md/raid6: eliminate BUG_ON with side effect
[safe/jmp/linux-2.6] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include "md.h"
54 #include "raid5.h"
55 #include "bitmap.h"
56
57 /*
58  * Stripe cache
59  */
60
61 #define NR_STRIPES              256
62 #define STRIPE_SIZE             PAGE_SIZE
63 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD            1
66 #define BYPASS_THRESHOLD        1
67 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK               (NR_HASH - 1)
69
70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73  * order without overlap.  There may be several bio's per stripe+device, and
74  * a bio could span several devices.
75  * When walking this list for a particular stripe+device, we must never proceed
76  * beyond a bio that extends past this device, as the next bio might no longer
77  * be valid.
78  * This macro is used to determine the 'next' bio in the list, given the sector
79  * of the current stripe+device
80  */
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 /*
83  * The following can be used to debug the driver
84  */
85 #define RAID5_PARANOIA  1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 #else
89 # define CHECK_DEVLOCK()
90 #endif
91
92 #ifdef DEBUG
93 #define inline
94 #define __inline__
95 #endif
96
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98
99 /*
100  * We maintain a biased count of active stripes in the bottom 16 bits of
101  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
102  */
103 static inline int raid5_bi_phys_segments(struct bio *bio)
104 {
105         return bio->bi_phys_segments & 0xffff;
106 }
107
108 static inline int raid5_bi_hw_segments(struct bio *bio)
109 {
110         return (bio->bi_phys_segments >> 16) & 0xffff;
111 }
112
113 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
114 {
115         --bio->bi_phys_segments;
116         return raid5_bi_phys_segments(bio);
117 }
118
119 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
120 {
121         unsigned short val = raid5_bi_hw_segments(bio);
122
123         --val;
124         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
125         return val;
126 }
127
128 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
129 {
130         bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
131 }
132
133 /* Find first data disk in a raid6 stripe */
134 static inline int raid6_d0(struct stripe_head *sh)
135 {
136         if (sh->ddf_layout)
137                 /* ddf always start from first device */
138                 return 0;
139         /* md starts just after Q block */
140         if (sh->qd_idx == sh->disks - 1)
141                 return 0;
142         else
143                 return sh->qd_idx + 1;
144 }
145 static inline int raid6_next_disk(int disk, int raid_disks)
146 {
147         disk++;
148         return (disk < raid_disks) ? disk : 0;
149 }
150
151 /* When walking through the disks in a raid5, starting at raid6_d0,
152  * We need to map each disk to a 'slot', where the data disks are slot
153  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
154  * is raid_disks-1.  This help does that mapping.
155  */
156 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
157                              int *count, int syndrome_disks)
158 {
159         int slot;
160
161         if (idx == sh->pd_idx)
162                 return syndrome_disks;
163         if (idx == sh->qd_idx)
164                 return syndrome_disks + 1;
165         slot = (*count)++;
166         return slot;
167 }
168
169 static void return_io(struct bio *return_bi)
170 {
171         struct bio *bi = return_bi;
172         while (bi) {
173
174                 return_bi = bi->bi_next;
175                 bi->bi_next = NULL;
176                 bi->bi_size = 0;
177                 bio_endio(bi, 0);
178                 bi = return_bi;
179         }
180 }
181
182 static void print_raid5_conf (raid5_conf_t *conf);
183
184 static int stripe_operations_active(struct stripe_head *sh)
185 {
186         return sh->check_state || sh->reconstruct_state ||
187                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
188                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
189 }
190
191 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
192 {
193         if (atomic_dec_and_test(&sh->count)) {
194                 BUG_ON(!list_empty(&sh->lru));
195                 BUG_ON(atomic_read(&conf->active_stripes)==0);
196                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
197                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
198                                 list_add_tail(&sh->lru, &conf->delayed_list);
199                                 blk_plug_device(conf->mddev->queue);
200                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
201                                    sh->bm_seq - conf->seq_write > 0) {
202                                 list_add_tail(&sh->lru, &conf->bitmap_list);
203                                 blk_plug_device(conf->mddev->queue);
204                         } else {
205                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
206                                 list_add_tail(&sh->lru, &conf->handle_list);
207                         }
208                         md_wakeup_thread(conf->mddev->thread);
209                 } else {
210                         BUG_ON(stripe_operations_active(sh));
211                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
212                                 atomic_dec(&conf->preread_active_stripes);
213                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
214                                         md_wakeup_thread(conf->mddev->thread);
215                         }
216                         atomic_dec(&conf->active_stripes);
217                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
218                                 list_add_tail(&sh->lru, &conf->inactive_list);
219                                 wake_up(&conf->wait_for_stripe);
220                                 if (conf->retry_read_aligned)
221                                         md_wakeup_thread(conf->mddev->thread);
222                         }
223                 }
224         }
225 }
226
227 static void release_stripe(struct stripe_head *sh)
228 {
229         raid5_conf_t *conf = sh->raid_conf;
230         unsigned long flags;
231
232         spin_lock_irqsave(&conf->device_lock, flags);
233         __release_stripe(conf, sh);
234         spin_unlock_irqrestore(&conf->device_lock, flags);
235 }
236
237 static inline void remove_hash(struct stripe_head *sh)
238 {
239         pr_debug("remove_hash(), stripe %llu\n",
240                 (unsigned long long)sh->sector);
241
242         hlist_del_init(&sh->hash);
243 }
244
245 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
246 {
247         struct hlist_head *hp = stripe_hash(conf, sh->sector);
248
249         pr_debug("insert_hash(), stripe %llu\n",
250                 (unsigned long long)sh->sector);
251
252         CHECK_DEVLOCK();
253         hlist_add_head(&sh->hash, hp);
254 }
255
256
257 /* find an idle stripe, make sure it is unhashed, and return it. */
258 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
259 {
260         struct stripe_head *sh = NULL;
261         struct list_head *first;
262
263         CHECK_DEVLOCK();
264         if (list_empty(&conf->inactive_list))
265                 goto out;
266         first = conf->inactive_list.next;
267         sh = list_entry(first, struct stripe_head, lru);
268         list_del_init(first);
269         remove_hash(sh);
270         atomic_inc(&conf->active_stripes);
271 out:
272         return sh;
273 }
274
275 static void shrink_buffers(struct stripe_head *sh, int num)
276 {
277         struct page *p;
278         int i;
279
280         for (i=0; i<num ; i++) {
281                 p = sh->dev[i].page;
282                 if (!p)
283                         continue;
284                 sh->dev[i].page = NULL;
285                 put_page(p);
286         }
287 }
288
289 static int grow_buffers(struct stripe_head *sh, int num)
290 {
291         int i;
292
293         for (i=0; i<num; i++) {
294                 struct page *page;
295
296                 if (!(page = alloc_page(GFP_KERNEL))) {
297                         return 1;
298                 }
299                 sh->dev[i].page = page;
300         }
301         return 0;
302 }
303
304 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
305 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
306                             struct stripe_head *sh);
307
308 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
309 {
310         raid5_conf_t *conf = sh->raid_conf;
311         int i;
312
313         BUG_ON(atomic_read(&sh->count) != 0);
314         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
315         BUG_ON(stripe_operations_active(sh));
316
317         CHECK_DEVLOCK();
318         pr_debug("init_stripe called, stripe %llu\n",
319                 (unsigned long long)sh->sector);
320
321         remove_hash(sh);
322
323         sh->generation = conf->generation - previous;
324         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
325         sh->sector = sector;
326         stripe_set_idx(sector, conf, previous, sh);
327         sh->state = 0;
328
329
330         for (i = sh->disks; i--; ) {
331                 struct r5dev *dev = &sh->dev[i];
332
333                 if (dev->toread || dev->read || dev->towrite || dev->written ||
334                     test_bit(R5_LOCKED, &dev->flags)) {
335                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
336                                (unsigned long long)sh->sector, i, dev->toread,
337                                dev->read, dev->towrite, dev->written,
338                                test_bit(R5_LOCKED, &dev->flags));
339                         BUG();
340                 }
341                 dev->flags = 0;
342                 raid5_build_block(sh, i, previous);
343         }
344         insert_hash(conf, sh);
345 }
346
347 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
348                                          short generation)
349 {
350         struct stripe_head *sh;
351         struct hlist_node *hn;
352
353         CHECK_DEVLOCK();
354         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
355         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
356                 if (sh->sector == sector && sh->generation == generation)
357                         return sh;
358         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
359         return NULL;
360 }
361
362 static void unplug_slaves(mddev_t *mddev);
363 static void raid5_unplug_device(struct request_queue *q);
364
365 static struct stripe_head *
366 get_active_stripe(raid5_conf_t *conf, sector_t sector,
367                   int previous, int noblock, int noquiesce)
368 {
369         struct stripe_head *sh;
370
371         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
372
373         spin_lock_irq(&conf->device_lock);
374
375         do {
376                 wait_event_lock_irq(conf->wait_for_stripe,
377                                     conf->quiesce == 0 || noquiesce,
378                                     conf->device_lock, /* nothing */);
379                 sh = __find_stripe(conf, sector, conf->generation - previous);
380                 if (!sh) {
381                         if (!conf->inactive_blocked)
382                                 sh = get_free_stripe(conf);
383                         if (noblock && sh == NULL)
384                                 break;
385                         if (!sh) {
386                                 conf->inactive_blocked = 1;
387                                 wait_event_lock_irq(conf->wait_for_stripe,
388                                                     !list_empty(&conf->inactive_list) &&
389                                                     (atomic_read(&conf->active_stripes)
390                                                      < (conf->max_nr_stripes *3/4)
391                                                      || !conf->inactive_blocked),
392                                                     conf->device_lock,
393                                                     raid5_unplug_device(conf->mddev->queue)
394                                         );
395                                 conf->inactive_blocked = 0;
396                         } else
397                                 init_stripe(sh, sector, previous);
398                 } else {
399                         if (atomic_read(&sh->count)) {
400                                 BUG_ON(!list_empty(&sh->lru)
401                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
402                         } else {
403                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
404                                         atomic_inc(&conf->active_stripes);
405                                 if (list_empty(&sh->lru) &&
406                                     !test_bit(STRIPE_EXPANDING, &sh->state))
407                                         BUG();
408                                 list_del_init(&sh->lru);
409                         }
410                 }
411         } while (sh == NULL);
412
413         if (sh)
414                 atomic_inc(&sh->count);
415
416         spin_unlock_irq(&conf->device_lock);
417         return sh;
418 }
419
420 static void
421 raid5_end_read_request(struct bio *bi, int error);
422 static void
423 raid5_end_write_request(struct bio *bi, int error);
424
425 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
426 {
427         raid5_conf_t *conf = sh->raid_conf;
428         int i, disks = sh->disks;
429
430         might_sleep();
431
432         for (i = disks; i--; ) {
433                 int rw;
434                 struct bio *bi;
435                 mdk_rdev_t *rdev;
436                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
437                         rw = WRITE;
438                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
439                         rw = READ;
440                 else
441                         continue;
442
443                 bi = &sh->dev[i].req;
444
445                 bi->bi_rw = rw;
446                 if (rw == WRITE)
447                         bi->bi_end_io = raid5_end_write_request;
448                 else
449                         bi->bi_end_io = raid5_end_read_request;
450
451                 rcu_read_lock();
452                 rdev = rcu_dereference(conf->disks[i].rdev);
453                 if (rdev && test_bit(Faulty, &rdev->flags))
454                         rdev = NULL;
455                 if (rdev)
456                         atomic_inc(&rdev->nr_pending);
457                 rcu_read_unlock();
458
459                 if (rdev) {
460                         if (s->syncing || s->expanding || s->expanded)
461                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
462
463                         set_bit(STRIPE_IO_STARTED, &sh->state);
464
465                         bi->bi_bdev = rdev->bdev;
466                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
467                                 __func__, (unsigned long long)sh->sector,
468                                 bi->bi_rw, i);
469                         atomic_inc(&sh->count);
470                         bi->bi_sector = sh->sector + rdev->data_offset;
471                         bi->bi_flags = 1 << BIO_UPTODATE;
472                         bi->bi_vcnt = 1;
473                         bi->bi_max_vecs = 1;
474                         bi->bi_idx = 0;
475                         bi->bi_io_vec = &sh->dev[i].vec;
476                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
477                         bi->bi_io_vec[0].bv_offset = 0;
478                         bi->bi_size = STRIPE_SIZE;
479                         bi->bi_next = NULL;
480                         if (rw == WRITE &&
481                             test_bit(R5_ReWrite, &sh->dev[i].flags))
482                                 atomic_add(STRIPE_SECTORS,
483                                         &rdev->corrected_errors);
484                         generic_make_request(bi);
485                 } else {
486                         if (rw == WRITE)
487                                 set_bit(STRIPE_DEGRADED, &sh->state);
488                         pr_debug("skip op %ld on disc %d for sector %llu\n",
489                                 bi->bi_rw, i, (unsigned long long)sh->sector);
490                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
491                         set_bit(STRIPE_HANDLE, &sh->state);
492                 }
493         }
494 }
495
496 static struct dma_async_tx_descriptor *
497 async_copy_data(int frombio, struct bio *bio, struct page *page,
498         sector_t sector, struct dma_async_tx_descriptor *tx)
499 {
500         struct bio_vec *bvl;
501         struct page *bio_page;
502         int i;
503         int page_offset;
504         struct async_submit_ctl submit;
505         enum async_tx_flags flags = 0;
506
507         if (bio->bi_sector >= sector)
508                 page_offset = (signed)(bio->bi_sector - sector) * 512;
509         else
510                 page_offset = (signed)(sector - bio->bi_sector) * -512;
511
512         if (frombio)
513                 flags |= ASYNC_TX_FENCE;
514         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
515
516         bio_for_each_segment(bvl, bio, i) {
517                 int len = bio_iovec_idx(bio, i)->bv_len;
518                 int clen;
519                 int b_offset = 0;
520
521                 if (page_offset < 0) {
522                         b_offset = -page_offset;
523                         page_offset += b_offset;
524                         len -= b_offset;
525                 }
526
527                 if (len > 0 && page_offset + len > STRIPE_SIZE)
528                         clen = STRIPE_SIZE - page_offset;
529                 else
530                         clen = len;
531
532                 if (clen > 0) {
533                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
534                         bio_page = bio_iovec_idx(bio, i)->bv_page;
535                         if (frombio)
536                                 tx = async_memcpy(page, bio_page, page_offset,
537                                                   b_offset, clen, &submit);
538                         else
539                                 tx = async_memcpy(bio_page, page, b_offset,
540                                                   page_offset, clen, &submit);
541                 }
542                 /* chain the operations */
543                 submit.depend_tx = tx;
544
545                 if (clen < len) /* hit end of page */
546                         break;
547                 page_offset +=  len;
548         }
549
550         return tx;
551 }
552
553 static void ops_complete_biofill(void *stripe_head_ref)
554 {
555         struct stripe_head *sh = stripe_head_ref;
556         struct bio *return_bi = NULL;
557         raid5_conf_t *conf = sh->raid_conf;
558         int i;
559
560         pr_debug("%s: stripe %llu\n", __func__,
561                 (unsigned long long)sh->sector);
562
563         /* clear completed biofills */
564         spin_lock_irq(&conf->device_lock);
565         for (i = sh->disks; i--; ) {
566                 struct r5dev *dev = &sh->dev[i];
567
568                 /* acknowledge completion of a biofill operation */
569                 /* and check if we need to reply to a read request,
570                  * new R5_Wantfill requests are held off until
571                  * !STRIPE_BIOFILL_RUN
572                  */
573                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
574                         struct bio *rbi, *rbi2;
575
576                         BUG_ON(!dev->read);
577                         rbi = dev->read;
578                         dev->read = NULL;
579                         while (rbi && rbi->bi_sector <
580                                 dev->sector + STRIPE_SECTORS) {
581                                 rbi2 = r5_next_bio(rbi, dev->sector);
582                                 if (!raid5_dec_bi_phys_segments(rbi)) {
583                                         rbi->bi_next = return_bi;
584                                         return_bi = rbi;
585                                 }
586                                 rbi = rbi2;
587                         }
588                 }
589         }
590         spin_unlock_irq(&conf->device_lock);
591         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
592
593         return_io(return_bi);
594
595         set_bit(STRIPE_HANDLE, &sh->state);
596         release_stripe(sh);
597 }
598
599 static void ops_run_biofill(struct stripe_head *sh)
600 {
601         struct dma_async_tx_descriptor *tx = NULL;
602         raid5_conf_t *conf = sh->raid_conf;
603         struct async_submit_ctl submit;
604         int i;
605
606         pr_debug("%s: stripe %llu\n", __func__,
607                 (unsigned long long)sh->sector);
608
609         for (i = sh->disks; i--; ) {
610                 struct r5dev *dev = &sh->dev[i];
611                 if (test_bit(R5_Wantfill, &dev->flags)) {
612                         struct bio *rbi;
613                         spin_lock_irq(&conf->device_lock);
614                         dev->read = rbi = dev->toread;
615                         dev->toread = NULL;
616                         spin_unlock_irq(&conf->device_lock);
617                         while (rbi && rbi->bi_sector <
618                                 dev->sector + STRIPE_SECTORS) {
619                                 tx = async_copy_data(0, rbi, dev->page,
620                                         dev->sector, tx);
621                                 rbi = r5_next_bio(rbi, dev->sector);
622                         }
623                 }
624         }
625
626         atomic_inc(&sh->count);
627         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
628         async_trigger_callback(&submit);
629 }
630
631 static void mark_target_uptodate(struct stripe_head *sh, int target)
632 {
633         struct r5dev *tgt;
634
635         if (target < 0)
636                 return;
637
638         tgt = &sh->dev[target];
639         set_bit(R5_UPTODATE, &tgt->flags);
640         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
641         clear_bit(R5_Wantcompute, &tgt->flags);
642 }
643
644 static void ops_complete_compute(void *stripe_head_ref)
645 {
646         struct stripe_head *sh = stripe_head_ref;
647
648         pr_debug("%s: stripe %llu\n", __func__,
649                 (unsigned long long)sh->sector);
650
651         /* mark the computed target(s) as uptodate */
652         mark_target_uptodate(sh, sh->ops.target);
653         mark_target_uptodate(sh, sh->ops.target2);
654
655         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
656         if (sh->check_state == check_state_compute_run)
657                 sh->check_state = check_state_compute_result;
658         set_bit(STRIPE_HANDLE, &sh->state);
659         release_stripe(sh);
660 }
661
662 /* return a pointer to the address conversion region of the scribble buffer */
663 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
664                                  struct raid5_percpu *percpu)
665 {
666         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
667 }
668
669 static struct dma_async_tx_descriptor *
670 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
671 {
672         int disks = sh->disks;
673         struct page **xor_srcs = percpu->scribble;
674         int target = sh->ops.target;
675         struct r5dev *tgt = &sh->dev[target];
676         struct page *xor_dest = tgt->page;
677         int count = 0;
678         struct dma_async_tx_descriptor *tx;
679         struct async_submit_ctl submit;
680         int i;
681
682         pr_debug("%s: stripe %llu block: %d\n",
683                 __func__, (unsigned long long)sh->sector, target);
684         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
685
686         for (i = disks; i--; )
687                 if (i != target)
688                         xor_srcs[count++] = sh->dev[i].page;
689
690         atomic_inc(&sh->count);
691
692         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
693                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
694         if (unlikely(count == 1))
695                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
696         else
697                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
698
699         return tx;
700 }
701
702 /* set_syndrome_sources - populate source buffers for gen_syndrome
703  * @srcs - (struct page *) array of size sh->disks
704  * @sh - stripe_head to parse
705  *
706  * Populates srcs in proper layout order for the stripe and returns the
707  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
708  * destination buffer is recorded in srcs[count] and the Q destination
709  * is recorded in srcs[count+1]].
