md/raid6: asynchronous handle_stripe_fill6
[safe/jmp/linux-2.6] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/seq_file.h>
51 #include <linux/cpu.h>
52 #include "md.h"
53 #include "raid5.h"
54 #include "bitmap.h"
55
56 /*
57  * Stripe cache
58  */
59
60 #define NR_STRIPES              256
61 #define STRIPE_SIZE             PAGE_SIZE
62 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
63 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
64 #define IO_THRESHOLD            1
65 #define BYPASS_THRESHOLD        1
66 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
67 #define HASH_MASK               (NR_HASH - 1)
68
69 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
70
71 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
72  * order without overlap.  There may be several bio's per stripe+device, and
73  * a bio could span several devices.
74  * When walking this list for a particular stripe+device, we must never proceed
75  * beyond a bio that extends past this device, as the next bio might no longer
76  * be valid.
77  * This macro is used to determine the 'next' bio in the list, given the sector
78  * of the current stripe+device
79  */
80 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
81 /*
82  * The following can be used to debug the driver
83  */
84 #define RAID5_PARANOIA  1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 #else
88 # define CHECK_DEVLOCK()
89 #endif
90
91 #ifdef DEBUG
92 #define inline
93 #define __inline__
94 #endif
95
96 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
97
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_phys_segments(struct bio *bio)
103 {
104         return bio->bi_phys_segments & 0xffff;
105 }
106
107 static inline int raid5_bi_hw_segments(struct bio *bio)
108 {
109         return (bio->bi_phys_segments >> 16) & 0xffff;
110 }
111
112 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113 {
114         --bio->bi_phys_segments;
115         return raid5_bi_phys_segments(bio);
116 }
117
118 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119 {
120         unsigned short val = raid5_bi_hw_segments(bio);
121
122         --val;
123         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124         return val;
125 }
126
127 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128 {
129         bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
130 }
131
132 /* Find first data disk in a raid6 stripe */
133 static inline int raid6_d0(struct stripe_head *sh)
134 {
135         if (sh->ddf_layout)
136                 /* ddf always start from first device */
137                 return 0;
138         /* md starts just after Q block */
139         if (sh->qd_idx == sh->disks - 1)
140                 return 0;
141         else
142                 return sh->qd_idx + 1;
143 }
144 static inline int raid6_next_disk(int disk, int raid_disks)
145 {
146         disk++;
147         return (disk < raid_disks) ? disk : 0;
148 }
149
150 /* When walking through the disks in a raid5, starting at raid6_d0,
151  * We need to map each disk to a 'slot', where the data disks are slot
152  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153  * is raid_disks-1.  This help does that mapping.
154  */
155 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156                              int *count, int syndrome_disks)
157 {
158         int slot;
159
160         if (idx == sh->pd_idx)
161                 return syndrome_disks;
162         if (idx == sh->qd_idx)
163                 return syndrome_disks + 1;
164         slot = (*count)++;
165         return slot;
166 }
167
168 static void return_io(struct bio *return_bi)
169 {
170         struct bio *bi = return_bi;
171         while (bi) {
172
173                 return_bi = bi->bi_next;
174                 bi->bi_next = NULL;
175                 bi->bi_size = 0;
176                 bio_endio(bi, 0);
177                 bi = return_bi;
178         }
179 }
180
181 static void print_raid5_conf (raid5_conf_t *conf);
182
183 static int stripe_operations_active(struct stripe_head *sh)
184 {
185         return sh->check_state || sh->reconstruct_state ||
186                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
187                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
188 }
189
190 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
191 {
192         if (atomic_dec_and_test(&sh->count)) {
193                 BUG_ON(!list_empty(&sh->lru));
194                 BUG_ON(atomic_read(&conf->active_stripes)==0);
195                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
196                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
197                                 list_add_tail(&sh->lru, &conf->delayed_list);
198                                 blk_plug_device(conf->mddev->queue);
199                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
200                                    sh->bm_seq - conf->seq_write > 0) {
201                                 list_add_tail(&sh->lru, &conf->bitmap_list);
202                                 blk_plug_device(conf->mddev->queue);
203                         } else {
204                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
205                                 list_add_tail(&sh->lru, &conf->handle_list);
206                         }
207                         md_wakeup_thread(conf->mddev->thread);
208                 } else {
209                         BUG_ON(stripe_operations_active(sh));
210                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
211                                 atomic_dec(&conf->preread_active_stripes);
212                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
213                                         md_wakeup_thread(conf->mddev->thread);
214                         }
215                         atomic_dec(&conf->active_stripes);
216                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
217                                 list_add_tail(&sh->lru, &conf->inactive_list);
218                                 wake_up(&conf->wait_for_stripe);
219                                 if (conf->retry_read_aligned)
220                                         md_wakeup_thread(conf->mddev->thread);
221                         }
222                 }
223         }
224 }
225
226 static void release_stripe(struct stripe_head *sh)
227 {
228         raid5_conf_t *conf = sh->raid_conf;
229         unsigned long flags;
230
231         spin_lock_irqsave(&conf->device_lock, flags);
232         __release_stripe(conf, sh);
233         spin_unlock_irqrestore(&conf->device_lock, flags);
234 }
235
236 static inline void remove_hash(struct stripe_head *sh)
237 {
238         pr_debug("remove_hash(), stripe %llu\n",
239                 (unsigned long long)sh->sector);
240
241         hlist_del_init(&sh->hash);
242 }
243
244 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
245 {
246         struct hlist_head *hp = stripe_hash(conf, sh->sector);
247
248         pr_debug("insert_hash(), stripe %llu\n",
249                 (unsigned long long)sh->sector);
250
251         CHECK_DEVLOCK();
252         hlist_add_head(&sh->hash, hp);
253 }
254
255
256 /* find an idle stripe, make sure it is unhashed, and return it. */
257 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
258 {
259         struct stripe_head *sh = NULL;
260         struct list_head *first;
261
262         CHECK_DEVLOCK();
263         if (list_empty(&conf->inactive_list))
264                 goto out;
265         first = conf->inactive_list.next;
266         sh = list_entry(first, struct stripe_head, lru);
267         list_del_init(first);
268         remove_hash(sh);
269         atomic_inc(&conf->active_stripes);
270 out:
271         return sh;
272 }
273
274 static void shrink_buffers(struct stripe_head *sh, int num)
275 {
276         struct page *p;
277         int i;
278
279         for (i=0; i<num ; i++) {
280                 p = sh->dev[i].page;
281                 if (!p)
282                         continue;
283                 sh->dev[i].page = NULL;
284                 put_page(p);
285         }
286 }
287
288 static int grow_buffers(struct stripe_head *sh, int num)
289 {
290         int i;
291
292         for (i=0; i<num; i++) {
293                 struct page *page;
294
295                 if (!(page = alloc_page(GFP_KERNEL))) {
296                         return 1;
297                 }
298                 sh->dev[i].page = page;
299         }
300         return 0;
301 }
302
303 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
304 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
305                             struct stripe_head *sh);
306
307 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
308 {
309         raid5_conf_t *conf = sh->raid_conf;
310         int i;
311
312         BUG_ON(atomic_read(&sh->count) != 0);
313         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
314         BUG_ON(stripe_operations_active(sh));
315
316         CHECK_DEVLOCK();
317         pr_debug("init_stripe called, stripe %llu\n",
318                 (unsigned long long)sh->sector);
319
320         remove_hash(sh);
321
322         sh->generation = conf->generation - previous;
323         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
324         sh->sector = sector;
325         stripe_set_idx(sector, conf, previous, sh);
326         sh->state = 0;
327
328
329         for (i = sh->disks; i--; ) {
330                 struct r5dev *dev = &sh->dev[i];
331
332                 if (dev->toread || dev->read || dev->towrite || dev->written ||
333                     test_bit(R5_LOCKED, &dev->flags)) {
334                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
335                                (unsigned long long)sh->sector, i, dev->toread,
336                                dev->read, dev->towrite, dev->written,
337                                test_bit(R5_LOCKED, &dev->flags));
338                         BUG();
339                 }
340                 dev->flags = 0;
341                 raid5_build_block(sh, i, previous);
342         }
343         insert_hash(conf, sh);
344 }
345
346 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
347                                          short generation)
348 {
349         struct stripe_head *sh;
350         struct hlist_node *hn;
351
352         CHECK_DEVLOCK();
353         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
354         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
355                 if (sh->sector == sector && sh->generation == generation)
356                         return sh;
357         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
358         return NULL;
359 }
360
361 static void unplug_slaves(mddev_t *mddev);
362 static void raid5_unplug_device(struct request_queue *q);
363
364 static struct stripe_head *
365 get_active_stripe(raid5_conf_t *conf, sector_t sector,
366                   int previous, int noblock)
367 {
368         struct stripe_head *sh;
369
370         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
371
372         spin_lock_irq(&conf->device_lock);
373
374         do {
375                 wait_event_lock_irq(conf->wait_for_stripe,
376                                     conf->quiesce == 0,
377                                     conf->device_lock, /* nothing */);
378                 sh = __find_stripe(conf, sector, conf->generation - previous);
379                 if (!sh) {
380                         if (!conf->inactive_blocked)
381                                 sh = get_free_stripe(conf);
382                         if (noblock && sh == NULL)
383                                 break;
384                         if (!sh) {
385                                 conf->inactive_blocked = 1;
386                                 wait_event_lock_irq(conf->wait_for_stripe,
387                                                     !list_empty(&conf->inactive_list) &&
388                                                     (atomic_read(&conf->active_stripes)
389                                                      < (conf->max_nr_stripes *3/4)
390                                                      || !conf->inactive_blocked),
391                                                     conf->device_lock,
392                                                     raid5_unplug_device(conf->mddev->queue)
393                                         );
394                                 conf->inactive_blocked = 0;
395                         } else
396                                 init_stripe(sh, sector, previous);
397                 } else {
398                         if (atomic_read(&sh->count)) {
399                                 BUG_ON(!list_empty(&sh->lru)
400                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
401                         } else {
402                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
403                                         atomic_inc(&conf->active_stripes);
404                                 if (list_empty(&sh->lru) &&
405                                     !test_bit(STRIPE_EXPANDING, &sh->state))
406                                         BUG();
407                                 list_del_init(&sh->lru);
408                         }
409                 }
410         } while (sh == NULL);
411
412         if (sh)
413                 atomic_inc(&sh->count);
414
415         spin_unlock_irq(&conf->device_lock);
416         return sh;
417 }
418
419 static void
420 raid5_end_read_request(struct bio *bi, int error);
421 static void
422 raid5_end_write_request(struct bio *bi, int error);
423
424 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
425 {
426         raid5_conf_t *conf = sh->raid_conf;
427         int i, disks = sh->disks;
428
429         might_sleep();
430
431         for (i = disks; i--; ) {
432                 int rw;
433                 struct bio *bi;
434                 mdk_rdev_t *rdev;
435                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
436                         rw = WRITE;
437                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
438                         rw = READ;
439                 else
440                         continue;
441
442                 bi = &sh->dev[i].req;
443
444                 bi->bi_rw = rw;
445                 if (rw == WRITE)
446                         bi->bi_end_io = raid5_end_write_request;
447                 else
448                         bi->bi_end_io = raid5_end_read_request;
449
450                 rcu_read_lock();
451                 rdev = rcu_dereference(conf->disks[i].rdev);
452                 if (rdev && test_bit(Faulty, &rdev->flags))
453                         rdev = NULL;
454                 if (rdev)
455                         atomic_inc(&rdev->nr_pending);
456                 rcu_read_unlock();
457
458                 if (rdev) {
459                         if (s->syncing || s->expanding || s->expanded)
460                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
461
462                         set_bit(STRIPE_IO_STARTED, &sh->state);
463
464                         bi->bi_bdev = rdev->bdev;
465                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
466                                 __func__, (unsigned long long)sh->sector,
467                                 bi->bi_rw, i);
468                         atomic_inc(&sh->count);
469                         bi->bi_sector = sh->sector + rdev->data_offset;
470                         bi->bi_flags = 1 << BIO_UPTODATE;
471                         bi->bi_vcnt = 1;
472                         bi->bi_max_vecs = 1;
473                         bi->bi_idx = 0;
474                         bi->bi_io_vec = &sh->dev[i].vec;
475                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
476                         bi->bi_io_vec[0].bv_offset = 0;
477                         bi->bi_size = STRIPE_SIZE;
478                         bi->bi_next = NULL;
479                         if (rw == WRITE &&
480                             test_bit(R5_ReWrite, &sh->dev[i].flags))
481                                 atomic_add(STRIPE_SECTORS,
482                                         &rdev->corrected_errors);
483                         generic_make_request(bi);
484                 } else {
485                         if (rw == WRITE)
486                                 set_bit(STRIPE_DEGRADED, &sh->state);
487                         pr_debug("skip op %ld on disc %d for sector %llu\n",
488                                 bi->bi_rw, i, (unsigned long long)sh->sector);
489                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
490                         set_bit(STRIPE_HANDLE, &sh->state);
491                 }
492         }
493 }
494
495 static struct dma_async_tx_descriptor *
496 async_copy_data(int frombio, struct bio *bio, struct page *page,
497         sector_t sector, struct dma_async_tx_descriptor *tx)
498 {
499         struct bio_vec *bvl;
500         struct page *bio_page;
501         int i;
502         int page_offset;
503         struct async_submit_ctl submit;
504
505         if (bio->bi_sector >= sector)
506                 page_offset = (signed)(bio->bi_sector - sector) * 512;
507         else
508                 page_offset = (signed)(sector - bio->bi_sector) * -512;
509
510         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
511         bio_for_each_segment(bvl, bio, i) {
512                 int len = bio_iovec_idx(bio, i)->bv_len;
513                 int clen;
514                 int b_offset = 0;
515
516                 if (page_offset < 0) {
517                         b_offset = -page_offset;
518                         page_offset += b_offset;
519                         len -= b_offset;
520                 }
521
522                 if (len > 0 && page_offset + len > STRIPE_SIZE)
523                         clen = STRIPE_SIZE - page_offset;
524                 else
525                         clen = len;
526
527                 if (clen > 0) {
528                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
529                         bio_page = bio_iovec_idx(bio, i)->bv_page;
530                         if (frombio)
531                                 tx = async_memcpy(page, bio_page, page_offset,
532                                                   b_offset, clen, &submit);
533                         else
534                                 tx = async_memcpy(bio_page, page, b_offset,
535                                                   page_offset, clen, &submit);
536                 }
537                 /* chain the operations */
538                 submit.depend_tx = tx;
539
540                 if (clen < len) /* hit end of page */
541                         break;
542                 page_offset +=  len;
543         }
544
545         return tx;
546 }
547
548 static void ops_complete_biofill(void *stripe_head_ref)
549 {
550         struct stripe_head *sh = stripe_head_ref;
551         struct bio *return_bi = NULL;
552         raid5_conf_t *conf = sh->raid_conf;
553         int i;
554
555         pr_debug("%s: stripe %llu\n", __func__,
556                 (unsigned long long)sh->sector);
557
558         /* clear completed biofills */
559         spin_lock_irq(&conf->device_lock);
560         for (i = sh->disks; i--; ) {
561                 struct r5dev *dev = &sh->dev[i];
562
563                 /* acknowledge completion of a biofill operation */
564                 /* and check if we need to reply to a read request,
565                  * new R5_Wantfill requests are held off until
566                  * !STRIPE_BIOFILL_RUN
567                  */
568                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
569                         struct bio *rbi, *rbi2;
570
571                         BUG_ON(!dev->read);
572                         rbi = dev->read;
573                         dev->read = NULL;
574                         while (rbi && rbi->bi_sector <
575                                 dev->sector + STRIPE_SECTORS) {
576                                 rbi2 = r5_next_bio(rbi, dev->sector);
577                                 if (!raid5_dec_bi_phys_segments(rbi)) {
578                                         rbi->bi_next = return_bi;
579                                         return_bi = rbi;
580                                 }
581                                 rbi = rbi2;
582                         }
583                 }
584         }
585         spin_unlock_irq(&conf->device_lock);
586         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
587
588         return_io(return_bi);
589
590         set_bit(STRIPE_HANDLE, &sh->state);
591         release_stripe(sh);
592 }
593
594 static void ops_run_biofill(struct stripe_head *sh)
595 {
596         struct dma_async_tx_descriptor *tx = NULL;
597         raid5_conf_t *conf = sh->raid_conf;
598         struct async_submit_ctl submit;
599         int i;
600
601         pr_debug("%s: stripe %llu\n", __func__,
602                 (unsigned long long)sh->sector);
603
604         for (i = sh->disks; i--; ) {
605                 struct r5dev *dev = &sh->dev[i];
606                 if (test_bit(R5_Wantfill, &dev->flags)) {
607                         struct bio *rbi;
608                         spin_lock_irq(&conf->device_lock);
609                         dev->read = rbi = dev->toread;
610                         dev->toread = NULL;
611                         spin_unlock_irq(&conf->device_lock);
612                         while (rbi && rbi->bi_sector <
613                                 dev->sector + STRIPE_SECTORS) {
614                                 tx = async_copy_data(0, rbi, dev->page,
615                                         dev->sector, tx);
616                                 rbi = r5_next_bio(rbi, dev->sector);
617                         }
618                 }
619         }
620
621         atomic_inc(&sh->count);
622         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
623         async_trigger_callback(&submit);
624 }
625
626 static void mark_target_uptodate(struct stripe_head *sh, int target)
627 {
628         struct r5dev *tgt;
629
630         if (target < 0)
631                 return;
632
633         tgt = &sh->dev[target];
634         set_bit(R5_UPTODATE, &tgt->flags);
635         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
636         clear_bit(R5_Wantcompute, &tgt->flags);
637 }
638
639 static void ops_complete_compute(void *stripe_head_ref)
640 {
641         struct stripe_head *sh = stripe_head_ref;
642
643         pr_debug("%s: stripe %llu\n", __func__,
644                 (unsigned long long)sh->sector);
645
646         /* mark the computed target(s) as uptodate */
647         mark_target_uptodate(sh, sh->ops.target);
648         mark_target_uptodate(sh, sh->ops.target2);
649
650         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
651         if (sh->check_state == check_state_compute_run)
652                 sh->check_state = check_state_compute_result;
653         set_bit(STRIPE_HANDLE, &sh->state);
654         release_stripe(sh);
655 }
656
657 /* return a pointer to the address conversion region of the scribble buffer */
658 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
659                                  struct raid5_percpu *percpu)
660 {
661         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
662 }
663
664 static struct dma_async_tx_descriptor *
665 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
666 {
667         int disks = sh->disks;
668         struct page **xor_srcs = percpu->scribble;
669         int target = sh->ops.target;
670         struct r5dev *tgt = &sh->dev[target];
671         struct page *xor_dest = tgt->page;
672         int count = 0;
673         struct dma_async_tx_descriptor *tx;
674         struct async_submit_ctl submit;
675         int i;
676
677         pr_debug("%s: stripe %llu block: %d\n",
678                 __func__, (unsigned long long)sh->sector, target);
679         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
680
681         for (i = disks; i--; )
682                 if (i != target)
683                         xor_srcs[count++] = sh->dev[i].page;
684
685         atomic_inc(&sh->count);
686
687         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL,
688                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
689         if (unlikely(count == 1))
690                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
691         else
692                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
693
694         return tx;
695 }
696
697 /* set_syndrome_sources - populate source buffers for gen_syndrome
698  * @srcs - (struct page *) array of size sh->disks
699  * @sh - stripe_head to parse
700  *
701  * Populates srcs in proper layout order for the stripe and returns the
702  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
703  * destination buffer is recorded in srcs[count] and the Q destination
704  * is recorded in srcs[count+1]].
