3276         }
3277         rcu_read_unlock();
3278 }
3279
3280 static void raid5_unplug_device(struct request_queue *q)
3281 {
3282         mddev_t *mddev = q->queuedata;
3283         raid5_conf_t *conf = mddev_to_conf(mddev);
3284         unsigned long flags;
3285
3286         spin_lock_irqsave(&conf->device_lock, flags);
3287
3288         if (blk_remove_plug(q)) {
3289                 conf->seq_flush++;
3290                 raid5_activate_delayed(conf);
3291         }
3292         md_wakeup_thread(mddev->thread);
3293
3294         spin_unlock_irqrestore(&conf->device_lock, flags);
3295
3296         unplug_slaves(mddev);
3297 }
3298
3299 static int raid5_congested(void *data, int bits)
3300 {
3301         mddev_t *mddev = data;
3302         raid5_conf_t *conf = mddev_to_conf(mddev);
3303
3304         /* No difference between reads and writes.  Just check
3305          * how busy the stripe_cache is
3306          */
3307         if (conf->inactive_blocked)
3308                 return 1;
3309         if (conf->quiesce)
3310                 return 1;
3311         if (list_empty_careful(&conf->inactive_list))
3312                 return 1;
3313
3314         return 0;
3315 }
3316
3317 /* We want read requests to align with chunks where possible,
3318  * but write requests don't need to.
3319  */
3320 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3321 {
3322         mddev_t *mddev = q->queuedata;
3323         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3324         int max;
3325         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3326         unsigned int bio_sectors = bio->bi_size >> 9;
3327
3328         if (bio_data_dir(bio) == WRITE)
3329                 return biovec->bv_len; /* always allow writes to be mergeable */
3330
3331         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3332         if (max < 0) max = 0;
3333         if (max <= biovec->bv_len && bio_sectors == 0)
3334                 return biovec->bv_len;
3335         else
3336                 return max;
3337 }
3338
3339
3340 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3341 {
3342         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3343         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3344         unsigned int bio_sectors = bio->bi_size >> 9;
3345
3346         return  chunk_sectors >=
3347                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3348 }
3349
3350 /*
3351  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3352  *  later sampled by raid5d.
3353  */
3354 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3355 {
3356         unsigned long flags;
3357
3358         spin_lock_irqsave(&conf->device_lock, flags);
3359
3360         bi->bi_next = conf->retry_read_aligned_list;
3361         conf->retry_read_aligned_list = bi;
3362
3363         spin_unlock_irqrestore(&conf->device_lock, flags);
3364         md_wakeup_thread(conf->mddev->thread);
3365 }
3366
3367
3368 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3369 {
3370         struct bio *bi;
3371
3372         bi = conf->retry_read_aligned;
3373         if (bi) {
3374                 conf->retry_read_aligned = NULL;
3375                 return bi;
3376         }
3377         bi = conf->retry_read_aligned_list;
3378         if(bi) {
3379                 conf->retry_read_aligned_list = bi->bi_next;
3380                 bi->bi_next = NULL;
3381                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3382                 bi->bi_hw_segments = 0; /* count of processed stripes */
3383         }
3384
3385         return bi;
3386 }
3387
3388
3389 /*
3390  *  The "raid5_align_endio" should check if the read succeeded and if it
3391  *  did, call bio_endio on the original bio (having bio_put the new bio
3392  *  first).
3393  *  If the read failed..
3394  */
3395 static void raid5_align_endio(struct bio *bi, int error)
3396 {
3397         struct bio* raid_bi  = bi->bi_private;
3398         mddev_t *mddev;
3399         raid5_conf_t *conf;
3400         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3401         mdk_rdev_t *rdev;
3402
3403         bio_put(bi);
3404
3405         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3406         conf = mddev_to_conf(mddev);
3407         rdev = (void*)raid_bi->bi_next;
3408         raid_bi->bi_next = NULL;
3409
3410         rdev_dec_pending(rdev, conf->mddev);
3411
3412         if (!error && uptodate) {
3413                 bio_endio(raid_bi, 0);
3414                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3415                         wake_up(&conf->wait_for_stripe);
3416                 return;
3417         }
3418
3419
3420         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3421
3422         add_bio_to_retry(raid_bi, conf);
3423 }
3424
3425 static int bio_fits_rdev(struct bio *bi)
3426 {
3427         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3428
3429         if ((bi->bi_size>>9) > q->max_sectors)
3430                 return 0;
3431         blk_recount_segments(q, bi);
3432         if (bi->bi_phys_segments > q->max_phys_segments ||
3433             bi->bi_hw_segments > q->max_hw_segments)
3434                 return 0;
3435
3436         if (q->merge_bvec_fn)
3437                 /* it's too hard to apply the merge_bvec_fn at this stage,
3438                  * just just give up
3439                  */
3440                 return 0;
3441
3442         return 1;
3443 }
3444
3445
3446 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3447 {
3448         mddev_t *mddev = q->queuedata;
3449         raid5_conf_t *conf = mddev_to_conf(mddev);
3450         const unsigned int raid_disks = conf->raid_disks;
3451         const unsigned int data_disks = raid_disks - conf->max_degraded;
3452         unsigned int dd_idx, pd_idx;
3453         struct bio* align_bi;
3454         mdk_rdev_t *rdev;
3455
3456         if (!in_chunk_boundary(mddev, raid_bio)) {
3457                 pr_debug("chunk_aligned_read : non aligned\n");
3458                 return 0;
3459         }
3460         /*
3461          * use bio_clone to make a copy of the bio
3462          */
3463         align_bi = bio_clone(raid_bio, GFP_NOIO);
3464         if (!align_bi)
3465                 return 0;
3466         /*
3467          *   set bi_end_io to a new function, and set bi_private to the
3468          *     original bio.
3469          */
3470         align_bi->bi_end_io  = raid5_align_endio;
3471         align_bi->bi_private = raid_bio;
3472         /*
3473          *      compute position
3474          */
3475         align_bi->bi_sector =  raid5_compute_sector(raid_bio->bi_sector,
3476                                         raid_disks,
3477                                         data_disks,
3478                                         &dd_idx,
3479                                         &pd_idx,
3480                                         conf);
3481
3482         rcu_read_lock();
3483         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3484         if (rdev && test_bit(In_sync, &rdev->flags)) {
3485                 atomic_inc(&rdev->nr_pending);
3486                 rcu_read_unlock();
3487                 raid_bio->bi_next = (void*)rdev;
3488                 align_bi->bi_bdev =  rdev->bdev;
3489                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3490                 align_bi->bi_sector += rdev->data_offset;
3491
3492                 if (!bio_fits_rdev(align_bi)) {
3493                         /* too big in some way */
3494                         bio_put(align_bi);
3495                         rdev_dec_pending(rdev, mddev);
3496                         return 0;
3497                 }
3498
3499                 spin_lock_irq(&conf->device_lock);
3500                 wait_event_lock_irq(conf->wait_for_stripe,
3501                                     conf->quiesce == 0,
3502                                     conf->device_lock, /* nothing */);
3503                 atomic_inc(&conf->active_aligned_reads);
3504                 spin_unlock_irq(&conf->device_lock);
3505
3506                 generic_make_request(align_bi);
3507                 return 1;
3508         } else {
3509                 rcu_read_unlock();
3510                 bio_put(align_bi);
3511                 return 0;
3512         }
3513 }
3514
3515 /* __get_priority_stripe - get the next stripe to process
3516  *
3517  * Full stripe writes are allowed to pass preread active stripes up until
3518  * the bypass_threshold is exceeded.  In general the bypass_count
3519  * increments when the handle_list is handled before the hold_list; however, it
3520  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3521  * stripe with in flight i/o.  The bypass_count will be reset when the
3522  * head of the hold_list has changed, i.e. the head was promoted to the
3523  * handle_list.