710  */
711 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
712 {
713         int disks = sh->disks;
714         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
715         int d0_idx = raid6_d0(sh);
716         int count;
717         int i;
718
719         for (i = 0; i < disks; i++)
720                 srcs[i] = (void *)raid6_empty_zero_page;
721
722         count = 0;
723         i = d0_idx;
724         do {
725                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
726
727                 srcs[slot] = sh->dev[i].page;
728                 i = raid6_next_disk(i, disks);
729         } while (i != d0_idx);
730         BUG_ON(count != syndrome_disks);
731
732         return count;
733 }
734
735 static struct dma_async_tx_descriptor *
736 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
737 {
738         int disks = sh->disks;
739         struct page **blocks = percpu->scribble;
740         int target;
741         int qd_idx = sh->qd_idx;
742         struct dma_async_tx_descriptor *tx;
743         struct async_submit_ctl submit;
744         struct r5dev *tgt;
745         struct page *dest;
746         int i;
747         int count;
748
749         if (sh->ops.target < 0)
750                 target = sh->ops.target2;
751         else if (sh->ops.target2 < 0)
752                 target = sh->ops.target;
753         else
754                 /* we should only have one valid target */
755                 BUG();
756         BUG_ON(target < 0);
757         pr_debug("%s: stripe %llu block: %d\n",
758                 __func__, (unsigned long long)sh->sector, target);
759
760         tgt = &sh->dev[target];
761         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
762         dest = tgt->page;
763
764         atomic_inc(&sh->count);
765
766         if (target == qd_idx) {
767                 count = set_syndrome_sources(blocks, sh);
768                 blocks[count] = NULL; /* regenerating p is not necessary */
769                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
770                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
771                                   ops_complete_compute, sh,
772                                   to_addr_conv(sh, percpu));
773                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
774         } else {
775                 /* Compute any data- or p-drive using XOR */
776                 count = 0;
777                 for (i = disks; i-- ; ) {
778                         if (i == target || i == qd_idx)
779                                 continue;
780                         blocks[count++] = sh->dev[i].page;
781                 }
782
783                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
784                                   NULL, ops_complete_compute, sh,
785                                   to_addr_conv(sh, percpu));
786                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
787         }
788
789         return tx;
790 }
791
792 static struct dma_async_tx_descriptor *
793 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
794 {
795         int i, count, disks = sh->disks;
796         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
797         int d0_idx = raid6_d0(sh);
798         int faila = -1, failb = -1;
799         int target = sh->ops.target;
800         int target2 = sh->ops.target2;
801         struct r5dev *tgt = &sh->dev[target];
802         struct r5dev *tgt2 = &sh->dev[target2];
803         struct dma_async_tx_descriptor *tx;
804         struct page **blocks = percpu->scribble;
805         struct async_submit_ctl submit;
806
807         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
808                  __func__, (unsigned long long)sh->sector, target, target2);
809         BUG_ON(target < 0 || target2 < 0);
810         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
811         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
812
813         /* we need to open-code set_syndrome_sources to handle to the
814          * slot number conversion for 'faila' and 'failb'
815          */
816         for (i = 0; i < disks ; i++)
817                 blocks[i] = (void *)raid6_empty_zero_page;
818         count = 0;
819         i = d0_idx;
820         do {
821                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
822
823                 blocks[slot] = sh->dev[i].page;
824
825                 if (i == target)
826                         faila = slot;
827                 if (i == target2)
828                         failb = slot;
829                 i = raid6_next_disk(i, disks);
830         } while (i != d0_idx);
831         BUG_ON(count != syndrome_disks);
832
833         BUG_ON(faila == failb);
834         if (failb < faila)
835                 swap(faila, failb);
836         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
837                  __func__, (unsigned long long)sh->sector, faila, failb);
838
839         atomic_inc(&sh->count);
840
841         if (failb == syndrome_disks+1) {
842                 /* Q disk is one of the missing disks */
843                 if (faila == syndrome_disks) {
844                         /* Missing P+Q, just recompute */
845                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
846                                           ops_complete_compute, sh,
847                                           to_addr_conv(sh, percpu));
848                         return async_gen_syndrome(blocks, 0, count+2,
849                                                   STRIPE_SIZE, &submit);
850                 } else {
851                         struct page *dest;
852                         int data_target;
853                         int qd_idx = sh->qd_idx;
854
855                         /* Missing D+Q: recompute D from P, then recompute Q */
856                         if (target == qd_idx)
857                                 data_target = target2;
858                         else
859                                 data_target = target;
860
861                         count = 0;
862                         for (i = disks; i-- ; ) {
863                                 if (i == data_target || i == qd_idx)
864                                         continue;
865                                 blocks[count++] = sh->dev[i].page;
866                         }
867                         dest = sh->dev[data_target].page;
868                         init_async_submit(&submit,
869                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
870                                           NULL, NULL, NULL,
871                                           to_addr_conv(sh, percpu));
872                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
873                                        &submit);
874
875                         count = set_syndrome_sources(blocks, sh);
876                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
877                                           ops_complete_compute, sh,
878                                           to_addr_conv(sh, percpu));
879                         return async_gen_syndrome(blocks, 0, count+2,
880                                                   STRIPE_SIZE, &submit);
881                 }
882         }
883
884         init_async_submit(&submit, ASYNC_TX_FENCE, NULL, ops_complete_compute,
885                           sh, to_addr_conv(sh, percpu));
886         if (failb == syndrome_disks) {
887                 /* We're missing D+P. */
888                 return async_raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE,
889                                                faila, blocks, &submit);
890         } else {
891                 /* We're missing D+D. */
892                 return async_raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE,
893                                                faila, failb, blocks, &submit);
894         }
895 }
896
897
898 static void ops_complete_prexor(void *stripe_head_ref)
899 {
900         struct stripe_head *sh = stripe_head_ref;
901
902         pr_debug("%s: stripe %llu\n", __func__,
903                 (unsigned long long)sh->sector);
904 }
905
906 static struct dma_async_tx_descriptor *
907 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
908                struct dma_async_tx_descriptor *tx)
909 {
910         int disks = sh->disks;
911         struct page **xor_srcs = percpu->scribble;
912         int count = 0, pd_idx = sh->pd_idx, i;
913         struct async_submit_ctl submit;
914
915         /* existing parity data subtracted */
916         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
917
918         pr_debug("%s: stripe %llu\n", __func__,
919                 (unsigned long long)sh->sector);
920
921         for (i = disks; i--; ) {
922                 struct r5dev *dev = &sh->dev[i];
923                 /* Only process blocks that are known to be uptodate */
924                 if (test_bit(R5_Wantdrain, &dev->flags))
925                         xor_srcs[count++] = dev->page;
926         }
927
928         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
929                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
930         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
931
932         return tx;
933 }
934
935 static struct dma_async_tx_descriptor *
936 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
937 {
938         int disks = sh->disks;
939         int i;
940
941         pr_debug("%s: stripe %llu\n", __func__,
942                 (unsigned long long)sh->sector);
943
944         for (i = disks; i--; ) {
945                 struct r5dev *dev = &sh->dev[i];
946                 struct bio *chosen;
947
948                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
949                         struct bio *wbi;
950
951                         spin_lock(&sh->lock);
952                         chosen = dev->towrite;
953                         dev->towrite = NULL;
954                         BUG_ON(dev->written);
955                         wbi = dev->written = chosen;
956                         spin_unlock(&sh->lock);
957
958                         while (wbi && wbi->bi_sector <
959                                 dev->sector + STRIPE_SECTORS) {
960                                 tx = async_copy_data(1, wbi, dev->page,
961                                         dev->sector, tx);
962                                 wbi = r5_next_bio(wbi, dev->sector);
963                         }
964                 }
965         }
966
967         return tx;
968 }
969
970 static void ops_complete_reconstruct(void *stripe_head_ref)
971 {
972         struct stripe_head *sh = stripe_head_ref;
973         int disks = sh->disks;
974         int pd_idx = sh->pd_idx;
975         int qd_idx = sh->qd_idx;
976         int i;
977
978         pr_debug("%s: stripe %llu\n", __func__,
979                 (unsigned long long)sh->sector);
980
981         for (i = disks; i--; ) {
982                 struct r5dev *dev = &sh->dev[i];
983
984                 if (dev->written || i == pd_idx || i == qd_idx)
985                         set_bit(R5_UPTODATE, &dev->flags);
986         }
987
988         if (sh->reconstruct_state == reconstruct_state_drain_run)
989                 sh->reconstruct_state = reconstruct_state_drain_result;
990         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
991                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
992         else {
993                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
994                 sh->reconstruct_state = reconstruct_state_result;
995         }
996
997         set_bit(STRIPE_HANDLE, &sh->state);
998         release_stripe(sh);
999 }
1000
1001 static void
1002 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1003                      struct dma_async_tx_descriptor *tx)
1004 {
1005         int disks = sh->disks;
1006         struct page **xor_srcs = percpu->scribble;
1007         struct async_submit_ctl submit;
1008         int count = 0, pd_idx = sh->pd_idx, i;
1009         struct page *xor_dest;
1010         int prexor = 0;
1011         unsigned long flags;
1012
1013         pr_debug("%s: stripe %llu\n", __func__,
1014                 (unsigned long long)sh->sector);
1015
1016         /* check if prexor is active which means only process blocks
1017          * that are part of a read-modify-write (written)
1018          */
1019         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1020                 prexor = 1;
1021                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1022                 for (i = disks; i--; ) {
1023                         struct r5dev *dev = &sh->dev[i];
1024                         if (dev->written)
1025                                 xor_srcs[count++] = dev->page;
1026                 }
1027         } else {
1028                 xor_dest = sh->dev[pd_idx].page;
1029                 for (i = disks; i--; ) {
1030                         struct r5dev *dev = &sh->dev[i];
1031                         if (i != pd_idx)
1032                                 xor_srcs[count++] = dev->page;
1033                 }
1034         }
1035
1036         /* 1/ if we prexor'd then the dest is reused as a source
1037          * 2/ if we did not prexor then we are redoing the parity
1038          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1039          * for the synchronous xor case
1040          */
1041         flags = ASYNC_TX_ACK |
1042                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1043
1044         atomic_inc(&sh->count);
1045
1046         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1047                           to_addr_conv(sh, percpu));
1048         if (unlikely(count == 1))
1049                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1050         else
1051                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1052 }
1053
1054 static void
1055 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1056                      struct dma_async_tx_descriptor *tx)
1057 {
1058         struct async_submit_ctl submit;
1059         struct page **blocks = percpu->scribble;
1060         int count;
1061
1062         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1063
1064         count = set_syndrome_sources(blocks, sh);
1065
1066         atomic_inc(&sh->count);
1067
1068         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1069                           sh, to_addr_conv(sh, percpu));
1070         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1071 }
1072
1073 static void ops_complete_check(void *stripe_head_ref)
1074 {
1075         struct stripe_head *sh = stripe_head_ref;
1076
1077         pr_debug("%s: stripe %llu\n", __func__,
1078                 (unsigned long long)sh->sector);
1079
1080         sh->check_state = check_state_check_result;
1081         set_bit(STRIPE_HANDLE, &sh->state);
1082         release_stripe(sh);
1083 }
1084
1085 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1086 {
1087         int disks = sh->disks;
1088         int pd_idx = sh->pd_idx;
1089         int qd_idx = sh->qd_idx;
1090         struct page *xor_dest;
1091         struct page **xor_srcs = percpu->scribble;
1092         struct dma_async_tx_descriptor *tx;
1093         struct async_submit_ctl submit;
1094         int count;
1095         int i;
1096
1097         pr_debug("%s: stripe %llu\n", __func__,
1098                 (unsigned long long)sh->sector);
1099
1100         count = 0;
1101         xor_dest = sh->dev[pd_idx].page;
1102         xor_srcs[count++] = xor_dest;
1103         for (i = disks; i--; ) {
1104                 if (i == pd_idx || i == qd_idx)
1105                         continue;
1106                 xor_srcs[count++] = sh->dev[i].page;
1107         }
1108
1109         init_async_submit(&submit, 0, NULL, NULL, NULL,
1110                           to_addr_conv(sh, percpu));
1111         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1112                            &sh->ops.zero_sum_result, &submit);
1113
1114         atomic_inc(&sh->count);
1115         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1116         tx = async_trigger_callback(&submit);
1117 }
1118
1119 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1120 {
1121         struct page **srcs = percpu->scribble;
1122         struct async_submit_ctl submit;
1123         int count;
1124
1125         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1126                 (unsigned long long)sh->sector, checkp);
1127
1128         count = set_syndrome_sources(srcs, sh);
1129         if (!checkp)
1130                 srcs[count] = NULL;
1131
1132         atomic_inc(&sh->count);
1133         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1134                           sh, to_addr_conv(sh, percpu));
1135         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1136                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1137 }
1138
1139 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1140 {
1141         int overlap_clear = 0, i, disks = sh->disks;
1142         struct dma_async_tx_descriptor *tx = NULL;
1143         raid5_conf_t *conf = sh->raid_conf;
1144         int level = conf->level;
1145         struct raid5_percpu *percpu;
1146         unsigned long cpu;
1147
1148         cpu = get_cpu();
1149         percpu = per_cpu_ptr(conf->percpu, cpu);
1150         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1151                 ops_run_biofill(sh);
1152                 overlap_clear++;
1153         }
1154
1155         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1156                 if (level < 6)
1157                         tx = ops_run_compute5(sh, percpu);
1158                 else {
1159                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1160                                 tx = ops_run_compute6_1(sh, percpu);
1161                         else
1162                                 tx = ops_run_compute6_2(sh, percpu);
1163                 }
1164                 /* terminate the chain if reconstruct is not set to be run */
1165                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1166                         async_tx_ack(tx);
1167         }
1168
1169         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1170                 tx = ops_run_prexor(sh, percpu, tx);
1171
1172         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1173                 tx = ops_run_biodrain(sh, tx);
1174                 overlap_clear++;
1175         }
1176
1177         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1178                 if (level < 6)
1179                         ops_run_reconstruct5(sh, percpu, tx);
1180                 else
1181                         ops_run_reconstruct6(sh, percpu, tx);
1182         }
1183
1184         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1185                 if (sh->check_state == check_state_run)
1186                         ops_run_check_p(sh, percpu);
1187                 else if (sh->check_state == check_state_run_q)
1188                         ops_run_check_pq(sh, percpu, 0);
1189                 else if (sh->check_state == check_state_run_pq)
1190                         ops_run_check_pq(sh, percpu, 1);
1191                 else
1192                         BUG();
1193         }
1194
1195         if (overlap_clear)
1196                 for (i = disks; i--; ) {
1197                         struct r5dev *dev = &sh->dev[i];
1198                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1199                                 wake_up(&sh->raid_conf->wait_for_overlap);
1200                 }
1201         put_cpu();
1202 }
1203
1204 static int grow_one_stripe(raid5_conf_t *conf)
1205 {
1206         struct stripe_head *sh;
1207         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1208         if (!sh)
1209                 return 0;
1210         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
1211         sh->raid_conf = conf;
1212         spin_lock_init(&sh->lock);
1213
1214         if (grow_buffers(sh, conf->raid_disks)) {
1215                 shrink_buffers(sh, conf->raid_disks);
1216                 kmem_cache_free(conf->slab_cache, sh);
1217                 return 0;
1218         }
1219         sh->disks = conf->raid_disks;
1220         /* we just created an active stripe so... */
1221         atomic_set(&sh->count, 1);
1222         atomic_inc(&conf->active_stripes);
1223         INIT_LIST_HEAD(&sh->lru);
1224         release_stripe(sh);
1225         return 1;
1226 }
1227
1228 static int grow_stripes(raid5_conf_t *conf, int num)
1229 {
1230         struct kmem_cache *sc;
1231         int devs = conf->raid_disks;
1232
1233         sprintf(conf->cache_name[0],
1234                 "raid%d-%s", conf->level, mdname(conf->mddev));
1235         sprintf(conf->cache_name[1],
1236                 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
1237         conf->active_name = 0;
1238         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1239                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1240                                0, 0, NULL);
1241         if (!sc)
1242                 return 1;
1243         conf->slab_cache = sc;
1244         conf->pool_size = devs;
1245         while (num--)
1246                 if (!grow_one_stripe(conf))
1247                         return 1;
1248         return 0;
1249 }
1250
1251 /**
1252  * scribble_len - return the required size of the scribble region
1253  * @num - total number of disks in the array
1254  *
1255  * The size must be enough to contain:
1256  * 1/ a struct page pointer for each device in the array +2
1257  * 2/ room to convert each entry in (1) to its corresponding dma
1258  *    (dma_map_page()) or page (page_address()) address.