705  */
706 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
707 {
708         int disks = sh->disks;
709         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
710         int d0_idx = raid6_d0(sh);
711         int count;
712         int i;
713
714         for (i = 0; i < disks; i++)
715                 srcs[i] = (void *)raid6_empty_zero_page;
716
717         count = 0;
718         i = d0_idx;
719         do {
720                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
721
722                 srcs[slot] = sh->dev[i].page;
723                 i = raid6_next_disk(i, disks);
724         } while (i != d0_idx);
725         BUG_ON(count != syndrome_disks);
726
727         return count;
728 }
729
730 static struct dma_async_tx_descriptor *
731 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
732 {
733         int disks = sh->disks;
734         struct page **blocks = percpu->scribble;
735         int target;
736         int qd_idx = sh->qd_idx;
737         struct dma_async_tx_descriptor *tx;
738         struct async_submit_ctl submit;
739         struct r5dev *tgt;
740         struct page *dest;
741         int i;
742         int count;
743
744         if (sh->ops.target < 0)
745                 target = sh->ops.target2;
746         else if (sh->ops.target2 < 0)
747                 target = sh->ops.target;
748         else
749                 /* we should only have one valid target */
750                 BUG();
751         BUG_ON(target < 0);
752         pr_debug("%s: stripe %llu block: %d\n",
753                 __func__, (unsigned long long)sh->sector, target);
754
755         tgt = &sh->dev[target];
756         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
757         dest = tgt->page;
758
759         atomic_inc(&sh->count);
760
761         if (target == qd_idx) {
762                 count = set_syndrome_sources(blocks, sh);
763                 blocks[count] = NULL; /* regenerating p is not necessary */
764                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
765                 init_async_submit(&submit, 0, NULL, ops_complete_compute, sh,
766                                   to_addr_conv(sh, percpu));
767                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
768         } else {
769                 /* Compute any data- or p-drive using XOR */
770                 count = 0;
771                 for (i = disks; i-- ; ) {
772                         if (i == target || i == qd_idx)
773                                 continue;
774                         blocks[count++] = sh->dev[i].page;
775                 }
776
777                 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL,
778                                   ops_complete_compute, sh,
779                                   to_addr_conv(sh, percpu));
780                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
781         }
782
783         return tx;
784 }
785
786 static struct dma_async_tx_descriptor *
787 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
788 {
789         int i, count, disks = sh->disks;
790         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
791         int d0_idx = raid6_d0(sh);
792         int faila = -1, failb = -1;
793         int target = sh->ops.target;
794         int target2 = sh->ops.target2;
795         struct r5dev *tgt = &sh->dev[target];
796         struct r5dev *tgt2 = &sh->dev[target2];
797         struct dma_async_tx_descriptor *tx;
798         struct page **blocks = percpu->scribble;
799         struct async_submit_ctl submit;
800
801         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
802                  __func__, (unsigned long long)sh->sector, target, target2);
803         BUG_ON(target < 0 || target2 < 0);
804         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
805         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
806
807         /* we need to open-code set_syndrome_sources to handle to the
808          * slot number conversion for 'faila' and 'failb'
809          */
810         for (i = 0; i < disks ; i++)
811                 blocks[i] = (void *)raid6_empty_zero_page;
812         count = 0;
813         i = d0_idx;
814         do {
815                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
816
817                 blocks[slot] = sh->dev[i].page;
818
819                 if (i == target)
820                         faila = slot;
821                 if (i == target2)
822                         failb = slot;
823                 i = raid6_next_disk(i, disks);
824         } while (i != d0_idx);
825         BUG_ON(count != syndrome_disks);
826
827         BUG_ON(faila == failb);
828         if (failb < faila)
829                 swap(faila, failb);
830         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
831                  __func__, (unsigned long long)sh->sector, faila, failb);
832
833         atomic_inc(&sh->count);
834
835         if (failb == syndrome_disks+1) {
836                 /* Q disk is one of the missing disks */
837                 if (faila == syndrome_disks) {
838                         /* Missing P+Q, just recompute */
839                         init_async_submit(&submit, 0, NULL, ops_complete_compute,
840                                           sh, to_addr_conv(sh, percpu));
841                         return async_gen_syndrome(blocks, 0, count+2,
842                                                   STRIPE_SIZE, &submit);
843                 } else {
844                         struct page *dest;
845                         int data_target;
846                         int qd_idx = sh->qd_idx;
847
848                         /* Missing D+Q: recompute D from P, then recompute Q */
849                         if (target == qd_idx)
850                                 data_target = target2;
851                         else
852                                 data_target = target;
853
854                         count = 0;
855                         for (i = disks; i-- ; ) {
856                                 if (i == data_target || i == qd_idx)
857                                         continue;
858                                 blocks[count++] = sh->dev[i].page;
859                         }
860                         dest = sh->dev[data_target].page;
861                         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL,
862                                           NULL, NULL, to_addr_conv(sh, percpu));
863                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
864                                        &submit);
865
866                         count = set_syndrome_sources(blocks, sh);
867                         init_async_submit(&submit, 0, tx, ops_complete_compute,
868                                           sh, to_addr_conv(sh, percpu));
869                         return async_gen_syndrome(blocks, 0, count+2,
870                                                   STRIPE_SIZE, &submit);
871                 }
872         }
873
874         init_async_submit(&submit, 0, NULL, ops_complete_compute, sh,
875                           to_addr_conv(sh, percpu));
876         if (failb == syndrome_disks) {
877                 /* We're missing D+P. */
878                 return async_raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE,
879                                                faila, blocks, &submit);
880         } else {
881                 /* We're missing D+D. */
882                 return async_raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE,
883                                                faila, failb, blocks, &submit);
884         }
885 }
886
887
888 static void ops_complete_prexor(void *stripe_head_ref)
889 {
890         struct stripe_head *sh = stripe_head_ref;
891
892         pr_debug("%s: stripe %llu\n", __func__,
893                 (unsigned long long)sh->sector);
894 }
895
896 static struct dma_async_tx_descriptor *
897 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
898                struct dma_async_tx_descriptor *tx)
899 {
900         int disks = sh->disks;
901         struct page **xor_srcs = percpu->scribble;
902         int count = 0, pd_idx = sh->pd_idx, i;
903         struct async_submit_ctl submit;
904
905         /* existing parity data subtracted */
906         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
907
908         pr_debug("%s: stripe %llu\n", __func__,
909                 (unsigned long long)sh->sector);
910
911         for (i = disks; i--; ) {
912                 struct r5dev *dev = &sh->dev[i];
913                 /* Only process blocks that are known to be uptodate */
914                 if (test_bit(R5_Wantdrain, &dev->flags))
915                         xor_srcs[count++] = dev->page;
916         }
917
918         init_async_submit(&submit, ASYNC_TX_XOR_DROP_DST, tx,
919                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
920         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
921
922         return tx;
923 }
924
925 static struct dma_async_tx_descriptor *
926 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
927 {
928         int disks = sh->disks;
929         int i;
930
931         pr_debug("%s: stripe %llu\n", __func__,
932                 (unsigned long long)sh->sector);
933
934         for (i = disks; i--; ) {
935                 struct r5dev *dev = &sh->dev[i];
936                 struct bio *chosen;
937
938                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
939                         struct bio *wbi;
940
941                         spin_lock(&sh->lock);
942                         chosen = dev->towrite;
943                         dev->towrite = NULL;
944                         BUG_ON(dev->written);
945                         wbi = dev->written = chosen;
946                         spin_unlock(&sh->lock);
947
948                         while (wbi && wbi->bi_sector <
949                                 dev->sector + STRIPE_SECTORS) {
950                                 tx = async_copy_data(1, wbi, dev->page,
951                                         dev->sector, tx);
952                                 wbi = r5_next_bio(wbi, dev->sector);
953                         }
954                 }
955         }
956
957         return tx;
958 }
959
960 static void ops_complete_reconstruct(void *stripe_head_ref)
961 {
962         struct stripe_head *sh = stripe_head_ref;
963         int disks = sh->disks;
964         int pd_idx = sh->pd_idx;
965         int qd_idx = sh->qd_idx;
966         int i;
967
968         pr_debug("%s: stripe %llu\n", __func__,
969                 (unsigned long long)sh->sector);
970
971         for (i = disks; i--; ) {
972                 struct r5dev *dev = &sh->dev[i];
973
974                 if (dev->written || i == pd_idx || i == qd_idx)
975                         set_bit(R5_UPTODATE, &dev->flags);
976         }
977
978         if (sh->reconstruct_state == reconstruct_state_drain_run)
979                 sh->reconstruct_state = reconstruct_state_drain_result;
980         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
981                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
982         else {
983                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
984                 sh->reconstruct_state = reconstruct_state_result;
985         }
986
987         set_bit(STRIPE_HANDLE, &sh->state);
988         release_stripe(sh);
989 }
990
991 static void
992 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
993                      struct dma_async_tx_descriptor *tx)
994 {
995         int disks = sh->disks;
996         struct page **xor_srcs = percpu->scribble;
997         struct async_submit_ctl submit;
998         int count = 0, pd_idx = sh->pd_idx, i;
999         struct page *xor_dest;
1000         int prexor = 0;
1001         unsigned long flags;
1002
1003         pr_debug("%s: stripe %llu\n", __func__,
1004                 (unsigned long long)sh->sector);
1005
1006         /* check if prexor is active which means only process blocks
1007          * that are part of a read-modify-write (written)
1008          */
1009         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1010                 prexor = 1;
1011                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1012                 for (i = disks; i--; ) {
1013                         struct r5dev *dev = &sh->dev[i];
1014                         if (dev->written)
1015                                 xor_srcs[count++] = dev->page;
1016                 }
1017         } else {
1018                 xor_dest = sh->dev[pd_idx].page;
1019                 for (i = disks; i--; ) {
1020                         struct r5dev *dev = &sh->dev[i];
1021                         if (i != pd_idx)
1022                                 xor_srcs[count++] = dev->page;
1023                 }
1024         }
1025
1026         /* 1/ if we prexor'd then the dest is reused as a source
1027          * 2/ if we did not prexor then we are redoing the parity
1028          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1029          * for the synchronous xor case
1030          */
1031         flags = ASYNC_TX_ACK |
1032                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1033
1034         atomic_inc(&sh->count);
1035
1036         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1037                           to_addr_conv(sh, percpu));
1038         if (unlikely(count == 1))
1039                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1040         else
1041                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1042 }
1043
1044 static void
1045 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1046                      struct dma_async_tx_descriptor *tx)
1047 {
1048         struct async_submit_ctl submit;
1049         struct page **blocks = percpu->scribble;
1050         int count;
1051
1052         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1053
1054         count = set_syndrome_sources(blocks, sh);
1055
1056         atomic_inc(&sh->count);
1057
1058         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1059                           sh, to_addr_conv(sh, percpu));
1060         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1061 }
1062
1063 static void ops_complete_check(void *stripe_head_ref)
1064 {
1065         struct stripe_head *sh = stripe_head_ref;
1066
1067         pr_debug("%s: stripe %llu\n", __func__,
1068                 (unsigned long long)sh->sector);
1069
1070         sh->check_state = check_state_check_result;
1071         set_bit(STRIPE_HANDLE, &sh->state);
1072         release_stripe(sh);
1073 }
1074
1075 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1076 {
1077         int disks = sh->disks;
1078         int pd_idx = sh->pd_idx;
1079         int qd_idx = sh->qd_idx;
1080         struct page *xor_dest;
1081         struct page **xor_srcs = percpu->scribble;
1082         struct dma_async_tx_descriptor *tx;
1083         struct async_submit_ctl submit;
1084         int count;
1085         int i;
1086
1087         pr_debug("%s: stripe %llu\n", __func__,
1088                 (unsigned long long)sh->sector);
1089
1090         count = 0;
1091         xor_dest = sh->dev[pd_idx].page;
1092         xor_srcs[count++] = xor_dest;
1093         for (i = disks; i--; ) {
1094                 if (i == pd_idx || i == qd_idx)
1095                         continue;
1096                 xor_srcs[count++] = sh->dev[i].page;
1097         }
1098
1099         init_async_submit(&submit, 0, NULL, NULL, NULL,
1100                           to_addr_conv(sh, percpu));
1101         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1102                            &sh->ops.zero_sum_result, &submit);
1103
1104         atomic_inc(&sh->count);
1105         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1106         tx = async_trigger_callback(&submit);
1107 }
1108
1109 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1110 {
1111         struct page **srcs = percpu->scribble;
1112         struct async_submit_ctl submit;
1113         int count;
1114
1115         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1116                 (unsigned long long)sh->sector, checkp);
1117
1118         count = set_syndrome_sources(srcs, sh);
1119         if (!checkp)
1120                 srcs[count] = NULL;
1121
1122         atomic_inc(&sh->count);
1123         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1124                           sh, to_addr_conv(sh, percpu));
1125         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1126                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1127 }
1128
1129 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1130 {
1131         int overlap_clear = 0, i, disks = sh->disks;
1132         struct dma_async_tx_descriptor *tx = NULL;
1133         raid5_conf_t *conf = sh->raid_conf;
1134         int level = conf->level;
1135         struct raid5_percpu *percpu;
1136         unsigned long cpu;
1137
1138         cpu = get_cpu();
1139         percpu = per_cpu_ptr(conf->percpu, cpu);
1140         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1141                 ops_run_biofill(sh);
1142                 overlap_clear++;
1143         }
1144
1145         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1146                 if (level < 6)
1147                         tx = ops_run_compute5(sh, percpu);
1148                 else {
1149                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1150                                 tx = ops_run_compute6_1(sh, percpu);
1151                         else
1152                                 tx = ops_run_compute6_2(sh, percpu);
1153                 }
1154                 /* terminate the chain if reconstruct is not set to be run */
1155                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1156                         async_tx_ack(tx);
1157         }
1158
1159         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1160                 tx = ops_run_prexor(sh, percpu, tx);
1161
1162         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1163                 tx = ops_run_biodrain(sh, tx);
1164                 overlap_clear++;
1165         }
1166
1167         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1168                 if (level < 6)
1169                         ops_run_reconstruct5(sh, percpu, tx);
1170                 else
1171                         ops_run_reconstruct6(sh, percpu, tx);
1172         }
1173
1174         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1175                 if (sh->check_state == check_state_run)
1176                         ops_run_check_p(sh, percpu);
1177                 else if (sh->check_state == check_state_run_q)
1178                         ops_run_check_pq(sh, percpu, 0);
1179                 else if (sh->check_state == check_state_run_pq)
1180                         ops_run_check_pq(sh, percpu, 1);
1181                 else
1182                         BUG();
1183         }
1184
1185         if (overlap_clear)
1186                 for (i = disks; i--; ) {
1187                         struct r5dev *dev = &sh->dev[i];
1188                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1189                                 wake_up(&sh->raid_conf->wait_for_overlap);
1190                 }
1191         put_cpu();
1192 }
1193
1194 static int grow_one_stripe(raid5_conf_t *conf)
1195 {
1196         struct stripe_head *sh;
1197         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1198         if (!sh)
1199                 return 0;
1200         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
1201         sh->raid_conf = conf;
1202         spin_lock_init(&sh->lock);
1203
1204         if (grow_buffers(sh, conf->raid_disks)) {
1205                 shrink_buffers(sh, conf->raid_disks);
1206                 kmem_cache_free(conf->slab_cache, sh);
1207                 return 0;
1208         }
1209         sh->disks = conf->raid_disks;
1210         /* we just created an active stripe so... */
1211         atomic_set(&sh->count, 1);
1212         atomic_inc(&conf->active_stripes);
1213         INIT_LIST_HEAD(&sh->lru);
1214         release_stripe(sh);
1215         return 1;
1216 }
1217
1218 static int grow_stripes(raid5_conf_t *conf, int num)
1219 {
1220         struct kmem_cache *sc;
1221         int devs = conf->raid_disks;
1222
1223         sprintf(conf->cache_name[0],
1224                 "raid%d-%s", conf->level, mdname(conf->mddev));
1225         sprintf(conf->cache_name[1],
1226                 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
1227         conf->active_name = 0;
1228         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1229                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1230                                0, 0, NULL);
1231         if (!sc)
1232                 return 1;
1233         conf->slab_cache = sc;
1234         conf->pool_size = devs;
1235         while (num--)
1236                 if (!grow_one_stripe(conf))
1237                         return 1;
1238         return 0;
1239 }
1240
1241 /**
1242  * scribble_len - return the required size of the scribble region
1243  * @num - total number of disks in the array
1244  *
1245  * The size must be enough to contain:
1246  * 1/ a struct page pointer for each device in the array +2
1247  * 2/ room to convert each entry in (1) to its corresponding dma
1248  *    (dma_map_page()) or page (page_address()) address.
1249  *
1250  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1251  * calculate over all devices (not just the data blocks), using zeros in place
1252  * of the P and Q blocks.
1253  */
1254 static size_t scribble_len(int num)
1255 {
1256         size_t len;
1257
1258         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1259
1260         return len;
1261 }
1262
1263 static int resize_stripes(raid5_conf_t *conf, int newsize)
1264 {
1265         /* Make all the stripes able to hold 'newsize' devices.
1266          * New slots in each stripe get 'page' set to a new page.
1267          *
1268          * This happens in stages:
1269          * 1/ create a new kmem_cache and allocate the required number of
1270          *    stripe_heads.
1271          * 2/ gather all the old stripe_heads and tranfer the pages across
1272          *    to the new stripe_heads.  This will have the side effect of
1273          *    freezing the array as once all stripe_heads have been collected,
1274          *    no IO will be possible.  Old stripe heads are freed once their
1275          *    pages have been transferred over, and the old kmem_cache is
1276          *    freed when all stripes are done.
1277          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1278          *    we simple return a failre status - no need to clean anything up.
1279          * 4/ allocate new pages for the new slots in the new stripe_heads.
1280          *    If this fails, we don't bother trying the shrink the
1281          *    stripe_heads down again, we just leave them as they are.
1282          *    As each stripe_head is processed the new one is released into
1283          *    active service.
1284          *
1285          * Once step2 is started, we cannot afford to wait for a write,
1286          * so we use GFP_NOIO allocations.
1287          */
1288         struct stripe_head *osh, *nsh;
1289         LIST_HEAD(newstripes);
1290         struct disk_info *ndisks;
1291         unsigned long cpu;
1292         int err;
1293         struct kmem_cache *sc;
1294         int i;
1295
1296         if (newsize <= conf->pool_size)
1297                 return 0; /* never bother to shrink */
1298
1299         err = md_allow_write(conf->mddev);
1300         if (err)
1301                 return err;
1302
1303         /* Step 1 */
1304         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1305                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1306                                0, 0, NULL);
1307         if (!sc)
1308                 return -ENOMEM;
1309
1310         for (i = conf->max_nr_stripes; i; i--) {
1311                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1312                 if (!nsh)
1313                         break;
1314
1315                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1316
1317                 nsh->raid_conf = conf;
1318                 spin_lock_init(&nsh->lock);
1319
1320                 list_add(&nsh->lru, &newstripes);
1321         }
1322         if (i) {
1323                 /* didn't get enough, give up */
1324                 while (!list_empty(&newstripes)) {
1325                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1326                         list_del(&nsh->lru);
1327                         kmem_cache_free(sc, nsh);
1328                 }
1329                 kmem_cache_destroy(sc);
1330                 return -ENOMEM;
1331         }
1332         /* Step 2 - Must use GFP_NOIO now.
1333          * OK, we have enough stripes, start collecting inactive
1334          * stripes and copying them over
1335          */
1336         list_for_each_entry(nsh, &newstripes, lru) {
1337                 spin_lock_irq(&conf->device_lock);
1338                 wait_event_lock_irq(conf->wait_for_stripe,
1339                                     !list_empty(&conf->inactive_list),
1340                                     conf->device_lock,
1341                                     unplug_slaves(conf->mddev)
1342                         );
1343                 osh = get_free_stripe(conf);
1344                 spin_unlock_irq(&conf->device_lock);
1345                 atomic_set(&nsh->count, 1);
1346                 for(i=0; i<conf->pool_size; i++)
1347                         nsh->dev[i].page = osh->dev[i].page;
1348                 for( ; i<newsize; i++)
1349                         nsh->dev[i].page = NULL;
1350                 kmem_cache_free(conf->slab_cache, osh);
1351         }
1352         kmem_cache_destroy(conf->slab_cache);
1353
1354         /* Step 3.
1355          * At this point, we are holding all the stripes so the array
1356          * is completely stalled, so now is a good time to resize
1357          * conf->disks and the scribble region
1358          */
1359         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1360         if (ndisks) {
1361                 for (i=0; i<conf->raid_disks; i++)
1362                         ndisks[i] = conf->disks[i];
1363                 kfree(conf->disks);
1364                 conf->disks = ndisks;
1365         } else
1366                 err = -ENOMEM;
1367
1368         get_online_cpus();
1369         conf->scribble_len = scribble_len(newsize);
1370         for_each_present_cpu(cpu) {
1371                 struct raid5_percpu *percpu;
1372                 void *scribble;
1373
1374                 percpu = per_cpu_ptr(conf->percpu, cpu);
1375                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1376
1377                 if (scribble) {
1378                         kfree(percpu->scribble);
1379                         percpu->scribble = scribble;
1380                 } else {
1381                         err = -ENOMEM;
1382                         break;
1383                 }
1384         }
1385         put_online_cpus();
1386
1387         /* Step 4, return new stripes to service */
1388         while(!list_empty(&newstripes)) {
1389                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1390                 list_del_init(&nsh->lru);
1391
1392                 for (i=conf->raid_disks; i < newsize; i++)
1393                         if (nsh->dev[i].page == NULL) {
1394                                 struct page *p = alloc_page(GFP_NOIO);
1395                                 nsh->dev[i].page = p;
1396                                 if (!p)
1397                                         err = -ENOMEM;
1398                         }
1399                 release_stripe(nsh);
1400         }
1401         /* critical section pass, GFP_NOIO no longer needed */
1402
1403         conf->slab_cache = sc;
1404         conf->active_name = 1-conf->active_name;
1405         conf->pool_size = newsize;
1406         return err;
1407 }
1408
1409 static int drop_one_stripe(raid5_conf_t *conf)
1410 {
1411         struct stripe_head *sh;
1412
1413         spin_lock_irq(&conf->device_lock);
1414         sh = get_free_stripe(conf);
1415         spin_unlock_irq(&conf->device_lock);
1416         if (!sh)
1417                 return 0;
1418         BUG_ON(atomic_read(&sh->count));
1419         shrink_buffers(sh, conf->pool_size);
1420         kmem_cache_free(conf->slab_cache, sh);
1421         atomic_dec(&conf->active_stripes);
1422         return 1;
1423 }
1424
1425 static void shrink_stripes(raid5_conf_t *conf)
1426 {
1427         while (drop_one_stripe(conf))
1428                 ;
1429
1430         if (conf->slab_cache)
1431                 kmem_cache_destroy(conf->slab_cache);
1432         conf->slab_cache = NULL;
1433 }
1434
1435 static void raid5_end_read_request(struct bio * bi, int error)
1436 {
1437         struct stripe_head *sh = bi->bi_private;
1438         raid5_conf_t *conf = sh->raid_conf;
1439         int disks = sh->disks, i;
1440         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1441         char b[BDEVNAME_SIZE];
1442         mdk_rdev_t *rdev;
1443
1444
1445         for (i=0 ; i<disks; i++)
1446                 if (bi == &sh->dev[i].req)
1447                         break;
1448
1449         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1450                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1451                 uptodate);
1452         if (i == disks) {
1453                 BUG();
1454                 return;
1455         }
1456
1457         if (uptodate) {
1458                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1459                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1460                         rdev = conf->disks[i].rdev;
1461                         printk_rl(KERN_INFO "raid5:%s: read error corrected"
1462                                   " (%lu sectors at %llu on %s)\n",
1463                                   mdname(conf->mddev), STRIPE_SECTORS,
1464                                   (unsigned long long)(sh->sector
1465                                                        + rdev->data_offset),
1466                                   bdevname(rdev->bdev, b));
1467                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1468                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1469                 }
1470                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1471                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1472         } else {
1473                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1474                 int retry = 0;
1475                 rdev = conf->disks[i].rdev;
1476
1477                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1478                 atomic_inc(&rdev->read_errors);
1479                 if (conf->mddev->degraded)
1480                         printk_rl(KERN_WARNING
1481                                   "raid5:%s: read error not correctable "
1482                                   "(sector %llu on %s).\n",
1483                                   mdname(conf->mddev),
1484                                   (unsigned long long)(sh->sector
1485                                                        + rdev->data_offset),
1486                                   bdn);
1487                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1488                         /* Oh, no!!! */
1489                         printk_rl(KERN_WARNING
1490                                   "raid5:%s: read error NOT corrected!! "
1491                                   "(sector %llu on %s).\n",
1492                                   mdname(conf->mddev),
1493                                   (unsigned long long)(sh->sector
1494                                                        + rdev->data_offset),
1495                                   bdn);
1496                 else if (atomic_read(&rdev->read_errors)
1497                          > conf->max_nr_stripes)
1498                         printk(KERN_WARNING
1499                                "raid5:%s: Too many read errors, failing device %s.\n",
1500                                mdname(conf->mddev), bdn);
1501                 else
1502                         retry = 1;
1503                 if (retry)
1504                         set_bit(R5_ReadError, &sh->dev[i].flags);
1505                 else {
1506                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1507                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1508                         md_error(conf->mddev, rdev);
1509                 }
1510         }
1511         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1512         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1513         set_bit(STRIPE_HANDLE, &sh->state);
1514         release_stripe(sh);
1515 }
1516
1517 static void raid5_end_write_request(struct bio *bi, int error)
1518 {
1519         struct stripe_head *sh = bi->bi_private;
1520         raid5_conf_t *conf = sh->raid_conf;
1521         int disks = sh->disks, i;
1522         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1523
1524         for (i=0 ; i<disks; i++)
1525                 if (bi == &sh->dev[i].req)
1526                         break;
1527
1528         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1529                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1530                 uptodate);
1531         if (i == disks) {
1532                 BUG();
1533                 return;
1534         }
1535
1536         if (!uptodate)
1537                 md_error(conf->mddev, conf->disks[i].rdev);
1538
1539         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1540         
1541         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1542         set_bit(STRIPE_HANDLE, &sh->state);
1543         release_stripe(sh);
1544 }
1545
1546
1547 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1548         
1549 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1550 {
1551         struct r5dev *dev = &sh->dev[i];
1552
1553         bio_init(&dev->req);
1554         dev->req.bi_io_vec = &dev->vec;
1555         dev->req.bi_vcnt++;
1556         dev->req.bi_max_vecs++;
1557         dev->vec.bv_page = dev->page;
1558         dev->vec.bv_len = STRIPE_SIZE;
1559         dev->vec.bv_offset = 0;
1560
1561         dev->req.bi_sector = sh->sector;
1562         dev->req.bi_private = sh;
1563
1564         dev->flags = 0;
1565         dev->sector = compute_blocknr(sh, i, previous);
1566 }
1567
1568 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1569 {
1570         char b[BDEVNAME_SIZE];
1571         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1572         pr_debug("raid5: error called\n");
1573
1574         if (!test_bit(Faulty, &rdev->flags)) {
1575                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1576                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1577                         unsigned long flags;
1578                         spin_lock_irqsave(&conf->device_lock, flags);
1579                         mddev->degraded++;
1580                         spin_unlock_irqrestore(&conf->device_lock, flags);
1581                         /*
1582                          * if recovery was running, make sure it aborts.
1583                          */
1584                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1585                 }
1586                 set_bit(Faulty, &rdev->flags);
1587                 printk(KERN_ALERT
1588                        "raid5: Disk failure on %s, disabling device.\n"
1589                        "raid5: Operation continuing on %d devices.\n",
1590                        bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1591         }
1592 }
1593
1594 /*
1595  * Input: a 'big' sector number,
1596  * Output: index of the data and parity disk, and the sector # in them.
1597  */
1598 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1599                                      int previous, int *dd_idx,
1600                                      struct stripe_head *sh)
1601 {
1602         long stripe;
1603         unsigned long chunk_number;
1604         unsigned int chunk_offset;
1605         int pd_idx, qd_idx;
1606         int ddf_layout = 0;
1607         sector_t new_sector;
1608         int algorithm = previous ? conf->prev_algo
1609                                  : conf->algorithm;
1610         int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1611                                          : (conf->chunk_size >> 9);
1612         int raid_disks = previous ? conf->previous_raid_disks
1613                                   : conf->raid_disks;
1614         int data_disks = raid_disks - conf->max_degraded;
1615
1616         /* First compute the information on this sector */
1617
1618         /*
1619          * Compute the chunk number and the sector offset inside the chunk
1620          */
1621         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1622         chunk_number = r_sector;
1623         BUG_ON(r_sector != chunk_number);
1624
1625         /*
1626          * Compute the stripe number
1627          */
1628         stripe = chunk_number / data_disks;
1629
1630         /*
1631          * Compute the data disk and parity disk indexes inside the stripe
1632          */
1633         *dd_idx = chunk_number % data_disks;
1634
1635         /*
1636          * Select the parity disk based on the user selected algorithm.