3524  */
3525 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3526 {
3527         struct stripe_head *sh;
3528
3529         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3530                   __func__,
3531                   list_empty(&conf->handle_list) ? "empty" : "busy",
3532                   list_empty(&conf->hold_list) ? "empty" : "busy",
3533                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3534
3535         if (!list_empty(&conf->handle_list)) {
3536                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3537
3538                 if (list_empty(&conf->hold_list))
3539                         conf->bypass_count = 0;
3540                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3541                         if (conf->hold_list.next == conf->last_hold)
3542                                 conf->bypass_count++;
3543                         else {
3544                                 conf->last_hold = conf->hold_list.next;
3545                                 conf->bypass_count -= conf->bypass_threshold;
3546                                 if (conf->bypass_count < 0)
3547                                         conf->bypass_count = 0;
3548                         }
3549                 }
3550         } else if (!list_empty(&conf->hold_list) &&
3551                    ((conf->bypass_threshold &&
3552                      conf->bypass_count > conf->bypass_threshold) ||
3553                     atomic_read(&conf->pending_full_writes) == 0)) {
3554                 sh = list_entry(conf->hold_list.next,
3555                                 typeof(*sh), lru);
3556                 conf->bypass_count -= conf->bypass_threshold;
3557                 if (conf->bypass_count < 0)
3558                         conf->bypass_count = 0;
3559         } else
3560                 return NULL;
3561
3562         list_del_init(&sh->lru);
3563         atomic_inc(&sh->count);
3564         BUG_ON(atomic_read(&sh->count) != 1);
3565         return sh;
3566 }
3567
3568 static int make_request(struct request_queue *q, struct bio * bi)
3569 {
3570         mddev_t *mddev = q->queuedata;
3571         raid5_conf_t *conf = mddev_to_conf(mddev);
3572         unsigned int dd_idx, pd_idx;
3573         sector_t new_sector;
3574         sector_t logical_sector, last_sector;
3575         struct stripe_head *sh;
3576         const int rw = bio_data_dir(bi);
3577         int remaining;
3578
3579         if (unlikely(bio_barrier(bi))) {
3580                 bio_endio(bi, -EOPNOTSUPP);
3581                 return 0;
3582         }
3583
3584         md_write_start(mddev, bi);
3585
3586         disk_stat_inc(mddev->gendisk, ios[rw]);
3587         disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3588
3589         if (rw == READ &&
3590              mddev->reshape_position == MaxSector &&
3591              chunk_aligned_read(q,bi))
3592                 return 0;
3593
3594         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3595         last_sector = bi->bi_sector + (bi->bi_size>>9);
3596         bi->bi_next = NULL;
3597         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3598
3599         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3600                 DEFINE_WAIT(w);
3601                 int disks, data_disks;
3602
3603         retry:
3604                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3605                 if (likely(conf->expand_progress == MaxSector))
3606                         disks = conf->raid_disks;
3607                 else {
3608                         /* spinlock is needed as expand_progress may be
3609                          * 64bit on a 32bit platform, and so it might be
3610                          * possible to see a half-updated value
3611                          * Ofcourse expand_progress could change after
3612                          * the lock is dropped, so once we get a reference
3613                          * to the stripe that we think it is, we will have
3614                          * to check again.
3615                          */
3616                         spin_lock_irq(&conf->device_lock);
3617                         disks = conf->raid_disks;
3618                         if (logical_sector >= conf->expand_progress)
3619                                 disks = conf->previous_raid_disks;
3620                         else {
3621                                 if (logical_sector >= conf->expand_lo) {
3622                                         spin_unlock_irq(&conf->device_lock);
3623                                         schedule();
3624                                         goto retry;
3625                                 }
3626                         }
3627                         spin_unlock_irq(&conf->device_lock);
3628                 }
3629                 data_disks = disks - conf->max_degraded;
3630
3631                 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3632                                                   &dd_idx, &pd_idx, conf);
3633                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3634                         (unsigned long long)new_sector, 
3635                         (unsigned long long)logical_sector);
3636
3637                 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3638                 if (sh) {
3639                         if (unlikely(conf->expand_progress != MaxSector)) {
3640                                 /* expansion might have moved on while waiting for a
3641                                  * stripe, so we must do the range check again.
3642                                  * Expansion could still move past after this
3643                                  * test, but as we are holding a reference to
3644                                  * 'sh', we know that if that happens,
3645                                  *  STRIPE_EXPANDING will get set and the expansion
3646                                  * won't proceed until we finish with the stripe.
3647                                  */
3648                                 int must_retry = 0;
3649                                 spin_lock_irq(&conf->device_lock);
3650                                 if (logical_sector <  conf->expand_progress &&
3651                                     disks == conf->previous_raid_disks)
3652                                         /* mismatch, need to try again */
3653                                         must_retry = 1;
3654                                 spin_unlock_irq(&conf->device_lock);
3655                                 if (must_retry) {
3656                                         release_stripe(sh);
3657                                         goto retry;
3658                                 }
3659                         }
3660                         /* FIXME what if we get a false positive because these
3661                          * are being updated.
3662                          */
3663                         if (logical_sector >= mddev->suspend_lo &&
3664                             logical_sector < mddev->suspend_hi) {
3665                                 release_stripe(sh);
3666                                 schedule();
3667                                 goto retry;
3668                         }
3669
3670                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3671                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3672                                 /* Stripe is busy expanding or
3673                                  * add failed due to overlap.  Flush everything
3674                                  * and wait a while
3675                                  */
3676                                 raid5_unplug_device(mddev->queue);
3677                                 release_stripe(sh);
3678                                 schedule();
3679                                 goto retry;
3680                         }
3681                         finish_wait(&conf->wait_for_overlap, &w);
3682                         set_bit(STRIPE_HANDLE, &sh->state);
3683                         clear_bit(STRIPE_DELAYED, &sh->state);
3684                         release_stripe(sh);
3685                 } else {
3686                         /* cannot get stripe for read-ahead, just give-up */
3687                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3688                         finish_wait(&conf->wait_for_overlap, &w);
3689                         break;
3690                 }
3691                         
3692         }
3693         spin_lock_irq(&conf->device_lock);
3694         remaining = --bi->bi_phys_segments;
3695         spin_unlock_irq(&conf->device_lock);
3696         if (remaining == 0) {
3697
3698                 if ( rw == WRITE )
3699                         md_write_end(mddev);
3700
3701                 bio_endio(bi, 0);
3702         }
3703         return 0;
3704 }
3705
3706 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3707 {
3708         /* reshaping is quite different to recovery/resync so it is
3709          * handled quite separately ... here.