1259  *
1260  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1261  * calculate over all devices (not just the data blocks), using zeros in place
1262  * of the P and Q blocks.
1263  */
1264 static size_t scribble_len(int num)
1265 {
1266         size_t len;
1267
1268         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1269
1270         return len;
1271 }
1272
1273 static int resize_stripes(raid5_conf_t *conf, int newsize)
1274 {
1275         /* Make all the stripes able to hold 'newsize' devices.
1276          * New slots in each stripe get 'page' set to a new page.
1277          *
1278          * This happens in stages:
1279          * 1/ create a new kmem_cache and allocate the required number of
1280          *    stripe_heads.
1281          * 2/ gather all the old stripe_heads and tranfer the pages across
1282          *    to the new stripe_heads.  This will have the side effect of
1283          *    freezing the array as once all stripe_heads have been collected,
1284          *    no IO will be possible.  Old stripe heads are freed once their
1285          *    pages have been transferred over, and the old kmem_cache is
1286          *    freed when all stripes are done.
1287          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1288          *    we simple return a failre status - no need to clean anything up.
1289          * 4/ allocate new pages for the new slots in the new stripe_heads.
1290          *    If this fails, we don't bother trying the shrink the
1291          *    stripe_heads down again, we just leave them as they are.
1292          *    As each stripe_head is processed the new one is released into
1293          *    active service.
1294          *
1295          * Once step2 is started, we cannot afford to wait for a write,
1296          * so we use GFP_NOIO allocations.
1297          */
1298         struct stripe_head *osh, *nsh;
1299         LIST_HEAD(newstripes);
1300         struct disk_info *ndisks;
1301         unsigned long cpu;
1302         int err;
1303         struct kmem_cache *sc;
1304         int i;
1305
1306         if (newsize <= conf->pool_size)
1307                 return 0; /* never bother to shrink */
1308
1309         err = md_allow_write(conf->mddev);
1310         if (err)
1311                 return err;
1312
1313         /* Step 1 */
1314         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1315                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1316                                0, 0, NULL);
1317         if (!sc)
1318                 return -ENOMEM;
1319
1320         for (i = conf->max_nr_stripes; i; i--) {
1321                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1322                 if (!nsh)
1323                         break;
1324
1325                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1326
1327                 nsh->raid_conf = conf;
1328                 spin_lock_init(&nsh->lock);
1329
1330                 list_add(&nsh->lru, &newstripes);
1331         }
1332         if (i) {
1333                 /* didn't get enough, give up */
1334                 while (!list_empty(&newstripes)) {
1335                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1336                         list_del(&nsh->lru);
1337                         kmem_cache_free(sc, nsh);
1338                 }
1339                 kmem_cache_destroy(sc);
1340                 return -ENOMEM;
1341         }
1342         /* Step 2 - Must use GFP_NOIO now.
1343          * OK, we have enough stripes, start collecting inactive
1344          * stripes and copying them over
1345          */
1346         list_for_each_entry(nsh, &newstripes, lru) {
1347                 spin_lock_irq(&conf->device_lock);
1348                 wait_event_lock_irq(conf->wait_for_stripe,
1349                                     !list_empty(&conf->inactive_list),
1350                                     conf->device_lock,
1351                                     unplug_slaves(conf->mddev)
1352                         );
1353                 osh = get_free_stripe(conf);
1354                 spin_unlock_irq(&conf->device_lock);
1355                 atomic_set(&nsh->count, 1);
1356                 for(i=0; i<conf->pool_size; i++)
1357                         nsh->dev[i].page = osh->dev[i].page;
1358                 for( ; i<newsize; i++)
1359                         nsh->dev[i].page = NULL;
1360                 kmem_cache_free(conf->slab_cache, osh);
1361         }
1362         kmem_cache_destroy(conf->slab_cache);
1363
1364         /* Step 3.
1365          * At this point, we are holding all the stripes so the array
1366          * is completely stalled, so now is a good time to resize
1367          * conf->disks and the scribble region
1368          */
1369         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1370         if (ndisks) {
1371                 for (i=0; i<conf->raid_disks; i++)
1372                         ndisks[i] = conf->disks[i];
1373                 kfree(conf->disks);
1374                 conf->disks = ndisks;
1375         } else
1376                 err = -ENOMEM;
1377
1378         get_online_cpus();
1379         conf->scribble_len = scribble_len(newsize);
1380         for_each_present_cpu(cpu) {
1381                 struct raid5_percpu *percpu;
1382                 void *scribble;
1383
1384                 percpu = per_cpu_ptr(conf->percpu, cpu);
1385                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1386
1387                 if (scribble) {
1388                         kfree(percpu->scribble);
1389                         percpu->scribble = scribble;
1390                 } else {
1391                         err = -ENOMEM;
1392                         break;
1393                 }
1394         }
1395         put_online_cpus();
1396
1397         /* Step 4, return new stripes to service */
1398         while(!list_empty(&newstripes)) {
1399                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1400                 list_del_init(&nsh->lru);
1401
1402                 for (i=conf->raid_disks; i < newsize; i++)
1403                         if (nsh->dev[i].page == NULL) {
1404                                 struct page *p = alloc_page(GFP_NOIO);
1405                                 nsh->dev[i].page = p;
1406                                 if (!p)
1407                                         err = -ENOMEM;
1408                         }
1409                 release_stripe(nsh);
1410         }
1411         /* critical section pass, GFP_NOIO no longer needed */
1412
1413         conf->slab_cache = sc;
1414         conf->active_name = 1-conf->active_name;
1415         conf->pool_size = newsize;
1416         return err;
1417 }
1418
1419 static int drop_one_stripe(raid5_conf_t *conf)
1420 {
1421         struct stripe_head *sh;
1422
1423         spin_lock_irq(&conf->device_lock);
1424         sh = get_free_stripe(conf);
1425         spin_unlock_irq(&conf->device_lock);
1426         if (!sh)
1427                 return 0;
1428         BUG_ON(atomic_read(&sh->count));
1429         shrink_buffers(sh, conf->pool_size);
1430         kmem_cache_free(conf->slab_cache, sh);
1431         atomic_dec(&conf->active_stripes);
1432         return 1;
1433 }
1434
1435 static void shrink_stripes(raid5_conf_t *conf)
1436 {
1437         while (drop_one_stripe(conf))
1438                 ;
1439
1440         if (conf->slab_cache)
1441                 kmem_cache_destroy(conf->slab_cache);
1442         conf->slab_cache = NULL;
1443 }
1444
1445 static void raid5_end_read_request(struct bio * bi, int error)
1446 {
1447         struct stripe_head *sh = bi->bi_private;
1448         raid5_conf_t *conf = sh->raid_conf;
1449         int disks = sh->disks, i;
1450         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1451         char b[BDEVNAME_SIZE];
1452         mdk_rdev_t *rdev;
1453
1454
1455         for (i=0 ; i<disks; i++)
1456                 if (bi == &sh->dev[i].req)
1457                         break;
1458
1459         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1460                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1461                 uptodate);
1462         if (i == disks) {
1463                 BUG();
1464                 return;
1465         }
1466
1467         if (uptodate) {
1468                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1469                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1470                         rdev = conf->disks[i].rdev;
1471                         printk_rl(KERN_INFO "raid5:%s: read error corrected"
1472                                   " (%lu sectors at %llu on %s)\n",
1473                                   mdname(conf->mddev), STRIPE_SECTORS,
1474                                   (unsigned long long)(sh->sector
1475                                                        + rdev->data_offset),
1476                                   bdevname(rdev->bdev, b));
1477                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1478                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1479                 }
1480                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1481                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1482         } else {
1483                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1484                 int retry = 0;
1485                 rdev = conf->disks[i].rdev;
1486
1487                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1488                 atomic_inc(&rdev->read_errors);
1489                 if (conf->mddev->degraded)
1490                         printk_rl(KERN_WARNING
1491                                   "raid5:%s: read error not correctable "
1492                                   "(sector %llu on %s).\n",
1493                                   mdname(conf->mddev),
1494                                   (unsigned long long)(sh->sector
1495                                                        + rdev->data_offset),
1496                                   bdn);
1497                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1498                         /* Oh, no!!! */
1499                         printk_rl(KERN_WARNING
1500                                   "raid5:%s: read error NOT corrected!! "
1501                                   "(sector %llu on %s).\n",
1502                                   mdname(conf->mddev),
1503                                   (unsigned long long)(sh->sector
1504                                                        + rdev->data_offset),
1505                                   bdn);
1506                 else if (atomic_read(&rdev->read_errors)
1507                          > conf->max_nr_stripes)
1508                         printk(KERN_WARNING
1509                                "raid5:%s: Too many read errors, failing device %s.\n",
1510                                mdname(conf->mddev), bdn);
1511                 else
1512                         retry = 1;
1513                 if (retry)
1514                         set_bit(R5_ReadError, &sh->dev[i].flags);
1515                 else {
1516                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1517                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1518                         md_error(conf->mddev, rdev);
1519                 }
1520         }
1521         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1522         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1523         set_bit(STRIPE_HANDLE, &sh->state);
1524         release_stripe(sh);
1525 }
1526
1527 static void raid5_end_write_request(struct bio *bi, int error)
1528 {
1529         struct stripe_head *sh = bi->bi_private;
1530         raid5_conf_t *conf = sh->raid_conf;
1531         int disks = sh->disks, i;
1532         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1533
1534         for (i=0 ; i<disks; i++)
1535                 if (bi == &sh->dev[i].req)
1536                         break;
1537
1538         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1539                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1540                 uptodate);
1541         if (i == disks) {
1542                 BUG();
1543                 return;
1544         }
1545
1546         if (!uptodate)
1547                 md_error(conf->mddev, conf->disks[i].rdev);
1548
1549         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1550         
1551         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1552         set_bit(STRIPE_HANDLE, &sh->state);
1553         release_stripe(sh);
1554 }
1555
1556
1557 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1558         
1559 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1560 {
1561         struct r5dev *dev = &sh->dev[i];
1562
1563         bio_init(&dev->req);
1564         dev->req.bi_io_vec = &dev->vec;
1565         dev->req.bi_vcnt++;
1566         dev->req.bi_max_vecs++;
1567         dev->vec.bv_page = dev->page;
1568         dev->vec.bv_len = STRIPE_SIZE;
1569         dev->vec.bv_offset = 0;
1570
1571         dev->req.bi_sector = sh->sector;
1572         dev->req.bi_private = sh;
1573
1574         dev->flags = 0;
1575         dev->sector = compute_blocknr(sh, i, previous);
1576 }
1577
1578 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1579 {
1580         char b[BDEVNAME_SIZE];
1581         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1582         pr_debug("raid5: error called\n");
1583
1584         if (!test_bit(Faulty, &rdev->flags)) {
1585                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1586                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1587                         unsigned long flags;
1588                         spin_lock_irqsave(&conf->device_lock, flags);
1589                         mddev->degraded++;
1590                         spin_unlock_irqrestore(&conf->device_lock, flags);
1591                         /*
1592                          * if recovery was running, make sure it aborts.
1593                          */
1594                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1595                 }
1596                 set_bit(Faulty, &rdev->flags);
1597                 printk(KERN_ALERT
1598                        "raid5: Disk failure on %s, disabling device.\n"
1599                        "raid5: Operation continuing on %d devices.\n",
1600                        bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1601         }
1602 }
1603
1604 /*
1605  * Input: a 'big' sector number,
1606  * Output: index of the data and parity disk, and the sector # in them.