1637          */
1638         pd_idx = qd_idx = ~0;
1639         switch(conf->level) {
1640         case 4:
1641                 pd_idx = data_disks;
1642                 break;
1643         case 5:
1644                 switch (algorithm) {
1645                 case ALGORITHM_LEFT_ASYMMETRIC:
1646                         pd_idx = data_disks - stripe % raid_disks;
1647                         if (*dd_idx >= pd_idx)
1648                                 (*dd_idx)++;
1649                         break;
1650                 case ALGORITHM_RIGHT_ASYMMETRIC:
1651                         pd_idx = stripe % raid_disks;
1652                         if (*dd_idx >= pd_idx)
1653                                 (*dd_idx)++;
1654                         break;
1655                 case ALGORITHM_LEFT_SYMMETRIC:
1656                         pd_idx = data_disks - stripe % raid_disks;
1657                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1658                         break;
1659                 case ALGORITHM_RIGHT_SYMMETRIC:
1660                         pd_idx = stripe % raid_disks;
1661                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1662                         break;
1663                 case ALGORITHM_PARITY_0:
1664                         pd_idx = 0;
1665                         (*dd_idx)++;
1666                         break;
1667                 case ALGORITHM_PARITY_N:
1668                         pd_idx = data_disks;
1669                         break;
1670                 default:
1671                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1672                                 algorithm);
1673                         BUG();
1674                 }
1675                 break;
1676         case 6:
1677
1678                 switch (algorithm) {
1679                 case ALGORITHM_LEFT_ASYMMETRIC:
1680                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1681                         qd_idx = pd_idx + 1;
1682                         if (pd_idx == raid_disks-1) {
1683                                 (*dd_idx)++;    /* Q D D D P */
1684                                 qd_idx = 0;
1685                         } else if (*dd_idx >= pd_idx)
1686                                 (*dd_idx) += 2; /* D D P Q D */
1687                         break;
1688                 case ALGORITHM_RIGHT_ASYMMETRIC:
1689                         pd_idx = stripe % raid_disks;
1690                         qd_idx = pd_idx + 1;
1691                         if (pd_idx == raid_disks-1) {
1692                                 (*dd_idx)++;    /* Q D D D P */
1693                                 qd_idx = 0;
1694                         } else if (*dd_idx >= pd_idx)
1695                                 (*dd_idx) += 2; /* D D P Q D */
1696                         break;
1697                 case ALGORITHM_LEFT_SYMMETRIC:
1698                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1699                         qd_idx = (pd_idx + 1) % raid_disks;
1700                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1701                         break;
1702                 case ALGORITHM_RIGHT_SYMMETRIC:
1703                         pd_idx = stripe % raid_disks;
1704                         qd_idx = (pd_idx + 1) % raid_disks;
1705                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1706                         break;
1707
1708                 case ALGORITHM_PARITY_0:
1709                         pd_idx = 0;
1710                         qd_idx = 1;
1711                         (*dd_idx) += 2;
1712                         break;
1713                 case ALGORITHM_PARITY_N:
1714                         pd_idx = data_disks;
1715                         qd_idx = data_disks + 1;
1716                         break;
1717
1718                 case ALGORITHM_ROTATING_ZERO_RESTART:
1719                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1720                          * of blocks for computing Q is different.
1721                          */
1722                         pd_idx = stripe % raid_disks;
1723                         qd_idx = pd_idx + 1;
1724                         if (pd_idx == raid_disks-1) {
1725                                 (*dd_idx)++;    /* Q D D D P */
1726                                 qd_idx = 0;
1727                         } else if (*dd_idx >= pd_idx)
1728                                 (*dd_idx) += 2; /* D D P Q D */
1729                         ddf_layout = 1;
1730                         break;
1731
1732                 case ALGORITHM_ROTATING_N_RESTART:
1733                         /* Same a left_asymmetric, by first stripe is
1734                          * D D D P Q  rather than
1735                          * Q D D D P
1736                          */
1737                         pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1738                         qd_idx = pd_idx + 1;
1739                         if (pd_idx == raid_disks-1) {
1740                                 (*dd_idx)++;    /* Q D D D P */
1741                                 qd_idx = 0;
1742                         } else if (*dd_idx >= pd_idx)
1743                                 (*dd_idx) += 2; /* D D P Q D */
1744                         ddf_layout = 1;
1745                         break;
1746
1747                 case ALGORITHM_ROTATING_N_CONTINUE:
1748                         /* Same as left_symmetric but Q is before P */
1749                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1750                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1751                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1752                         ddf_layout = 1;
1753                         break;
1754
1755                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1756                         /* RAID5 left_asymmetric, with Q on last device */
1757                         pd_idx = data_disks - stripe % (raid_disks-1);
1758                         if (*dd_idx >= pd_idx)
1759                                 (*dd_idx)++;
1760                         qd_idx = raid_disks - 1;
1761                         break;
1762
1763                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1764                         pd_idx = stripe % (raid_disks-1);
1765                         if (*dd_idx >= pd_idx)
1766                                 (*dd_idx)++;
1767                         qd_idx = raid_disks - 1;
1768                         break;
1769
1770                 case ALGORITHM_LEFT_SYMMETRIC_6:
1771                         pd_idx = data_disks - stripe % (raid_disks-1);
1772                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1773                         qd_idx = raid_disks - 1;
1774                         break;
1775
1776                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1777                         pd_idx = stripe % (raid_disks-1);
1778                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1779                         qd_idx = raid_disks - 1;
1780                         break;
1781
1782                 case ALGORITHM_PARITY_0_6:
1783                         pd_idx = 0;
1784                         (*dd_idx)++;
1785                         qd_idx = raid_disks - 1;
1786                         break;
1787
1788
1789                 default:
1790                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1791                                algorithm);
1792                         BUG();
1793                 }
1794                 break;
1795         }
1796
1797         if (sh) {
1798                 sh->pd_idx = pd_idx;
1799                 sh->qd_idx = qd_idx;
1800                 sh->ddf_layout = ddf_layout;
1801         }
1802         /*
1803          * Finally, compute the new sector number
1804          */
1805         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1806         return new_sector;
1807 }
1808
1809
1810 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1811 {
1812         raid5_conf_t *conf = sh->raid_conf;
1813         int raid_disks = sh->disks;
1814         int data_disks = raid_disks - conf->max_degraded;
1815         sector_t new_sector = sh->sector, check;
1816         int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1817                                          : (conf->chunk_size >> 9);
1818         int algorithm = previous ? conf->prev_algo
1819                                  : conf->algorithm;
1820         sector_t stripe;
1821         int chunk_offset;
1822         int chunk_number, dummy1, dd_idx = i;
1823         sector_t r_sector;
1824         struct stripe_head sh2;
1825
1826
1827         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1828         stripe = new_sector;
1829         BUG_ON(new_sector != stripe);
1830
1831         if (i == sh->pd_idx)
1832                 return 0;
1833         switch(conf->level) {
1834         case 4: break;
1835         case 5:
1836                 switch (algorithm) {
1837                 case ALGORITHM_LEFT_ASYMMETRIC:
1838                 case ALGORITHM_RIGHT_ASYMMETRIC:
1839                         if (i > sh->pd_idx)
1840                                 i--;
1841                         break;
1842                 case ALGORITHM_LEFT_SYMMETRIC:
1843                 case ALGORITHM_RIGHT_SYMMETRIC:
1844                         if (i < sh->pd_idx)
1845                                 i += raid_disks;
1846                         i -= (sh->pd_idx + 1);
1847                         break;
1848                 case ALGORITHM_PARITY_0:
1849                         i -= 1;
1850                         break;
1851                 case ALGORITHM_PARITY_N:
1852                         break;
1853                 default:
1854                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1855                                algorithm);
1856                         BUG();
1857                 }
1858                 break;
1859         case 6:
1860                 if (i == sh->qd_idx)
1861                         return 0; /* It is the Q disk */
1862                 switch (algorithm) {
1863                 case ALGORITHM_LEFT_ASYMMETRIC:
1864                 case ALGORITHM_RIGHT_ASYMMETRIC:
1865                 case ALGORITHM_ROTATING_ZERO_RESTART:
1866                 case ALGORITHM_ROTATING_N_RESTART:
1867                         if (sh->pd_idx == raid_disks-1)
1868                                 i--;    /* Q D D D P */
1869                         else if (i > sh->pd_idx)
1870                                 i -= 2; /* D D P Q D */
1871                         break;
1872                 case ALGORITHM_LEFT_SYMMETRIC:
1873                 case ALGORITHM_RIGHT_SYMMETRIC:
1874                         if (sh->pd_idx == raid_disks-1)
1875                                 i--; /* Q D D D P */
1876                         else {
1877                                 /* D D P Q D */
1878                                 if (i < sh->pd_idx)
1879                                         i += raid_disks;
1880                                 i -= (sh->pd_idx + 2);
1881                         }
1882                         break;
1883                 case ALGORITHM_PARITY_0:
1884                         i -= 2;
1885                         break;
1886                 case ALGORITHM_PARITY_N:
1887                         break;
1888                 case ALGORITHM_ROTATING_N_CONTINUE:
1889                         if (sh->pd_idx == 0)
1890                                 i--;    /* P D D D Q */
1891                         else if (i > sh->pd_idx)
1892                                 i -= 2; /* D D Q P D */
1893                         break;
1894                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1895                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1896                         if (i > sh->pd_idx)
1897                                 i--;
1898                         break;
1899                 case ALGORITHM_LEFT_SYMMETRIC_6:
1900                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1901                         if (i < sh->pd_idx)
1902                                 i += data_disks + 1;
1903                         i -= (sh->pd_idx + 1);
1904                         break;
1905                 case ALGORITHM_PARITY_0_6:
1906                         i -= 1;
1907                         break;
1908                 default:
1909                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1910                                algorithm);
1911                         BUG();
1912                 }
1913                 break;
1914         }
1915
1916         chunk_number = stripe * data_disks + i;
1917         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1918
1919         check = raid5_compute_sector(conf, r_sector,
1920                                      previous, &dummy1, &sh2);
1921         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1922                 || sh2.qd_idx != sh->qd_idx) {
1923                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1924                 return 0;
1925         }
1926         return r_sector;
1927 }
1928
1929
1930
1931 /*
1932  * Copy data between a page in the stripe cache, and one or more bion
1933  * The page could align with the middle of the bio, or there could be
1934  * several bion, each with several bio_vecs, which cover part of the page
1935  * Multiple bion are linked together on bi_next.  There may be extras
1936  * at the end of this list.  We ignore them.
1937  */
1938 static void copy_data(int frombio, struct bio *bio,
1939                      struct page *page,
1940                      sector_t sector)
1941 {
1942         char *pa = page_address(page);
1943         struct bio_vec *bvl;
1944         int i;
1945         int page_offset;
1946
1947         if (bio->bi_sector >= sector)
1948                 page_offset = (signed)(bio->bi_sector - sector) * 512;
1949         else
1950                 page_offset = (signed)(sector - bio->bi_sector) * -512;
1951         bio_for_each_segment(bvl, bio, i) {
1952                 int len = bio_iovec_idx(bio,i)->bv_len;
1953                 int clen;
1954                 int b_offset = 0;
1955
1956                 if (page_offset < 0) {
1957                         b_offset = -page_offset;
1958                         page_offset += b_offset;
1959                         len -= b_offset;
1960                 }
1961
1962                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1963                         clen = STRIPE_SIZE - page_offset;
1964                 else clen = len;
1965
1966                 if (clen > 0) {
1967                         char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1968                         if (frombio)
1969                                 memcpy(pa+page_offset, ba+b_offset, clen);
1970                         else
1971                                 memcpy(ba+b_offset, pa+page_offset, clen);
1972                         __bio_kunmap_atomic(ba, KM_USER0);
1973                 }
1974                 if (clen < len) /* hit end of page */
1975                         break;
1976                 page_offset +=  len;
1977         }
1978 }
1979
1980 #define check_xor()     do {                                              \
1981                                 if (count == MAX_XOR_BLOCKS) {            \
1982                                 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1983                                 count = 0;                                \
1984                            }                                              \
1985                         } while(0)
1986
1987 static void compute_parity6(struct stripe_head *sh, int method)
1988 {
1989         raid5_conf_t *conf = sh->raid_conf;
1990         int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1991         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1992         struct bio *chosen;
1993         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1994         void *ptrs[syndrome_disks+2];
1995
1996         pd_idx = sh->pd_idx;
1997         qd_idx = sh->qd_idx;
1998         d0_idx = raid6_d0(sh);
1999
2000         pr_debug("compute_parity, stripe %llu, method %d\n",
2001                 (unsigned long long)sh->sector, method);
2002
2003         switch(method) {
2004         case READ_MODIFY_WRITE:
2005                 BUG();          /* READ_MODIFY_WRITE N/A for RAID-6 */
2006         case RECONSTRUCT_WRITE:
2007                 for (i= disks; i-- ;)
2008                         if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
2009                                 chosen = sh->dev[i].towrite;
2010                                 sh->dev[i].towrite = NULL;
2011
2012                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2013                                         wake_up(&conf->wait_for_overlap);
2014
2015                                 BUG_ON(sh->dev[i].written);
2016                                 sh->dev[i].written = chosen;
2017                         }
2018                 break;
2019         case CHECK_PARITY:
2020                 BUG();          /* Not implemented yet */
2021         }
2022
2023         for (i = disks; i--;)
2024                 if (sh->dev[i].written) {
2025                         sector_t sector = sh->dev[i].sector;
2026                         struct bio *wbi = sh->dev[i].written;
2027                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
2028                                 copy_data(1, wbi, sh->dev[i].page, sector);
2029                                 wbi = r5_next_bio(wbi, sector);
2030                         }
2031
2032                         set_bit(R5_LOCKED, &sh->dev[i].flags);
2033                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
2034                 }
2035
2036         /* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
2037
2038         for (i = 0; i < disks; i++)
2039                 ptrs[i] = (void *)raid6_empty_zero_page;
2040
2041         count = 0;
2042         i = d0_idx;
2043         do {
2044                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
2045
2046                 ptrs[slot] = page_address(sh->dev[i].page);
2047                 if (slot < syndrome_disks &&
2048                     !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
2049                         printk(KERN_ERR "block %d/%d not uptodate "
2050                                "on parity calc\n", i, count);
2051                         BUG();
2052                 }
2053
2054                 i = raid6_next_disk(i, disks);
2055         } while (i != d0_idx);
2056         BUG_ON(count != syndrome_disks);
2057
2058         raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
2059
2060         switch(method) {
2061         case RECONSTRUCT_WRITE:
2062                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2063                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
2064                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
2065                 set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
2066                 break;
2067         case UPDATE_PARITY:
2068                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2069                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
2070                 break;
2071         }
2072 }
2073
2074
2075 /* Compute one missing block */
2076 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
2077 {
2078         int i, count, disks = sh->disks;
2079         void *ptr[MAX_XOR_BLOCKS], *dest, *p;
2080         int qd_idx = sh->qd_idx;
2081
2082         pr_debug("compute_block_1, stripe %llu, idx %d\n",
2083                 (unsigned long long)sh->sector, dd_idx);
2084
2085         if ( dd_idx == qd_idx ) {
2086                 /* We're actually computing the Q drive */
2087                 compute_parity6(sh, UPDATE_PARITY);
2088         } else {
2089                 dest = page_address(sh->dev[dd_idx].page);
2090                 if (!nozero) memset(dest, 0, STRIPE_SIZE);
2091                 count = 0;
2092                 for (i = disks ; i--; ) {
2093                         if (i == dd_idx || i == qd_idx)
2094                                 continue;
2095                         p = page_address(sh->dev[i].page);
2096                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
2097                                 ptr[count++] = p;
2098                         else
2099                                 printk("compute_block() %d, stripe %llu, %d"
2100                                        " not present\n", dd_idx,
2101                                        (unsigned long long)sh->sector, i);
2102
2103                         check_xor();
2104                 }
2105                 if (count)
2106                         xor_blocks(count, STRIPE_SIZE, dest, ptr);
2107                 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
2108                 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
2109         }
2110 }
2111
2112 /* Compute two missing blocks */
2113 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
2114 {
2115         int i, count, disks = sh->disks;
2116         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
2117         int d0_idx = raid6_d0(sh);
2118         int faila = -1, failb = -1;
2119         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
2120         void *ptrs[syndrome_disks+2];
2121
2122         for (i = 0; i < disks ; i++)
2123                 ptrs[i] = (void *)raid6_empty_zero_page;
2124         count = 0;
2125         i = d0_idx;
2126         do {
2127                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
2128
2129                 ptrs[slot] = page_address(sh->dev[i].page);
2130
2131                 if (i == dd_idx1)
2132                         faila = slot;
2133                 if (i == dd_idx2)
2134                         failb = slot;
2135                 i = raid6_next_disk(i, disks);
2136         } while (i != d0_idx);
2137         BUG_ON(count != syndrome_disks);
2138
2139         BUG_ON(faila == failb);
2140         if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
2141
2142         pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
2143                  (unsigned long long)sh->sector, dd_idx1, dd_idx2,
2144                  faila, failb);
2145
2146         if (failb == syndrome_disks+1) {
2147                 /* Q disk is one of the missing disks */
2148                 if (faila == syndrome_disks) {
2149                         /* Missing P+Q, just recompute */
2150                         compute_parity6(sh, UPDATE_PARITY);
2151                         return;
2152                 } else {
2153                         /* We're missing D+Q; recompute D from P */
2154                         compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
2155                                              dd_idx2 : dd_idx1),
2156                                         0);
2157                         compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
2158                         return;
2159                 }
2160         }
2161
2162         /* We're missing D+P or D+D; */
2163         if (failb == syndrome_disks) {
2164                 /* We're missing D+P. */
2165                 raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
2166         } else {
2167                 /* We're missing D+D. */
2168                 raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
2169                                   ptrs);
2170         }
2171
2172         /* Both the above update both missing blocks */
2173         set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
2174         set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
2175 }
2176
2177 static void
2178 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2179                          int rcw, int expand)
2180 {
2181         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2182         raid5_conf_t *conf = sh->raid_conf;
2183         int level = conf->level;
2184
2185         if (rcw) {
2186                 /* if we are not expanding this is a proper write request, and
2187                  * there will be bios with new data to be drained into the
2188                  * stripe cache
2189                  */
2190                 if (!expand) {
2191                         sh->reconstruct_state = reconstruct_state_drain_run;
2192                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2193                 } else
2194                         sh->reconstruct_state = reconstruct_state_run;
2195
2196                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2197
2198                 for (i = disks; i--; ) {
2199                         struct r5dev *dev = &sh->dev[i];
2200
2201                         if (dev->towrite) {
2202                                 set_bit(R5_LOCKED, &dev->flags);
2203                                 set_bit(R5_Wantdrain, &dev->flags);
2204                                 if (!expand)
2205                                         clear_bit(R5_UPTODATE, &dev->flags);
2206                                 s->locked++;
2207                         }
2208                 }
2209                 if (s->locked + conf->max_degraded == disks)
2210                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2211                                 atomic_inc(&conf->pending_full_writes);
2212         } else {
2213                 BUG_ON(level == 6);
2214                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2215                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2216
2217                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2218                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2219                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2220                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2221
2222                 for (i = disks; i--; ) {
2223                         struct r5dev *dev = &sh->dev[i];
2224                         if (i == pd_idx)
2225                                 continue;
2226
2227                         if (dev->towrite &&
2228                             (test_bit(R5_UPTODATE, &dev->flags) ||
2229                              test_bit(R5_Wantcompute, &dev->flags))) {
2230                                 set_bit(R5_Wantdrain, &dev->flags);
2231                                 set_bit(R5_LOCKED, &dev->flags);
2232                                 clear_bit(R5_UPTODATE, &dev->flags);
2233                                 s->locked++;
2234                         }
2235                 }
2236         }
2237
2238         /* keep the parity disk(s) locked while asynchronous operations
2239          * are in flight
2240          */
2241         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2242         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2243         s->locked++;
2244
2245         if (level == 6) {
2246                 int qd_idx = sh->qd_idx;
2247                 struct r5dev *dev = &sh->dev[qd_idx];
2248
2249                 set_bit(R5_LOCKED, &dev->flags);
2250                 clear_bit(R5_UPTODATE, &dev->flags);
2251                 s->locked++;
2252         }
2253
2254         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2255                 __func__, (unsigned long long)sh->sector,
2256                 s->locked, s->ops_request);
2257 }
2258
2259 /*
2260  * Each stripe/dev can have one or more bion attached.
2261  * toread/towrite point to the first in a chain.
2262  * The bi_next chain must be in order.
2263  */
2264 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2265 {
2266         struct bio **bip;
2267         raid5_conf_t *conf = sh->raid_conf;
2268         int firstwrite=0;
2269
2270         pr_debug("adding bh b#%llu to stripe s#%llu\n",
2271                 (unsigned long long)bi->bi_sector,
2272                 (unsigned long long)sh->sector);
2273
2274
2275         spin_lock(&sh->lock);
2276         spin_lock_irq(&conf->device_lock);
2277         if (forwrite) {
2278                 bip = &sh->dev[dd_idx].towrite;
2279                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2280                         firstwrite = 1;
2281         } else
2282                 bip = &sh->dev[dd_idx].toread;
2283         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2284                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2285                         goto overlap;
2286                 bip = & (*bip)->bi_next;
2287         }
2288         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2289                 goto overlap;
2290
2291         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2292         if (*bip)
2293                 bi->bi_next = *bip;
2294         *bip = bi;
2295         bi->bi_phys_segments++;
2296         spin_unlock_irq(&conf->device_lock);
2297         spin_unlock(&sh->lock);
2298
2299         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2300                 (unsigned long long)bi->bi_sector,
2301                 (unsigned long long)sh->sector, dd_idx);
2302
2303         if (conf->mddev->bitmap && firstwrite) {
2304                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2305                                   STRIPE_SECTORS, 0);
2306                 sh->bm_seq = conf->seq_flush+1;
2307                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2308         }
2309
2310         if (forwrite) {
2311                 /* check if page is covered */
2312                 sector_t sector = sh->dev[dd_idx].sector;
2313                 for (bi=sh->dev[dd_idx].towrite;
2314                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2315                              bi && bi->bi_sector <= sector;
2316                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2317                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2318                                 sector = bi->bi_sector + (bi->bi_size>>9);
2319                 }
2320                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2321                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2322         }
2323         return 1;
2324
2325  overlap:
2326         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2327         spin_unlock_irq(&conf->device_lock);
2328         spin_unlock(&sh->lock);
2329         return 0;
2330 }
2331
2332 static void end_reshape(raid5_conf_t *conf);
2333
2334 static int page_is_zero(struct page *p)
2335 {
2336         char *a = page_address(p);
2337         return ((*(u32*)a) == 0 &&
2338                 memcmp(a, a+4, STRIPE_SIZE-4)==0);
2339 }
2340
2341 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2342                             struct stripe_head *sh)
2343 {
2344         int sectors_per_chunk =
2345                 previous ? (conf->prev_chunk >> 9)
2346                          : (conf->chunk_size >> 9);
2347         int dd_idx;
2348         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2349         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2350
2351         raid5_compute_sector(conf,
2352                              stripe * (disks - conf->max_degraded)
2353                              *sectors_per_chunk + chunk_offset,
2354                              previous,
2355                              &dd_idx, sh);
2356 }
2357
2358 static void
2359 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2360                                 struct stripe_head_state *s, int disks,
2361                                 struct bio **return_bi)
2362 {
2363         int i;
2364         for (i = disks; i--; ) {
2365                 struct bio *bi;
2366                 int bitmap_end = 0;
2367
2368                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2369                         mdk_rdev_t *rdev;
2370                         rcu_read_lock();
2371                         rdev = rcu_dereference(conf->disks[i].rdev);
2372                         if (rdev && test_bit(In_sync, &rdev->flags))
2373                                 /* multiple read failures in one stripe */
2374                                 md_error(conf->mddev, rdev);
2375                         rcu_read_unlock();
2376                 }
2377                 spin_lock_irq(&conf->device_lock);
2378                 /* fail all writes first */
2379                 bi = sh->dev[i].towrite;
2380                 sh->dev[i].towrite = NULL;
2381                 if (bi) {
2382                         s->to_write--;
2383                         bitmap_end = 1;
2384                 }
2385
2386                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2387                         wake_up(&conf->wait_for_overlap);
2388
2389                 while (bi && bi->bi_sector <
2390                         sh->dev[i].sector + STRIPE_SECTORS) {
2391                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2392                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2393                         if (!raid5_dec_bi_phys_segments(bi)) {
2394                                 md_write_end(conf->mddev);
2395                                 bi->bi_next = *return_bi;
2396                                 *return_bi = bi;
2397                         }
2398                         bi = nextbi;
2399                 }
2400                 /* and fail all 'written' */
2401                 bi = sh->dev[i].written;
2402                 sh->dev[i].written = NULL;
2403                 if (bi) bitmap_end = 1;
2404                 while (bi && bi->bi_sector <
2405                        sh->dev[i].sector + STRIPE_SECTORS) {
2406                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2407                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2408                         if (!raid5_dec_bi_phys_segments(bi)) {
2409                                 md_write_end(conf->mddev);
2410                                 bi->bi_next = *return_bi;
2411                                 *return_bi = bi;
2412                         }
2413                         bi = bi2;
2414                 }
2415
2416                 /* fail any reads if this device is non-operational and
2417                  * the data has not reached the cache yet.