3710          *
3711          * On each call to sync_request, we gather one chunk worth of
3712          * destination stripes and flag them as expanding.
3713          * Then we find all the source stripes and request reads.
3714          * As the reads complete, handle_stripe will copy the data
3715          * into the destination stripe and release that stripe.
3716          */
3717         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3718         struct stripe_head *sh;
3719         int pd_idx;
3720         sector_t first_sector, last_sector;
3721         int raid_disks = conf->previous_raid_disks;
3722         int data_disks = raid_disks - conf->max_degraded;
3723         int new_data_disks = conf->raid_disks - conf->max_degraded;
3724         int i;
3725         int dd_idx;
3726         sector_t writepos, safepos, gap;
3727
3728         if (sector_nr == 0 &&
3729             conf->expand_progress != 0) {
3730                 /* restarting in the middle, skip the initial sectors */
3731                 sector_nr = conf->expand_progress;
3732                 sector_div(sector_nr, new_data_disks);
3733                 *skipped = 1;
3734                 return sector_nr;
3735         }
3736
3737         /* we update the metadata when there is more than 3Meg
3738          * in the block range (that is rather arbitrary, should
3739          * probably be time based) or when the data about to be
3740          * copied would over-write the source of the data at
3741          * the front of the range.
3742          * i.e. one new_stripe forward from expand_progress new_maps
3743          * to after where expand_lo old_maps to
3744          */
3745         writepos = conf->expand_progress +
3746                 conf->chunk_size/512*(new_data_disks);
3747         sector_div(writepos, new_data_disks);
3748         safepos = conf->expand_lo;
3749         sector_div(safepos, data_disks);
3750         gap = conf->expand_progress - conf->expand_lo;
3751
3752         if (writepos >= safepos ||
3753             gap > (new_data_disks)*3000*2 /*3Meg*/) {
3754                 /* Cannot proceed until we've updated the superblock... */
3755                 wait_event(conf->wait_for_overlap,
3756                            atomic_read(&conf->reshape_stripes)==0);
3757                 mddev->reshape_position = conf->expand_progress;
3758                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3759                 md_wakeup_thread(mddev->thread);
3760                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3761                            kthread_should_stop());
3762                 spin_lock_irq(&conf->device_lock);
3763                 conf->expand_lo = mddev->reshape_position;
3764                 spin_unlock_irq(&conf->device_lock);
3765                 wake_up(&conf->wait_for_overlap);
3766         }
3767
3768         for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3769                 int j;
3770                 int skipped = 0;
3771                 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3772                 sh = get_active_stripe(conf, sector_nr+i,
3773                                        conf->raid_disks, pd_idx, 0);
3774                 set_bit(STRIPE_EXPANDING, &sh->state);
3775                 atomic_inc(&conf->reshape_stripes);
3776                 /* If any of this stripe is beyond the end of the old
3777                  * array, then we need to zero those blocks
3778                  */
3779                 for (j=sh->disks; j--;) {
3780                         sector_t s;
3781                         if (j == sh->pd_idx)
3782                                 continue;
3783                         if (conf->level == 6 &&
3784                             j == raid6_next_disk(sh->pd_idx, sh->disks))
3785                                 continue;
3786                         s = compute_blocknr(sh, j);
3787                         if (s < (mddev->array_size<<1)) {
3788                                 skipped = 1;
3789                                 continue;
3790                         }
3791                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3792                         set_bit(R5_Expanded, &sh->dev[j].flags);
3793                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
3794                 }
3795                 if (!skipped) {
3796                         set_bit(STRIPE_EXPAND_READY, &sh->state);
3797                         set_bit(STRIPE_HANDLE, &sh->state);
3798                 }
3799                 release_stripe(sh);
3800         }
3801         spin_lock_irq(&conf->device_lock);
3802         conf->expand_progress = (sector_nr + i) * new_data_disks;
3803         spin_unlock_irq(&conf->device_lock);
3804         /* Ok, those stripe are ready. We can start scheduling
3805          * reads on the source stripes.
3806          * The source stripes are determined by mapping the first and last
3807          * block on the destination stripes.
3808          */
3809         first_sector =
3810                 raid5_compute_sector(sector_nr*(new_data_disks),
3811                                      raid_disks, data_disks,
3812                                      &dd_idx, &pd_idx, conf);
3813         last_sector =
3814                 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3815                                      *(new_data_disks) -1,
3816                                      raid_disks, data_disks,
3817                                      &dd_idx, &pd_idx, conf);
3818         if (last_sector >= (mddev->size<<1))
3819                 last_sector = (mddev->size<<1)-1;
3820         while (first_sector <= last_sector) {
3821                 pd_idx = stripe_to_pdidx(first_sector, conf,
3822                                          conf->previous_raid_disks);
3823                 sh = get_active_stripe(conf, first_sector,
3824                                        conf->previous_raid_disks, pd_idx, 0);
3825                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3826                 set_bit(STRIPE_HANDLE, &sh->state);
3827                 release_stripe(sh);
3828                 first_sector += STRIPE_SECTORS;
3829         }
3830         /* If this takes us to the resync_max point where we have to pause,
3831          * then we need to write out the superblock.
3832          */
3833         sector_nr += conf->chunk_size>>9;
3834         if (sector_nr >= mddev->resync_max) {
3835                 /* Cannot proceed until we've updated the superblock... */
3836                 wait_event(conf->wait_for_overlap,
3837                            atomic_read(&conf->reshape_stripes) == 0);
3838                 mddev->reshape_position = conf->expand_progress;
3839                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3840                 md_wakeup_thread(mddev->thread);
3841                 wait_event(mddev->sb_wait,
3842                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3843                            || kthread_should_stop());
3844                 spin_lock_irq(&conf->device_lock);
3845                 conf->expand_lo = mddev->reshape_position;
3846                 spin_unlock_irq(&conf->device_lock);
3847                 wake_up(&conf->wait_for_overlap);
3848         }
3849         return conf->chunk_size>>9;
3850 }
3851
3852 /* FIXME go_faster isn't used */
3853 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3854 {
3855         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3856         struct stripe_head *sh;
3857         int pd_idx;
3858         int raid_disks = conf->raid_disks;
3859         sector_t max_sector = mddev->size << 1;
3860         int sync_blocks;
3861         int still_degraded = 0;
3862         int i;
3863
3864         if (sector_nr >= max_sector) {
3865                 /* just being told to finish up .. nothing much to do */
3866                 unplug_slaves(mddev);
3867                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3868                         end_reshape(conf);
3869                         return 0;
3870                 }
3871
3872                 if (mddev->curr_resync < max_sector) /* aborted */
3873                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3874                                         &sync_blocks, 1);
3875                 else /* completed sync */
3876                         conf->fullsync = 0;
3877                 bitmap_close_sync(mddev->bitmap);
3878
3879                 return 0;
3880         }
3881
3882         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3883                 return reshape_request(mddev, sector_nr, skipped);
3884
3885         /* No need to check resync_max as we never do more than one
3886          * stripe, and as resync_max will always be on a chunk boundary,
3887          * if the check in md_do_sync didn't fire, there is no chance
3888          * of overstepping resync_max here
3889          */
3890
3891         /* if there is too many failed drives and we are trying
3892          * to resync, then assert that we are finished, because there is
3893          * nothing we can do.