1607  */
1608 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1609                                      int previous, int *dd_idx,
1610                                      struct stripe_head *sh)
1611 {
1612         long stripe;
1613         unsigned long chunk_number;
1614         unsigned int chunk_offset;
1615         int pd_idx, qd_idx;
1616         int ddf_layout = 0;
1617         sector_t new_sector;
1618         int algorithm = previous ? conf->prev_algo
1619                                  : conf->algorithm;
1620         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1621                                          : conf->chunk_sectors;
1622         int raid_disks = previous ? conf->previous_raid_disks
1623                                   : conf->raid_disks;
1624         int data_disks = raid_disks - conf->max_degraded;
1625
1626         /* First compute the information on this sector */
1627
1628         /*
1629          * Compute the chunk number and the sector offset inside the chunk
1630          */
1631         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1632         chunk_number = r_sector;
1633         BUG_ON(r_sector != chunk_number);
1634
1635         /*
1636          * Compute the stripe number
1637          */
1638         stripe = chunk_number / data_disks;
1639
1640         /*
1641          * Compute the data disk and parity disk indexes inside the stripe
1642          */
1643         *dd_idx = chunk_number % data_disks;
1644
1645         /*
1646          * Select the parity disk based on the user selected algorithm.
1647          */
1648         pd_idx = qd_idx = ~0;
1649         switch(conf->level) {
1650         case 4:
1651                 pd_idx = data_disks;
1652                 break;
1653         case 5:
1654                 switch (algorithm) {
1655                 case ALGORITHM_LEFT_ASYMMETRIC:
1656                         pd_idx = data_disks - stripe % raid_disks;
1657                         if (*dd_idx >= pd_idx)
1658                                 (*dd_idx)++;
1659                         break;
1660                 case ALGORITHM_RIGHT_ASYMMETRIC:
1661                         pd_idx = stripe % raid_disks;
1662                         if (*dd_idx >= pd_idx)
1663                                 (*dd_idx)++;
1664                         break;
1665                 case ALGORITHM_LEFT_SYMMETRIC:
1666                         pd_idx = data_disks - stripe % raid_disks;
1667                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1668                         break;
1669                 case ALGORITHM_RIGHT_SYMMETRIC:
1670                         pd_idx = stripe % raid_disks;
1671                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1672                         break;
1673                 case ALGORITHM_PARITY_0:
1674                         pd_idx = 0;
1675                         (*dd_idx)++;
1676                         break;
1677                 case ALGORITHM_PARITY_N:
1678                         pd_idx = data_disks;
1679                         break;
1680                 default:
1681                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1682                                 algorithm);
1683                         BUG();
1684                 }
1685                 break;
1686         case 6:
1687
1688                 switch (algorithm) {
1689                 case ALGORITHM_LEFT_ASYMMETRIC:
1690                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1691                         qd_idx = pd_idx + 1;
1692                         if (pd_idx == raid_disks-1) {
1693                                 (*dd_idx)++;    /* Q D D D P */
1694                                 qd_idx = 0;
1695                         } else if (*dd_idx >= pd_idx)
1696                                 (*dd_idx) += 2; /* D D P Q D */
1697                         break;
1698                 case ALGORITHM_RIGHT_ASYMMETRIC:
1699                         pd_idx = stripe % raid_disks;
1700                         qd_idx = pd_idx + 1;
1701                         if (pd_idx == raid_disks-1) {
1702                                 (*dd_idx)++;    /* Q D D D P */
1703                                 qd_idx = 0;
1704                         } else if (*dd_idx >= pd_idx)
1705                                 (*dd_idx) += 2; /* D D P Q D */
1706                         break;
1707                 case ALGORITHM_LEFT_SYMMETRIC:
1708                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1709                         qd_idx = (pd_idx + 1) % raid_disks;
1710                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1711                         break;
1712                 case ALGORITHM_RIGHT_SYMMETRIC:
1713                         pd_idx = stripe % raid_disks;
1714                         qd_idx = (pd_idx + 1) % raid_disks;
1715                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1716                         break;
1717
1718                 case ALGORITHM_PARITY_0:
1719                         pd_idx = 0;
1720                         qd_idx = 1;
1721                         (*dd_idx) += 2;
1722                         break;
1723                 case ALGORITHM_PARITY_N:
1724                         pd_idx = data_disks;
1725                         qd_idx = data_disks + 1;
1726                         break;
1727
1728                 case ALGORITHM_ROTATING_ZERO_RESTART:
1729                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1730                          * of blocks for computing Q is different.
1731                          */
1732                         pd_idx = stripe % raid_disks;
1733                         qd_idx = pd_idx + 1;
1734                         if (pd_idx == raid_disks-1) {
1735                                 (*dd_idx)++;    /* Q D D D P */
1736                                 qd_idx = 0;
1737                         } else if (*dd_idx >= pd_idx)
1738                                 (*dd_idx) += 2; /* D D P Q D */
1739                         ddf_layout = 1;
1740                         break;
1741
1742                 case ALGORITHM_ROTATING_N_RESTART:
1743                         /* Same a left_asymmetric, by first stripe is
1744                          * D D D P Q  rather than
1745                          * Q D D D P
1746                          */
1747                         pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1748                         qd_idx = pd_idx + 1;
1749                         if (pd_idx == raid_disks-1) {
1750                                 (*dd_idx)++;    /* Q D D D P */
1751                                 qd_idx = 0;
1752                         } else if (*dd_idx >= pd_idx)
1753                                 (*dd_idx) += 2; /* D D P Q D */
1754                         ddf_layout = 1;
1755                         break;
1756
1757                 case ALGORITHM_ROTATING_N_CONTINUE:
1758                         /* Same as left_symmetric but Q is before P */
1759                         pd_idx = raid_disks - 1 - (stripe % raid_disks);
1760                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1761                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1762                         ddf_layout = 1;
1763                         break;
1764
1765                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1766                         /* RAID5 left_asymmetric, with Q on last device */
1767                         pd_idx = data_disks - stripe % (raid_disks-1);
1768                         if (*dd_idx >= pd_idx)
1769                                 (*dd_idx)++;
1770                         qd_idx = raid_disks - 1;
1771                         break;
1772
1773                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1774                         pd_idx = stripe % (raid_disks-1);
1775                         if (*dd_idx >= pd_idx)
1776                                 (*dd_idx)++;
1777                         qd_idx = raid_disks - 1;
1778                         break;
1779
1780                 case ALGORITHM_LEFT_SYMMETRIC_6:
1781                         pd_idx = data_disks - stripe % (raid_disks-1);
1782                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1783                         qd_idx = raid_disks - 1;
1784                         break;
1785
1786                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1787                         pd_idx = stripe % (raid_disks-1);
1788                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1789                         qd_idx = raid_disks - 1;
1790                         break;
1791
1792                 case ALGORITHM_PARITY_0_6:
1793                         pd_idx = 0;
1794                         (*dd_idx)++;
1795                         qd_idx = raid_disks - 1;
1796                         break;
1797
1798
1799                 default:
1800                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1801                                algorithm);
1802                         BUG();
1803                 }
1804                 break;
1805         }
1806
1807         if (sh) {
1808                 sh->pd_idx = pd_idx;
1809                 sh->qd_idx = qd_idx;
1810                 sh->ddf_layout = ddf_layout;
1811         }
1812         /*
1813          * Finally, compute the new sector number
1814          */
1815         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1816         return new_sector;
1817 }
1818
1819
1820 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1821 {
1822         raid5_conf_t *conf = sh->raid_conf;
1823         int raid_disks = sh->disks;
1824         int data_disks = raid_disks - conf->max_degraded;
1825         sector_t new_sector = sh->sector, check;
1826         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1827                                          : conf->chunk_sectors;
1828         int algorithm = previous ? conf->prev_algo
1829                                  : conf->algorithm;
1830         sector_t stripe;
1831         int chunk_offset;
1832         int chunk_number, dummy1, dd_idx = i;
1833         sector_t r_sector;
1834         struct stripe_head sh2;
1835
1836
1837         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1838         stripe = new_sector;
1839         BUG_ON(new_sector != stripe);
1840
1841         if (i == sh->pd_idx)
1842                 return 0;
1843         switch(conf->level) {
1844         case 4: break;
1845         case 5:
1846                 switch (algorithm) {
1847                 case ALGORITHM_LEFT_ASYMMETRIC:
1848                 case ALGORITHM_RIGHT_ASYMMETRIC:
1849                         if (i > sh->pd_idx)
1850                                 i--;
1851                         break;
1852                 case ALGORITHM_LEFT_SYMMETRIC:
1853                 case ALGORITHM_RIGHT_SYMMETRIC:
1854                         if (i < sh->pd_idx)
1855                                 i += raid_disks;
1856                         i -= (sh->pd_idx + 1);
1857                         break;
1858                 case ALGORITHM_PARITY_0:
1859                         i -= 1;
1860                         break;
1861                 case ALGORITHM_PARITY_N:
1862                         break;
1863                 default:
1864                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1865                                algorithm);
1866                         BUG();
1867                 }
1868                 break;
1869         case 6:
1870                 if (i == sh->qd_idx)
1871                         return 0; /* It is the Q disk */
1872                 switch (algorithm) {
1873                 case ALGORITHM_LEFT_ASYMMETRIC:
1874                 case ALGORITHM_RIGHT_ASYMMETRIC:
1875                 case ALGORITHM_ROTATING_ZERO_RESTART:
1876                 case ALGORITHM_ROTATING_N_RESTART:
1877                         if (sh->pd_idx == raid_disks-1)
1878                                 i--;    /* Q D D D P */
1879                         else if (i > sh->pd_idx)
1880                                 i -= 2; /* D D P Q D */
1881                         break;
1882                 case ALGORITHM_LEFT_SYMMETRIC:
1883                 case ALGORITHM_RIGHT_SYMMETRIC:
1884                         if (sh->pd_idx == raid_disks-1)
1885                                 i--; /* Q D D D P */
1886                         else {
1887                                 /* D D P Q D */
1888                                 if (i < sh->pd_idx)
1889                                         i += raid_disks;
1890                                 i -= (sh->pd_idx + 2);
1891                         }
1892                         break;
1893                 case ALGORITHM_PARITY_0:
1894                         i -= 2;
1895                         break;
1896                 case ALGORITHM_PARITY_N:
1897                         break;
1898                 case ALGORITHM_ROTATING_N_CONTINUE:
1899                         if (sh->pd_idx == 0)
1900                                 i--;    /* P D D D Q */
1901                         else if (i > sh->pd_idx)
1902                                 i -= 2; /* D D Q P D */
1903                         break;
1904                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1905                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1906                         if (i > sh->pd_idx)
1907                                 i--;
1908                         break;
1909                 case ALGORITHM_LEFT_SYMMETRIC_6:
1910                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1911                         if (i < sh->pd_idx)
1912                                 i += data_disks + 1;
1913                         i -= (sh->pd_idx + 1);
1914                         break;
1915                 case ALGORITHM_PARITY_0_6:
1916                         i -= 1;
1917                         break;
1918                 default:
1919                         printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1920                                algorithm);
1921                         BUG();
1922                 }
1923                 break;
1924         }
1925
1926         chunk_number = stripe * data_disks + i;
1927         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1928
1929         check = raid5_compute_sector(conf, r_sector,
1930                                      previous, &dummy1, &sh2);
1931         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1932                 || sh2.qd_idx != sh->qd_idx) {
1933                 printk(KERN_ERR "compute_blocknr: map not correct\n");
1934                 return 0;
1935         }
1936         return r_sector;
1937 }
1938
1939
1940 static void
1941 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
1942                          int rcw, int expand)
1943 {
1944         int i, pd_idx = sh->pd_idx, disks = sh->disks;
1945         raid5_conf_t *conf = sh->raid_conf;
1946         int level = conf->level;
1947
1948         if (rcw) {
1949                 /* if we are not expanding this is a proper write request, and
1950                  * there will be bios with new data to be drained into the
1951                  * stripe cache
1952                  */
1953                 if (!expand) {
1954                         sh->reconstruct_state = reconstruct_state_drain_run;
1955                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1956                 } else
1957                         sh->reconstruct_state = reconstruct_state_run;
1958
1959                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
1960
1961                 for (i = disks; i--; ) {
1962                         struct r5dev *dev = &sh->dev[i];
1963
1964                         if (dev->towrite) {
1965                                 set_bit(R5_LOCKED, &dev->flags);
1966                                 set_bit(R5_Wantdrain, &dev->flags);
1967                                 if (!expand)
1968                                         clear_bit(R5_UPTODATE, &dev->flags);
1969                                 s->locked++;
1970                         }
1971                 }
1972                 if (s->locked + conf->max_degraded == disks)
1973                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1974                                 atomic_inc(&conf->pending_full_writes);
1975         } else {
1976                 BUG_ON(level == 6);
1977                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1978                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1979
1980                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1981                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1982                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1983                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
1984
1985                 for (i = disks; i--; ) {
1986                         struct r5dev *dev = &sh->dev[i];
1987                         if (i == pd_idx)
1988                                 continue;
1989
1990                         if (dev->towrite &&
1991                             (test_bit(R5_UPTODATE, &dev->flags) ||
1992                              test_bit(R5_Wantcompute, &dev->flags))) {
1993                                 set_bit(R5_Wantdrain, &dev->flags);
1994                                 set_bit(R5_LOCKED, &dev->flags);
1995                                 clear_bit(R5_UPTODATE, &dev->flags);
1996                                 s->locked++;
1997                         }
1998                 }
1999         }
2000
2001         /* keep the parity disk(s) locked while asynchronous operations
2002          * are in flight
2003          */
2004         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2005         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2006         s->locked++;
2007
2008         if (level == 6) {
2009                 int qd_idx = sh->qd_idx;
2010                 struct r5dev *dev = &sh->dev[qd_idx];
2011
2012                 set_bit(R5_LOCKED, &dev->flags);
2013                 clear_bit(R5_UPTODATE, &dev->flags);
2014                 s->locked++;
2015         }
2016
2017         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2018                 __func__, (unsigned long long)sh->sector,
2019                 s->locked, s->ops_request);
2020 }
2021
2022 /*
2023  * Each stripe/dev can have one or more bion attached.
2024  * toread/towrite point to the first in a chain.
2025  * The bi_next chain must be in order.