2418                  */
2419                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2420                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2421                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2422                         bi = sh->dev[i].toread;
2423                         sh->dev[i].toread = NULL;
2424                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2425                                 wake_up(&conf->wait_for_overlap);
2426                         if (bi) s->to_read--;
2427                         while (bi && bi->bi_sector <
2428                                sh->dev[i].sector + STRIPE_SECTORS) {
2429                                 struct bio *nextbi =
2430                                         r5_next_bio(bi, sh->dev[i].sector);
2431                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2432                                 if (!raid5_dec_bi_phys_segments(bi)) {
2433                                         bi->bi_next = *return_bi;
2434                                         *return_bi = bi;
2435                                 }
2436                                 bi = nextbi;
2437                         }
2438                 }
2439                 spin_unlock_irq(&conf->device_lock);
2440                 if (bitmap_end)
2441                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2442                                         STRIPE_SECTORS, 0, 0);
2443         }
2444
2445         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2446                 if (atomic_dec_and_test(&conf->pending_full_writes))
2447                         md_wakeup_thread(conf->mddev->thread);
2448 }
2449
2450 /* fetch_block5 - checks the given member device to see if its data needs
2451  * to be read or computed to satisfy a request.
2452  *
2453  * Returns 1 when no more member devices need to be checked, otherwise returns
2454  * 0 to tell the loop in handle_stripe_fill5 to continue
2455  */
2456 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2457                         int disk_idx, int disks)
2458 {
2459         struct r5dev *dev = &sh->dev[disk_idx];
2460         struct r5dev *failed_dev = &sh->dev[s->failed_num];
2461
2462         /* is the data in this block needed, and can we get it? */
2463         if (!test_bit(R5_LOCKED, &dev->flags) &&
2464             !test_bit(R5_UPTODATE, &dev->flags) &&
2465             (dev->toread ||
2466              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2467              s->syncing || s->expanding ||
2468              (s->failed &&
2469               (failed_dev->toread ||
2470                (failed_dev->towrite &&
2471                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2472                 /* We would like to get this block, possibly by computing it,
2473                  * otherwise read it if the backing disk is insync
2474                  */
2475                 if ((s->uptodate == disks - 1) &&
2476                     (s->failed && disk_idx == s->failed_num)) {
2477                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2478                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2479                         set_bit(R5_Wantcompute, &dev->flags);
2480                         sh->ops.target = disk_idx;
2481                         sh->ops.target2 = -1;
2482                         s->req_compute = 1;
2483                         /* Careful: from this point on 'uptodate' is in the eye
2484                          * of raid_run_ops which services 'compute' operations
2485                          * before writes. R5_Wantcompute flags a block that will
2486                          * be R5_UPTODATE by the time it is needed for a
2487                          * subsequent operation.
2488                          */
2489                         s->uptodate++;
2490                         return 1; /* uptodate + compute == disks */
2491                 } else if (test_bit(R5_Insync, &dev->flags)) {
2492                         set_bit(R5_LOCKED, &dev->flags);
2493                         set_bit(R5_Wantread, &dev->flags);
2494                         s->locked++;
2495                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2496                                 s->syncing);
2497                 }
2498         }
2499
2500         return 0;
2501 }
2502
2503 /**
2504  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2505  */
2506 static void handle_stripe_fill5(struct stripe_head *sh,
2507                         struct stripe_head_state *s, int disks)
2508 {
2509         int i;
2510
2511         /* look for blocks to read/compute, skip this if a compute
2512          * is already in flight, or if the stripe contents are in the
2513          * midst of changing due to a write
2514          */
2515         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2516             !sh->reconstruct_state)
2517                 for (i = disks; i--; )
2518                         if (fetch_block5(sh, s, i, disks))
2519                                 break;
2520         set_bit(STRIPE_HANDLE, &sh->state);
2521 }
2522
2523 /* fetch_block6 - checks the given member device to see if its data needs
2524  * to be read or computed to satisfy a request.
2525  *
2526  * Returns 1 when no more member devices need to be checked, otherwise returns
2527  * 0 to tell the loop in handle_stripe_fill6 to continue
2528  */
2529 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2530                          struct r6_state *r6s, int disk_idx, int disks)
2531 {
2532         struct r5dev *dev = &sh->dev[disk_idx];
2533         struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2534                                   &sh->dev[r6s->failed_num[1]] };
2535
2536         if (!test_bit(R5_LOCKED, &dev->flags) &&
2537             !test_bit(R5_UPTODATE, &dev->flags) &&
2538             (dev->toread ||
2539              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2540              s->syncing || s->expanding ||
2541              (s->failed >= 1 &&
2542               (fdev[0]->toread || s->to_write)) ||
2543              (s->failed >= 2 &&
2544               (fdev[1]->toread || s->to_write)))) {
2545                 /* we would like to get this block, possibly by computing it,
2546                  * otherwise read it if the backing disk is insync
2547                  */
2548                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2549                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2550                 if ((s->uptodate == disks - 1) &&
2551                     (s->failed && (disk_idx == r6s->failed_num[0] ||
2552                                    disk_idx == r6s->failed_num[1]))) {
2553                         /* have disk failed, and we're requested to fetch it;
2554                          * do compute it
2555                          */
2556                         pr_debug("Computing stripe %llu block %d\n",
2557                                (unsigned long long)sh->sector, disk_idx);
2558                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2559                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2560                         set_bit(R5_Wantcompute, &dev->flags);
2561                         sh->ops.target = disk_idx;
2562                         sh->ops.target2 = -1; /* no 2nd target */
2563                         s->req_compute = 1;
2564                         s->uptodate++;
2565                         return 1;
2566                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2567                         /* Computing 2-failure is *very* expensive; only
2568                          * do it if failed >= 2
2569                          */
2570                         int other;
2571                         for (other = disks; other--; ) {
2572                                 if (other == disk_idx)
2573                                         continue;
2574                                 if (!test_bit(R5_UPTODATE,
2575                                       &sh->dev[other].flags))
2576                                         break;
2577                         }
2578                         BUG_ON(other < 0);
2579                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2580                                (unsigned long long)sh->sector,
2581                                disk_idx, other);
2582                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2583                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2584                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2585                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2586                         sh->ops.target = disk_idx;
2587                         sh->ops.target2 = other;
2588                         s->uptodate += 2;
2589                         s->req_compute = 1;
2590                         return 1;
2591                 } else if (test_bit(R5_Insync, &dev->flags)) {
2592                         set_bit(R5_LOCKED, &dev->flags);
2593                         set_bit(R5_Wantread, &dev->flags);
2594                         s->locked++;
2595                         pr_debug("Reading block %d (sync=%d)\n",
2596                                 disk_idx, s->syncing);
2597                 }
2598         }
2599
2600         return 0;
2601 }
2602
2603 /**
2604  * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2605  */
2606 static void handle_stripe_fill6(struct stripe_head *sh,
2607                         struct stripe_head_state *s, struct r6_state *r6s,
2608                         int disks)
2609 {
2610         int i;
2611
2612         /* look for blocks to read/compute, skip this if a compute
2613          * is already in flight, or if the stripe contents are in the
2614          * midst of changing due to a write
2615          */
2616         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2617             !sh->reconstruct_state)
2618                 for (i = disks; i--; )
2619                         if (fetch_block6(sh, s, r6s, i, disks))
2620                                 break;
2621         set_bit(STRIPE_HANDLE, &sh->state);
2622 }
2623
2624
2625 /* handle_stripe_clean_event
2626  * any written block on an uptodate or failed drive can be returned.
2627  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2628  * never LOCKED, so we don't need to test 'failed' directly.
2629  */
2630 static void handle_stripe_clean_event(raid5_conf_t *conf,
2631         struct stripe_head *sh, int disks, struct bio **return_bi)
2632 {
2633         int i;
2634         struct r5dev *dev;
2635
2636         for (i = disks; i--; )
2637                 if (sh->dev[i].written) {
2638                         dev = &sh->dev[i];
2639                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2640                                 test_bit(R5_UPTODATE, &dev->flags)) {
2641                                 /* We can return any write requests */
2642                                 struct bio *wbi, *wbi2;
2643                                 int bitmap_end = 0;
2644                                 pr_debug("Return write for disc %d\n", i);
2645                                 spin_lock_irq(&conf->device_lock);
2646                                 wbi = dev->written;
2647                                 dev->written = NULL;
2648                                 while (wbi && wbi->bi_sector <
2649                                         dev->sector + STRIPE_SECTORS) {
2650                                         wbi2 = r5_next_bio(wbi, dev->sector);
2651                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2652                                                 md_write_end(conf->mddev);
2653                                                 wbi->bi_next = *return_bi;
2654                                                 *return_bi = wbi;
2655                                         }
2656                                         wbi = wbi2;
2657                                 }
2658                                 if (dev->towrite == NULL)
2659                                         bitmap_end = 1;
2660                                 spin_unlock_irq(&conf->device_lock);
2661                                 if (bitmap_end)
2662                                         bitmap_endwrite(conf->mddev->bitmap,
2663                                                         sh->sector,
2664                                                         STRIPE_SECTORS,
2665                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2666                                                         0);
2667                         }
2668                 }
2669
2670         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2671                 if (atomic_dec_and_test(&conf->pending_full_writes))
2672                         md_wakeup_thread(conf->mddev->thread);
2673 }
2674
2675 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2676                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2677 {
2678         int rmw = 0, rcw = 0, i;
2679         for (i = disks; i--; ) {
2680                 /* would I have to read this buffer for read_modify_write */
2681                 struct r5dev *dev = &sh->dev[i];
2682                 if ((dev->towrite || i == sh->pd_idx) &&
2683                     !test_bit(R5_LOCKED, &dev->flags) &&
2684                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2685                       test_bit(R5_Wantcompute, &dev->flags))) {
2686                         if (test_bit(R5_Insync, &dev->flags))
2687                                 rmw++;
2688                         else
2689                                 rmw += 2*disks;  /* cannot read it */
2690                 }
2691                 /* Would I have to read this buffer for reconstruct_write */
2692                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2693                     !test_bit(R5_LOCKED, &dev->flags) &&
2694                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2695                     test_bit(R5_Wantcompute, &dev->flags))) {
2696                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2697                         else
2698                                 rcw += 2*disks;
2699                 }
2700         }
2701         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2702                 (unsigned long long)sh->sector, rmw, rcw);
2703         set_bit(STRIPE_HANDLE, &sh->state);
2704         if (rmw < rcw && rmw > 0)
2705                 /* prefer read-modify-write, but need to get some data */
2706                 for (i = disks; i--; ) {
2707                         struct r5dev *dev = &sh->dev[i];
2708                         if ((dev->towrite || i == sh->pd_idx) &&
2709                             !test_bit(R5_LOCKED, &dev->flags) &&
2710                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2711                             test_bit(R5_Wantcompute, &dev->flags)) &&
2712                             test_bit(R5_Insync, &dev->flags)) {
2713                                 if (
2714                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2715                                         pr_debug("Read_old block "
2716                                                 "%d for r-m-w\n", i);
2717                                         set_bit(R5_LOCKED, &dev->flags);
2718                                         set_bit(R5_Wantread, &dev->flags);
2719                                         s->locked++;
2720                                 } else {
2721                                         set_bit(STRIPE_DELAYED, &sh->state);
2722                                         set_bit(STRIPE_HANDLE, &sh->state);
2723                                 }
2724                         }
2725                 }
2726         if (rcw <= rmw && rcw > 0)
2727                 /* want reconstruct write, but need to get some data */
2728                 for (i = disks; i--; ) {
2729                         struct r5dev *dev = &sh->dev[i];
2730                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2731                             i != sh->pd_idx &&
2732                             !test_bit(R5_LOCKED, &dev->flags) &&
2733                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2734                             test_bit(R5_Wantcompute, &dev->flags)) &&
2735                             test_bit(R5_Insync, &dev->flags)) {
2736                                 if (
2737                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2738                                         pr_debug("Read_old block "
2739                                                 "%d for Reconstruct\n", i);
2740                                         set_bit(R5_LOCKED, &dev->flags);
2741                                         set_bit(R5_Wantread, &dev->flags);
2742                                         s->locked++;
2743                                 } else {
2744                                         set_bit(STRIPE_DELAYED, &sh->state);
2745                                         set_bit(STRIPE_HANDLE, &sh->state);
2746                                 }
2747                         }
2748                 }
2749         /* now if nothing is locked, and if we have enough data,
2750          * we can start a write request
2751          */
2752         /* since handle_stripe can be called at any time we need to handle the
2753          * case where a compute block operation has been submitted and then a
2754          * subsequent call wants to start a write request.  raid_run_ops only
2755          * handles the case where compute block and reconstruct are requested
2756          * simultaneously.  If this is not the case then new writes need to be
2757          * held off until the compute completes.
2758          */
2759         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2760             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2761             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2762                 schedule_reconstruction(sh, s, rcw == 0, 0);
2763 }
2764
2765 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2766                 struct stripe_head *sh, struct stripe_head_state *s,
2767                 struct r6_state *r6s, int disks)
2768 {
2769         int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2770         int qd_idx = sh->qd_idx;
2771         for (i = disks; i--; ) {
2772                 struct r5dev *dev = &sh->dev[i];
2773                 /* Would I have to read this buffer for reconstruct_write */
2774                 if (!test_bit(R5_OVERWRITE, &dev->flags)
2775                     && i != pd_idx && i != qd_idx
2776                     && (!test_bit(R5_LOCKED, &dev->flags)
2777                             ) &&
2778                     !test_bit(R5_UPTODATE, &dev->flags)) {
2779                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2780                         else {
2781                                 pr_debug("raid6: must_compute: "
2782                                         "disk %d flags=%#lx\n", i, dev->flags);
2783                                 must_compute++;
2784                         }
2785                 }
2786         }
2787         pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2788                (unsigned long long)sh->sector, rcw, must_compute);
2789         set_bit(STRIPE_HANDLE, &sh->state);
2790
2791         if (rcw > 0)
2792                 /* want reconstruct write, but need to get some data */
2793                 for (i = disks; i--; ) {
2794                         struct r5dev *dev = &sh->dev[i];
2795                         if (!test_bit(R5_OVERWRITE, &dev->flags)
2796                             && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2797                             && !test_bit(R5_LOCKED, &dev->flags) &&
2798                             !test_bit(R5_UPTODATE, &dev->flags) &&
2799                             test_bit(R5_Insync, &dev->flags)) {
2800                                 if (
2801                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2802                                         pr_debug("Read_old stripe %llu "
2803                                                 "block %d for Reconstruct\n",
2804                                              (unsigned long long)sh->sector, i);
2805                                         set_bit(R5_LOCKED, &dev->flags);
2806                                         set_bit(R5_Wantread, &dev->flags);
2807                                         s->locked++;
2808                                 } else {
2809                                         pr_debug("Request delayed stripe %llu "
2810                                                 "block %d for Reconstruct\n",
2811                                              (unsigned long long)sh->sector, i);
2812                                         set_bit(STRIPE_DELAYED, &sh->state);
2813                                         set_bit(STRIPE_HANDLE, &sh->state);
2814                                 }
2815                         }
2816                 }
2817         /* now if nothing is locked, and if we have enough data, we can start a
2818          * write request
2819          */
2820         if (s->locked == 0 && rcw == 0 &&
2821             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2822                 if (must_compute > 0) {
2823                         /* We have failed blocks and need to compute them */
2824                         switch (s->failed) {
2825                         case 0:
2826                                 BUG();
2827                         case 1:
2828                                 compute_block_1(sh, r6s->failed_num[0], 0);
2829                                 break;
2830                         case 2:
2831                                 compute_block_2(sh, r6s->failed_num[0],
2832                                                 r6s->failed_num[1]);
2833                                 break;
2834                         default: /* This request should have been failed? */
2835                                 BUG();
2836                         }
2837                 }
2838
2839                 pr_debug("Computing parity for stripe %llu\n",
2840                         (unsigned long long)sh->sector);
2841                 compute_parity6(sh, RECONSTRUCT_WRITE);
2842                 /* now every locked buffer is ready to be written */
2843                 for (i = disks; i--; )
2844                         if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2845                                 pr_debug("Writing stripe %llu block %d\n",
2846                                        (unsigned long long)sh->sector, i);
2847                                 s->locked++;
2848                                 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2849                         }
2850                 if (s->locked == disks)
2851                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2852                                 atomic_inc(&conf->pending_full_writes);
2853                 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2854                 set_bit(STRIPE_INSYNC, &sh->state);
2855
2856                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2857                         atomic_dec(&conf->preread_active_stripes);
2858                         if (atomic_read(&conf->preread_active_stripes) <
2859                             IO_THRESHOLD)
2860                                 md_wakeup_thread(conf->mddev->thread);
2861                 }
2862         }
2863 }
2864
2865 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2866                                 struct stripe_head_state *s, int disks)
2867 {
2868         struct r5dev *dev = NULL;
2869
2870         set_bit(STRIPE_HANDLE, &sh->state);
2871
2872         switch (sh->check_state) {
2873         case check_state_idle:
2874                 /* start a new check operation if there are no failures */
2875                 if (s->failed == 0) {
2876                         BUG_ON(s->uptodate != disks);
2877                         sh->check_state = check_state_run;
2878                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2879                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2880                         s->uptodate--;
2881                         break;
2882                 }
2883                 dev = &sh->dev[s->failed_num];
2884                 /* fall through */
2885         case check_state_compute_result:
2886                 sh->check_state = check_state_idle;
2887                 if (!dev)
2888                         dev = &sh->dev[sh->pd_idx];
2889
2890                 /* check that a write has not made the stripe insync */
2891                 if (test_bit(STRIPE_INSYNC, &sh->state))
2892                         break;
2893
2894                 /* either failed parity check, or recovery is happening */
2895                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2896                 BUG_ON(s->uptodate != disks);
2897
2898                 set_bit(R5_LOCKED, &dev->flags);
2899                 s->locked++;
2900                 set_bit(R5_Wantwrite, &dev->flags);
2901
2902                 clear_bit(STRIPE_DEGRADED, &sh->state);
2903                 set_bit(STRIPE_INSYNC, &sh->state);
2904                 break;
2905         case check_state_run:
2906                 break; /* we will be called again upon completion */
2907         case check_state_check_result:
2908                 sh->check_state = check_state_idle;
2909
2910                 /* if a failure occurred during the check operation, leave
2911                  * STRIPE_INSYNC not set and let the stripe be handled again
2912                  */
2913                 if (s->failed)
2914                         break;
2915
2916                 /* handle a successful check operation, if parity is correct
2917                  * we are done.  Otherwise update the mismatch count and repair
2918                  * parity if !MD_RECOVERY_CHECK
2919                  */
2920                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2921                         /* parity is correct (on disc,
2922                          * not in buffer any more)
2923                          */
2924                         set_bit(STRIPE_INSYNC, &sh->state);
2925                 else {
2926                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2927                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2928                                 /* don't try to repair!! */
2929                                 set_bit(STRIPE_INSYNC, &sh->state);
2930                         else {
2931                                 sh->check_state = check_state_compute_run;
2932                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2933                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2934                                 set_bit(R5_Wantcompute,
2935                                         &sh->dev[sh->pd_idx].flags);
2936                                 sh->ops.target = sh->pd_idx;
2937                                 sh->ops.target2 = -1;
2938                                 s->uptodate++;
2939                         }
2940                 }
2941                 break;
2942         case check_state_compute_run:
2943                 break;
2944         default:
2945                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2946                        __func__, sh->check_state,
2947                        (unsigned long long) sh->sector);
2948                 BUG();
2949         }
2950 }
2951
2952
2953 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2954                                   struct stripe_head_state *s,
2955                                   struct r6_state *r6s, int disks)
2956 {
2957         int update_p = 0, update_q = 0;
2958         struct r5dev *dev;
2959         int pd_idx = sh->pd_idx;
2960         int qd_idx = sh->qd_idx;
2961         unsigned long cpu;
2962         struct page *tmp_page;
2963
2964         set_bit(STRIPE_HANDLE, &sh->state);
2965
2966         BUG_ON(s->failed > 2);
2967         BUG_ON(s->uptodate < disks);
2968         /* Want to check and possibly repair P and Q.
2969          * However there could be one 'failed' device, in which
2970          * case we can only check one of them, possibly using the
2971          * other to generate missing data
2972          */
2973         cpu = get_cpu();
2974         tmp_page = per_cpu_ptr(conf->percpu, cpu)->spare_page;
2975         if (s->failed == r6s->q_failed) {
2976                 /* The only possible failed device holds 'Q', so it
2977                  * makes sense to check P (If anything else were failed,
2978                  * we would have used P to recreate it).
2979                  */
2980                 compute_block_1(sh, pd_idx, 1);
2981                 if (!page_is_zero(sh->dev[pd_idx].page)) {
2982                         compute_block_1(sh, pd_idx, 0);
2983                         update_p = 1;
2984                 }
2985         }
2986         if (!r6s->q_failed && s->failed < 2) {
2987                 /* q is not failed, and we didn't use it to generate
2988                  * anything, so it makes sense to check it
2989                  */
2990                 memcpy(page_address(tmp_page),
2991                        page_address(sh->dev[qd_idx].page),
2992                        STRIPE_SIZE);
2993                 compute_parity6(sh, UPDATE_PARITY);
2994                 if (memcmp(page_address(tmp_page),
2995                            page_address(sh->dev[qd_idx].page),
2996                            STRIPE_SIZE) != 0) {
2997                         clear_bit(STRIPE_INSYNC, &sh->state);
2998                         update_q = 1;
2999                 }
3000         }
3001         put_cpu();
3002
3003         if (update_p || update_q) {
3004                 conf->mddev->resync_mismatches += STRIPE_SECTORS;
3005                 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3006                         /* don't try to repair!! */
3007                         update_p = update_q = 0;
3008         }
3009
3010         /* now write out any block on a failed drive,
3011          * or P or Q if they need it
3012          */
3013
3014         if (s->failed == 2) {
3015                 dev = &sh->dev[r6s->failed_num[1]];
3016                 s->locked++;
3017                 set_bit(R5_LOCKED, &dev->flags);
3018                 set_bit(R5_Wantwrite, &dev->flags);
3019         }
3020         if (s->failed >= 1) {
3021                 dev = &sh->dev[r6s->failed_num[0]];
3022                 s->locked++;
3023                 set_bit(R5_LOCKED, &dev->flags);
3024                 set_bit(R5_Wantwrite, &dev->flags);
3025         }
3026
3027         if (update_p) {
3028                 dev = &sh->dev[pd_idx];
3029                 s->locked++;
3030                 set_bit(R5_LOCKED, &dev->flags);
3031                 set_bit(R5_Wantwrite, &dev->flags);
3032         }
3033         if (update_q) {
3034                 dev = &sh->dev[qd_idx];
3035                 s->locked++;
3036                 set_bit(R5_LOCKED, &dev->flags);
3037                 set_bit(R5_Wantwrite, &dev->flags);
3038         }
3039         clear_bit(STRIPE_DEGRADED, &sh->state);
3040
3041         set_bit(STRIPE_INSYNC, &sh->state);
3042 }
3043
3044 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
3045                                 struct r6_state *r6s)
3046 {
3047         int i;
3048
3049         /* We have read all the blocks in this stripe and now we need to
3050          * copy some of them into a target stripe for expand.