3894          */
3895         if (mddev->degraded >= conf->max_degraded &&
3896             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3897                 sector_t rv = (mddev->size << 1) - sector_nr;
3898                 *skipped = 1;
3899                 return rv;
3900         }
3901         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3902             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3903             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3904                 /* we can skip this block, and probably more */
3905                 sync_blocks /= STRIPE_SECTORS;
3906                 *skipped = 1;
3907                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3908         }
3909
3910
3911         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3912
3913         pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3914         sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3915         if (sh == NULL) {
3916                 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3917                 /* make sure we don't swamp the stripe cache if someone else
3918                  * is trying to get access
3919                  */
3920                 schedule_timeout_uninterruptible(1);
3921         }
3922         /* Need to check if array will still be degraded after recovery/resync
3923          * We don't need to check the 'failed' flag as when that gets set,
3924          * recovery aborts.
3925          */
3926         for (i=0; i<mddev->raid_disks; i++)
3927                 if (conf->disks[i].rdev == NULL)
3928                         still_degraded = 1;
3929
3930         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3931
3932         spin_lock(&sh->lock);
3933         set_bit(STRIPE_SYNCING, &sh->state);
3934         clear_bit(STRIPE_INSYNC, &sh->state);
3935         spin_unlock(&sh->lock);
3936
3937         handle_stripe(sh, NULL);
3938         release_stripe(sh);
3939
3940         return STRIPE_SECTORS;
3941 }
3942
3943 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3944 {
3945         /* We may not be able to submit a whole bio at once as there
3946          * may not be enough stripe_heads available.
3947          * We cannot pre-allocate enough stripe_heads as we may need
3948          * more than exist in the cache (if we allow ever large chunks).
3949          * So we do one stripe head at a time and record in
3950          * ->bi_hw_segments how many have been done.
3951          *
3952          * We *know* that this entire raid_bio is in one chunk, so
3953          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3954          */
3955         struct stripe_head *sh;
3956         int dd_idx, pd_idx;
3957         sector_t sector, logical_sector, last_sector;
3958         int scnt = 0;
3959         int remaining;
3960         int handled = 0;
3961
3962         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3963         sector = raid5_compute_sector(  logical_sector,
3964                                         conf->raid_disks,
3965                                         conf->raid_disks - conf->max_degraded,
3966                                         &dd_idx,
3967                                         &pd_idx,
3968                                         conf);
3969         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3970
3971         for (; logical_sector < last_sector;
3972              logical_sector += STRIPE_SECTORS,
3973                      sector += STRIPE_SECTORS,
3974                      scnt++) {
3975
3976                 if (scnt < raid_bio->bi_hw_segments)
3977                         /* already done this stripe */
3978                         continue;
3979
3980                 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3981
3982                 if (!sh) {
3983                         /* failed to get a stripe - must wait */
3984                         raid_bio->bi_hw_segments = scnt;
3985                         conf->retry_read_aligned = raid_bio;
3986                         return handled;
3987                 }
3988
3989                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3990                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3991                         release_stripe(sh);
3992                         raid_bio->bi_hw_segments = scnt;
3993                         conf->retry_read_aligned = raid_bio;
3994                         return handled;
3995                 }
3996
3997                 handle_stripe(sh, NULL);
3998                 release_stripe(sh);
3999                 handled++;
4000         }
4001         spin_lock_irq(&conf->device_lock);
4002         remaining = --raid_bio->bi_phys_segments;
4003         spin_unlock_irq(&conf->device_lock);
4004         if (remaining == 0)
4005                 bio_endio(raid_bio, 0);
4006         if (atomic_dec_and_test(&conf->active_aligned_reads))
4007                 wake_up(&conf->wait_for_stripe);
4008         return handled;
4009 }
4010
4011
4012
4013 /*
4014  * This is our raid5 kernel thread.
4015  *
4016  * We scan the hash table for stripes which can be handled now.
4017  * During the scan, completed stripes are saved for us by the interrupt
4018  * handler, so that they will not have to wait for our next wakeup.
4019  */
4020 static void raid5d(mddev_t *mddev)
4021 {
4022         struct stripe_head *sh;
4023         raid5_conf_t *conf = mddev_to_conf(mddev);
4024         int handled;
4025
4026         pr_debug("+++ raid5d active\n");
4027
4028         md_check_recovery(mddev);
4029
4030         handled = 0;
4031         spin_lock_irq(&conf->device_lock);
4032         while (1) {
4033                 struct bio *bio;
4034
4035                 if (conf->seq_flush != conf->seq_write) {
4036                         int seq = conf->seq_flush;
4037                         spin_unlock_irq(&conf->device_lock);
4038                         bitmap_unplug(mddev->bitmap);
4039                         spin_lock_irq(&conf->device_lock);
4040                         conf->seq_write = seq;
4041                         activate_bit_delay(conf);
4042                 }
4043
4044                 while ((bio = remove_bio_from_retry(conf))) {
4045                         int ok;
4046                         spin_unlock_irq(&conf->device_lock);
4047                         ok = retry_aligned_read(conf, bio);
4048                         spin_lock_irq(&conf->device_lock);
4049                         if (!ok)
4050                                 break;
4051                         handled++;
4052                 }
4053
4054                 sh = __get_priority_stripe(conf);
4055
4056                 if (!sh) {
4057                         async_tx_issue_pending_all();
4058                         break;
4059                 }
4060                 spin_unlock_irq(&conf->device_lock);
4061                 
4062                 handled++;
4063                 handle_stripe(sh, conf->spare_page);
4064                 release_stripe(sh);
4065
4066                 spin_lock_irq(&conf->device_lock);
4067         }
4068         pr_debug("%d stripes handled\n", handled);
4069
4070         spin_unlock_irq(&conf->device_lock);
4071
4072         unplug_slaves(mddev);
4073
4074         pr_debug("--- raid5d inactive\n");
4075 }
4076
4077 static ssize_t
4078 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4079 {
4080         raid5_conf_t *conf = mddev_to_conf(mddev);
4081         if (conf)
4082                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4083         else
4084                 return 0;
4085 }
4086
4087 static ssize_t
4088 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4089 {
4090         raid5_conf_t *conf = mddev_to_conf(mddev);
4091         unsigned long new;
4092         if (len >= PAGE_SIZE)
4093                 return -EINVAL;
4094         if (!conf)
4095                 return -ENODEV;
4096
4097         if (strict_strtoul(page, 10, &new))
4098                 return -EINVAL;
4099         if (new <= 16 || new > 32768)
4100                 return -EINVAL;
4101         while (new < conf->max_nr_stripes) {
4102                 if (drop_one_stripe(conf))
4103                         conf->max_nr_stripes--;
4104                 else
4105                         break;
4106         }
4107         md_allow_write(mddev);