2026  */
2027 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2028 {
2029         struct bio **bip;
2030         raid5_conf_t *conf = sh->raid_conf;
2031         int firstwrite=0;
2032
2033         pr_debug("adding bh b#%llu to stripe s#%llu\n",
2034                 (unsigned long long)bi->bi_sector,
2035                 (unsigned long long)sh->sector);
2036
2037
2038         spin_lock(&sh->lock);
2039         spin_lock_irq(&conf->device_lock);
2040         if (forwrite) {
2041                 bip = &sh->dev[dd_idx].towrite;
2042                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2043                         firstwrite = 1;
2044         } else
2045                 bip = &sh->dev[dd_idx].toread;
2046         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2047                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2048                         goto overlap;
2049                 bip = & (*bip)->bi_next;
2050         }
2051         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2052                 goto overlap;
2053
2054         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2055         if (*bip)
2056                 bi->bi_next = *bip;
2057         *bip = bi;
2058         bi->bi_phys_segments++;
2059         spin_unlock_irq(&conf->device_lock);
2060         spin_unlock(&sh->lock);
2061
2062         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2063                 (unsigned long long)bi->bi_sector,
2064                 (unsigned long long)sh->sector, dd_idx);
2065
2066         if (conf->mddev->bitmap && firstwrite) {
2067                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2068                                   STRIPE_SECTORS, 0);
2069                 sh->bm_seq = conf->seq_flush+1;
2070                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2071         }
2072
2073         if (forwrite) {
2074                 /* check if page is covered */
2075                 sector_t sector = sh->dev[dd_idx].sector;
2076                 for (bi=sh->dev[dd_idx].towrite;
2077                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2078                              bi && bi->bi_sector <= sector;
2079                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2080                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2081                                 sector = bi->bi_sector + (bi->bi_size>>9);
2082                 }
2083                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2084                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2085         }
2086         return 1;
2087
2088  overlap:
2089         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2090         spin_unlock_irq(&conf->device_lock);
2091         spin_unlock(&sh->lock);
2092         return 0;
2093 }
2094
2095 static void end_reshape(raid5_conf_t *conf);
2096
2097 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2098                             struct stripe_head *sh)
2099 {
2100         int sectors_per_chunk =
2101                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2102         int dd_idx;
2103         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2104         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2105
2106         raid5_compute_sector(conf,
2107                              stripe * (disks - conf->max_degraded)
2108                              *sectors_per_chunk + chunk_offset,
2109                              previous,
2110                              &dd_idx, sh);
2111 }
2112
2113 static void
2114 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2115                                 struct stripe_head_state *s, int disks,
2116                                 struct bio **return_bi)
2117 {
2118         int i;
2119         for (i = disks; i--; ) {
2120                 struct bio *bi;
2121                 int bitmap_end = 0;
2122
2123                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2124                         mdk_rdev_t *rdev;
2125                         rcu_read_lock();
2126                         rdev = rcu_dereference(conf->disks[i].rdev);
2127                         if (rdev && test_bit(In_sync, &rdev->flags))
2128                                 /* multiple read failures in one stripe */
2129                                 md_error(conf->mddev, rdev);
2130                         rcu_read_unlock();
2131                 }
2132                 spin_lock_irq(&conf->device_lock);
2133                 /* fail all writes first */
2134                 bi = sh->dev[i].towrite;
2135                 sh->dev[i].towrite = NULL;
2136                 if (bi) {
2137                         s->to_write--;
2138                         bitmap_end = 1;
2139                 }
2140
2141                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2142                         wake_up(&conf->wait_for_overlap);
2143
2144                 while (bi && bi->bi_sector <
2145                         sh->dev[i].sector + STRIPE_SECTORS) {
2146                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2147                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2148                         if (!raid5_dec_bi_phys_segments(bi)) {
2149                                 md_write_end(conf->mddev);
2150                                 bi->bi_next = *return_bi;
2151                                 *return_bi = bi;
2152                         }
2153                         bi = nextbi;
2154                 }
2155                 /* and fail all 'written' */
2156                 bi = sh->dev[i].written;
2157                 sh->dev[i].written = NULL;
2158                 if (bi) bitmap_end = 1;
2159                 while (bi && bi->bi_sector <
2160                        sh->dev[i].sector + STRIPE_SECTORS) {
2161                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2162                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2163                         if (!raid5_dec_bi_phys_segments(bi)) {
2164                                 md_write_end(conf->mddev);
2165                                 bi->bi_next = *return_bi;
2166                                 *return_bi = bi;
2167                         }
2168                         bi = bi2;
2169                 }
2170
2171                 /* fail any reads if this device is non-operational and
2172                  * the data has not reached the cache yet.
2173                  */
2174                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2175                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2176                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2177                         bi = sh->dev[i].toread;
2178                         sh->dev[i].toread = NULL;
2179                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2180                                 wake_up(&conf->wait_for_overlap);
2181                         if (bi) s->to_read--;
2182                         while (bi && bi->bi_sector <
2183                                sh->dev[i].sector + STRIPE_SECTORS) {
2184                                 struct bio *nextbi =
2185                                         r5_next_bio(bi, sh->dev[i].sector);
2186                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2187                                 if (!raid5_dec_bi_phys_segments(bi)) {
2188                                         bi->bi_next = *return_bi;
2189                                         *return_bi = bi;
2190                                 }
2191                                 bi = nextbi;
2192                         }
2193                 }
2194                 spin_unlock_irq(&conf->device_lock);
2195                 if (bitmap_end)
2196                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2197                                         STRIPE_SECTORS, 0, 0);
2198         }
2199
2200         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2201                 if (atomic_dec_and_test(&conf->pending_full_writes))
2202                         md_wakeup_thread(conf->mddev->thread);
2203 }
2204
2205 /* fetch_block5 - checks the given member device to see if its data needs
2206  * to be read or computed to satisfy a request.
2207  *
2208  * Returns 1 when no more member devices need to be checked, otherwise returns
2209  * 0 to tell the loop in handle_stripe_fill5 to continue
2210  */
2211 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2212                         int disk_idx, int disks)
2213 {
2214         struct r5dev *dev = &sh->dev[disk_idx];
2215         struct r5dev *failed_dev = &sh->dev[s->failed_num];
2216
2217         /* is the data in this block needed, and can we get it? */
2218         if (!test_bit(R5_LOCKED, &dev->flags) &&
2219             !test_bit(R5_UPTODATE, &dev->flags) &&
2220             (dev->toread ||
2221              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2222              s->syncing || s->expanding ||
2223              (s->failed &&
2224               (failed_dev->toread ||
2225                (failed_dev->towrite &&
2226                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2227                 /* We would like to get this block, possibly by computing it,
2228                  * otherwise read it if the backing disk is insync
2229                  */
2230                 if ((s->uptodate == disks - 1) &&
2231                     (s->failed && disk_idx == s->failed_num)) {
2232                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2233                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2234                         set_bit(R5_Wantcompute, &dev->flags);
2235                         sh->ops.target = disk_idx;
2236                         sh->ops.target2 = -1;
2237                         s->req_compute = 1;
2238                         /* Careful: from this point on 'uptodate' is in the eye
2239                          * of raid_run_ops which services 'compute' operations
2240                          * before writes. R5_Wantcompute flags a block that will
2241                          * be R5_UPTODATE by the time it is needed for a
2242                          * subsequent operation.
2243                          */
2244                         s->uptodate++;
2245                         return 1; /* uptodate + compute == disks */
2246                 } else if (test_bit(R5_Insync, &dev->flags)) {
2247                         set_bit(R5_LOCKED, &dev->flags);
2248                         set_bit(R5_Wantread, &dev->flags);
2249                         s->locked++;
2250                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2251                                 s->syncing);
2252                 }
2253         }
2254
2255         return 0;
2256 }
2257
2258 /**
2259  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2260  */
2261 static void handle_stripe_fill5(struct stripe_head *sh,
2262                         struct stripe_head_state *s, int disks)
2263 {
2264         int i;
2265
2266         /* look for blocks to read/compute, skip this if a compute
2267          * is already in flight, or if the stripe contents are in the
2268          * midst of changing due to a write
2269          */
2270         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2271             !sh->reconstruct_state)
2272                 for (i = disks; i--; )
2273                         if (fetch_block5(sh, s, i, disks))
2274                                 break;
2275         set_bit(STRIPE_HANDLE, &sh->state);
2276 }
2277
2278 /* fetch_block6 - checks the given member device to see if its data needs
2279  * to be read or computed to satisfy a request.
2280  *
2281  * Returns 1 when no more member devices need to be checked, otherwise returns
2282  * 0 to tell the loop in handle_stripe_fill6 to continue
2283  */
2284 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2285                          struct r6_state *r6s, int disk_idx, int disks)
2286 {
2287         struct r5dev *dev = &sh->dev[disk_idx];
2288         struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2289                                   &sh->dev[r6s->failed_num[1]] };
2290
2291         if (!test_bit(R5_LOCKED, &dev->flags) &&
2292             !test_bit(R5_UPTODATE, &dev->flags) &&
2293             (dev->toread ||
2294              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2295              s->syncing || s->expanding ||
2296              (s->failed >= 1 &&
2297               (fdev[0]->toread || s->to_write)) ||
2298              (s->failed >= 2 &&
2299               (fdev[1]->toread || s->to_write)))) {
2300                 /* we would like to get this block, possibly by computing it,
2301                  * otherwise read it if the backing disk is insync
2302                  */
2303                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2304                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2305                 if ((s->uptodate == disks - 1) &&
2306                     (s->failed && (disk_idx == r6s->failed_num[0] ||
2307                                    disk_idx == r6s->failed_num[1]))) {
2308                         /* have disk failed, and we're requested to fetch it;
2309                          * do compute it
2310                          */
2311                         pr_debug("Computing stripe %llu block %d\n",
2312                                (unsigned long long)sh->sector, disk_idx);
2313                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2314                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2315                         set_bit(R5_Wantcompute, &dev->flags);
2316                         sh->ops.target = disk_idx;
2317                         sh->ops.target2 = -1; /* no 2nd target */
2318                         s->req_compute = 1;
2319                         s->uptodate++;
2320                         return 1;
2321                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2322                         /* Computing 2-failure is *very* expensive; only
2323                          * do it if failed >= 2
2324                          */
2325                         int other;
2326                         for (other = disks; other--; ) {
2327                                 if (other == disk_idx)
2328                                         continue;
2329                                 if (!test_bit(R5_UPTODATE,
2330                                       &sh->dev[other].flags))
2331                                         break;
2332                         }
2333                         BUG_ON(other < 0);
2334                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2335                                (unsigned long long)sh->sector,
2336                                disk_idx, other);
2337                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2338                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2339                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2340                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2341                         sh->ops.target = disk_idx;
2342                         sh->ops.target2 = other;
2343                         s->uptodate += 2;
2344                         s->req_compute = 1;
2345                         return 1;
2346                 } else if (test_bit(R5_Insync, &dev->flags)) {
2347                         set_bit(R5_LOCKED, &dev->flags);
2348                         set_bit(R5_Wantread, &dev->flags);
2349                         s->locked++;
2350                         pr_debug("Reading block %d (sync=%d)\n",
2351                                 disk_idx, s->syncing);
2352                 }
2353         }
2354
2355         return 0;
2356 }
2357
2358 /**
2359  * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2360  */
2361 static void handle_stripe_fill6(struct stripe_head *sh,
2362                         struct stripe_head_state *s, struct r6_state *r6s,
2363                         int disks)
2364 {
2365         int i;
2366
2367         /* look for blocks to read/compute, skip this if a compute
2368          * is already in flight, or if the stripe contents are in the
2369          * midst of changing due to a write
2370          */
2371         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2372             !sh->reconstruct_state)
2373                 for (i = disks; i--; )
2374                         if (fetch_block6(sh, s, r6s, i, disks))
2375                                 break;
2376         set_bit(STRIPE_HANDLE, &sh->state);
2377 }
2378
2379
2380 /* handle_stripe_clean_event
2381  * any written block on an uptodate or failed drive can be returned.
2382  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2383  * never LOCKED, so we don't need to test 'failed' directly.
2384  */
2385 static void handle_stripe_clean_event(raid5_conf_t *conf,
2386         struct stripe_head *sh, int disks, struct bio **return_bi)
2387 {
2388         int i;
2389         struct r5dev *dev;
2390
2391         for (i = disks; i--; )
2392                 if (sh->dev[i].written) {
2393                         dev = &sh->dev[i];
2394                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2395                                 test_bit(R5_UPTODATE, &dev->flags)) {
2396                                 /* We can return any write requests */
2397                                 struct bio *wbi, *wbi2;
2398                                 int bitmap_end = 0;
2399                                 pr_debug("Return write for disc %d\n", i);
2400                                 spin_lock_irq(&conf->device_lock);
2401                                 wbi = dev->written;
2402                                 dev->written = NULL;
2403                                 while (wbi && wbi->bi_sector <
2404                                         dev->sector + STRIPE_SECTORS) {
2405                                         wbi2 = r5_next_bio(wbi, dev->sector);
2406                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2407                                                 md_write_end(conf->mddev);
2408                                                 wbi->bi_next = *return_bi;
2409                                                 *return_bi = wbi;
2410                                         }
2411                                         wbi = wbi2;
2412                                 }
2413                                 if (dev->towrite == NULL)
2414                                         bitmap_end = 1;
2415                                 spin_unlock_irq(&conf->device_lock);
2416                                 if (bitmap_end)
2417                                         bitmap_endwrite(conf->mddev->bitmap,
2418                                                         sh->sector,
2419                                                         STRIPE_SECTORS,
2420                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2421                                                         0);
2422                         }
2423                 }
2424
2425         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2426                 if (atomic_dec_and_test(&conf->pending_full_writes))
2427                         md_wakeup_thread(conf->mddev->thread);
2428 }
2429
2430 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2431                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2432 {
2433         int rmw = 0, rcw = 0, i;
2434         for (i = disks; i--; ) {
2435                 /* would I have to read this buffer for read_modify_write */
2436                 struct r5dev *dev = &sh->dev[i];
2437                 if ((dev->towrite || i == sh->pd_idx) &&
2438                     !test_bit(R5_LOCKED, &dev->flags) &&
2439                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2440                       test_bit(R5_Wantcompute, &dev->flags))) {
2441                         if (test_bit(R5_Insync, &dev->flags))
2442                                 rmw++;
2443                         else
2444                                 rmw += 2*disks;  /* cannot read it */
2445                 }
2446                 /* Would I have to read this buffer for reconstruct_write */
2447                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2448                     !test_bit(R5_LOCKED, &dev->flags) &&
2449                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2450                     test_bit(R5_Wantcompute, &dev->flags))) {
2451                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2452                         else
2453                                 rcw += 2*disks;
2454                 }
2455         }
2456         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2457                 (unsigned long long)sh->sector, rmw, rcw);
2458         set_bit(STRIPE_HANDLE, &sh->state);
2459         if (rmw < rcw && rmw > 0)
2460                 /* prefer read-modify-write, but need to get some data */
2461                 for (i = disks; i--; ) {
2462                         struct r5dev *dev = &sh->dev[i];
2463                         if ((dev->towrite || i == sh->pd_idx) &&
2464                             !test_bit(R5_LOCKED, &dev->flags) &&
2465                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2466                             test_bit(R5_Wantcompute, &dev->flags)) &&
2467                             test_bit(R5_Insync, &dev->flags)) {
2468                                 if (
2469                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2470                                         pr_debug("Read_old block "
2471                                                 "%d for r-m-w\n", i);
2472                                         set_bit(R5_LOCKED, &dev->flags);
2473                                         set_bit(R5_Wantread, &dev->flags);
2474                                         s->locked++;
2475                                 } else {
2476                                         set_bit(STRIPE_DELAYED, &sh->state);
2477                                         set_bit(STRIPE_HANDLE, &sh->state);
2478                                 }
2479                         }
2480                 }
2481         if (rcw <= rmw && rcw > 0)
2482                 /* want reconstruct write, but need to get some data */
2483                 for (i = disks; i--; ) {
2484                         struct r5dev *dev = &sh->dev[i];
2485                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2486                             i != sh->pd_idx &&
2487                             !test_bit(R5_LOCKED, &dev->flags) &&
2488                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2489                             test_bit(R5_Wantcompute, &dev->flags)) &&
2490                             test_bit(R5_Insync, &dev->flags)) {
2491                                 if (
2492                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2493                                         pr_debug("Read_old block "
2494                                                 "%d for Reconstruct\n", i);
2495                                         set_bit(R5_LOCKED, &dev->flags);
2496                                         set_bit(R5_Wantread, &dev->flags);
2497                                         s->locked++;
2498                                 } else {
2499                                         set_bit(STRIPE_DELAYED, &sh->state);
2500                                         set_bit(STRIPE_HANDLE, &sh->state);
2501                                 }
2502                         }
2503                 }
2504         /* now if nothing is locked, and if we have enough data,
2505          * we can start a write request
2506          */
2507         /* since handle_stripe can be called at any time we need to handle the
2508          * case where a compute block operation has been submitted and then a
2509          * subsequent call wants to start a write request.  raid_run_ops only
2510          * handles the case where compute block and reconstruct are requested
2511          * simultaneously.  If this is not the case then new writes need to be
2512          * held off until the compute completes.