3051          */
3052         struct dma_async_tx_descriptor *tx = NULL;
3053         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3054         for (i = 0; i < sh->disks; i++)
3055                 if (i != sh->pd_idx && i != sh->qd_idx) {
3056                         int dd_idx, j;
3057                         struct stripe_head *sh2;
3058                         struct async_submit_ctl submit;
3059
3060                         sector_t bn = compute_blocknr(sh, i, 1);
3061                         sector_t s = raid5_compute_sector(conf, bn, 0,
3062                                                           &dd_idx, NULL);
3063                         sh2 = get_active_stripe(conf, s, 0, 1);
3064                         if (sh2 == NULL)
3065                                 /* so far only the early blocks of this stripe
3066                                  * have been requested.  When later blocks
3067                                  * get requested, we will try again
3068                                  */
3069                                 continue;
3070                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3071                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3072                                 /* must have already done this block */
3073                                 release_stripe(sh2);
3074                                 continue;
3075                         }
3076
3077                         /* place all the copies on one channel */
3078                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3079                         tx = async_memcpy(sh2->dev[dd_idx].page,
3080                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3081                                           &submit);
3082
3083                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3084                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3085                         for (j = 0; j < conf->raid_disks; j++)
3086                                 if (j != sh2->pd_idx &&
3087                                     (!r6s || j != sh2->qd_idx) &&
3088                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3089                                         break;
3090                         if (j == conf->raid_disks) {
3091                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3092                                 set_bit(STRIPE_HANDLE, &sh2->state);
3093                         }
3094                         release_stripe(sh2);
3095
3096                 }
3097         /* done submitting copies, wait for them to complete */
3098         if (tx) {
3099                 async_tx_ack(tx);
3100                 dma_wait_for_async_tx(tx);
3101         }
3102 }
3103
3104
3105 /*
3106  * handle_stripe - do things to a stripe.
3107  *
3108  * We lock the stripe and then examine the state of various bits
3109  * to see what needs to be done.
3110  * Possible results:
3111  *    return some read request which now have data
3112  *    return some write requests which are safely on disc
3113  *    schedule a read on some buffers
3114  *    schedule a write of some buffers
3115  *    return confirmation of parity correctness
3116  *
3117  * buffers are taken off read_list or write_list, and bh_cache buffers
3118  * get BH_Lock set before the stripe lock is released.
3119  *
3120  */
3121
3122 static bool handle_stripe5(struct stripe_head *sh)
3123 {
3124         raid5_conf_t *conf = sh->raid_conf;
3125         int disks = sh->disks, i;
3126         struct bio *return_bi = NULL;
3127         struct stripe_head_state s;
3128         struct r5dev *dev;
3129         mdk_rdev_t *blocked_rdev = NULL;
3130         int prexor;
3131
3132         memset(&s, 0, sizeof(s));
3133         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3134                  "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3135                  atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3136                  sh->reconstruct_state);
3137
3138         spin_lock(&sh->lock);
3139         clear_bit(STRIPE_HANDLE, &sh->state);
3140         clear_bit(STRIPE_DELAYED, &sh->state);
3141
3142         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3143         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3144         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3145
3146         /* Now to look around and see what can be done */
3147         rcu_read_lock();
3148         for (i=disks; i--; ) {
3149                 mdk_rdev_t *rdev;
3150                 struct r5dev *dev = &sh->dev[i];
3151                 clear_bit(R5_Insync, &dev->flags);
3152
3153                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3154                         "written %p\n", i, dev->flags, dev->toread, dev->read,
3155                         dev->towrite, dev->written);
3156
3157                 /* maybe we can request a biofill operation
3158                  *
3159                  * new wantfill requests are only permitted while
3160                  * ops_complete_biofill is guaranteed to be inactive
3161                  */
3162                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3163                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3164                         set_bit(R5_Wantfill, &dev->flags);
3165
3166                 /* now count some things */
3167                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3168                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3169                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
3170
3171                 if (test_bit(R5_Wantfill, &dev->flags))
3172                         s.to_fill++;
3173                 else if (dev->toread)
3174                         s.to_read++;
3175                 if (dev->towrite) {
3176                         s.to_write++;
3177                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3178                                 s.non_overwrite++;
3179                 }
3180                 if (dev->written)
3181                         s.written++;
3182                 rdev = rcu_dereference(conf->disks[i].rdev);
3183                 if (blocked_rdev == NULL &&
3184                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3185                         blocked_rdev = rdev;
3186                         atomic_inc(&rdev->nr_pending);
3187                 }
3188                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3189                         /* The ReadError flag will just be confusing now */
3190                         clear_bit(R5_ReadError, &dev->flags);
3191                         clear_bit(R5_ReWrite, &dev->flags);
3192                 }
3193                 if (!rdev || !test_bit(In_sync, &rdev->flags)
3194                     || test_bit(R5_ReadError, &dev->flags)) {
3195                         s.failed++;
3196                         s.failed_num = i;
3197                 } else
3198                         set_bit(R5_Insync, &dev->flags);
3199         }
3200         rcu_read_unlock();
3201
3202         if (unlikely(blocked_rdev)) {
3203                 if (s.syncing || s.expanding || s.expanded ||
3204                     s.to_write || s.written) {
3205                         set_bit(STRIPE_HANDLE, &sh->state);
3206                         goto unlock;
3207                 }
3208                 /* There is nothing for the blocked_rdev to block */
3209                 rdev_dec_pending(blocked_rdev, conf->mddev);
3210                 blocked_rdev = NULL;
3211         }
3212
3213         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3214                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3215                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3216         }
3217
3218         pr_debug("locked=%d uptodate=%d to_read=%d"
3219                 " to_write=%d failed=%d failed_num=%d\n",
3220                 s.locked, s.uptodate, s.to_read, s.to_write,
3221                 s.failed, s.failed_num);
3222         /* check if the array has lost two devices and, if so, some requests might
3223          * need to be failed
3224          */
3225         if (s.failed > 1 && s.to_read+s.to_write+s.written)
3226                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3227         if (s.failed > 1 && s.syncing) {
3228                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3229                 clear_bit(STRIPE_SYNCING, &sh->state);
3230                 s.syncing = 0;
3231         }
3232
3233         /* might be able to return some write requests if the parity block
3234          * is safe, or on a failed drive
3235          */
3236         dev = &sh->dev[sh->pd_idx];
3237         if ( s.written &&
3238              ((test_bit(R5_Insync, &dev->flags) &&
3239                !test_bit(R5_LOCKED, &dev->flags) &&
3240                test_bit(R5_UPTODATE, &dev->flags)) ||
3241                (s.failed == 1 && s.failed_num == sh->pd_idx)))
3242                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3243
3244         /* Now we might consider reading some blocks, either to check/generate
3245          * parity, or to satisfy requests
3246          * or to load a block that is being partially written.
3247          */
3248         if (s.to_read || s.non_overwrite ||
3249             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3250                 handle_stripe_fill5(sh, &s, disks);
3251
3252         /* Now we check to see if any write operations have recently
3253          * completed
3254          */
3255         prexor = 0;
3256         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3257                 prexor = 1;
3258         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3259             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3260                 sh->reconstruct_state = reconstruct_state_idle;
3261
3262                 /* All the 'written' buffers and the parity block are ready to
3263                  * be written back to disk
3264                  */
3265                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3266                 for (i = disks; i--; ) {
3267                         dev = &sh->dev[i];
3268                         if (test_bit(R5_LOCKED, &dev->flags) &&
3269                                 (i == sh->pd_idx || dev->written)) {
3270                                 pr_debug("Writing block %d\n", i);
3271                                 set_bit(R5_Wantwrite, &dev->flags);
3272                                 if (prexor)
3273                                         continue;
3274                                 if (!test_bit(R5_Insync, &dev->flags) ||
3275                                     (i == sh->pd_idx && s.failed == 0))
3276                                         set_bit(STRIPE_INSYNC, &sh->state);
3277                         }
3278                 }
3279                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3280                         atomic_dec(&conf->preread_active_stripes);
3281                         if (atomic_read(&conf->preread_active_stripes) <
3282                                 IO_THRESHOLD)
3283                                 md_wakeup_thread(conf->mddev->thread);
3284                 }
3285         }
3286
3287         /* Now to consider new write requests and what else, if anything
3288          * should be read.  We do not handle new writes when:
3289          * 1/ A 'write' operation (copy+xor) is already in flight.
3290          * 2/ A 'check' operation is in flight, as it may clobber the parity
3291          *    block.
3292          */
3293         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3294                 handle_stripe_dirtying5(conf, sh, &s, disks);
3295
3296         /* maybe we need to check and possibly fix the parity for this stripe
3297          * Any reads will already have been scheduled, so we just see if enough
3298          * data is available.  The parity check is held off while parity
3299          * dependent operations are in flight.
3300          */
3301         if (sh->check_state ||
3302             (s.syncing && s.locked == 0 &&
3303              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3304              !test_bit(STRIPE_INSYNC, &sh->state)))
3305                 handle_parity_checks5(conf, sh, &s, disks);
3306
3307         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3308                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3309                 clear_bit(STRIPE_SYNCING, &sh->state);
3310         }
3311
3312         /* If the failed drive is just a ReadError, then we might need to progress
3313          * the repair/check process
3314          */
3315         if (s.failed == 1 && !conf->mddev->ro &&
3316             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3317             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3318             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3319                 ) {
3320                 dev = &sh->dev[s.failed_num];
3321                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3322                         set_bit(R5_Wantwrite, &dev->flags);
3323                         set_bit(R5_ReWrite, &dev->flags);
3324                         set_bit(R5_LOCKED, &dev->flags);
3325                         s.locked++;
3326                 } else {
3327                         /* let's read it back */
3328                         set_bit(R5_Wantread, &dev->flags);
3329                         set_bit(R5_LOCKED, &dev->flags);
3330                         s.locked++;
3331                 }
3332         }
3333
3334         /* Finish reconstruct operations initiated by the expansion process */
3335         if (sh->reconstruct_state == reconstruct_state_result) {
3336                 struct stripe_head *sh2
3337                         = get_active_stripe(conf, sh->sector, 1, 1);
3338                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3339                         /* sh cannot be written until sh2 has been read.
3340                          * so arrange for sh to be delayed a little
3341                          */
3342                         set_bit(STRIPE_DELAYED, &sh->state);
3343                         set_bit(STRIPE_HANDLE, &sh->state);
3344                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3345                                               &sh2->state))
3346                                 atomic_inc(&conf->preread_active_stripes);
3347                         release_stripe(sh2);
3348                         goto unlock;
3349                 }
3350                 if (sh2)
3351                         release_stripe(sh2);
3352
3353                 sh->reconstruct_state = reconstruct_state_idle;
3354                 clear_bit(STRIPE_EXPANDING, &sh->state);
3355                 for (i = conf->raid_disks; i--; ) {
3356                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3357                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3358                         s.locked++;
3359                 }
3360         }
3361
3362         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3363             !sh->reconstruct_state) {
3364                 /* Need to write out all blocks after computing parity */
3365                 sh->disks = conf->raid_disks;
3366                 stripe_set_idx(sh->sector, conf, 0, sh);
3367                 schedule_reconstruction(sh, &s, 1, 1);
3368         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3369                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3370                 atomic_dec(&conf->reshape_stripes);
3371                 wake_up(&conf->wait_for_overlap);
3372                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3373         }
3374
3375         if (s.expanding && s.locked == 0 &&
3376             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3377                 handle_stripe_expansion(conf, sh, NULL);
3378
3379  unlock:
3380         spin_unlock(&sh->lock);
3381
3382         /* wait for this device to become unblocked */
3383         if (unlikely(blocked_rdev))
3384                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3385
3386         if (s.ops_request)
3387                 raid_run_ops(sh, s.ops_request);
3388
3389         ops_run_io(sh, &s);
3390
3391         return_io(return_bi);
3392
3393         return blocked_rdev == NULL;
3394 }
3395
3396 static bool handle_stripe6(struct stripe_head *sh)
3397 {
3398         raid5_conf_t *conf = sh->raid_conf;
3399         int disks = sh->disks;
3400         struct bio *return_bi = NULL;
3401         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3402         struct stripe_head_state s;
3403         struct r6_state r6s;
3404         struct r5dev *dev, *pdev, *qdev;
3405         mdk_rdev_t *blocked_rdev = NULL;
3406
3407         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3408                 "pd_idx=%d, qd_idx=%d\n",
3409                (unsigned long long)sh->sector, sh->state,
3410                atomic_read(&sh->count), pd_idx, qd_idx);
3411         memset(&s, 0, sizeof(s));
3412
3413         spin_lock(&sh->lock);
3414         clear_bit(STRIPE_HANDLE, &sh->state);
3415         clear_bit(STRIPE_DELAYED, &sh->state);
3416
3417         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3418         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3419         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3420         /* Now to look around and see what can be done */
3421
3422         rcu_read_lock();
3423         for (i=disks; i--; ) {
3424                 mdk_rdev_t *rdev;
3425                 dev = &sh->dev[i];
3426                 clear_bit(R5_Insync, &dev->flags);
3427
3428                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3429                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3430                 /* maybe we can reply to a read */
3431                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3432                         struct bio *rbi, *rbi2;
3433                         pr_debug("Return read for disc %d\n", i);
3434                         spin_lock_irq(&conf->device_lock);
3435                         rbi = dev->toread;
3436                         dev->toread = NULL;
3437                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
3438                                 wake_up(&conf->wait_for_overlap);
3439                         spin_unlock_irq(&conf->device_lock);
3440                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3441                                 copy_data(0, rbi, dev->page, dev->sector);
3442                                 rbi2 = r5_next_bio(rbi, dev->sector);
3443                                 spin_lock_irq(&conf->device_lock);
3444                                 if (!raid5_dec_bi_phys_segments(rbi)) {
3445                                         rbi->bi_next = return_bi;
3446                                         return_bi = rbi;
3447                                 }
3448                                 spin_unlock_irq(&conf->device_lock);
3449                                 rbi = rbi2;
3450                         }
3451                 }
3452
3453                 /* now count some things */
3454                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3455                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3456
3457
3458                 if (dev->toread)
3459                         s.to_read++;
3460                 if (dev->towrite) {
3461                         s.to_write++;
3462                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3463                                 s.non_overwrite++;
3464                 }
3465                 if (dev->written)
3466                         s.written++;
3467                 rdev = rcu_dereference(conf->disks[i].rdev);
3468                 if (blocked_rdev == NULL &&
3469                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3470                         blocked_rdev = rdev;
3471                         atomic_inc(&rdev->nr_pending);
3472                 }
3473                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3474                         /* The ReadError flag will just be confusing now */
3475                         clear_bit(R5_ReadError, &dev->flags);
3476                         clear_bit(R5_ReWrite, &dev->flags);
3477                 }
3478                 if (!rdev || !test_bit(In_sync, &rdev->flags)
3479                     || test_bit(R5_ReadError, &dev->flags)) {
3480                         if (s.failed < 2)
3481                                 r6s.failed_num[s.failed] = i;
3482                         s.failed++;
3483                 } else
3484                         set_bit(R5_Insync, &dev->flags);
3485         }
3486         rcu_read_unlock();
3487
3488         if (unlikely(blocked_rdev)) {
3489                 if (s.syncing || s.expanding || s.expanded ||
3490                     s.to_write || s.written) {
3491                         set_bit(STRIPE_HANDLE, &sh->state);
3492                         goto unlock;
3493                 }
3494                 /* There is nothing for the blocked_rdev to block */
3495                 rdev_dec_pending(blocked_rdev, conf->mddev);
3496                 blocked_rdev = NULL;
3497         }
3498
3499         pr_debug("locked=%d uptodate=%d to_read=%d"
3500                " to_write=%d failed=%d failed_num=%d,%d\n",
3501                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3502                r6s.failed_num[0], r6s.failed_num[1]);
3503         /* check if the array has lost >2 devices and, if so, some requests
3504          * might need to be failed
3505          */
3506         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3507                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3508         if (s.failed > 2 && s.syncing) {
3509                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3510                 clear_bit(STRIPE_SYNCING, &sh->state);
3511                 s.syncing = 0;
3512         }
3513
3514         /*
3515          * might be able to return some write requests if the parity blocks
3516          * are safe, or on a failed drive
3517          */
3518         pdev = &sh->dev[pd_idx];
3519         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3520                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3521         qdev = &sh->dev[qd_idx];
3522         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3523                 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3524
3525         if ( s.written &&
3526              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3527                              && !test_bit(R5_LOCKED, &pdev->flags)
3528                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3529              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3530                              && !test_bit(R5_LOCKED, &qdev->flags)
3531                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3532                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3533
3534         /* Now we might consider reading some blocks, either to check/generate
3535          * parity, or to satisfy requests
3536          * or to load a block that is being partially written.
3537          */
3538         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3539             (s.syncing && (s.uptodate < disks)) || s.expanding)
3540                 handle_stripe_fill6(sh, &s, &r6s, disks);
3541
3542         /* now to consider writing and what else, if anything should be read */
3543         if (s.to_write)
3544                 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3545
3546         /* maybe we need to check and possibly fix the parity for this stripe
3547          * Any reads will already have been scheduled, so we just see if enough
3548          * data is available
3549          */
3550         if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3551                 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3552
3553         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3554                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3555                 clear_bit(STRIPE_SYNCING, &sh->state);
3556         }
3557
3558         /* If the failed drives are just a ReadError, then we might need
3559          * to progress the repair/check process
3560          */
3561         if (s.failed <= 2 && !conf->mddev->ro)
3562                 for (i = 0; i < s.failed; i++) {
3563                         dev = &sh->dev[r6s.failed_num[i]];
3564                         if (test_bit(R5_ReadError, &dev->flags)
3565                             && !test_bit(R5_LOCKED, &dev->flags)
3566                             && test_bit(R5_UPTODATE, &dev->flags)
3567                                 ) {
3568                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3569                                         set_bit(R5_Wantwrite, &dev->flags);
3570                                         set_bit(R5_ReWrite, &dev->flags);
3571                                         set_bit(R5_LOCKED, &dev->flags);
3572                                 } else {
3573                                         /* let's read it back */
3574                                         set_bit(R5_Wantread, &dev->flags);
3575                                         set_bit(R5_LOCKED, &dev->flags);
3576                                 }
3577                         }
3578                 }
3579
3580         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3581                 struct stripe_head *sh2
3582                         = get_active_stripe(conf, sh->sector, 1, 1);
3583                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3584                         /* sh cannot be written until sh2 has been read.
3585                          * so arrange for sh to be delayed a little
3586                          */
3587                         set_bit(STRIPE_DELAYED, &sh->state);
3588                         set_bit(STRIPE_HANDLE, &sh->state);
3589                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3590                                               &sh2->state))
3591                                 atomic_inc(&conf->preread_active_stripes);
3592                         release_stripe(sh2);
3593                         goto unlock;
3594                 }
3595                 if (sh2)
3596                         release_stripe(sh2);
3597
3598                 /* Need to write out all blocks after computing P&Q */
3599                 sh->disks = conf->raid_disks;
3600                 stripe_set_idx(sh->sector, conf, 0, sh);
3601                 compute_parity6(sh, RECONSTRUCT_WRITE);
3602                 for (i = conf->raid_disks ; i-- ;  ) {
3603                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3604                         s.locked++;
3605                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3606                 }
3607                 clear_bit(STRIPE_EXPANDING, &sh->state);
3608         } else if (s.expanded) {
3609                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3610                 atomic_dec(&conf->reshape_stripes);
3611                 wake_up(&conf->wait_for_overlap);
3612                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3613         }
3614
3615         if (s.expanding && s.locked == 0 &&
3616             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3617                 handle_stripe_expansion(conf, sh, &r6s);
3618
3619  unlock:
3620         spin_unlock(&sh->lock);
3621
3622         /* wait for this device to become unblocked */
3623         if (unlikely(blocked_rdev))
3624                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3625
3626         ops_run_io(sh, &s);
3627
3628         return_io(return_bi);
3629
3630         return blocked_rdev == NULL;
3631 }
3632
3633 /* returns true if the stripe was handled */
3634 static bool handle_stripe(struct stripe_head *sh)
3635 {
3636         if (sh->raid_conf->level == 6)
3637                 return handle_stripe6(sh);
3638         else
3639                 return handle_stripe5(sh);
3640 }
3641
3642 static void raid5_activate_delayed(raid5_conf_t *conf)
3643 {
3644         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3645                 while (!list_empty(&conf->delayed_list)) {
3646                         struct list_head *l = conf->delayed_list.next;
3647                         struct stripe_head *sh;
3648                         sh = list_entry(l, struct stripe_head, lru);
3649                         list_del_init(l);
3650                         clear_bit(STRIPE_DELAYED, &sh->state);
3651                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3652                                 atomic_inc(&conf->preread_active_stripes);
3653                         list_add_tail(&sh->lru, &conf->hold_list);
3654                 }
3655         } else
3656                 blk_plug_device(conf->mddev->queue);
3657 }
3658
3659 static void activate_bit_delay(raid5_conf_t *conf)
3660 {
3661         /* device_lock is held */
3662         struct list_head head;
3663         list_add(&head, &conf->bitmap_list);
3664         list_del_init(&conf->bitmap_list);
3665         while (!list_empty(&head)) {
3666                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3667                 list_del_init(&sh->lru);
3668                 atomic_inc(&sh->count);
3669                 __release_stripe(conf, sh);
3670         }
3671 }
3672
3673 static void unplug_slaves(mddev_t *mddev)
3674 {
3675         raid5_conf_t *conf = mddev_to_conf(mddev);
3676         int i;
3677
3678         rcu_read_lock();
3679         for (i=0; i<mddev->raid_disks; i++) {
3680                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3681                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3682                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3683
3684                         atomic_inc(&rdev->nr_pending);
3685                         rcu_read_unlock();
3686
3687                         blk_unplug(r_queue);
3688
3689                         rdev_dec_pending(rdev, mddev);
3690                         rcu_read_lock();
3691                 }
3692         }
3693         rcu_read_unlock();
3694 }
3695
3696 static void raid5_unplug_device(struct request_queue *q)
3697 {
3698         mddev_t *mddev = q->queuedata;
3699         raid5_conf_t *conf = mddev_to_conf(mddev);
3700         unsigned long flags;
3701
3702         spin_lock_irqsave(&conf->device_lock, flags);
3703
3704         if (blk_remove_plug(q)) {
3705                 conf->seq_flush++;
3706                 raid5_activate_delayed(conf);
3707         }
3708         md_wakeup_thread(mddev->thread);
3709
3710         spin_unlock_irqrestore(&conf->device_lock, flags);
3711
3712         unplug_slaves(mddev);
3713 }
3714
3715 static int raid5_congested(void *data, int bits)
3716 {
3717         mddev_t *mddev = data;
3718         raid5_conf_t *conf = mddev_to_conf(mddev);
3719
3720         /* No difference between reads and writes.  Just check
3721          * how busy the stripe_cache is
3722          */
3723         if (conf->inactive_blocked)
3724                 return 1;
3725         if (conf->quiesce)
3726                 return 1;
3727         if (list_empty_careful(&conf->inactive_list))
3728                 return 1;
3729
3730         return 0;
3731 }
3732
3733 /* We want read requests to align with chunks where possible,
3734  * but write requests don't need to.