4108         while (new > conf->max_nr_stripes) {
4109                 if (grow_one_stripe(conf))
4110                         conf->max_nr_stripes++;
4111                 else break;
4112         }
4113         return len;
4114 }
4115
4116 static struct md_sysfs_entry
4117 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4118                                 raid5_show_stripe_cache_size,
4119                                 raid5_store_stripe_cache_size);
4120
4121 static ssize_t
4122 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4123 {
4124         raid5_conf_t *conf = mddev_to_conf(mddev);
4125         if (conf)
4126                 return sprintf(page, "%d\n", conf->bypass_threshold);
4127         else
4128                 return 0;
4129 }
4130
4131 static ssize_t
4132 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4133 {
4134         raid5_conf_t *conf = mddev_to_conf(mddev);
4135         unsigned long new;
4136         if (len >= PAGE_SIZE)
4137                 return -EINVAL;
4138         if (!conf)
4139                 return -ENODEV;
4140
4141         if (strict_strtoul(page, 10, &new))
4142                 return -EINVAL;
4143         if (new > conf->max_nr_stripes)
4144                 return -EINVAL;
4145         conf->bypass_threshold = new;
4146         return len;
4147 }
4148
4149 static struct md_sysfs_entry
4150 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4151                                         S_IRUGO | S_IWUSR,
4152                                         raid5_show_preread_threshold,
4153                                         raid5_store_preread_threshold);
4154
4155 static ssize_t
4156 stripe_cache_active_show(mddev_t *mddev, char *page)
4157 {
4158         raid5_conf_t *conf = mddev_to_conf(mddev);
4159         if (conf)
4160                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4161         else
4162                 return 0;
4163 }
4164
4165 static struct md_sysfs_entry
4166 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4167
4168 static struct attribute *raid5_attrs[] =  {
4169         &raid5_stripecache_size.attr,
4170         &raid5_stripecache_active.attr,
4171         &raid5_preread_bypass_threshold.attr,
4172         NULL,
4173 };
4174 static struct attribute_group raid5_attrs_group = {
4175         .name = NULL,
4176         .attrs = raid5_attrs,
4177 };
4178
4179 static int run(mddev_t *mddev)
4180 {
4181         raid5_conf_t *conf;
4182         int raid_disk, memory;
4183         mdk_rdev_t *rdev;
4184         struct disk_info *disk;
4185         struct list_head *tmp;
4186         int working_disks = 0;
4187
4188         if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4189                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4190                        mdname(mddev), mddev->level);
4191                 return -EIO;
4192         }
4193
4194         if (mddev->reshape_position != MaxSector) {
4195                 /* Check that we can continue the reshape.
4196                  * Currently only disks can change, it must
4197                  * increase, and we must be past the point where
4198                  * a stripe over-writes itself
4199                  */
4200                 sector_t here_new, here_old;
4201                 int old_disks;
4202                 int max_degraded = (mddev->level == 5 ? 1 : 2);
4203
4204                 if (mddev->new_level != mddev->level ||
4205                     mddev->new_layout != mddev->layout ||
4206                     mddev->new_chunk != mddev->chunk_size) {
4207                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4208                                "required - aborting.\n",
4209                                mdname(mddev));
4210                         return -EINVAL;
4211                 }
4212                 if (mddev->delta_disks <= 0) {
4213                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4214                                "(reduce disks) required - aborting.\n",
4215                                mdname(mddev));
4216                         return -EINVAL;
4217                 }
4218                 old_disks = mddev->raid_disks - mddev->delta_disks;
4219                 /* reshape_position must be on a new-stripe boundary, and one
4220                  * further up in new geometry must map after here in old
4221                  * geometry.
4222                  */
4223                 here_new = mddev->reshape_position;
4224                 if (sector_div(here_new, (mddev->chunk_size>>9)*
4225                                (mddev->raid_disks - max_degraded))) {
4226                         printk(KERN_ERR "raid5: reshape_position not "
4227                                "on a stripe boundary\n");
4228                         return -EINVAL;
4229                 }
4230                 /* here_new is the stripe we will write to */
4231                 here_old = mddev->reshape_position;
4232                 sector_div(here_old, (mddev->chunk_size>>9)*
4233                            (old_disks-max_degraded));
4234                 /* here_old is the first stripe that we might need to read
4235                  * from */
4236                 if (here_new >= here_old) {
4237                         /* Reading from the same stripe as writing to - bad */
4238                         printk(KERN_ERR "raid5: reshape_position too early for "
4239                                "auto-recovery - aborting.\n");
4240                         return -EINVAL;
4241                 }
4242                 printk(KERN_INFO "raid5: reshape will continue\n");
4243                 /* OK, we should be able to continue; */
4244         }
4245
4246
4247         mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4248         if ((conf = mddev->private) == NULL)
4249                 goto abort;
4250         if (mddev->reshape_position == MaxSector) {
4251                 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4252         } else {
4253                 conf->raid_disks = mddev->raid_disks;
4254                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4255         }
4256
4257         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4258                               GFP_KERNEL);
4259         if (!conf->disks)
4260                 goto abort;
4261
4262         conf->mddev = mddev;
4263
4264         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4265                 goto abort;
4266
4267         if (mddev->level == 6) {
4268                 conf->spare_page = alloc_page(GFP_KERNEL);
4269                 if (!conf->spare_page)
4270                         goto abort;
4271         }
4272         spin_lock_init(&conf->device_lock);
4273         mddev->queue->queue_lock = &conf->device_lock;
4274         init_waitqueue_head(&conf->wait_for_stripe);
4275         init_waitqueue_head(&conf->wait_for_overlap);
4276         INIT_LIST_HEAD(&conf->handle_list);
4277         INIT_LIST_HEAD(&conf->hold_list);
4278         INIT_LIST_HEAD(&conf->delayed_list);
4279         INIT_LIST_HEAD(&conf->bitmap_list);
4280         INIT_LIST_HEAD(&conf->inactive_list);
4281         atomic_set(&conf->active_stripes, 0);
4282         atomic_set(&conf->preread_active_stripes, 0);
4283         atomic_set(&conf->active_aligned_reads, 0);
4284         conf->bypass_threshold = BYPASS_THRESHOLD;
4285
4286         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4287
4288         rdev_for_each(rdev, tmp, mddev) {
4289                 raid_disk = rdev->raid_disk;
4290                 if (raid_disk >= conf->raid_disks
4291                     || raid_disk < 0)
4292                         continue;
4293                 disk = conf->disks + raid_disk;
4294
4295                 disk->rdev = rdev;
4296
4297                 if (test_bit(In_sync, &rdev->flags)) {
4298                         char b[BDEVNAME_SIZE];
4299                         printk(KERN_INFO "raid5: device %s operational as raid"
4300                                 " disk %d\n", bdevname(rdev->bdev,b),
4301                                 raid_disk);
4302                         working_disks++;
4303                 } else
4304                         /* Cannot rely on bitmap to complete recovery */
4305                         conf->fullsync = 1;
4306         }
4307
4308         /*
4309          * 0 for a fully functional array, 1 or 2 for a degraded array.