2513          */
2514         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2515             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2516             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2517                 schedule_reconstruction(sh, s, rcw == 0, 0);
2518 }
2519
2520 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2521                 struct stripe_head *sh, struct stripe_head_state *s,
2522                 struct r6_state *r6s, int disks)
2523 {
2524         int rcw = 0, pd_idx = sh->pd_idx, i;
2525         int qd_idx = sh->qd_idx;
2526
2527         set_bit(STRIPE_HANDLE, &sh->state);
2528         for (i = disks; i--; ) {
2529                 struct r5dev *dev = &sh->dev[i];
2530                 /* check if we haven't enough data */
2531                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2532                     i != pd_idx && i != qd_idx &&
2533                     !test_bit(R5_LOCKED, &dev->flags) &&
2534                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2535                       test_bit(R5_Wantcompute, &dev->flags))) {
2536                         rcw++;
2537                         if (!test_bit(R5_Insync, &dev->flags))
2538                                 continue; /* it's a failed drive */
2539
2540                         if (
2541                           test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2542                                 pr_debug("Read_old stripe %llu "
2543                                         "block %d for Reconstruct\n",
2544                                      (unsigned long long)sh->sector, i);
2545                                 set_bit(R5_LOCKED, &dev->flags);
2546                                 set_bit(R5_Wantread, &dev->flags);
2547                                 s->locked++;
2548                         } else {
2549                                 pr_debug("Request delayed stripe %llu "
2550                                         "block %d for Reconstruct\n",
2551                                      (unsigned long long)sh->sector, i);
2552                                 set_bit(STRIPE_DELAYED, &sh->state);
2553                                 set_bit(STRIPE_HANDLE, &sh->state);
2554                         }
2555                 }
2556         }
2557         /* now if nothing is locked, and if we have enough data, we can start a
2558          * write request
2559          */
2560         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2561             s->locked == 0 && rcw == 0 &&
2562             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2563                 schedule_reconstruction(sh, s, 1, 0);
2564         }
2565 }
2566
2567 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2568                                 struct stripe_head_state *s, int disks)
2569 {
2570         struct r5dev *dev = NULL;
2571
2572         set_bit(STRIPE_HANDLE, &sh->state);
2573
2574         switch (sh->check_state) {
2575         case check_state_idle:
2576                 /* start a new check operation if there are no failures */
2577                 if (s->failed == 0) {
2578                         BUG_ON(s->uptodate != disks);
2579                         sh->check_state = check_state_run;
2580                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2581                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2582                         s->uptodate--;
2583                         break;
2584                 }
2585                 dev = &sh->dev[s->failed_num];
2586                 /* fall through */
2587         case check_state_compute_result:
2588                 sh->check_state = check_state_idle;
2589                 if (!dev)
2590                         dev = &sh->dev[sh->pd_idx];
2591
2592                 /* check that a write has not made the stripe insync */
2593                 if (test_bit(STRIPE_INSYNC, &sh->state))
2594                         break;
2595
2596                 /* either failed parity check, or recovery is happening */
2597                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2598                 BUG_ON(s->uptodate != disks);
2599
2600                 set_bit(R5_LOCKED, &dev->flags);
2601                 s->locked++;
2602                 set_bit(R5_Wantwrite, &dev->flags);
2603
2604                 clear_bit(STRIPE_DEGRADED, &sh->state);
2605                 set_bit(STRIPE_INSYNC, &sh->state);
2606                 break;
2607         case check_state_run:
2608                 break; /* we will be called again upon completion */
2609         case check_state_check_result:
2610                 sh->check_state = check_state_idle;
2611
2612                 /* if a failure occurred during the check operation, leave
2613                  * STRIPE_INSYNC not set and let the stripe be handled again
2614                  */
2615                 if (s->failed)
2616                         break;
2617
2618                 /* handle a successful check operation, if parity is correct
2619                  * we are done.  Otherwise update the mismatch count and repair
2620                  * parity if !MD_RECOVERY_CHECK
2621                  */
2622                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2623                         /* parity is correct (on disc,
2624                          * not in buffer any more)
2625                          */
2626                         set_bit(STRIPE_INSYNC, &sh->state);
2627                 else {
2628                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2629                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2630                                 /* don't try to repair!! */
2631                                 set_bit(STRIPE_INSYNC, &sh->state);
2632                         else {
2633                                 sh->check_state = check_state_compute_run;
2634                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2635                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2636                                 set_bit(R5_Wantcompute,
2637                                         &sh->dev[sh->pd_idx].flags);
2638                                 sh->ops.target = sh->pd_idx;
2639                                 sh->ops.target2 = -1;
2640                                 s->uptodate++;
2641                         }
2642                 }
2643                 break;
2644         case check_state_compute_run:
2645                 break;
2646         default:
2647                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2648                        __func__, sh->check_state,
2649                        (unsigned long long) sh->sector);
2650                 BUG();
2651         }
2652 }
2653
2654
2655 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2656                                   struct stripe_head_state *s,
2657                                   struct r6_state *r6s, int disks)
2658 {
2659         int pd_idx = sh->pd_idx;
2660         int qd_idx = sh->qd_idx;
2661         struct r5dev *dev;
2662
2663         set_bit(STRIPE_HANDLE, &sh->state);
2664
2665         BUG_ON(s->failed > 2);
2666
2667         /* Want to check and possibly repair P and Q.
2668          * However there could be one 'failed' device, in which
2669          * case we can only check one of them, possibly using the
2670          * other to generate missing data
2671          */
2672
2673         switch (sh->check_state) {
2674         case check_state_idle:
2675                 /* start a new check operation if there are < 2 failures */
2676                 if (s->failed == r6s->q_failed) {
2677                         /* The only possible failed device holds Q, so it
2678                          * makes sense to check P (If anything else were failed,
2679                          * we would have used P to recreate it).
2680                          */
2681                         sh->check_state = check_state_run;
2682                 }
2683                 if (!r6s->q_failed && s->failed < 2) {
2684                         /* Q is not failed, and we didn't use it to generate
2685                          * anything, so it makes sense to check it
2686                          */
2687                         if (sh->check_state == check_state_run)
2688                                 sh->check_state = check_state_run_pq;
2689                         else
2690                                 sh->check_state = check_state_run_q;
2691                 }
2692
2693                 /* discard potentially stale zero_sum_result */
2694                 sh->ops.zero_sum_result = 0;
2695
2696                 if (sh->check_state == check_state_run) {
2697                         /* async_xor_zero_sum destroys the contents of P */
2698                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2699                         s->uptodate--;
2700                 }
2701                 if (sh->check_state >= check_state_run &&
2702                     sh->check_state <= check_state_run_pq) {
2703                         /* async_syndrome_zero_sum preserves P and Q, so
2704                          * no need to mark them !uptodate here
2705                          */
2706                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2707                         break;
2708                 }
2709
2710                 /* we have 2-disk failure */
2711                 BUG_ON(s->failed != 2);
2712                 /* fall through */
2713         case check_state_compute_result:
2714                 sh->check_state = check_state_idle;
2715
2716                 /* check that a write has not made the stripe insync */
2717                 if (test_bit(STRIPE_INSYNC, &sh->state))
2718                         break;
2719
2720                 /* now write out any block on a failed drive,
2721                  * or P or Q if they were recomputed
2722                  */
2723                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2724                 if (s->failed == 2) {
2725                         dev = &sh->dev[r6s->failed_num[1]];
2726                         s->locked++;
2727                         set_bit(R5_LOCKED, &dev->flags);
2728                         set_bit(R5_Wantwrite, &dev->flags);
2729                 }
2730                 if (s->failed >= 1) {
2731                         dev = &sh->dev[r6s->failed_num[0]];
2732                         s->locked++;
2733                         set_bit(R5_LOCKED, &dev->flags);
2734                         set_bit(R5_Wantwrite, &dev->flags);
2735                 }
2736                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2737                         dev = &sh->dev[pd_idx];
2738                         s->locked++;
2739                         set_bit(R5_LOCKED, &dev->flags);
2740                         set_bit(R5_Wantwrite, &dev->flags);
2741                 }
2742                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2743                         dev = &sh->dev[qd_idx];
2744                         s->locked++;
2745                         set_bit(R5_LOCKED, &dev->flags);
2746                         set_bit(R5_Wantwrite, &dev->flags);
2747                 }
2748                 clear_bit(STRIPE_DEGRADED, &sh->state);
2749
2750                 set_bit(STRIPE_INSYNC, &sh->state);
2751                 break;
2752         case check_state_run:
2753         case check_state_run_q:
2754         case check_state_run_pq:
2755                 break; /* we will be called again upon completion */
2756         case check_state_check_result:
2757                 sh->check_state = check_state_idle;
2758
2759                 /* handle a successful check operation, if parity is correct
2760                  * we are done.  Otherwise update the mismatch count and repair
2761                  * parity if !MD_RECOVERY_CHECK
2762                  */
2763                 if (sh->ops.zero_sum_result == 0) {
2764                         /* both parities are correct */
2765                         if (!s->failed)
2766                                 set_bit(STRIPE_INSYNC, &sh->state);
2767                         else {
2768                                 /* in contrast to the raid5 case we can validate
2769                                  * parity, but still have a failure to write
2770                                  * back
2771                                  */
2772                                 sh->check_state = check_state_compute_result;
2773                                 /* Returning at this point means that we may go
2774                                  * off and bring p and/or q uptodate again so
2775                                  * we make sure to check zero_sum_result again
2776                                  * to verify if p or q need writeback
2777                                  */
2778                         }
2779                 } else {
2780                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2781                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2782                                 /* don't try to repair!! */
2783                                 set_bit(STRIPE_INSYNC, &sh->state);
2784                         else {
2785                                 int *target = &sh->ops.target;
2786
2787                                 sh->ops.target = -1;
2788                                 sh->ops.target2 = -1;
2789                                 sh->check_state = check_state_compute_run;
2790                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2791                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2792                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2793                                         set_bit(R5_Wantcompute,
2794                                                 &sh->dev[pd_idx].flags);
2795                                         *target = pd_idx;
2796                                         target = &sh->ops.target2;
2797                                         s->uptodate++;
2798                                 }
2799                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2800                                         set_bit(R5_Wantcompute,
2801                                                 &sh->dev[qd_idx].flags);
2802                                         *target = qd_idx;
2803                                         s->uptodate++;
2804                                 }
2805                         }
2806                 }
2807                 break;
2808         case check_state_compute_run:
2809                 break;
2810         default:
2811                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2812                        __func__, sh->check_state,
2813                        (unsigned long long) sh->sector);
2814                 BUG();
2815         }
2816 }
2817
2818 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2819                                 struct r6_state *r6s)
2820 {
2821         int i;
2822
2823         /* We have read all the blocks in this stripe and now we need to
2824          * copy some of them into a target stripe for expand.
2825          */
2826         struct dma_async_tx_descriptor *tx = NULL;
2827         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2828         for (i = 0; i < sh->disks; i++)
2829                 if (i != sh->pd_idx && i != sh->qd_idx) {
2830                         int dd_idx, j;
2831                         struct stripe_head *sh2;
2832                         struct async_submit_ctl submit;
2833
2834                         sector_t bn = compute_blocknr(sh, i, 1);
2835                         sector_t s = raid5_compute_sector(conf, bn, 0,
2836                                                           &dd_idx, NULL);
2837                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2838                         if (sh2 == NULL)
2839                                 /* so far only the early blocks of this stripe
2840                                  * have been requested.  When later blocks
2841                                  * get requested, we will try again
2842                                  */
2843                                 continue;
2844                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2845                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2846                                 /* must have already done this block */
2847                                 release_stripe(sh2);
2848                                 continue;
2849                         }
2850
2851                         /* place all the copies on one channel */
2852                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2853                         tx = async_memcpy(sh2->dev[dd_idx].page,
2854                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2855                                           &submit);
2856
2857                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2858                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2859                         for (j = 0; j < conf->raid_disks; j++)
2860                                 if (j != sh2->pd_idx &&
2861                                     (!r6s || j != sh2->qd_idx) &&
2862                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2863                                         break;
2864                         if (j == conf->raid_disks) {
2865                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2866                                 set_bit(STRIPE_HANDLE, &sh2->state);
2867                         }
2868                         release_stripe(sh2);
2869
2870                 }
2871         /* done submitting copies, wait for them to complete */
2872         if (tx) {
2873                 async_tx_ack(tx);
2874                 dma_wait_for_async_tx(tx);
2875         }
2876 }
2877
2878
2879 /*
2880  * handle_stripe - do things to a stripe.
2881  *
2882  * We lock the stripe and then examine the state of various bits
2883  * to see what needs to be done.
2884  * Possible results:
2885  *    return some read request which now have data
2886  *    return some write requests which are safely on disc
2887  *    schedule a read on some buffers
2888  *    schedule a write of some buffers
2889  *    return confirmation of parity correctness
2890  *
2891  * buffers are taken off read_list or write_list, and bh_cache buffers
2892  * get BH_Lock set before the stripe lock is released.
2893  *
2894  */
2895
2896 static bool handle_stripe5(struct stripe_head *sh)
2897 {
2898         raid5_conf_t *conf = sh->raid_conf;
2899         int disks = sh->disks, i;
2900         struct bio *return_bi = NULL;
2901         struct stripe_head_state s;
2902         struct r5dev *dev;
2903         mdk_rdev_t *blocked_rdev = NULL;
2904         int prexor;
2905
2906         memset(&s, 0, sizeof(s));
2907         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2908                  "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2909                  atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2910                  sh->reconstruct_state);
2911
2912         spin_lock(&sh->lock);
2913         clear_bit(STRIPE_HANDLE, &sh->state);
2914         clear_bit(STRIPE_DELAYED, &sh->state);
2915
2916         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2917         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2918         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2919
2920         /* Now to look around and see what can be done */
2921         rcu_read_lock();
2922         for (i=disks; i--; ) {
2923                 mdk_rdev_t *rdev;
2924                 struct r5dev *dev = &sh->dev[i];
2925                 clear_bit(R5_Insync, &dev->flags);
2926
2927                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2928                         "written %p\n", i, dev->flags, dev->toread, dev->read,
2929                         dev->towrite, dev->written);
2930
2931                 /* maybe we can request a biofill operation
2932                  *
2933                  * new wantfill requests are only permitted while
2934                  * ops_complete_biofill is guaranteed to be inactive
2935                  */
2936                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2937                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2938                         set_bit(R5_Wantfill, &dev->flags);
2939
2940                 /* now count some things */
2941                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2942                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2943                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2944
2945                 if (test_bit(R5_Wantfill, &dev->flags))
2946                         s.to_fill++;
2947                 else if (dev->toread)
2948                         s.to_read++;
2949                 if (dev->towrite) {
2950                         s.to_write++;
2951                         if (!test_bit(R5_OVERWRITE, &dev->flags))
2952                                 s.non_overwrite++;
2953                 }
2954                 if (dev->written)
2955                         s.written++;
2956                 rdev = rcu_dereference(conf->disks[i].rdev);
2957                 if (blocked_rdev == NULL &&
2958                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2959                         blocked_rdev = rdev;
2960                         atomic_inc(&rdev->nr_pending);
2961                 }
2962                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2963                         /* The ReadError flag will just be confusing now */
2964                         clear_bit(R5_ReadError, &dev->flags);
2965                         clear_bit(R5_ReWrite, &dev->flags);
2966                 }
2967                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2968                     || test_bit(R5_ReadError, &dev->flags)) {
2969                         s.failed++;
2970                         s.failed_num = i;
2971                 } else
2972                         set_bit(R5_Insync, &dev->flags);
2973         }
2974         rcu_read_unlock();
2975
2976         if (unlikely(blocked_rdev)) {
2977                 if (s.syncing || s.expanding || s.expanded ||
2978                     s.to_write || s.written) {
2979                         set_bit(STRIPE_HANDLE, &sh->state);
2980                         goto unlock;
2981                 }
2982                 /* There is nothing for the blocked_rdev to block */
2983                 rdev_dec_pending(blocked_rdev, conf->mddev);
2984                 blocked_rdev = NULL;
2985         }
2986
2987         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2988                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2989                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2990         }
2991
2992         pr_debug("locked=%d uptodate=%d to_read=%d"
2993                 " to_write=%d failed=%d failed_num=%d\n",
2994                 s.locked, s.uptodate, s.to_read, s.to_write,
2995                 s.failed, s.failed_num);
2996         /* check if the array has lost two devices and, if so, some requests might
2997          * need to be failed
2998          */
2999         if (s.failed > 1 && s.to_read+s.to_write+s.written)
3000                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3001         if (s.failed > 1 && s.syncing) {
3002                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3003                 clear_bit(STRIPE_SYNCING, &sh->state);
3004                 s.syncing = 0;
3005         }
3006
3007         /* might be able to return some write requests if the parity block
3008          * is safe, or on a failed drive
3009          */
3010         dev = &sh->dev[sh->pd_idx];
3011         if ( s.written &&
3012              ((test_bit(R5_Insync, &dev->flags) &&
3013                !test_bit(R5_LOCKED, &dev->flags) &&
3014                test_bit(R5_UPTODATE, &dev->flags)) ||
3015                (s.failed == 1 && s.failed_num == sh->pd_idx)))
3016                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3017
3018         /* Now we might consider reading some blocks, either to check/generate
3019          * parity, or to satisfy requests
3020          * or to load a block that is being partially written.