3735  */
3736 static int raid5_mergeable_bvec(struct request_queue *q,
3737                                 struct bvec_merge_data *bvm,
3738                                 struct bio_vec *biovec)
3739 {
3740         mddev_t *mddev = q->queuedata;
3741         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3742         int max;
3743         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3744         unsigned int bio_sectors = bvm->bi_size >> 9;
3745
3746         if ((bvm->bi_rw & 1) == WRITE)
3747                 return biovec->bv_len; /* always allow writes to be mergeable */
3748
3749         if (mddev->new_chunk < mddev->chunk_size)
3750                 chunk_sectors = mddev->new_chunk >> 9;
3751         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3752         if (max < 0) max = 0;
3753         if (max <= biovec->bv_len && bio_sectors == 0)
3754                 return biovec->bv_len;
3755         else
3756                 return max;
3757 }
3758
3759
3760 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3761 {
3762         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3763         unsigned int chunk_sectors = mddev->chunk_size >> 9;
3764         unsigned int bio_sectors = bio->bi_size >> 9;
3765
3766         if (mddev->new_chunk < mddev->chunk_size)
3767                 chunk_sectors = mddev->new_chunk >> 9;
3768         return  chunk_sectors >=
3769                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3770 }
3771
3772 /*
3773  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3774  *  later sampled by raid5d.
3775  */
3776 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3777 {
3778         unsigned long flags;
3779
3780         spin_lock_irqsave(&conf->device_lock, flags);
3781
3782         bi->bi_next = conf->retry_read_aligned_list;
3783         conf->retry_read_aligned_list = bi;
3784
3785         spin_unlock_irqrestore(&conf->device_lock, flags);
3786         md_wakeup_thread(conf->mddev->thread);
3787 }
3788
3789
3790 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3791 {
3792         struct bio *bi;
3793
3794         bi = conf->retry_read_aligned;
3795         if (bi) {
3796                 conf->retry_read_aligned = NULL;
3797                 return bi;
3798         }
3799         bi = conf->retry_read_aligned_list;
3800         if(bi) {
3801                 conf->retry_read_aligned_list = bi->bi_next;
3802                 bi->bi_next = NULL;
3803                 /*
3804                  * this sets the active strip count to 1 and the processed
3805                  * strip count to zero (upper 8 bits)
3806                  */
3807                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3808         }
3809
3810         return bi;
3811 }
3812
3813
3814 /*
3815  *  The "raid5_align_endio" should check if the read succeeded and if it
3816  *  did, call bio_endio on the original bio (having bio_put the new bio
3817  *  first).
3818  *  If the read failed..
3819  */
3820 static void raid5_align_endio(struct bio *bi, int error)
3821 {
3822         struct bio* raid_bi  = bi->bi_private;
3823         mddev_t *mddev;
3824         raid5_conf_t *conf;
3825         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3826         mdk_rdev_t *rdev;
3827
3828         bio_put(bi);
3829
3830         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3831         conf = mddev_to_conf(mddev);
3832         rdev = (void*)raid_bi->bi_next;
3833         raid_bi->bi_next = NULL;
3834
3835         rdev_dec_pending(rdev, conf->mddev);
3836
3837         if (!error && uptodate) {
3838                 bio_endio(raid_bi, 0);
3839                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3840                         wake_up(&conf->wait_for_stripe);
3841                 return;
3842         }
3843
3844
3845         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3846
3847         add_bio_to_retry(raid_bi, conf);
3848 }
3849
3850 static int bio_fits_rdev(struct bio *bi)
3851 {
3852         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3853
3854         if ((bi->bi_size>>9) > q->max_sectors)
3855                 return 0;
3856         blk_recount_segments(q, bi);
3857         if (bi->bi_phys_segments > q->max_phys_segments)
3858                 return 0;
3859
3860         if (q->merge_bvec_fn)
3861                 /* it's too hard to apply the merge_bvec_fn at this stage,
3862                  * just just give up
3863                  */
3864                 return 0;
3865
3866         return 1;
3867 }
3868
3869
3870 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3871 {
3872         mddev_t *mddev = q->queuedata;
3873         raid5_conf_t *conf = mddev_to_conf(mddev);
3874         unsigned int dd_idx;
3875         struct bio* align_bi;
3876         mdk_rdev_t *rdev;
3877
3878         if (!in_chunk_boundary(mddev, raid_bio)) {
3879                 pr_debug("chunk_aligned_read : non aligned\n");
3880                 return 0;
3881         }
3882         /*
3883          * use bio_clone to make a copy of the bio
3884          */
3885         align_bi = bio_clone(raid_bio, GFP_NOIO);
3886         if (!align_bi)
3887                 return 0;
3888         /*
3889          *   set bi_end_io to a new function, and set bi_private to the
3890          *     original bio.
3891          */
3892         align_bi->bi_end_io  = raid5_align_endio;
3893         align_bi->bi_private = raid_bio;
3894         /*
3895          *      compute position
3896          */
3897         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3898                                                     0,
3899                                                     &dd_idx, NULL);
3900
3901         rcu_read_lock();
3902         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3903         if (rdev && test_bit(In_sync, &rdev->flags)) {
3904                 atomic_inc(&rdev->nr_pending);
3905                 rcu_read_unlock();
3906                 raid_bio->bi_next = (void*)rdev;
3907                 align_bi->bi_bdev =  rdev->bdev;
3908                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3909                 align_bi->bi_sector += rdev->data_offset;
3910
3911                 if (!bio_fits_rdev(align_bi)) {
3912                         /* too big in some way */
3913                         bio_put(align_bi);
3914                         rdev_dec_pending(rdev, mddev);
3915                         return 0;
3916                 }
3917
3918                 spin_lock_irq(&conf->device_lock);
3919                 wait_event_lock_irq(conf->wait_for_stripe,
3920                                     conf->quiesce == 0,
3921                                     conf->device_lock, /* nothing */);
3922                 atomic_inc(&conf->active_aligned_reads);
3923                 spin_unlock_irq(&conf->device_lock);
3924
3925                 generic_make_request(align_bi);
3926                 return 1;
3927         } else {
3928                 rcu_read_unlock();
3929                 bio_put(align_bi);
3930                 return 0;
3931         }
3932 }
3933
3934 /* __get_priority_stripe - get the next stripe to process
3935  *
3936  * Full stripe writes are allowed to pass preread active stripes up until
3937  * the bypass_threshold is exceeded.  In general the bypass_count
3938  * increments when the handle_list is handled before the hold_list; however, it
3939  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3940  * stripe with in flight i/o.  The bypass_count will be reset when the
3941  * head of the hold_list has changed, i.e. the head was promoted to the
3942  * handle_list.
3943  */
3944 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3945 {
3946         struct stripe_head *sh;
3947
3948         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3949                   __func__,
3950                   list_empty(&conf->handle_list) ? "empty" : "busy",
3951                   list_empty(&conf->hold_list) ? "empty" : "busy",
3952                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3953
3954         if (!list_empty(&conf->handle_list)) {
3955                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3956
3957                 if (list_empty(&conf->hold_list))
3958                         conf->bypass_count = 0;
3959                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3960                         if (conf->hold_list.next == conf->last_hold)
3961                                 conf->bypass_count++;
3962                         else {
3963                                 conf->last_hold = conf->hold_list.next;
3964                                 conf->bypass_count -= conf->bypass_threshold;
3965                                 if (conf->bypass_count < 0)
3966                                         conf->bypass_count = 0;
3967                         }
3968                 }
3969         } else if (!list_empty(&conf->hold_list) &&
3970                    ((conf->bypass_threshold &&
3971                      conf->bypass_count > conf->bypass_threshold) ||
3972                     atomic_read(&conf->pending_full_writes) == 0)) {
3973                 sh = list_entry(conf->hold_list.next,
3974                                 typeof(*sh), lru);
3975                 conf->bypass_count -= conf->bypass_threshold;
3976                 if (conf->bypass_count < 0)
3977                         conf->bypass_count = 0;
3978         } else
3979                 return NULL;
3980
3981         list_del_init(&sh->lru);
3982         atomic_inc(&sh->count);
3983         BUG_ON(atomic_read(&sh->count) != 1);
3984         return sh;
3985 }
3986
3987 static int make_request(struct request_queue *q, struct bio * bi)
3988 {
3989         mddev_t *mddev = q->queuedata;
3990         raid5_conf_t *conf = mddev_to_conf(mddev);
3991         int dd_idx;
3992         sector_t new_sector;
3993         sector_t logical_sector, last_sector;
3994         struct stripe_head *sh;
3995         const int rw = bio_data_dir(bi);
3996         int cpu, remaining;
3997
3998         if (unlikely(bio_barrier(bi))) {
3999                 bio_endio(bi, -EOPNOTSUPP);
4000                 return 0;
4001         }
4002
4003         md_write_start(mddev, bi);
4004
4005         cpu = part_stat_lock();
4006         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
4007         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
4008                       bio_sectors(bi));
4009         part_stat_unlock();
4010
4011         if (rw == READ &&
4012              mddev->reshape_position == MaxSector &&
4013              chunk_aligned_read(q,bi))
4014                 return 0;
4015
4016         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4017         last_sector = bi->bi_sector + (bi->bi_size>>9);
4018         bi->bi_next = NULL;
4019         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4020
4021         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4022                 DEFINE_WAIT(w);
4023                 int disks, data_disks;
4024                 int previous;
4025
4026         retry:
4027                 previous = 0;
4028                 disks = conf->raid_disks;
4029                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4030                 if (unlikely(conf->reshape_progress != MaxSector)) {
4031                         /* spinlock is needed as reshape_progress may be
4032                          * 64bit on a 32bit platform, and so it might be
4033                          * possible to see a half-updated value
4034                          * Ofcourse reshape_progress could change after
4035                          * the lock is dropped, so once we get a reference
4036                          * to the stripe that we think it is, we will have
4037                          * to check again.
4038                          */
4039                         spin_lock_irq(&conf->device_lock);
4040                         if (mddev->delta_disks < 0
4041                             ? logical_sector < conf->reshape_progress
4042                             : logical_sector >= conf->reshape_progress) {
4043                                 disks = conf->previous_raid_disks;
4044                                 previous = 1;
4045                         } else {
4046                                 if (mddev->delta_disks < 0
4047                                     ? logical_sector < conf->reshape_safe
4048                                     : logical_sector >= conf->reshape_safe) {
4049                                         spin_unlock_irq(&conf->device_lock);
4050                                         schedule();
4051                                         goto retry;
4052                                 }
4053                         }
4054                         spin_unlock_irq(&conf->device_lock);
4055                 }
4056                 data_disks = disks - conf->max_degraded;
4057
4058                 new_sector = raid5_compute_sector(conf, logical_sector,
4059                                                   previous,
4060                                                   &dd_idx, NULL);
4061                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
4062                         (unsigned long long)new_sector, 
4063                         (unsigned long long)logical_sector);
4064
4065                 sh = get_active_stripe(conf, new_sector, previous,
4066                                        (bi->bi_rw&RWA_MASK));
4067                 if (sh) {
4068                         if (unlikely(previous)) {
4069                                 /* expansion might have moved on while waiting for a
4070                                  * stripe, so we must do the range check again.
4071                                  * Expansion could still move past after this
4072                                  * test, but as we are holding a reference to
4073                                  * 'sh', we know that if that happens,
4074                                  *  STRIPE_EXPANDING will get set and the expansion
4075                                  * won't proceed until we finish with the stripe.
4076                                  */
4077                                 int must_retry = 0;
4078                                 spin_lock_irq(&conf->device_lock);
4079                                 if (mddev->delta_disks < 0
4080                                     ? logical_sector >= conf->reshape_progress
4081                                     : logical_sector < conf->reshape_progress)
4082                                         /* mismatch, need to try again */
4083                                         must_retry = 1;
4084                                 spin_unlock_irq(&conf->device_lock);
4085                                 if (must_retry) {
4086                                         release_stripe(sh);
4087                                         goto retry;
4088                                 }
4089                         }
4090                         /* FIXME what if we get a false positive because these
4091                          * are being updated.
4092                          */
4093                         if (logical_sector >= mddev->suspend_lo &&
4094                             logical_sector < mddev->suspend_hi) {
4095                                 release_stripe(sh);
4096                                 schedule();
4097                                 goto retry;
4098                         }
4099
4100                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4101                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
4102                                 /* Stripe is busy expanding or
4103                                  * add failed due to overlap.  Flush everything
4104                                  * and wait a while
4105                                  */
4106                                 raid5_unplug_device(mddev->queue);
4107                                 release_stripe(sh);
4108                                 schedule();
4109                                 goto retry;
4110                         }
4111                         finish_wait(&conf->wait_for_overlap, &w);
4112                         set_bit(STRIPE_HANDLE, &sh->state);
4113                         clear_bit(STRIPE_DELAYED, &sh->state);
4114                         release_stripe(sh);
4115                 } else {
4116                         /* cannot get stripe for read-ahead, just give-up */
4117                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4118                         finish_wait(&conf->wait_for_overlap, &w);
4119                         break;
4120                 }
4121                         
4122         }
4123         spin_lock_irq(&conf->device_lock);
4124         remaining = raid5_dec_bi_phys_segments(bi);
4125         spin_unlock_irq(&conf->device_lock);
4126         if (remaining == 0) {
4127
4128                 if ( rw == WRITE )
4129                         md_write_end(mddev);
4130
4131                 bio_endio(bi, 0);
4132         }
4133         return 0;
4134 }
4135
4136 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4137
4138 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4139 {
4140         /* reshaping is quite different to recovery/resync so it is
4141          * handled quite separately ... here.
4142          *
4143          * On each call to sync_request, we gather one chunk worth of
4144          * destination stripes and flag them as expanding.
4145          * Then we find all the source stripes and request reads.
4146          * As the reads complete, handle_stripe will copy the data
4147          * into the destination stripe and release that stripe.
4148          */
4149         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4150         struct stripe_head *sh;
4151         sector_t first_sector, last_sector;
4152         int raid_disks = conf->previous_raid_disks;
4153         int data_disks = raid_disks - conf->max_degraded;
4154         int new_data_disks = conf->raid_disks - conf->max_degraded;
4155         int i;
4156         int dd_idx;
4157         sector_t writepos, readpos, safepos;
4158         sector_t stripe_addr;
4159         int reshape_sectors;
4160         struct list_head stripes;
4161
4162         if (sector_nr == 0) {
4163                 /* If restarting in the middle, skip the initial sectors */
4164                 if (mddev->delta_disks < 0 &&
4165                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4166                         sector_nr = raid5_size(mddev, 0, 0)
4167                                 - conf->reshape_progress;
4168                 } else if (mddev->delta_disks > 0 &&
4169                            conf->reshape_progress > 0)
4170                         sector_nr = conf->reshape_progress;
4171                 sector_div(sector_nr, new_data_disks);
4172                 if (sector_nr) {
4173                         *skipped = 1;
4174                         return sector_nr;
4175                 }
4176         }
4177
4178         /* We need to process a full chunk at a time.
4179          * If old and new chunk sizes differ, we need to process the
4180          * largest of these
4181          */
4182         if (mddev->new_chunk > mddev->chunk_size)
4183                 reshape_sectors = mddev->new_chunk / 512;
4184         else
4185                 reshape_sectors = mddev->chunk_size / 512;
4186
4187         /* we update the metadata when there is more than 3Meg
4188          * in the block range (that is rather arbitrary, should
4189          * probably be time based) or when the data about to be
4190          * copied would over-write the source of the data at
4191          * the front of the range.
4192          * i.e. one new_stripe along from reshape_progress new_maps
4193          * to after where reshape_safe old_maps to
4194          */
4195         writepos = conf->reshape_progress;
4196         sector_div(writepos, new_data_disks);
4197         readpos = conf->reshape_progress;
4198         sector_div(readpos, data_disks);
4199         safepos = conf->reshape_safe;
4200         sector_div(safepos, data_disks);
4201         if (mddev->delta_disks < 0) {
4202                 writepos -= reshape_sectors;
4203                 readpos += reshape_sectors;
4204                 safepos += reshape_sectors;
4205         } else {
4206                 writepos += reshape_sectors;
4207                 readpos -= reshape_sectors;
4208                 safepos -= reshape_sectors;
4209         }
4210
4211         /* 'writepos' is the most advanced device address we might write.
4212          * 'readpos' is the least advanced device address we might read.
4213          * 'safepos' is the least address recorded in the metadata as having
4214          *     been reshaped.
4215          * If 'readpos' is behind 'writepos', then there is no way that we can
4216          * ensure safety in the face of a crash - that must be done by userspace
4217          * making a backup of the data.  So in that case there is no particular
4218          * rush to update metadata.
4219          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4220          * update the metadata to advance 'safepos' to match 'readpos' so that
4221          * we can be safe in the event of a crash.
4222          * So we insist on updating metadata if safepos is behind writepos and
4223          * readpos is beyond writepos.
4224          * In any case, update the metadata every 10 seconds.
4225          * Maybe that number should be configurable, but I'm not sure it is
4226          * worth it.... maybe it could be a multiple of safemode_delay???
4227          */
4228         if ((mddev->delta_disks < 0
4229              ? (safepos > writepos && readpos < writepos)
4230              : (safepos < writepos && readpos > writepos)) ||
4231             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4232                 /* Cannot proceed until we've updated the superblock... */
4233                 wait_event(conf->wait_for_overlap,
4234                            atomic_read(&conf->reshape_stripes)==0);
4235                 mddev->reshape_position = conf->reshape_progress;
4236                 conf->reshape_checkpoint = jiffies;
4237                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4238                 md_wakeup_thread(mddev->thread);
4239                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4240                            kthread_should_stop());
4241                 spin_lock_irq(&conf->device_lock);
4242                 conf->reshape_safe = mddev->reshape_position;
4243                 spin_unlock_irq(&conf->device_lock);
4244                 wake_up(&conf->wait_for_overlap);
4245         }
4246
4247         if (mddev->delta_disks < 0) {
4248                 BUG_ON(conf->reshape_progress == 0);
4249                 stripe_addr = writepos;
4250                 BUG_ON((mddev->dev_sectors &
4251                         ~((sector_t)reshape_sectors - 1))
4252                        - reshape_sectors - stripe_addr
4253                        != sector_nr);
4254         } else {
4255                 BUG_ON(writepos != sector_nr + reshape_sectors);
4256                 stripe_addr = sector_nr;
4257         }
4258         INIT_LIST_HEAD(&stripes);
4259         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4260                 int j;
4261                 int skipped = 0;
4262                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0);
4263                 set_bit(STRIPE_EXPANDING, &sh->state);
4264                 atomic_inc(&conf->reshape_stripes);
4265                 /* If any of this stripe is beyond the end of the old
4266                  * array, then we need to zero those blocks
4267                  */
4268                 for (j=sh->disks; j--;) {
4269                         sector_t s;
4270                         if (j == sh->pd_idx)
4271                                 continue;
4272                         if (conf->level == 6 &&
4273                             j == sh->qd_idx)
4274                                 continue;
4275                         s = compute_blocknr(sh, j, 0);
4276                         if (s < raid5_size(mddev, 0, 0)) {
4277                                 skipped = 1;
4278                                 continue;
4279                         }
4280                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4281                         set_bit(R5_Expanded, &sh->dev[j].flags);
4282                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4283                 }
4284                 if (!skipped) {
4285                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4286                         set_bit(STRIPE_HANDLE, &sh->state);
4287                 }
4288                 list_add(&sh->lru, &stripes);
4289         }
4290         spin_lock_irq(&conf->device_lock);
4291         if (mddev->delta_disks < 0)
4292                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4293         else
4294                 conf->reshape_progress += reshape_sectors * new_data_disks;
4295         spin_unlock_irq(&conf->device_lock);
4296         /* Ok, those stripe are ready. We can start scheduling
4297          * reads on the source stripes.
4298          * The source stripes are determined by mapping the first and last
4299          * block on the destination stripes.
4300          */
4301         first_sector =
4302                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4303                                      1, &dd_idx, NULL);
4304         last_sector =
4305                 raid5_compute_sector(conf, ((stripe_addr+conf->chunk_size/512)
4306                                             *(new_data_disks) - 1),
4307                                      1, &dd_idx, NULL);
4308         if (last_sector >= mddev->dev_sectors)
4309                 last_sector = mddev->dev_sectors - 1;
4310         while (first_sector <= last_sector) {
4311                 sh = get_active_stripe(conf, first_sector, 1, 0);
4312                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4313                 set_bit(STRIPE_HANDLE, &sh->state);
4314                 release_stripe(sh);
4315                 first_sector += STRIPE_SECTORS;
4316         }
4317         /* Now that the sources are clearly marked, we can release
4318          * the destination stripes
4319          */
4320         while (!list_empty(&stripes)) {
4321                 sh = list_entry(stripes.next, struct stripe_head, lru);
4322                 list_del_init(&sh->lru);
4323                 release_stripe(sh);
4324         }
4325         /* If this takes us to the resync_max point where we have to pause,
4326          * then we need to write out the superblock.
4327          */
4328         sector_nr += reshape_sectors;
4329         if (sector_nr >= mddev->resync_max) {
4330                 /* Cannot proceed until we've updated the superblock... */
4331                 wait_event(conf->wait_for_overlap,
4332                            atomic_read(&conf->reshape_stripes) == 0);
4333                 mddev->reshape_position = conf->reshape_progress;
4334                 conf->reshape_checkpoint = jiffies;
4335                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4336                 md_wakeup_thread(mddev->thread);
4337                 wait_event(mddev->sb_wait,
4338                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4339                            || kthread_should_stop());
4340                 spin_lock_irq(&conf->device_lock);
4341                 conf->reshape_safe = mddev->reshape_position;
4342                 spin_unlock_irq(&conf->device_lock);
4343                 wake_up(&conf->wait_for_overlap);
4344         }
4345         return reshape_sectors;
4346 }
4347
4348 /* FIXME go_faster isn't used */
4349 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4350 {
4351         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4352         struct stripe_head *sh;
4353         sector_t max_sector = mddev->dev_sectors;
4354         int sync_blocks;
4355         int still_degraded = 0;
4356         int i;
4357
4358         if (sector_nr >= max_sector) {
4359                 /* just being told to finish up .. nothing much to do */
4360                 unplug_slaves(mddev);
4361
4362                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4363                         end_reshape(conf);
4364                         return 0;
4365                 }
4366
4367                 if (mddev->curr_resync < max_sector) /* aborted */
4368                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4369                                         &sync_blocks, 1);
4370                 else /* completed sync */
4371                         conf->fullsync = 0;
4372                 bitmap_close_sync(mddev->bitmap);
4373
4374                 return 0;
4375         }
4376
4377         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4378                 return reshape_request(mddev, sector_nr, skipped);
4379
4380         /* No need to check resync_max as we never do more than one
4381          * stripe, and as resync_max will always be on a chunk boundary,
4382          * if the check in md_do_sync didn't fire, there is no chance
4383          * of overstepping resync_max here
4384          */
4385
4386         /* if there is too many failed drives and we are trying
4387          * to resync, then assert that we are finished, because there is
4388          * nothing we can do.
4389          */
4390         if (mddev->degraded >= conf->max_degraded &&
4391             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4392                 sector_t rv = mddev->dev_sectors - sector_nr;
4393                 *skipped = 1;
4394                 return rv;
4395         }
4396         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4397             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4398             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4399                 /* we can skip this block, and probably more */
4400                 sync_blocks /= STRIPE_SECTORS;
4401                 *skipped = 1;
4402                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4403         }
4404
4405
4406         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4407
4408         sh = get_active_stripe(conf, sector_nr, 0, 1);
4409         if (sh == NULL) {
4410                 sh = get_active_stripe(conf, sector_nr, 0, 0);
4411                 /* make sure we don't swamp the stripe cache if someone else
4412                  * is trying to get access
4413                  */
4414                 schedule_timeout_uninterruptible(1);
4415         }
4416         /* Need to check if array will still be degraded after recovery/resync
4417          * We don't need to check the 'failed' flag as when that gets set,
4418          * recovery aborts.
4419          */
4420         for (i=0; i<mddev->raid_disks; i++)
4421                 if (conf->disks[i].rdev == NULL)
4422                         still_degraded = 1;
4423
4424         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4425
4426         spin_lock(&sh->lock);
4427         set_bit(STRIPE_SYNCING, &sh->state);
4428         clear_bit(STRIPE_INSYNC, &sh->state);
4429         spin_unlock(&sh->lock);
4430
4431         /* wait for any blocked device to be handled */
4432         while (unlikely(!handle_stripe(sh)))
4433                 ;
4434         release_stripe(sh);
4435
4436         return STRIPE_SECTORS;
4437 }
4438
4439 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4440 {
4441         /* We may not be able to submit a whole bio at once as there
4442          * may not be enough stripe_heads available.