4310          */
4311         mddev->degraded = conf->raid_disks - working_disks;
4312         conf->mddev = mddev;
4313         conf->chunk_size = mddev->chunk_size;
4314         conf->level = mddev->level;
4315         if (conf->level == 6)
4316                 conf->max_degraded = 2;
4317         else
4318                 conf->max_degraded = 1;
4319         conf->algorithm = mddev->layout;
4320         conf->max_nr_stripes = NR_STRIPES;
4321         conf->expand_progress = mddev->reshape_position;
4322
4323         /* device size must be a multiple of chunk size */
4324         mddev->size &= ~(mddev->chunk_size/1024 -1);
4325         mddev->resync_max_sectors = mddev->size << 1;
4326
4327         if (conf->level == 6 && conf->raid_disks < 4) {
4328                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4329                        mdname(mddev), conf->raid_disks);
4330                 goto abort;
4331         }
4332         if (!conf->chunk_size || conf->chunk_size % 4) {
4333                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4334                         conf->chunk_size, mdname(mddev));
4335                 goto abort;
4336         }
4337         if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4338                 printk(KERN_ERR 
4339                         "raid5: unsupported parity algorithm %d for %s\n",
4340                         conf->algorithm, mdname(mddev));
4341                 goto abort;
4342         }
4343         if (mddev->degraded > conf->max_degraded) {
4344                 printk(KERN_ERR "raid5: not enough operational devices for %s"
4345                         " (%d/%d failed)\n",
4346                         mdname(mddev), mddev->degraded, conf->raid_disks);
4347                 goto abort;
4348         }
4349
4350         if (mddev->degraded > 0 &&
4351             mddev->recovery_cp != MaxSector) {
4352                 if (mddev->ok_start_degraded)
4353                         printk(KERN_WARNING
4354                                "raid5: starting dirty degraded array: %s"
4355                                "- data corruption possible.\n",
4356                                mdname(mddev));
4357                 else {
4358                         printk(KERN_ERR
4359                                "raid5: cannot start dirty degraded array for %s\n",
4360                                mdname(mddev));
4361                         goto abort;
4362                 }
4363         }
4364
4365         {
4366                 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4367                 if (!mddev->thread) {
4368                         printk(KERN_ERR 
4369                                 "raid5: couldn't allocate thread for %s\n",
4370                                 mdname(mddev));
4371                         goto abort;
4372                 }
4373         }
4374         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4375                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4376         if (grow_stripes(conf, conf->max_nr_stripes)) {
4377                 printk(KERN_ERR 
4378                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4379                 shrink_stripes(conf);
4380                 md_unregister_thread(mddev->thread);
4381                 goto abort;
4382         } else
4383                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4384                         memory, mdname(mddev));
4385
4386         if (mddev->degraded == 0)
4387                 printk("raid5: raid level %d set %s active with %d out of %d"
4388                         " devices, algorithm %d\n", conf->level, mdname(mddev), 
4389                         mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4390                         conf->algorithm);
4391         else
4392                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4393                         " out of %d devices, algorithm %d\n", conf->level,
4394                         mdname(mddev), mddev->raid_disks - mddev->degraded,
4395                         mddev->raid_disks, conf->algorithm);
4396
4397         print_raid5_conf(conf);
4398
4399         if (conf->expand_progress != MaxSector) {
4400                 printk("...ok start reshape thread\n");
4401                 conf->expand_lo = conf->expand_progress;
4402                 atomic_set(&conf->reshape_stripes, 0);
4403                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4404                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4405                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4406                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4407                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4408                                                         "%s_reshape");
4409         }
4410
4411         /* read-ahead size must cover two whole stripes, which is
4412          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4413          */
4414         {
4415                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4416                 int stripe = data_disks *
4417                         (mddev->chunk_size / PAGE_SIZE);
4418                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4419                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4420         }
4421
4422         /* Ok, everything is just fine now */
4423         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4424                 printk(KERN_WARNING
4425                        "raid5: failed to create sysfs attributes for %s\n",
4426                        mdname(mddev));
4427
4428         mddev->queue->unplug_fn = raid5_unplug_device;
4429         mddev->queue->backing_dev_info.congested_data = mddev;
4430         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4431
4432         mddev->array_size =  mddev->size * (conf->previous_raid_disks -
4433                                             conf->max_degraded);
4434
4435         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4436
4437         return 0;
4438 abort:
4439         if (conf) {
4440                 print_raid5_conf(conf);
4441                 safe_put_page(conf->spare_page);
4442                 kfree(conf->disks);
4443                 kfree(conf->stripe_hashtbl);
4444                 kfree(conf);
4445         }
4446         mddev->private = NULL;
4447         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4448         return -EIO;
4449 }
4450
4451
4452
4453 static int stop(mddev_t *mddev)
4454 {
4455         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4456
4457         md_unregister_thread(mddev->thread);
4458         mddev->thread = NULL;
4459         shrink_stripes(conf);
4460         kfree(conf->stripe_hashtbl);
4461         mddev->queue->backing_dev_info.congested_fn = NULL;
4462         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4463         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4464         kfree(conf->disks);
4465         kfree(conf);
4466         mddev->private = NULL;
4467         return 0;
4468 }
4469
4470 #ifdef DEBUG
4471 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4472 {
4473         int i;
4474
4475         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4476                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4477         seq_printf(seq, "sh %llu,  count %d.\n",
4478                    (unsigned long long)sh->sector, atomic_read(&sh->count));
4479         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4480         for (i = 0; i < sh->disks; i++) {
4481                 seq_printf(seq, "(cache%d: %p %ld) ",
4482                            i, sh->dev[i].page, sh->dev[i].flags);
4483         }
4484         seq_printf(seq, "\n");
4485 }
4486
4487 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4488 {
4489         struct stripe_head *sh;
4490         struct hlist_node *hn;
4491         int i;
4492
4493         spin_lock_irq(&conf->device_lock);
4494         for (i = 0; i < NR_HASH; i++) {
4495                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4496                         if (sh->raid_conf != conf)
4497                                 continue;
4498                         print_sh(seq, sh);
4499                 }
4500         }
4501         spin_unlock_irq(&conf->device_lock);
4502 }
4503 #endif
4504
4505 static void status (struct seq_file *seq, mddev_t *mddev)
4506 {
4507         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4508         int i;
4509
4510         seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4511         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4512         for (i = 0; i < conf->raid_disks; i++)
4513                 seq_printf (seq, "%s",
4514                                conf->disks[i].rdev &&
4515                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4516         seq_printf (seq, "]");
4517 #ifdef DEBUG
4518         seq_printf (seq, "\n");
4519         printall(seq, conf);
4520 #endif
4521 }
4522
4523 static void print_raid5_conf (raid5_conf_t *conf)
4524 {
4525         int i;
4526         struct disk_info *tmp;
4527
4528         printk("RAID5 conf printout:\n");
4529         if (!conf) {
4530                 printk("(conf==NULL)\n");
4531                 return;
4532         }
4533         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4534                  conf->raid_disks - conf->mddev->degraded);
4535
4536         for (i = 0; i < conf->raid_disks; i++) {
4537                 char b[BDEVNAME_SIZE];
4538                 tmp = conf->disks + i;
4539                 if (tmp->rdev)
4540                 printk(" disk %d, o:%d, dev:%s\n",
4541                         i, !test_bit(Faulty, &tmp->rdev->flags),
4542                         bdevname(tmp->rdev->bdev,b));
4543         }
4544 }
4545
4546 static int raid5_spare_active(mddev_t *mddev)
4547 {
4548         int i;
4549         raid5_conf_t *conf = mddev->private;
4550         struct disk_info *tmp;
4551
4552         for (i = 0; i < conf->raid_disks; i++) {
4553                 tmp = conf->disks + i;
4554                 if (tmp->rdev
4555                     && !test_bit(Faulty, &tmp->rdev->flags)
4556                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4557                         unsigned long flags;
4558                         spin_lock_irqsave(&conf->device_lock, flags);
4559                         mddev->degraded--;
4560                         spin_unlock_irqrestore(&conf->device_lock, flags);
4561                 }
4562         }
4563         print_raid5_conf(conf);
4564         return 0;
4565 }
4566
4567 static int raid5_remove_disk(mddev_t *mddev, int number)
4568 {
4569         raid5_conf_t *conf = mddev->private;
4570         int err = 0;
4571         mdk_rdev_t *rdev;
4572         struct disk_info *p = conf->disks + number;
4573
4574         print_raid5_conf(conf);
4575         rdev = p->rdev;
4576         if (rdev) {
4577                 if (test_bit(In_sync, &rdev->flags) ||
4578                     atomic_read(&rdev->nr_pending)) {
4579                         err = -EBUSY;
4580                         goto abort;
4581                 }
4582                 /* Only remove non-faulty devices if recovery
4583                  * isn't possible.