3021          */
3022         if (s.to_read || s.non_overwrite ||
3023             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3024                 handle_stripe_fill5(sh, &s, disks);
3025
3026         /* Now we check to see if any write operations have recently
3027          * completed
3028          */
3029         prexor = 0;
3030         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3031                 prexor = 1;
3032         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3033             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3034                 sh->reconstruct_state = reconstruct_state_idle;
3035
3036                 /* All the 'written' buffers and the parity block are ready to
3037                  * be written back to disk
3038                  */
3039                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3040                 for (i = disks; i--; ) {
3041                         dev = &sh->dev[i];
3042                         if (test_bit(R5_LOCKED, &dev->flags) &&
3043                                 (i == sh->pd_idx || dev->written)) {
3044                                 pr_debug("Writing block %d\n", i);
3045                                 set_bit(R5_Wantwrite, &dev->flags);
3046                                 if (prexor)
3047                                         continue;
3048                                 if (!test_bit(R5_Insync, &dev->flags) ||
3049                                     (i == sh->pd_idx && s.failed == 0))
3050                                         set_bit(STRIPE_INSYNC, &sh->state);
3051                         }
3052                 }
3053                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3054                         atomic_dec(&conf->preread_active_stripes);
3055                         if (atomic_read(&conf->preread_active_stripes) <
3056                                 IO_THRESHOLD)
3057                                 md_wakeup_thread(conf->mddev->thread);
3058                 }
3059         }
3060
3061         /* Now to consider new write requests and what else, if anything
3062          * should be read.  We do not handle new writes when:
3063          * 1/ A 'write' operation (copy+xor) is already in flight.
3064          * 2/ A 'check' operation is in flight, as it may clobber the parity
3065          *    block.
3066          */
3067         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3068                 handle_stripe_dirtying5(conf, sh, &s, disks);
3069
3070         /* maybe we need to check and possibly fix the parity for this stripe
3071          * Any reads will already have been scheduled, so we just see if enough
3072          * data is available.  The parity check is held off while parity
3073          * dependent operations are in flight.
3074          */
3075         if (sh->check_state ||
3076             (s.syncing && s.locked == 0 &&
3077              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3078              !test_bit(STRIPE_INSYNC, &sh->state)))
3079                 handle_parity_checks5(conf, sh, &s, disks);
3080
3081         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3082                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3083                 clear_bit(STRIPE_SYNCING, &sh->state);
3084         }
3085
3086         /* If the failed drive is just a ReadError, then we might need to progress
3087          * the repair/check process
3088          */
3089         if (s.failed == 1 && !conf->mddev->ro &&
3090             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3091             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3092             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3093                 ) {
3094                 dev = &sh->dev[s.failed_num];
3095                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3096                         set_bit(R5_Wantwrite, &dev->flags);
3097                         set_bit(R5_ReWrite, &dev->flags);
3098                         set_bit(R5_LOCKED, &dev->flags);
3099                         s.locked++;
3100                 } else {
3101                         /* let's read it back */
3102                         set_bit(R5_Wantread, &dev->flags);
3103                         set_bit(R5_LOCKED, &dev->flags);
3104                         s.locked++;
3105                 }
3106         }
3107
3108         /* Finish reconstruct operations initiated by the expansion process */
3109         if (sh->reconstruct_state == reconstruct_state_result) {
3110                 struct stripe_head *sh2
3111                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3112                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3113                         /* sh cannot be written until sh2 has been read.
3114                          * so arrange for sh to be delayed a little
3115                          */
3116                         set_bit(STRIPE_DELAYED, &sh->state);
3117                         set_bit(STRIPE_HANDLE, &sh->state);
3118                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3119                                               &sh2->state))
3120                                 atomic_inc(&conf->preread_active_stripes);
3121                         release_stripe(sh2);
3122                         goto unlock;
3123                 }
3124                 if (sh2)
3125                         release_stripe(sh2);
3126
3127                 sh->reconstruct_state = reconstruct_state_idle;
3128                 clear_bit(STRIPE_EXPANDING, &sh->state);
3129                 for (i = conf->raid_disks; i--; ) {
3130                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3131                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3132                         s.locked++;
3133                 }
3134         }
3135
3136         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3137             !sh->reconstruct_state) {
3138                 /* Need to write out all blocks after computing parity */
3139                 sh->disks = conf->raid_disks;
3140                 stripe_set_idx(sh->sector, conf, 0, sh);
3141                 schedule_reconstruction(sh, &s, 1, 1);
3142         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3143                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3144                 atomic_dec(&conf->reshape_stripes);
3145                 wake_up(&conf->wait_for_overlap);
3146                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3147         }
3148
3149         if (s.expanding && s.locked == 0 &&
3150             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3151                 handle_stripe_expansion(conf, sh, NULL);
3152
3153  unlock:
3154         spin_unlock(&sh->lock);
3155
3156         /* wait for this device to become unblocked */
3157         if (unlikely(blocked_rdev))
3158                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3159
3160         if (s.ops_request)
3161                 raid_run_ops(sh, s.ops_request);
3162
3163         ops_run_io(sh, &s);
3164
3165         return_io(return_bi);
3166
3167         return blocked_rdev == NULL;
3168 }
3169
3170 static bool handle_stripe6(struct stripe_head *sh)
3171 {
3172         raid5_conf_t *conf = sh->raid_conf;
3173         int disks = sh->disks;
3174         struct bio *return_bi = NULL;
3175         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3176         struct stripe_head_state s;
3177         struct r6_state r6s;
3178         struct r5dev *dev, *pdev, *qdev;
3179         mdk_rdev_t *blocked_rdev = NULL;
3180
3181         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3182                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3183                (unsigned long long)sh->sector, sh->state,
3184                atomic_read(&sh->count), pd_idx, qd_idx,
3185                sh->check_state, sh->reconstruct_state);
3186         memset(&s, 0, sizeof(s));
3187
3188         spin_lock(&sh->lock);
3189         clear_bit(STRIPE_HANDLE, &sh->state);
3190         clear_bit(STRIPE_DELAYED, &sh->state);
3191
3192         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3193         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3194         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3195         /* Now to look around and see what can be done */
3196
3197         rcu_read_lock();
3198         for (i=disks; i--; ) {
3199                 mdk_rdev_t *rdev;
3200                 dev = &sh->dev[i];
3201                 clear_bit(R5_Insync, &dev->flags);
3202
3203                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3204                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3205                 /* maybe we can reply to a read
3206                  *
3207                  * new wantfill requests are only permitted while
3208                  * ops_complete_biofill is guaranteed to be inactive
3209                  */
3210                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3211                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3212                         set_bit(R5_Wantfill, &dev->flags);
3213
3214                 /* now count some things */
3215                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3216                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3217                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3218                         s.compute++;
3219                         BUG_ON(s.compute > 2);
3220                 }
3221
3222                 if (test_bit(R5_Wantfill, &dev->flags)) {
3223                         s.to_fill++;
3224                 } else if (dev->toread)
3225                         s.to_read++;
3226                 if (dev->towrite) {
3227                         s.to_write++;
3228                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3229                                 s.non_overwrite++;
3230                 }
3231                 if (dev->written)
3232                         s.written++;
3233                 rdev = rcu_dereference(conf->disks[i].rdev);
3234                 if (blocked_rdev == NULL &&
3235                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3236                         blocked_rdev = rdev;
3237                         atomic_inc(&rdev->nr_pending);
3238                 }
3239                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3240                         /* The ReadError flag will just be confusing now */
3241                         clear_bit(R5_ReadError, &dev->flags);
3242                         clear_bit(R5_ReWrite, &dev->flags);
3243                 }
3244                 if (!rdev || !test_bit(In_sync, &rdev->flags)
3245                     || test_bit(R5_ReadError, &dev->flags)) {
3246                         if (s.failed < 2)
3247                                 r6s.failed_num[s.failed] = i;
3248                         s.failed++;
3249                 } else
3250                         set_bit(R5_Insync, &dev->flags);
3251         }
3252         rcu_read_unlock();
3253
3254         if (unlikely(blocked_rdev)) {
3255                 if (s.syncing || s.expanding || s.expanded ||
3256                     s.to_write || s.written) {
3257                         set_bit(STRIPE_HANDLE, &sh->state);
3258                         goto unlock;
3259                 }
3260                 /* There is nothing for the blocked_rdev to block */
3261                 rdev_dec_pending(blocked_rdev, conf->mddev);
3262                 blocked_rdev = NULL;
3263         }
3264
3265         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3266                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3267                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3268         }
3269
3270         pr_debug("locked=%d uptodate=%d to_read=%d"
3271                " to_write=%d failed=%d failed_num=%d,%d\n",
3272                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3273                r6s.failed_num[0], r6s.failed_num[1]);
3274         /* check if the array has lost >2 devices and, if so, some requests
3275          * might need to be failed
3276          */
3277         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3278                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3279         if (s.failed > 2 && s.syncing) {
3280                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3281                 clear_bit(STRIPE_SYNCING, &sh->state);
3282                 s.syncing = 0;
3283         }
3284
3285         /*
3286          * might be able to return some write requests if the parity blocks
3287          * are safe, or on a failed drive
3288          */
3289         pdev = &sh->dev[pd_idx];
3290         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3291                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3292         qdev = &sh->dev[qd_idx];
3293         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3294                 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3295
3296         if ( s.written &&
3297              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3298                              && !test_bit(R5_LOCKED, &pdev->flags)
3299                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3300              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3301                              && !test_bit(R5_LOCKED, &qdev->flags)
3302                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3303                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3304
3305         /* Now we might consider reading some blocks, either to check/generate
3306          * parity, or to satisfy requests
3307          * or to load a block that is being partially written.
3308          */
3309         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3310             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3311                 handle_stripe_fill6(sh, &s, &r6s, disks);
3312
3313         /* Now we check to see if any write operations have recently
3314          * completed
3315          */
3316         if (sh->reconstruct_state == reconstruct_state_drain_result) {
3317                 int qd_idx = sh->qd_idx;
3318
3319                 sh->reconstruct_state = reconstruct_state_idle;
3320                 /* All the 'written' buffers and the parity blocks are ready to
3321                  * be written back to disk
3322                  */
3323                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3324                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3325                 for (i = disks; i--; ) {
3326                         dev = &sh->dev[i];
3327                         if (test_bit(R5_LOCKED, &dev->flags) &&
3328                             (i == sh->pd_idx || i == qd_idx ||
3329                              dev->written)) {
3330                                 pr_debug("Writing block %d\n", i);
3331                                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3332                                 set_bit(R5_Wantwrite, &dev->flags);
3333                                 if (!test_bit(R5_Insync, &dev->flags) ||
3334                                     ((i == sh->pd_idx || i == qd_idx) &&
3335                                       s.failed == 0))
3336                                         set_bit(STRIPE_INSYNC, &sh->state);
3337                         }
3338                 }
3339                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3340                         atomic_dec(&conf->preread_active_stripes);
3341                         if (atomic_read(&conf->preread_active_stripes) <
3342                                 IO_THRESHOLD)
3343                                 md_wakeup_thread(conf->mddev->thread);
3344                 }
3345         }
3346
3347         /* Now to consider new write requests and what else, if anything
3348          * should be read.  We do not handle new writes when:
3349          * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3350          * 2/ A 'check' operation is in flight, as it may clobber the parity
3351          *    block.
3352          */
3353         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3354                 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3355
3356         /* maybe we need to check and possibly fix the parity for this stripe
3357          * Any reads will already have been scheduled, so we just see if enough
3358          * data is available.  The parity check is held off while parity
3359          * dependent operations are in flight.
3360          */
3361         if (sh->check_state ||
3362             (s.syncing && s.locked == 0 &&
3363              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3364              !test_bit(STRIPE_INSYNC, &sh->state)))
3365                 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3366
3367         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3368                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3369                 clear_bit(STRIPE_SYNCING, &sh->state);
3370         }
3371
3372         /* If the failed drives are just a ReadError, then we might need
3373          * to progress the repair/check process
3374          */
3375         if (s.failed <= 2 && !conf->mddev->ro)
3376                 for (i = 0; i < s.failed; i++) {
3377                         dev = &sh->dev[r6s.failed_num[i]];
3378                         if (test_bit(R5_ReadError, &dev->flags)
3379                             && !test_bit(R5_LOCKED, &dev->flags)
3380                             && test_bit(R5_UPTODATE, &dev->flags)
3381                                 ) {
3382                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3383                                         set_bit(R5_Wantwrite, &dev->flags);
3384                                         set_bit(R5_ReWrite, &dev->flags);
3385                                         set_bit(R5_LOCKED, &dev->flags);
3386                                         s.locked++;
3387                                 } else {
3388                                         /* let's read it back */
3389                                         set_bit(R5_Wantread, &dev->flags);
3390                                         set_bit(R5_LOCKED, &dev->flags);
3391                                         s.locked++;
3392                                 }
3393                         }
3394                 }
3395
3396         /* Finish reconstruct operations initiated by the expansion process */
3397         if (sh->reconstruct_state == reconstruct_state_result) {
3398                 sh->reconstruct_state = reconstruct_state_idle;
3399                 clear_bit(STRIPE_EXPANDING, &sh->state);
3400                 for (i = conf->raid_disks; i--; ) {
3401                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3402                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3403                         s.locked++;
3404                 }
3405         }
3406
3407         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3408             !sh->reconstruct_state) {
3409                 struct stripe_head *sh2
3410                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3411                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3412                         /* sh cannot be written until sh2 has been read.