4443          * We cannot pre-allocate enough stripe_heads as we may need
4444          * more than exist in the cache (if we allow ever large chunks).
4445          * So we do one stripe head at a time and record in
4446          * ->bi_hw_segments how many have been done.
4447          *
4448          * We *know* that this entire raid_bio is in one chunk, so
4449          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4450          */
4451         struct stripe_head *sh;
4452         int dd_idx;
4453         sector_t sector, logical_sector, last_sector;
4454         int scnt = 0;
4455         int remaining;
4456         int handled = 0;
4457
4458         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4459         sector = raid5_compute_sector(conf, logical_sector,
4460                                       0, &dd_idx, NULL);
4461         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4462
4463         for (; logical_sector < last_sector;
4464              logical_sector += STRIPE_SECTORS,
4465                      sector += STRIPE_SECTORS,
4466                      scnt++) {
4467
4468                 if (scnt < raid5_bi_hw_segments(raid_bio))
4469                         /* already done this stripe */
4470                         continue;
4471
4472                 sh = get_active_stripe(conf, sector, 0, 1);
4473
4474                 if (!sh) {
4475                         /* failed to get a stripe - must wait */
4476                         raid5_set_bi_hw_segments(raid_bio, scnt);
4477                         conf->retry_read_aligned = raid_bio;
4478                         return handled;
4479                 }
4480
4481                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4482                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4483                         release_stripe(sh);
4484                         raid5_set_bi_hw_segments(raid_bio, scnt);
4485                         conf->retry_read_aligned = raid_bio;
4486                         return handled;
4487                 }
4488
4489                 handle_stripe(sh);
4490                 release_stripe(sh);
4491                 handled++;
4492         }
4493         spin_lock_irq(&conf->device_lock);
4494         remaining = raid5_dec_bi_phys_segments(raid_bio);
4495         spin_unlock_irq(&conf->device_lock);
4496         if (remaining == 0)
4497                 bio_endio(raid_bio, 0);
4498         if (atomic_dec_and_test(&conf->active_aligned_reads))
4499                 wake_up(&conf->wait_for_stripe);
4500         return handled;
4501 }
4502
4503
4504
4505 /*
4506  * This is our raid5 kernel thread.
4507  *
4508  * We scan the hash table for stripes which can be handled now.
4509  * During the scan, completed stripes are saved for us by the interrupt
4510  * handler, so that they will not have to wait for our next wakeup.
4511  */
4512 static void raid5d(mddev_t *mddev)
4513 {
4514         struct stripe_head *sh;
4515         raid5_conf_t *conf = mddev_to_conf(mddev);
4516         int handled;
4517
4518         pr_debug("+++ raid5d active\n");
4519
4520         md_check_recovery(mddev);
4521
4522         handled = 0;
4523         spin_lock_irq(&conf->device_lock);
4524         while (1) {
4525                 struct bio *bio;
4526
4527                 if (conf->seq_flush != conf->seq_write) {
4528                         int seq = conf->seq_flush;
4529                         spin_unlock_irq(&conf->device_lock);
4530                         bitmap_unplug(mddev->bitmap);
4531                         spin_lock_irq(&conf->device_lock);
4532                         conf->seq_write = seq;
4533                         activate_bit_delay(conf);
4534                 }
4535
4536                 while ((bio = remove_bio_from_retry(conf))) {
4537                         int ok;
4538                         spin_unlock_irq(&conf->device_lock);
4539                         ok = retry_aligned_read(conf, bio);
4540                         spin_lock_irq(&conf->device_lock);
4541                         if (!ok)
4542                                 break;
4543                         handled++;
4544                 }
4545
4546                 sh = __get_priority_stripe(conf);
4547
4548                 if (!sh)
4549                         break;
4550                 spin_unlock_irq(&conf->device_lock);
4551                 
4552                 handled++;
4553                 handle_stripe(sh);
4554                 release_stripe(sh);
4555
4556                 spin_lock_irq(&conf->device_lock);
4557         }
4558         pr_debug("%d stripes handled\n", handled);
4559
4560         spin_unlock_irq(&conf->device_lock);
4561
4562         async_tx_issue_pending_all();
4563         unplug_slaves(mddev);
4564
4565         pr_debug("--- raid5d inactive\n");
4566 }
4567
4568 static ssize_t
4569 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4570 {
4571         raid5_conf_t *conf = mddev_to_conf(mddev);
4572         if (conf)
4573                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4574         else
4575                 return 0;
4576 }
4577
4578 static ssize_t
4579 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4580 {
4581         raid5_conf_t *conf = mddev_to_conf(mddev);
4582         unsigned long new;
4583         int err;
4584
4585         if (len >= PAGE_SIZE)
4586                 return -EINVAL;
4587         if (!conf)
4588                 return -ENODEV;
4589
4590         if (strict_strtoul(page, 10, &new))
4591                 return -EINVAL;
4592         if (new <= 16 || new > 32768)
4593                 return -EINVAL;
4594         while (new < conf->max_nr_stripes) {
4595                 if (drop_one_stripe(conf))
4596                         conf->max_nr_stripes--;
4597                 else
4598                         break;
4599         }
4600         err = md_allow_write(mddev);
4601         if (err)
4602                 return err;
4603         while (new > conf->max_nr_stripes) {
4604                 if (grow_one_stripe(conf))
4605                         conf->max_nr_stripes++;
4606                 else break;
4607         }
4608         return len;
4609 }
4610
4611 static struct md_sysfs_entry
4612 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4613                                 raid5_show_stripe_cache_size,
4614                                 raid5_store_stripe_cache_size);
4615
4616 static ssize_t
4617 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4618 {
4619         raid5_conf_t *conf = mddev_to_conf(mddev);
4620         if (conf)
4621                 return sprintf(page, "%d\n", conf->bypass_threshold);
4622         else
4623                 return 0;
4624 }
4625
4626 static ssize_t
4627 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4628 {
4629         raid5_conf_t *conf = mddev_to_conf(mddev);
4630         unsigned long new;
4631         if (len >= PAGE_SIZE)
4632                 return -EINVAL;
4633         if (!conf)
4634                 return -ENODEV;
4635
4636         if (strict_strtoul(page, 10, &new))
4637                 return -EINVAL;
4638         if (new > conf->max_nr_stripes)
4639                 return -EINVAL;
4640         conf->bypass_threshold = new;
4641         return len;
4642 }
4643
4644 static struct md_sysfs_entry
4645 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4646                                         S_IRUGO | S_IWUSR,
4647                                         raid5_show_preread_threshold,
4648                                         raid5_store_preread_threshold);
4649
4650 static ssize_t
4651 stripe_cache_active_show(mddev_t *mddev, char *page)
4652 {
4653         raid5_conf_t *conf = mddev_to_conf(mddev);
4654         if (conf)
4655                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4656         else
4657                 return 0;
4658 }
4659
4660 static struct md_sysfs_entry
4661 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4662
4663 static struct attribute *raid5_attrs[] =  {
4664         &raid5_stripecache_size.attr,
4665         &raid5_stripecache_active.attr,
4666         &raid5_preread_bypass_threshold.attr,
4667         NULL,
4668 };
4669 static struct attribute_group raid5_attrs_group = {
4670         .name = NULL,
4671         .attrs = raid5_attrs,
4672 };
4673
4674 static sector_t
4675 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4676 {
4677         raid5_conf_t *conf = mddev_to_conf(mddev);
4678
4679         if (!sectors)
4680                 sectors = mddev->dev_sectors;
4681         if (!raid_disks) {
4682                 /* size is defined by the smallest of previous and new size */
4683                 if (conf->raid_disks < conf->previous_raid_disks)
4684                         raid_disks = conf->raid_disks;
4685                 else
4686                         raid_disks = conf->previous_raid_disks;
4687         }
4688
4689         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4690         sectors &= ~((sector_t)mddev->new_chunk/512 - 1);
4691         return sectors * (raid_disks - conf->max_degraded);
4692 }
4693
4694 static void raid5_free_percpu(raid5_conf_t *conf)
4695 {
4696         struct raid5_percpu *percpu;
4697         unsigned long cpu;
4698
4699         if (!conf->percpu)
4700                 return;
4701
4702         get_online_cpus();
4703         for_each_possible_cpu(cpu) {
4704                 percpu = per_cpu_ptr(conf->percpu, cpu);
4705                 safe_put_page(percpu->spare_page);
4706                 kfree(percpu->scribble);
4707         }
4708 #ifdef CONFIG_HOTPLUG_CPU
4709         unregister_cpu_notifier(&conf->cpu_notify);
4710 #endif
4711         put_online_cpus();
4712
4713         free_percpu(conf->percpu);
4714 }
4715
4716 static void free_conf(raid5_conf_t *conf)
4717 {
4718         shrink_stripes(conf);
4719         raid5_free_percpu(conf);
4720         kfree(conf->disks);
4721         kfree(conf->stripe_hashtbl);
4722         kfree(conf);
4723 }
4724
4725 #ifdef CONFIG_HOTPLUG_CPU
4726 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4727                               void *hcpu)
4728 {
4729         raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4730         long cpu = (long)hcpu;
4731         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4732
4733         switch (action) {
4734         case CPU_UP_PREPARE:
4735         case CPU_UP_PREPARE_FROZEN:
4736                 if (conf->level == 6 && !percpu->spare_page)
4737                         percpu->spare_page = alloc_page(GFP_KERNEL);
4738                 if (!percpu->scribble)
4739                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4740
4741                 if (!percpu->scribble ||
4742                     (conf->level == 6 && !percpu->spare_page)) {
4743                         safe_put_page(percpu->spare_page);
4744                         kfree(percpu->scribble);
4745                         pr_err("%s: failed memory allocation for cpu%ld\n",
4746                                __func__, cpu);
4747                         return NOTIFY_BAD;
4748                 }
4749                 break;
4750         case CPU_DEAD:
4751         case CPU_DEAD_FROZEN:
4752                 safe_put_page(percpu->spare_page);
4753                 kfree(percpu->scribble);
4754                 percpu->spare_page = NULL;
4755                 percpu->scribble = NULL;
4756                 break;
4757         default:
4758                 break;
4759         }
4760         return NOTIFY_OK;
4761 }
4762 #endif
4763
4764 static int raid5_alloc_percpu(raid5_conf_t *conf)
4765 {
4766         unsigned long cpu;
4767         struct page *spare_page;
4768         struct raid5_percpu *allcpus;
4769         void *scribble;
4770         int err;
4771
4772         allcpus = alloc_percpu(struct raid5_percpu);
4773         if (!allcpus)
4774                 return -ENOMEM;
4775         conf->percpu = allcpus;
4776
4777         get_online_cpus();
4778         err = 0;
4779         for_each_present_cpu(cpu) {
4780                 if (conf->level == 6) {
4781                         spare_page = alloc_page(GFP_KERNEL);
4782                         if (!spare_page) {
4783                                 err = -ENOMEM;
4784                                 break;
4785                         }
4786                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4787                 }
4788                 scribble = kmalloc(scribble_len(conf->raid_disks), GFP_KERNEL);
4789                 if (!scribble) {
4790                         err = -ENOMEM;
4791                         break;
4792                 }
4793                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4794         }
4795 #ifdef CONFIG_HOTPLUG_CPU
4796         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4797         conf->cpu_notify.priority = 0;
4798         if (err == 0)
4799                 err = register_cpu_notifier(&conf->cpu_notify);
4800 #endif
4801         put_online_cpus();
4802
4803         return err;
4804 }
4805
4806 static raid5_conf_t *setup_conf(mddev_t *mddev)
4807 {
4808         raid5_conf_t *conf;
4809         int raid_disk, memory;
4810         mdk_rdev_t *rdev;
4811         struct disk_info *disk;
4812
4813         if (mddev->new_level != 5
4814             && mddev->new_level != 4
4815             && mddev->new_level != 6) {
4816                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4817                        mdname(mddev), mddev->new_level);
4818                 return ERR_PTR(-EIO);
4819         }
4820         if ((mddev->new_level == 5
4821              && !algorithm_valid_raid5(mddev->new_layout)) ||
4822             (mddev->new_level == 6
4823              && !algorithm_valid_raid6(mddev->new_layout))) {
4824                 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4825                        mdname(mddev), mddev->new_layout);
4826                 return ERR_PTR(-EIO);
4827         }
4828         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4829                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4830                        mdname(mddev), mddev->raid_disks);
4831                 return ERR_PTR(-EINVAL);
4832         }
4833
4834         if (!mddev->new_chunk || mddev->new_chunk % PAGE_SIZE) {
4835                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4836                         mddev->new_chunk, mdname(mddev));
4837                 return ERR_PTR(-EINVAL);
4838         }
4839
4840         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4841         if (conf == NULL)
4842                 goto abort;
4843
4844         conf->raid_disks = mddev->raid_disks;
4845         conf->scribble_len = scribble_len(conf->raid_disks);
4846         if (mddev->reshape_position == MaxSector)
4847                 conf->previous_raid_disks = mddev->raid_disks;
4848         else
4849                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4850
4851         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4852                               GFP_KERNEL);
4853         if (!conf->disks)
4854                 goto abort;
4855
4856         conf->mddev = mddev;
4857
4858         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4859                 goto abort;
4860
4861         conf->level = mddev->new_level;
4862         if (raid5_alloc_percpu(conf) != 0)
4863                 goto abort;
4864
4865         spin_lock_init(&conf->device_lock);
4866         init_waitqueue_head(&conf->wait_for_stripe);
4867         init_waitqueue_head(&conf->wait_for_overlap);
4868         INIT_LIST_HEAD(&conf->handle_list);
4869         INIT_LIST_HEAD(&conf->hold_list);
4870         INIT_LIST_HEAD(&conf->delayed_list);
4871         INIT_LIST_HEAD(&conf->bitmap_list);
4872         INIT_LIST_HEAD(&conf->inactive_list);
4873         atomic_set(&conf->active_stripes, 0);
4874         atomic_set(&conf->preread_active_stripes, 0);
4875         atomic_set(&conf->active_aligned_reads, 0);
4876         conf->bypass_threshold = BYPASS_THRESHOLD;
4877
4878         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4879
4880         list_for_each_entry(rdev, &mddev->disks, same_set) {
4881                 raid_disk = rdev->raid_disk;
4882                 if (raid_disk >= conf->raid_disks
4883                     || raid_disk < 0)
4884                         continue;
4885                 disk = conf->disks + raid_disk;
4886
4887                 disk->rdev = rdev;
4888
4889                 if (test_bit(In_sync, &rdev->flags)) {
4890                         char b[BDEVNAME_SIZE];
4891                         printk(KERN_INFO "raid5: device %s operational as raid"
4892                                 " disk %d\n", bdevname(rdev->bdev,b),
4893                                 raid_disk);
4894                 } else
4895                         /* Cannot rely on bitmap to complete recovery */
4896                         conf->fullsync = 1;
4897         }
4898
4899         conf->chunk_size = mddev->new_chunk;
4900         if (conf->level == 6)
4901                 conf->max_degraded = 2;
4902         else
4903                 conf->max_degraded = 1;
4904         conf->algorithm = mddev->new_layout;
4905         conf->max_nr_stripes = NR_STRIPES;
4906         conf->reshape_progress = mddev->reshape_position;
4907         if (conf->reshape_progress != MaxSector) {
4908                 conf->prev_chunk = mddev->chunk_size;
4909                 conf->prev_algo = mddev->layout;
4910         }
4911
4912         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4913                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4914         if (grow_stripes(conf, conf->max_nr_stripes)) {
4915                 printk(KERN_ERR
4916                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4917                 goto abort;
4918         } else
4919                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4920                         memory, mdname(mddev));
4921
4922         conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4923         if (!conf->thread) {
4924                 printk(KERN_ERR
4925                        "raid5: couldn't allocate thread for %s\n",
4926                        mdname(mddev));
4927                 goto abort;
4928         }
4929
4930         return conf;
4931
4932  abort:
4933         if (conf) {
4934                 free_conf(conf);
4935                 return ERR_PTR(-EIO);
4936         } else
4937                 return ERR_PTR(-ENOMEM);
4938 }
4939
4940 static int run(mddev_t *mddev)
4941 {
4942         raid5_conf_t *conf;
4943         int working_disks = 0;
4944         mdk_rdev_t *rdev;
4945
4946         if (mddev->reshape_position != MaxSector) {
4947                 /* Check that we can continue the reshape.
4948                  * Currently only disks can change, it must
4949                  * increase, and we must be past the point where
4950                  * a stripe over-writes itself
4951                  */
4952                 sector_t here_new, here_old;
4953                 int old_disks;
4954                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4955
4956                 if (mddev->new_level != mddev->level) {
4957                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4958                                "required - aborting.\n",
4959                                mdname(mddev));
4960                         return -EINVAL;
4961                 }
4962                 old_disks = mddev->raid_disks - mddev->delta_disks;
4963                 /* reshape_position must be on a new-stripe boundary, and one
4964                  * further up in new geometry must map after here in old
4965                  * geometry.
4966                  */
4967                 here_new = mddev->reshape_position;
4968                 if (sector_div(here_new, (mddev->new_chunk>>9)*
4969                                (mddev->raid_disks - max_degraded))) {
4970                         printk(KERN_ERR "raid5: reshape_position not "
4971                                "on a stripe boundary\n");
4972                         return -EINVAL;
4973                 }
4974                 /* here_new is the stripe we will write to */
4975                 here_old = mddev->reshape_position;
4976                 sector_div(here_old, (mddev->chunk_size>>9)*
4977                            (old_disks-max_degraded));
4978                 /* here_old is the first stripe that we might need to read
4979                  * from */
4980                 if (here_new >= here_old) {
4981                         /* Reading from the same stripe as writing to - bad */
4982                         printk(KERN_ERR "raid5: reshape_position too early for "
4983                                "auto-recovery - aborting.\n");
4984                         return -EINVAL;
4985                 }
4986                 printk(KERN_INFO "raid5: reshape will continue\n");
4987                 /* OK, we should be able to continue; */
4988         } else {
4989                 BUG_ON(mddev->level != mddev->new_level);
4990                 BUG_ON(mddev->layout != mddev->new_layout);
4991                 BUG_ON(mddev->chunk_size != mddev->new_chunk);
4992                 BUG_ON(mddev->delta_disks != 0);
4993         }
4994
4995         if (mddev->private == NULL)
4996                 conf = setup_conf(mddev);
4997         else
4998                 conf = mddev->private;
4999
5000         if (IS_ERR(conf))
5001                 return PTR_ERR(conf);
5002
5003         mddev->thread = conf->thread;
5004         conf->thread = NULL;
5005         mddev->private = conf;
5006
5007         /*
5008          * 0 for a fully functional array, 1 or 2 for a degraded array.
5009          */
5010         list_for_each_entry(rdev, &mddev->disks, same_set)
5011                 if (rdev->raid_disk >= 0 &&
5012                     test_bit(In_sync, &rdev->flags))
5013                         working_disks++;
5014
5015         mddev->degraded = conf->raid_disks - working_disks;
5016
5017         if (mddev->degraded > conf->max_degraded) {
5018                 printk(KERN_ERR "raid5: not enough operational devices for %s"
5019                         " (%d/%d failed)\n",
5020                         mdname(mddev), mddev->degraded, conf->raid_disks);
5021                 goto abort;
5022         }
5023
5024         /* device size must be a multiple of chunk size */
5025         mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
5026         mddev->resync_max_sectors = mddev->dev_sectors;
5027
5028         if (mddev->degraded > 0 &&
5029             mddev->recovery_cp != MaxSector) {
5030                 if (mddev->ok_start_degraded)
5031                         printk(KERN_WARNING
5032                                "raid5: starting dirty degraded array: %s"
5033                                "- data corruption possible.\n",
5034                                mdname(mddev));
5035                 else {
5036                         printk(KERN_ERR
5037                                "raid5: cannot start dirty degraded array for %s\n",
5038                                mdname(mddev));
5039                         goto abort;
5040                 }
5041         }
5042
5043         if (mddev->degraded == 0)
5044                 printk("raid5: raid level %d set %s active with %d out of %d"
5045                        " devices, algorithm %d\n", conf->level, mdname(mddev),
5046                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5047                        mddev->new_layout);
5048         else
5049                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
5050                         " out of %d devices, algorithm %d\n", conf->level,
5051                         mdname(mddev), mddev->raid_disks - mddev->degraded,
5052                         mddev->raid_disks, mddev->new_layout);
5053
5054         print_raid5_conf(conf);
5055
5056         if (conf->reshape_progress != MaxSector) {
5057                 printk("...ok start reshape thread\n");
5058                 conf->reshape_safe = conf->reshape_progress;
5059                 atomic_set(&conf->reshape_stripes, 0);
5060                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5061                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5062                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5063                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5064                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5065                                                         "%s_reshape");
5066         }
5067
5068         /* read-ahead size must cover two whole stripes, which is
5069          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5070          */
5071         {
5072                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5073                 int stripe = data_disks *
5074                         (mddev->chunk_size / PAGE_SIZE);
5075                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5076                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5077         }
5078
5079         /* Ok, everything is just fine now */
5080         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5081                 printk(KERN_WARNING
5082                        "raid5: failed to create sysfs attributes for %s\n",
5083                        mdname(mddev));
5084
5085         mddev->queue->queue_lock = &conf->device_lock;
5086
5087         mddev->queue->unplug_fn = raid5_unplug_device;
5088         mddev->queue->backing_dev_info.congested_data = mddev;
5089         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5090
5091         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5092
5093         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5094
5095         return 0;
5096 abort:
5097         md_unregister_thread(mddev->thread);
5098         mddev->thread = NULL;
5099         if (conf) {
5100                 print_raid5_conf(conf);
5101                 free_conf(conf);
5102         }
5103         mddev->private = NULL;
5104         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
5105         return -EIO;
5106 }
5107
5108
5109
5110 static int stop(mddev_t *mddev)
5111 {
5112         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5113
5114         md_unregister_thread(mddev->thread);
5115         mddev->thread = NULL;
5116         mddev->queue->backing_dev_info.congested_fn = NULL;
5117         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5118         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
5119         free_conf(conf);
5120         mddev->private = NULL;
5121         return 0;
5122 }
5123
5124 #ifdef DEBUG
5125 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5126 {
5127         int i;
5128
5129         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5130                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5131         seq_printf(seq, "sh %llu,  count %d.\n",
5132                    (unsigned long long)sh->sector, atomic_read(&sh->count));
5133         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5134         for (i = 0; i < sh->disks; i++) {
5135                 seq_printf(seq, "(cache%d: %p %ld) ",
5136                            i, sh->dev[i].page, sh->dev[i].flags);
5137         }
5138         seq_printf(seq, "\n");
5139 }
5140
5141 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5142 {
5143         struct stripe_head *sh;
5144         struct hlist_node *hn;
5145         int i;
5146
5147         spin_lock_irq(&conf->device_lock);
5148         for (i = 0; i < NR_HASH; i++) {
5149                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5150                         if (sh->raid_conf != conf)
5151                                 continue;
5152                         print_sh(seq, sh);
5153                 }
5154         }
5155         spin_unlock_irq(&conf->device_lock);
5156 }
5157 #endif
5158
5159 static void status(struct seq_file *seq, mddev_t *mddev)
5160 {
5161         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5162         int i;
5163
5164         seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
5165         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5166         for (i = 0; i < conf->raid_disks; i++)
5167                 seq_printf (seq, "%s",
5168                                conf->disks[i].rdev &&
5169                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5170         seq_printf (seq, "]");
5171 #ifdef DEBUG
5172         seq_printf (seq, "\n");
5173         printall(seq, conf);
5174 #endif
5175 }
5176
5177 static void print_raid5_conf (raid5_conf_t *conf)
5178 {
5179         int i;
5180         struct disk_info *tmp;
5181
5182         printk("RAID5 conf printout:\n");
5183         if (!conf) {
5184                 printk("(conf==NULL)\n");
5185                 return;
5186         }
5187         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
5188                  conf->raid_disks - conf->mddev->degraded);
5189
5190         for (i = 0; i < conf->raid_disks; i++) {
5191                 char b[BDEVNAME_SIZE];
5192                 tmp = conf->disks + i;
5193                 if (tmp->rdev)
5194                 printk(" disk %d, o:%d, dev:%s\n",
5195                         i, !test_bit(Faulty, &tmp->rdev->flags),
5196                         bdevname(tmp->rdev->bdev,b));
5197         }
5198 }
5199
5200 static int raid5_spare_active(mddev_t *mddev)
5201 {
5202         int i;
5203         raid5_conf_t *conf = mddev->private;
5204         struct disk_info *tmp;
5205
5206         for (i = 0; i < conf->raid_disks; i++) {
5207                 tmp = conf->disks + i;
5208                 if (tmp->rdev
5209                     && !test_bit(Faulty, &tmp->rdev->flags)
5210                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5211                         unsigned long flags;
5212                         spin_lock_irqsave(&conf->device_lock, flags);
5213                         mddev->degraded--;
5214                         spin_unlock_irqrestore(&conf->device_lock, flags);
5215                 }
5216         }
5217         print_raid5_conf(conf);
5218         return 0;
5219 }
5220
5221 static int raid5_remove_disk(mddev_t *mddev, int number)
5222 {
5223         raid5_conf_t *conf = mddev->private;
5224         int err = 0;
5225         mdk_rdev_t *rdev;
5226         struct disk_info *p = conf->disks + number;
5227
5228         print_raid5_conf(conf);
5229         rdev = p->rdev;
5230         if (rdev) {
5231                 if (number >= conf->raid_disks &&
5232                     conf->reshape_progress == MaxSector)
5233                         clear_bit(In_sync, &rdev->flags);
5234
5235                 if (test_bit(In_sync, &rdev->flags) ||
5236                     atomic_read(&rdev->nr_pending)) {
5237                         err = -EBUSY;
5238                         goto abort;
5239                 }
5240                 /* Only remove non-faulty devices if recovery
5241                  * isn't possible.