4584                  */
4585                 if (!test_bit(Faulty, &rdev->flags) &&
4586                     mddev->degraded <= conf->max_degraded) {
4587                         err = -EBUSY;
4588                         goto abort;
4589                 }
4590                 p->rdev = NULL;
4591                 synchronize_rcu();
4592                 if (atomic_read(&rdev->nr_pending)) {
4593                         /* lost the race, try later */
4594                         err = -EBUSY;
4595                         p->rdev = rdev;
4596                 }
4597         }
4598 abort:
4599
4600         print_raid5_conf(conf);
4601         return err;
4602 }
4603
4604 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4605 {
4606         raid5_conf_t *conf = mddev->private;
4607         int found = 0;
4608         int disk;
4609         struct disk_info *p;
4610         int first = 0;
4611         int last = conf->raid_disks - 1;
4612
4613         if (mddev->degraded > conf->max_degraded)
4614                 /* no point adding a device */
4615                 return 0;
4616
4617         if (rdev->raid_disk >= 0)
4618                 first = last = rdev->raid_disk;
4619
4620         /*
4621          * find the disk ... but prefer rdev->saved_raid_disk
4622          * if possible.
4623          */
4624         if (rdev->saved_raid_disk >= 0 &&
4625             rdev->saved_raid_disk >= first &&
4626             conf->disks[rdev->saved_raid_disk].rdev == NULL)
4627                 disk = rdev->saved_raid_disk;
4628         else
4629                 disk = first;
4630         for ( ; disk <= last ; disk++)
4631                 if ((p=conf->disks + disk)->rdev == NULL) {
4632                         clear_bit(In_sync, &rdev->flags);
4633                         rdev->raid_disk = disk;
4634                         found = 1;
4635                         if (rdev->saved_raid_disk != disk)
4636                                 conf->fullsync = 1;
4637                         rcu_assign_pointer(p->rdev, rdev);
4638                         break;
4639                 }
4640         print_raid5_conf(conf);
4641         return found;
4642 }
4643
4644 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4645 {
4646         /* no resync is happening, and there is enough space
4647          * on all devices, so we can resize.
4648          * We need to make sure resync covers any new space.
4649          * If the array is shrinking we should possibly wait until
4650          * any io in the removed space completes, but it hardly seems
4651          * worth it.
4652          */
4653         raid5_conf_t *conf = mddev_to_conf(mddev);
4654
4655         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4656         mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4657         set_capacity(mddev->gendisk, mddev->array_size << 1);
4658         mddev->changed = 1;
4659         if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
4660                 mddev->recovery_cp = mddev->size << 1;
4661                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4662         }
4663         mddev->size = sectors /2;
4664         mddev->resync_max_sectors = sectors;
4665         return 0;
4666 }
4667
4668 #ifdef CONFIG_MD_RAID5_RESHAPE
4669 static int raid5_check_reshape(mddev_t *mddev)
4670 {
4671         raid5_conf_t *conf = mddev_to_conf(mddev);
4672         int err;
4673
4674         if (mddev->delta_disks < 0 ||
4675             mddev->new_level != mddev->level)
4676                 return -EINVAL; /* Cannot shrink array or change level yet */
4677         if (mddev->delta_disks == 0)
4678                 return 0; /* nothing to do */
4679
4680         /* Can only proceed if there are plenty of stripe_heads.
4681          * We need a minimum of one full stripe,, and for sensible progress
4682          * it is best to have about 4 times that.
4683          * If we require 4 times, then the default 256 4K stripe_heads will
4684          * allow for chunk sizes up to 256K, which is probably OK.
4685          * If the chunk size is greater, user-space should request more
4686          * stripe_heads first.
4687          */
4688         if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4689             (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4690                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
4691                        (mddev->chunk_size / STRIPE_SIZE)*4);
4692                 return -ENOSPC;
4693         }
4694
4695         err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4696         if (err)
4697                 return err;
4698
4699         if (mddev->degraded > conf->max_degraded)
4700                 return -EINVAL;
4701         /* looks like we might be able to manage this */
4702         return 0;
4703 }
4704
4705 static int raid5_start_reshape(mddev_t *mddev)
4706 {
4707         raid5_conf_t *conf = mddev_to_conf(mddev);
4708         mdk_rdev_t *rdev;
4709         struct list_head *rtmp;
4710         int spares = 0;
4711         int added_devices = 0;
4712         unsigned long flags;
4713
4714         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4715                 return -EBUSY;
4716
4717         rdev_for_each(rdev, rtmp, mddev)
4718                 if (rdev->raid_disk < 0 &&
4719                     !test_bit(Faulty, &rdev->flags))
4720                         spares++;
4721
4722         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4723                 /* Not enough devices even to make a degraded array
4724                  * of that size
4725                  */
4726                 return -EINVAL;
4727
4728         atomic_set(&conf->reshape_stripes, 0);
4729         spin_lock_irq(&conf->device_lock);
4730         conf->previous_raid_disks = conf->raid_disks;
4731         conf->raid_disks += mddev->delta_disks;
4732         conf->expand_progress = 0;
4733         conf->expand_lo = 0;
4734         spin_unlock_irq(&conf->device_lock);
4735
4736         /* Add some new drives, as many as will fit.
4737          * We know there are enough to make the newly sized array work.
4738          */
4739         rdev_for_each(rdev, rtmp, mddev)
4740                 if (rdev->raid_disk < 0 &&
4741                     !test_bit(Faulty, &rdev->flags)) {
4742                         if (raid5_add_disk(mddev, rdev)) {
4743                                 char nm[20];
4744                                 set_bit(In_sync, &rdev->flags);
4745                                 added_devices++;
4746                                 rdev->recovery_offset = 0;
4747                                 sprintf(nm, "rd%d", rdev->raid_disk);
4748                                 if (sysfs_create_link(&mddev->kobj,
4749                                                       &rdev->kobj, nm))
4750                                         printk(KERN_WARNING
4751                                                "raid5: failed to create "
4752                                                " link %s for %s\n",
4753                                                nm, mdname(mddev));
4754                         } else
4755                                 break;
4756                 }
4757
4758         spin_lock_irqsave(&conf->device_lock, flags);
4759         mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4760         spin_unlock_irqrestore(&conf->device_lock, flags);
4761         mddev->raid_disks = conf->raid_disks;
4762         mddev->reshape_position = 0;
4763         set_bit(MD_CHANGE_DEVS, &mddev->flags);
4764
4765         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4766         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4767         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4768         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4769         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4770                                                 "%s_reshape");
4771         if (!mddev->sync_thread) {
4772                 mddev->recovery = 0;
4773                 spin_lock_irq(&conf->device_lock);
4774                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4775                 conf->expand_progress = MaxSector;
4776                 spin_unlock_irq(&conf->device_lock);
4777                 return -EAGAIN;
4778         }
4779         md_wakeup_thread(mddev->sync_thread);
4780         md_new_event(mddev);
4781         return 0;
4782 }
4783 #endif
4784
4785 static void end_reshape(raid5_conf_t *conf)
4786 {
4787         struct block_device *bdev;
4788
4789         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4790                 conf->mddev->array_size = conf->mddev->size *
4791                         (conf->raid_disks - conf->max_degraded);
4792                 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4793                 conf->mddev->changed = 1;
4794
4795                 bdev = bdget_disk(conf->mddev->gendisk, 0);
4796                 if (bdev) {
4797                         mutex_lock(&bdev->bd_inode->i_mutex);
4798                         i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4799                         mutex_unlock(&bdev->bd_inode->i_mutex);
4800                         bdput(bdev);
4801                 }
4802                 spin_lock_irq(&conf->device_lock);
4803                 conf->expand_progress = MaxSector;
4804                 spin_unlock_irq(&conf->device_lock);
4805                 conf->mddev->reshape_position = MaxSector;
4806
4807                 /* read-ahead size must cover two whole stripes, which is
4808                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4809                  */
4810                 {
4811                         int data_disks = conf->previous_raid_disks - conf->max_degraded;
4812                         int stripe = data_disks *
4813                                 (conf->mddev->chunk_size / PAGE_SIZE);
4814                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4815                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4816                 }
4817         }
4818 }
4819
4820 static void raid5_quiesce(mddev_t *mddev, int state)
4821 {
4822         raid5_conf_t *conf = mddev_to_conf(mddev);
4823
4824         switch(state) {
4825         case 2: /* resume for a suspend */
4826                 wake_up(&conf->wait_for_overlap);
4827                 break;
4828
4829         case 1: /* stop all writes */
4830                 spin_lock_irq(&conf->device_lock);
4831                 conf->quiesce = 1;
4832                 wait_event_lock_irq(conf->wait_for_stripe,
4833                                     atomic_read(&conf->active_stripes) == 0 &&
4834                                     atomic_read(&conf->active_aligned_reads) == 0,
4835                                     conf->device_lock, /* nothing */);
4836                 spin_unlock_irq(&conf->device_lock);
4837                 break;
4838
4839         case 0: /* re-enable writes */
4840                 spin_lock_irq(&conf->device_lock);
4841                 conf->quiesce = 0;
4842                 wake_up(&conf->wait_for_stripe);
4843                 wake_up(&conf->wait_for_overlap);
4844                 spin_unlock_irq(&conf->device_lock);
4845                 break;
4846         }
4847 }
4848
4849 static struct mdk_personality raid6_personality =
4850 {
4851         .name           = "raid6",
4852         .level          = 6,
4853         .owner          = THIS_MODULE,
4854         .make_request   = make_request,
4855         .run            = run,
4856         .stop           = stop,
4857         .status         = status,
4858         .error_handler  = error,
4859         .hot_add_disk   = raid5_add_disk,
4860         .hot_remove_disk= raid5_remove_disk,
4861         .spare_active   = raid5_spare_active,
4862         .sync_request   = sync_request,
4863         .resize         = raid5_resize,
4864 #ifdef CONFIG_MD_RAID5_RESHAPE
4865         .check_reshape  = raid5_check_reshape,
4866         .start_reshape  = raid5_start_reshape,
4867 #endif
4868         .quiesce        = raid5_quiesce,
4869 };
4870 static struct mdk_personality raid5_personality =
4871 {
4872         .name           = "raid5",
4873         .level          = 5,
4874         .owner          = THIS_MODULE,
4875         .make_request   = make_request,
4876         .run            = run,
4877         .stop           = stop,
4878         .status         = status,
4879         .error_handler  = error,
4880         .hot_add_disk   = raid5_add_disk,
4881         .hot_remove_disk= raid5_remove_disk,
4882         .spare_active   = raid5_spare_active,
4883         .sync_request   = sync_request,
4884         .resize         = raid5_resize,
4885 #ifdef CONFIG_MD_RAID5_RESHAPE
4886         .check_reshape  = raid5_check_reshape,
4887         .start_reshape  = raid5_start_reshape,
4888 #endif
4889         .quiesce        = raid5_quiesce,
4890 };
4891
4892 static struct mdk_personality raid4_personality =
4893 {
4894         .name           = "raid4",
4895         .level          = 4,
4896         .owner          = THIS_MODULE,
4897         .make_request   = make_request,
4898         .run            = run,
4899         .stop           = stop,
4900         .status         = status,
4901         .error_handler  = error,
4902         .hot_add_disk   = raid5_add_disk,
4903         .hot_remove_disk= raid5_remove_disk,
4904         .spare_active   = raid5_spare_active,
4905         .sync_request   = sync_request,
4906         .resize         = raid5_resize,
4907 #ifdef CONFIG_MD_RAID5_RESHAPE
4908         .check_reshape  = raid5_check_reshape,
4909         .start_reshape  = raid5_start_reshape,
4910 #endif
4911         .quiesce        = raid5_quiesce,
4912 };
4913
4914 static int __init raid5_init(void)
4915 {
4916         int e;
4917
4918         e = raid6_select_algo();
4919         if ( e )
4920                 return e;
4921         register_md_personality(&raid6_personality);
4922         register_md_personality(&raid5_personality);
4923         register_md_personality(&raid4_personality);
4924         return 0;
4925 }
4926
4927 static void raid5_exit(void)
4928 {
4929         unregister_md_personality(&raid6_personality);
4930         unregister_md_personality(&raid5_personality);
4931         unregister_md_personality(&raid4_personality);
4932 }
4933
4934 module_init(raid5_init);
4935 module_exit(raid5_exit);
4936 MODULE_LICENSE("GPL");
4937 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4938 MODULE_ALIAS("md-raid5");
4939 MODULE_ALIAS("md-raid4");
4940 MODULE_ALIAS("md-level-5");
4941 MODULE_ALIAS("md-level-4");
4942 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4943 MODULE_ALIAS("md-raid6");
4944 MODULE_ALIAS("md-level-6");
4945
4946 /* This used to be two separate modules, they were: */
4947 MODULE_ALIAS("raid5");
4948 MODULE_ALIAS("raid6");