5242                  */
5243                 if (!test_bit(Faulty, &rdev->flags) &&
5244                     mddev->degraded <= conf->max_degraded &&
5245                     number < conf->raid_disks) {
5246                         err = -EBUSY;
5247                         goto abort;
5248                 }
5249                 p->rdev = NULL;
5250                 synchronize_rcu();
5251                 if (atomic_read(&rdev->nr_pending)) {
5252                         /* lost the race, try later */
5253                         err = -EBUSY;
5254                         p->rdev = rdev;
5255                 }
5256         }
5257 abort:
5258
5259         print_raid5_conf(conf);
5260         return err;
5261 }
5262
5263 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5264 {
5265         raid5_conf_t *conf = mddev->private;
5266         int err = -EEXIST;
5267         int disk;
5268         struct disk_info *p;
5269         int first = 0;
5270         int last = conf->raid_disks - 1;
5271
5272         if (mddev->degraded > conf->max_degraded)
5273                 /* no point adding a device */
5274                 return -EINVAL;
5275
5276         if (rdev->raid_disk >= 0)
5277                 first = last = rdev->raid_disk;
5278
5279         /*
5280          * find the disk ... but prefer rdev->saved_raid_disk
5281          * if possible.
5282          */
5283         if (rdev->saved_raid_disk >= 0 &&
5284             rdev->saved_raid_disk >= first &&
5285             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5286                 disk = rdev->saved_raid_disk;
5287         else
5288                 disk = first;
5289         for ( ; disk <= last ; disk++)
5290                 if ((p=conf->disks + disk)->rdev == NULL) {
5291                         clear_bit(In_sync, &rdev->flags);
5292                         rdev->raid_disk = disk;
5293                         err = 0;
5294                         if (rdev->saved_raid_disk != disk)
5295                                 conf->fullsync = 1;
5296                         rcu_assign_pointer(p->rdev, rdev);
5297                         break;
5298                 }
5299         print_raid5_conf(conf);
5300         return err;
5301 }
5302
5303 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5304 {
5305         /* no resync is happening, and there is enough space
5306          * on all devices, so we can resize.
5307          * We need to make sure resync covers any new space.
5308          * If the array is shrinking we should possibly wait until
5309          * any io in the removed space completes, but it hardly seems
5310          * worth it.
5311          */
5312         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
5313         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5314                                                mddev->raid_disks));
5315         if (mddev->array_sectors >
5316             raid5_size(mddev, sectors, mddev->raid_disks))
5317                 return -EINVAL;
5318         set_capacity(mddev->gendisk, mddev->array_sectors);
5319         mddev->changed = 1;
5320         if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5321                 mddev->recovery_cp = mddev->dev_sectors;
5322                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5323         }
5324         mddev->dev_sectors = sectors;
5325         mddev->resync_max_sectors = sectors;
5326         return 0;
5327 }
5328
5329 static int raid5_check_reshape(mddev_t *mddev)
5330 {
5331         raid5_conf_t *conf = mddev_to_conf(mddev);
5332
5333         if (mddev->delta_disks == 0 &&
5334             mddev->new_layout == mddev->layout &&
5335             mddev->new_chunk == mddev->chunk_size)
5336                 return -EINVAL; /* nothing to do */
5337         if (mddev->bitmap)
5338                 /* Cannot grow a bitmap yet */
5339                 return -EBUSY;
5340         if (mddev->degraded > conf->max_degraded)
5341                 return -EINVAL;
5342         if (mddev->delta_disks < 0) {
5343                 /* We might be able to shrink, but the devices must
5344                  * be made bigger first.
5345                  * For raid6, 4 is the minimum size.
5346                  * Otherwise 2 is the minimum
5347                  */
5348                 int min = 2;
5349                 if (mddev->level == 6)
5350                         min = 4;
5351                 if (mddev->raid_disks + mddev->delta_disks < min)
5352                         return -EINVAL;
5353         }
5354
5355         /* Can only proceed if there are plenty of stripe_heads.
5356          * We need a minimum of one full stripe,, and for sensible progress
5357          * it is best to have about 4 times that.
5358          * If we require 4 times, then the default 256 4K stripe_heads will
5359          * allow for chunk sizes up to 256K, which is probably OK.
5360          * If the chunk size is greater, user-space should request more
5361          * stripe_heads first.
5362          */
5363         if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
5364             (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
5365                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
5366                        (max(mddev->chunk_size, mddev->new_chunk)
5367                         / STRIPE_SIZE)*4);
5368                 return -ENOSPC;
5369         }
5370
5371         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5372 }
5373
5374 static int raid5_start_reshape(mddev_t *mddev)
5375 {
5376         raid5_conf_t *conf = mddev_to_conf(mddev);
5377         mdk_rdev_t *rdev;
5378         int spares = 0;
5379         int added_devices = 0;
5380         unsigned long flags;
5381
5382         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5383                 return -EBUSY;
5384
5385         list_for_each_entry(rdev, &mddev->disks, same_set)
5386                 if (rdev->raid_disk < 0 &&
5387                     !test_bit(Faulty, &rdev->flags))
5388                         spares++;
5389
5390         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5391                 /* Not enough devices even to make a degraded array
5392                  * of that size
5393                  */
5394                 return -EINVAL;
5395
5396         /* Refuse to reduce size of the array.  Any reductions in
5397          * array size must be through explicit setting of array_size
5398          * attribute.
5399          */
5400         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5401             < mddev->array_sectors) {
5402                 printk(KERN_ERR "md: %s: array size must be reduced "
5403                        "before number of disks\n", mdname(mddev));
5404                 return -EINVAL;
5405         }
5406
5407         atomic_set(&conf->reshape_stripes, 0);
5408         spin_lock_irq(&conf->device_lock);
5409         conf->previous_raid_disks = conf->raid_disks;
5410         conf->raid_disks += mddev->delta_disks;
5411         conf->prev_chunk = conf->chunk_size;
5412         conf->chunk_size = mddev->new_chunk;
5413         conf->prev_algo = conf->algorithm;
5414         conf->algorithm = mddev->new_layout;
5415         if (mddev->delta_disks < 0)
5416                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5417         else
5418                 conf->reshape_progress = 0;
5419         conf->reshape_safe = conf->reshape_progress;
5420         conf->generation++;
5421         spin_unlock_irq(&conf->device_lock);
5422
5423         /* Add some new drives, as many as will fit.
5424          * We know there are enough to make the newly sized array work.
5425          */
5426         list_for_each_entry(rdev, &mddev->disks, same_set)
5427                 if (rdev->raid_disk < 0 &&
5428                     !test_bit(Faulty, &rdev->flags)) {
5429                         if (raid5_add_disk(mddev, rdev) == 0) {
5430                                 char nm[20];
5431                                 set_bit(In_sync, &rdev->flags);
5432                                 added_devices++;
5433                                 rdev->recovery_offset = 0;
5434                                 sprintf(nm, "rd%d", rdev->raid_disk);
5435                                 if (sysfs_create_link(&mddev->kobj,
5436                                                       &rdev->kobj, nm))
5437                                         printk(KERN_WARNING
5438                                                "raid5: failed to create "
5439                                                " link %s for %s\n",
5440                                                nm, mdname(mddev));
5441                         } else
5442                                 break;
5443                 }
5444
5445         if (mddev->delta_disks > 0) {
5446                 spin_lock_irqsave(&conf->device_lock, flags);
5447                 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
5448                         - added_devices;
5449                 spin_unlock_irqrestore(&conf->device_lock, flags);
5450         }
5451         mddev->raid_disks = conf->raid_disks;
5452         mddev->reshape_position = 0;
5453         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5454
5455         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5456         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5457         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5458         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5459         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5460                                                 "%s_reshape");
5461         if (!mddev->sync_thread) {
5462                 mddev->recovery = 0;
5463                 spin_lock_irq(&conf->device_lock);
5464                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5465                 conf->reshape_progress = MaxSector;
5466                 spin_unlock_irq(&conf->device_lock);
5467                 return -EAGAIN;
5468         }
5469         conf->reshape_checkpoint = jiffies;
5470         md_wakeup_thread(mddev->sync_thread);
5471         md_new_event(mddev);
5472         return 0;
5473 }
5474
5475 /* This is called from the reshape thread and should make any
5476  * changes needed in 'conf'
5477  */
5478 static void end_reshape(raid5_conf_t *conf)
5479 {
5480
5481         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5482
5483                 spin_lock_irq(&conf->device_lock);
5484                 conf->previous_raid_disks = conf->raid_disks;
5485                 conf->reshape_progress = MaxSector;
5486                 spin_unlock_irq(&conf->device_lock);
5487                 wake_up(&conf->wait_for_overlap);
5488
5489                 /* read-ahead size must cover two whole stripes, which is
5490                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5491                  */
5492                 {
5493                         int data_disks = conf->raid_disks - conf->max_degraded;
5494                         int stripe = data_disks * (conf->chunk_size
5495                                                    / PAGE_SIZE);
5496                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5497                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5498                 }
5499         }
5500 }
5501
5502 /* This is called from the raid5d thread with mddev_lock held.
5503  * It makes config changes to the device.
5504  */
5505 static void raid5_finish_reshape(mddev_t *mddev)
5506 {
5507         struct block_device *bdev;
5508         raid5_conf_t *conf = mddev_to_conf(mddev);
5509
5510         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5511
5512                 if (mddev->delta_disks > 0) {
5513                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5514                         set_capacity(mddev->gendisk, mddev->array_sectors);
5515                         mddev->changed = 1;
5516
5517                         bdev = bdget_disk(mddev->gendisk, 0);
5518                         if (bdev) {
5519                                 mutex_lock(&bdev->bd_inode->i_mutex);
5520                                 i_size_write(bdev->bd_inode,
5521                                              (loff_t)mddev->array_sectors << 9);
5522                                 mutex_unlock(&bdev->bd_inode->i_mutex);
5523                                 bdput(bdev);
5524                         }
5525                 } else {
5526                         int d;
5527                         mddev->degraded = conf->raid_disks;
5528                         for (d = 0; d < conf->raid_disks ; d++)
5529                                 if (conf->disks[d].rdev &&
5530                                     test_bit(In_sync,
5531                                              &conf->disks[d].rdev->flags))
5532                                         mddev->degraded--;
5533                         for (d = conf->raid_disks ;
5534                              d < conf->raid_disks - mddev->delta_disks;
5535                              d++)
5536                                 raid5_remove_disk(mddev, d);
5537                 }
5538                 mddev->layout = conf->algorithm;
5539                 mddev->chunk_size = conf->chunk_size;
5540                 mddev->reshape_position = MaxSector;
5541                 mddev->delta_disks = 0;
5542         }
5543 }
5544
5545 static void raid5_quiesce(mddev_t *mddev, int state)
5546 {
5547         raid5_conf_t *conf = mddev_to_conf(mddev);
5548
5549         switch(state) {
5550         case 2: /* resume for a suspend */
5551                 wake_up(&conf->wait_for_overlap);
5552                 break;
5553
5554         case 1: /* stop all writes */
5555                 spin_lock_irq(&conf->device_lock);
5556                 conf->quiesce = 1;
5557                 wait_event_lock_irq(conf->wait_for_stripe,
5558                                     atomic_read(&conf->active_stripes) == 0 &&
5559                                     atomic_read(&conf->active_aligned_reads) == 0,
5560                                     conf->device_lock, /* nothing */);
5561                 spin_unlock_irq(&conf->device_lock);
5562                 break;
5563
5564         case 0: /* re-enable writes */
5565                 spin_lock_irq(&conf->device_lock);
5566                 conf->quiesce = 0;
5567                 wake_up(&conf->wait_for_stripe);
5568                 wake_up(&conf->wait_for_overlap);
5569                 spin_unlock_irq(&conf->device_lock);
5570                 break;
5571         }
5572 }
5573
5574
5575 static void *raid5_takeover_raid1(mddev_t *mddev)
5576 {
5577         int chunksect;
5578
5579         if (mddev->raid_disks != 2 ||
5580             mddev->degraded > 1)
5581                 return ERR_PTR(-EINVAL);
5582
5583         /* Should check if there are write-behind devices? */
5584
5585         chunksect = 64*2; /* 64K by default */
5586
5587         /* The array must be an exact multiple of chunksize */
5588         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5589                 chunksect >>= 1;
5590
5591         if ((chunksect<<9) < STRIPE_SIZE)
5592                 /* array size does not allow a suitable chunk size */
5593                 return ERR_PTR(-EINVAL);
5594
5595         mddev->new_level = 5;
5596         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5597         mddev->new_chunk = chunksect << 9;
5598
5599         return setup_conf(mddev);
5600 }
5601
5602 static void *raid5_takeover_raid6(mddev_t *mddev)
5603 {
5604         int new_layout;
5605
5606         switch (mddev->layout) {
5607         case ALGORITHM_LEFT_ASYMMETRIC_6:
5608                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5609                 break;
5610         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5611                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5612                 break;
5613         case ALGORITHM_LEFT_SYMMETRIC_6:
5614                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5615                 break;
5616         case ALGORITHM_RIGHT_SYMMETRIC_6:
5617                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5618                 break;
5619         case ALGORITHM_PARITY_0_6:
5620                 new_layout = ALGORITHM_PARITY_0;
5621                 break;
5622         case ALGORITHM_PARITY_N:
5623                 new_layout = ALGORITHM_PARITY_N;
5624                 break;
5625         default:
5626                 return ERR_PTR(-EINVAL);
5627         }
5628         mddev->new_level = 5;
5629         mddev->new_layout = new_layout;
5630         mddev->delta_disks = -1;
5631         mddev->raid_disks -= 1;
5632         return setup_conf(mddev);
5633 }
5634
5635
5636 static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5637 {
5638         /* For a 2-drive array, the layout and chunk size can be changed
5639          * immediately as not restriping is needed.
5640          * For larger arrays we record the new value - after validation
5641          * to be used by a reshape pass.
5642          */
5643         raid5_conf_t *conf = mddev_to_conf(mddev);
5644
5645         if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
5646                 return -EINVAL;
5647         if (new_chunk > 0) {
5648                 if (new_chunk & (new_chunk-1))
5649                         /* not a power of 2 */
5650                         return -EINVAL;
5651                 if (new_chunk < PAGE_SIZE)
5652                         return -EINVAL;
5653                 if (mddev->array_sectors & ((new_chunk>>9)-1))
5654                         /* not factor of array size */
5655                         return -EINVAL;
5656         }
5657
5658         /* They look valid */
5659
5660         if (mddev->raid_disks == 2) {
5661
5662                 if (new_layout >= 0) {
5663                         conf->algorithm = new_layout;
5664                         mddev->layout = mddev->new_layout = new_layout;
5665                 }
5666                 if (new_chunk > 0) {
5667                         conf->chunk_size = new_chunk;
5668                         mddev->chunk_size = mddev->new_chunk = new_chunk;
5669                 }
5670                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5671                 md_wakeup_thread(mddev->thread);
5672         } else {
5673                 if (new_layout >= 0)
5674                         mddev->new_layout = new_layout;
5675                 if (new_chunk > 0)
5676                         mddev->new_chunk = new_chunk;
5677         }
5678         return 0;
5679 }
5680
5681 static int raid6_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5682 {
5683         if (new_layout >= 0 && !algorithm_valid_raid6(new_layout))
5684                 return -EINVAL;
5685         if (new_chunk > 0) {
5686                 if (new_chunk & (new_chunk-1))
5687                         /* not a power of 2 */
5688                         return -EINVAL;
5689                 if (new_chunk < PAGE_SIZE)
5690                         return -EINVAL;
5691                 if (mddev->array_sectors & ((new_chunk>>9)-1))
5692                         /* not factor of array size */
5693                         return -EINVAL;
5694         }
5695
5696         /* They look valid */
5697
5698         if (new_layout >= 0)
5699                 mddev->new_layout = new_layout;
5700         if (new_chunk > 0)
5701                 mddev->new_chunk = new_chunk;
5702
5703         return 0;
5704 }
5705
5706 static void *raid5_takeover(mddev_t *mddev)
5707 {
5708         /* raid5 can take over:
5709          *  raid0 - if all devices are the same - make it a raid4 layout
5710          *  raid1 - if there are two drives.  We need to know the chunk size
5711          *  raid4 - trivial - just use a raid4 layout.
5712          *  raid6 - Providing it is a *_6 layout
5713          *
5714          * For now, just do raid1
5715          */
5716
5717         if (mddev->level == 1)
5718                 return raid5_takeover_raid1(mddev);
5719         if (mddev->level == 4) {
5720                 mddev->new_layout = ALGORITHM_PARITY_N;
5721                 mddev->new_level = 5;
5722                 return setup_conf(mddev);
5723         }
5724         if (mddev->level == 6)
5725                 return raid5_takeover_raid6(mddev);
5726
5727         return ERR_PTR(-EINVAL);
5728 }
5729
5730
5731 static struct mdk_personality raid5_personality;
5732
5733 static void *raid6_takeover(mddev_t *mddev)
5734 {
5735         /* Currently can only take over a raid5.  We map the
5736          * personality to an equivalent raid6 personality
5737          * with the Q block at the end.
5738          */
5739         int new_layout;
5740
5741         if (mddev->pers != &raid5_personality)
5742                 return ERR_PTR(-EINVAL);
5743         if (mddev->degraded > 1)
5744                 return ERR_PTR(-EINVAL);
5745         if (mddev->raid_disks > 253)
5746                 return ERR_PTR(-EINVAL);
5747         if (mddev->raid_disks < 3)
5748                 return ERR_PTR(-EINVAL);
5749
5750         switch (mddev->layout) {
5751         case ALGORITHM_LEFT_ASYMMETRIC:
5752                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5753                 break;
5754         case ALGORITHM_RIGHT_ASYMMETRIC:
5755                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5756                 break;
5757         case ALGORITHM_LEFT_SYMMETRIC:
5758                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5759                 break;
5760         case ALGORITHM_RIGHT_SYMMETRIC:
5761                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5762                 break;
5763         case ALGORITHM_PARITY_0:
5764                 new_layout = ALGORITHM_PARITY_0_6;
5765                 break;
5766         case ALGORITHM_PARITY_N:
5767                 new_layout = ALGORITHM_PARITY_N;
5768                 break;
5769         default:
5770                 return ERR_PTR(-EINVAL);
5771         }
5772         mddev->new_level = 6;
5773         mddev->new_layout = new_layout;
5774         mddev->delta_disks = 1;
5775         mddev->raid_disks += 1;
5776         return setup_conf(mddev);
5777 }
5778
5779
5780 static struct mdk_personality raid6_personality =
5781 {
5782         .name           = "raid6",
5783         .level          = 6,
5784         .owner          = THIS_MODULE,
5785         .make_request   = make_request,
5786         .run            = run,
5787         .stop           = stop,
5788         .status         = status,
5789         .error_handler  = error,
5790         .hot_add_disk   = raid5_add_disk,
5791         .hot_remove_disk= raid5_remove_disk,
5792         .spare_active   = raid5_spare_active,
5793         .sync_request   = sync_request,
5794         .resize         = raid5_resize,
5795         .size           = raid5_size,
5796         .check_reshape  = raid5_check_reshape,
5797         .start_reshape  = raid5_start_reshape,
5798         .finish_reshape = raid5_finish_reshape,
5799         .quiesce        = raid5_quiesce,
5800         .takeover       = raid6_takeover,
5801         .reconfig       = raid6_reconfig,
5802 };
5803 static struct mdk_personality raid5_personality =
5804 {
5805         .name           = "raid5",
5806         .level          = 5,
5807         .owner          = THIS_MODULE,
5808         .make_request   = make_request,
5809         .run            = run,
5810         .stop           = stop,
5811         .status         = status,
5812         .error_handler  = error,
5813         .hot_add_disk   = raid5_add_disk,
5814         .hot_remove_disk= raid5_remove_disk,
5815         .spare_active   = raid5_spare_active,
5816         .sync_request   = sync_request,
5817         .resize         = raid5_resize,
5818         .size           = raid5_size,
5819         .check_reshape  = raid5_check_reshape,
5820         .start_reshape  = raid5_start_reshape,
5821         .finish_reshape = raid5_finish_reshape,
5822         .quiesce        = raid5_quiesce,
5823         .takeover       = raid5_takeover,
5824         .reconfig       = raid5_reconfig,
5825 };
5826
5827 static struct mdk_personality raid4_personality =
5828 {
5829         .name           = "raid4",
5830         .level          = 4,
5831         .owner          = THIS_MODULE,
5832         .make_request   = make_request,
5833         .run            = run,
5834         .stop           = stop,
5835         .status         = status,
5836         .error_handler  = error,
5837         .hot_add_disk   = raid5_add_disk,
5838         .hot_remove_disk= raid5_remove_disk,
5839         .spare_active   = raid5_spare_active,
5840         .sync_request   = sync_request,
5841         .resize         = raid5_resize,
5842         .size           = raid5_size,
5843         .check_reshape  = raid5_check_reshape,
5844         .start_reshape  = raid5_start_reshape,
5845         .finish_reshape = raid5_finish_reshape,
5846         .quiesce        = raid5_quiesce,
5847 };
5848
5849 static int __init raid5_init(void)
5850 {
5851         register_md_personality(&raid6_personality);
5852         register_md_personality(&raid5_personality);
5853         register_md_personality(&raid4_personality);
5854         return 0;
5855 }
5856
5857 static void raid5_exit(void)
5858 {
5859         unregister_md_personality(&raid6_personality);
5860         unregister_md_personality(&raid5_personality);
5861         unregister_md_personality(&raid4_personality);
5862 }
5863
5864 module_init(raid5_init);
5865 module_exit(raid5_exit);
5866 MODULE_LICENSE("GPL");
5867 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5868 MODULE_ALIAS("md-raid5");
5869 MODULE_ALIAS("md-raid4");
5870 MODULE_ALIAS("md-level-5");
5871 MODULE_ALIAS("md-level-4");
5872 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5873 MODULE_ALIAS("md-raid6");
5874 MODULE_ALIAS("md-level-6");
5875
5876 /* This used to be two separate modules, they were: */
5877 MODULE_ALIAS("raid5");
5878 MODULE_ALIAS("raid6");