3413                          * so arrange for sh to be delayed a little
3414                          */
3415                         set_bit(STRIPE_DELAYED, &sh->state);
3416                         set_bit(STRIPE_HANDLE, &sh->state);
3417                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3418                                               &sh2->state))
3419                                 atomic_inc(&conf->preread_active_stripes);
3420                         release_stripe(sh2);
3421                         goto unlock;
3422                 }
3423                 if (sh2)
3424                         release_stripe(sh2);
3425
3426                 /* Need to write out all blocks after computing P&Q */
3427                 sh->disks = conf->raid_disks;
3428                 stripe_set_idx(sh->sector, conf, 0, sh);
3429                 schedule_reconstruction(sh, &s, 1, 1);
3430         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3431                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3432                 atomic_dec(&conf->reshape_stripes);
3433                 wake_up(&conf->wait_for_overlap);
3434                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3435         }
3436
3437         if (s.expanding && s.locked == 0 &&
3438             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3439                 handle_stripe_expansion(conf, sh, &r6s);
3440
3441  unlock:
3442         spin_unlock(&sh->lock);
3443
3444         /* wait for this device to become unblocked */
3445         if (unlikely(blocked_rdev))
3446                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3447
3448         if (s.ops_request)
3449                 raid_run_ops(sh, s.ops_request);
3450
3451         ops_run_io(sh, &s);
3452
3453         return_io(return_bi);
3454
3455         return blocked_rdev == NULL;
3456 }
3457
3458 /* returns true if the stripe was handled */
3459 static bool handle_stripe(struct stripe_head *sh)
3460 {
3461         if (sh->raid_conf->level == 6)
3462                 return handle_stripe6(sh);
3463         else
3464                 return handle_stripe5(sh);
3465 }
3466
3467 static void raid5_activate_delayed(raid5_conf_t *conf)
3468 {
3469         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3470                 while (!list_empty(&conf->delayed_list)) {
3471                         struct list_head *l = conf->delayed_list.next;
3472                         struct stripe_head *sh;
3473                         sh = list_entry(l, struct stripe_head, lru);
3474                         list_del_init(l);
3475                         clear_bit(STRIPE_DELAYED, &sh->state);
3476                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3477                                 atomic_inc(&conf->preread_active_stripes);
3478                         list_add_tail(&sh->lru, &conf->hold_list);
3479                 }
3480         } else
3481                 blk_plug_device(conf->mddev->queue);
3482 }
3483
3484 static void activate_bit_delay(raid5_conf_t *conf)
3485 {
3486         /* device_lock is held */
3487         struct list_head head;
3488         list_add(&head, &conf->bitmap_list);
3489         list_del_init(&conf->bitmap_list);
3490         while (!list_empty(&head)) {
3491                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3492                 list_del_init(&sh->lru);
3493                 atomic_inc(&sh->count);
3494                 __release_stripe(conf, sh);
3495         }
3496 }
3497
3498 static void unplug_slaves(mddev_t *mddev)
3499 {
3500         raid5_conf_t *conf = mddev->private;
3501         int i;
3502
3503         rcu_read_lock();
3504         for (i = 0; i < conf->raid_disks; i++) {
3505                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3506                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3507                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3508
3509                         atomic_inc(&rdev->nr_pending);
3510                         rcu_read_unlock();
3511
3512                         blk_unplug(r_queue);
3513
3514                         rdev_dec_pending(rdev, mddev);
3515                         rcu_read_lock();
3516                 }
3517         }
3518         rcu_read_unlock();
3519 }
3520
3521 static void raid5_unplug_device(struct request_queue *q)
3522 {
3523         mddev_t *mddev = q->queuedata;
3524         raid5_conf_t *conf = mddev->private;
3525         unsigned long flags;
3526
3527         spin_lock_irqsave(&conf->device_lock, flags);
3528
3529         if (blk_remove_plug(q)) {
3530                 conf->seq_flush++;
3531                 raid5_activate_delayed(conf);
3532         }
3533         md_wakeup_thread(mddev->thread);
3534
3535         spin_unlock_irqrestore(&conf->device_lock, flags);
3536
3537         unplug_slaves(mddev);
3538 }
3539
3540 static int raid5_congested(void *data, int bits)
3541 {
3542         mddev_t *mddev = data;
3543         raid5_conf_t *conf = mddev->private;
3544
3545         /* No difference between reads and writes.  Just check
3546          * how busy the stripe_cache is
3547          */
3548         if (conf->inactive_blocked)
3549                 return 1;
3550         if (conf->quiesce)
3551                 return 1;
3552         if (list_empty_careful(&conf->inactive_list))
3553                 return 1;
3554
3555         return 0;
3556 }
3557
3558 /* We want read requests to align with chunks where possible,
3559  * but write requests don't need to.
3560  */
3561 static int raid5_mergeable_bvec(struct request_queue *q,
3562                                 struct bvec_merge_data *bvm,
3563                                 struct bio_vec *biovec)
3564 {
3565         mddev_t *mddev = q->queuedata;
3566         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3567         int max;
3568         unsigned int chunk_sectors = mddev->chunk_sectors;
3569         unsigned int bio_sectors = bvm->bi_size >> 9;
3570
3571         if ((bvm->bi_rw & 1) == WRITE)
3572                 return biovec->bv_len; /* always allow writes to be mergeable */
3573
3574         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3575                 chunk_sectors = mddev->new_chunk_sectors;
3576         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3577         if (max < 0) max = 0;
3578         if (max <= biovec->bv_len && bio_sectors == 0)
3579                 return biovec->bv_len;
3580         else
3581                 return max;
3582 }
3583
3584
3585 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3586 {
3587         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3588         unsigned int chunk_sectors = mddev->chunk_sectors;
3589         unsigned int bio_sectors = bio->bi_size >> 9;
3590
3591         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3592                 chunk_sectors = mddev->new_chunk_sectors;
3593         return  chunk_sectors >=
3594                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3595 }
3596
3597 /*
3598  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3599  *  later sampled by raid5d.
3600  */
3601 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3602 {
3603         unsigned long flags;
3604
3605         spin_lock_irqsave(&conf->device_lock, flags);
3606
3607         bi->bi_next = conf->retry_read_aligned_list;
3608         conf->retry_read_aligned_list = bi;
3609
3610         spin_unlock_irqrestore(&conf->device_lock, flags);
3611         md_wakeup_thread(conf->mddev->thread);
3612 }
3613
3614
3615 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3616 {
3617         struct bio *bi;
3618
3619         bi = conf->retry_read_aligned;
3620         if (bi) {
3621                 conf->retry_read_aligned = NULL;
3622                 return bi;
3623         }
3624         bi = conf->retry_read_aligned_list;
3625         if(bi) {
3626                 conf->retry_read_aligned_list = bi->bi_next;
3627                 bi->bi_next = NULL;
3628                 /*
3629                  * this sets the active strip count to 1 and the processed
3630                  * strip count to zero (upper 8 bits)
3631                  */
3632                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3633         }
3634
3635         return bi;
3636 }
3637
3638
3639 /*
3640  *  The "raid5_align_endio" should check if the read succeeded and if it
3641  *  did, call bio_endio on the original bio (having bio_put the new bio
3642  *  first).
3643  *  If the read failed..
3644  */
3645 static void raid5_align_endio(struct bio *bi, int error)
3646 {
3647         struct bio* raid_bi  = bi->bi_private;
3648         mddev_t *mddev;
3649         raid5_conf_t *conf;
3650         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3651         mdk_rdev_t *rdev;
3652
3653         bio_put(bi);
3654
3655         mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3656         conf = mddev->private;
3657         rdev = (void*)raid_bi->bi_next;
3658         raid_bi->bi_next = NULL;
3659
3660         rdev_dec_pending(rdev, conf->mddev);
3661
3662         if (!error && uptodate) {
3663                 bio_endio(raid_bi, 0);
3664                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3665                         wake_up(&conf->wait_for_stripe);
3666                 return;
3667         }
3668
3669
3670         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3671
3672         add_bio_to_retry(raid_bi, conf);
3673 }
3674
3675 static int bio_fits_rdev(struct bio *bi)
3676 {
3677         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3678
3679         if ((bi->bi_size>>9) > queue_max_sectors(q))
3680                 return 0;
3681         blk_recount_segments(q, bi);
3682         if (bi->bi_phys_segments > queue_max_phys_segments(q))
3683                 return 0;
3684
3685         if (q->merge_bvec_fn)
3686                 /* it's too hard to apply the merge_bvec_fn at this stage,
3687                  * just just give up
3688                  */
3689                 return 0;
3690
3691         return 1;
3692 }
3693
3694
3695 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3696 {
3697         mddev_t *mddev = q->queuedata;
3698         raid5_conf_t *conf = mddev->private;
3699         unsigned int dd_idx;
3700         struct bio* align_bi;
3701         mdk_rdev_t *rdev;
3702
3703         if (!in_chunk_boundary(mddev, raid_bio)) {
3704                 pr_debug("chunk_aligned_read : non aligned\n");
3705                 return 0;
3706         }
3707         /*
3708          * use bio_clone to make a copy of the bio
3709          */
3710         align_bi = bio_clone(raid_bio, GFP_NOIO);
3711         if (!align_bi)
3712                 return 0;
3713         /*
3714          *   set bi_end_io to a new function, and set bi_private to the
3715          *     original bio.
3716          */
3717         align_bi->bi_end_io  = raid5_align_endio;
3718         align_bi->bi_private = raid_bio;
3719         /*
3720          *      compute position
3721          */
3722         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3723                                                     0,
3724                                                     &dd_idx, NULL);
3725
3726         rcu_read_lock();
3727         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3728         if (rdev && test_bit(In_sync, &rdev->flags)) {
3729                 atomic_inc(&rdev->nr_pending);
3730                 rcu_read_unlock();
3731                 raid_bio->bi_next = (void*)rdev;
3732                 align_bi->bi_bdev =  rdev->bdev;
3733                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3734                 align_bi->bi_sector += rdev->data_offset;
3735
3736                 if (!bio_fits_rdev(align_bi)) {
3737                         /* too big in some way */
3738                         bio_put(align_bi);
3739                         rdev_dec_pending(rdev, mddev);
3740                         return 0;
3741                 }
3742
3743                 spin_lock_irq(&conf->device_lock);
3744                 wait_event_lock_irq(conf->wait_for_stripe,
3745                                     conf->quiesce == 0,
3746                                     conf->device_lock, /* nothing */);
3747                 atomic_inc(&conf->active_aligned_reads);
3748                 spin_unlock_irq(&conf->device_lock);
3749
3750                 generic_make_request(align_bi);
3751                 return 1;
3752         } else {
3753                 rcu_read_unlock();
3754                 bio_put(align_bi);
3755                 return 0;
3756         }
3757 }
3758
3759 /* __get_priority_stripe - get the next stripe to process
3760  *
3761  * Full stripe writes are allowed to pass preread active stripes up until
3762  * the bypass_threshold is exceeded.  In general the bypass_count
3763  * increments when the handle_list is handled before the hold_list; however, it
3764  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3765  * stripe with in flight i/o.  The bypass_count will be reset when the
3766  * head of the hold_list has changed, i.e. the head was promoted to the
3767  * handle_list.
3768  */
3769 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3770 {
3771         struct stripe_head *sh;
3772
3773         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3774                   __func__,
3775                   list_empty(&conf->handle_list) ? "empty" : "busy",
3776                   list_empty(&conf->hold_list) ? "empty" : "busy",
3777                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3778
3779         if (!list_empty(&conf->handle_list)) {
3780                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3781
3782                 if (list_empty(&conf->hold_list))
3783                         conf->bypass_count = 0;
3784                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3785                         if (conf->hold_list.next == conf->last_hold)
3786                                 conf->bypass_count++;
3787                         else {
3788                                 conf->last_hold = conf->hold_list.next;
3789                                 conf->bypass_count -= conf->bypass_threshold;
3790                                 if (conf->bypass_count < 0)
3791                                         conf->bypass_count = 0;
3792                         }
3793                 }
3794         } else if (!list_empty(&conf->hold_list) &&
3795                    ((conf->bypass_threshold &&
3796                      conf->bypass_count > conf->bypass_threshold) ||
3797                     atomic_read(&conf->pending_full_writes) == 0)) {
3798                 sh = list_entry(conf->hold_list.next,
3799                                 typeof(*sh), lru);
3800                 conf->bypass_count -= conf->bypass_threshold;
3801                 if (conf->bypass_count < 0)
3802                         conf->bypass_count = 0;
3803         } else
3804                 return NULL;
3805
3806         list_del_init(&sh->lru);
3807         atomic_inc(&sh->count);
3808         BUG_ON(atomic_read(&sh->count) != 1);
3809         return sh;
3810 }
3811
3812 static int make_request(struct request_queue *q, struct bio * bi)
3813 {
3814         mddev_t *mddev = q->queuedata;
3815         raid5_conf_t *conf = mddev->private;
3816         int dd_idx;
3817         sector_t new_sector;
3818         sector_t logical_sector, last_sector;
3819         struct stripe_head *sh;
3820         const int rw = bio_data_dir(bi);
3821         int cpu, remaining;
3822
3823         if (unlikely(bio_barrier(bi))) {
3824                 bio_endio(bi, -EOPNOTSUPP);
3825                 return 0;
3826         }
3827
3828         md_write_start(mddev, bi);
3829
3830         cpu = part_stat_lock();
3831         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3832         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3833                       bio_sectors(bi));
3834         part_stat_unlock();
3835
3836         if (rw == READ &&
3837              mddev->reshape_position == MaxSector &&
3838              chunk_aligned_read(q,bi))
3839                 return 0;
3840
3841         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3842         last_sector = bi->bi_sector + (bi->bi_size>>9);
3843         bi->bi_next = NULL;
3844         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3845
3846         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3847                 DEFINE_WAIT(w);
3848                 int disks, data_disks;
3849                 int previous;
3850
3851         retry:
3852                 previous = 0;
3853                 disks = conf->raid_disks;
3854                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3855                 if (unlikely(conf->reshape_progress != MaxSector)) {
3856                         /* spinlock is needed as reshape_progress may be
3857                          * 64bit on a 32bit platform, and so it might be
3858                          * possible to see a half-updated value
3859                          * Ofcourse reshape_progress could change after
3860                          * the lock is dropped, so once we get a reference
3861                          * to the stripe that we think it is, we will have
3862                          * to check again.
3863                          */
3864                         spin_lock_irq(&conf->device_lock);
3865                         if (mddev->delta_disks < 0
3866                             ? logical_sector < conf->reshape_progress
3867                             : logical_sector >= conf->reshape_progress) {
3868                                 disks = conf->previous_raid_disks;
3869                                 previous = 1;
3870                         } else {
3871                                 if (mddev->delta_disks < 0
3872                                     ? logical_sector < conf->reshape_safe
3873                                     : logical_sector >= conf->reshape_safe) {
3874                                         spin_unlock_irq(&conf->device_lock);
3875                                         schedule();
3876                                         goto retry;
3877                                 }
3878                         }
3879                         spin_unlock_irq(&conf->device_lock);
3880                 }
3881                 data_disks = disks - conf->max_degraded;
3882
3883                 new_sector = raid5_compute_sector(conf, logical_sector,
3884                                                   previous,
3885                                                   &dd_idx, NULL);
3886                 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3887                         (unsigned long long)new_sector, 
3888                         (unsigned long long)logical_sector);
3889
3890                 sh = get_active_stripe(conf, new_sector, previous,
3891                                        (bi->bi_rw&RWA_MASK), 0);
3892                 if (sh) {
3893                         if (unlikely(previous)) {
3894                                 /* expansion might have moved on while waiting for a
3895                                  * stripe, so we must do the range check again.
3896                                  * Expansion could still move past after this
3897                                  * test, but as we are holding a reference to
3898                                  * 'sh', we know that if that happens,
3899                                  *  STRIPE_EXPANDING will get set and the expansion
3900                                  * won't proceed until we finish with the stripe.
3901                                  */
3902                                 int must_retry = 0;
3903                                 spin_lock_irq(&conf->device_lock);
3904                                 if (mddev->delta_disks < 0
3905                                     ? logical_sector >= conf->reshape_progress
3906                                     : logical_sector < conf->reshape_progress)
3907                                         /* mismatch, need to try again */
3908                                         must_retry = 1;
3909                                 spin_unlock_irq(&conf->device_lock);
3910                                 if (must_retry) {
3911                                         release_stripe(sh);
3912                                         schedule();
3913                                         goto retry;
3914                                 }
3915                         }
3916
3917                         if (bio_data_dir(bi) == WRITE &&
3918                             logical_sector >= mddev->suspend_lo &&
3919                             logical_sector < mddev->suspend_hi) {
3920                                 release_stripe(sh);
3921                                 /* As the suspend_* range is controlled by
3922                                  * userspace, we want an interruptible
3923                                  * wait.
3924                                  */
3925                                 flush_signals(current);
3926                                 prepare_to_wait(&conf->wait_for_overlap,
3927                                                 &w, TASK_INTERRUPTIBLE);
3928                                 if (logical_sector >= mddev->suspend_lo &&
3929                                     logical_sector < mddev->suspend_hi)
3930                                         schedule();
3931                                 goto retry;
3932                         }
3933
3934                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3935                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3936                                 /* Stripe is busy expanding or
3937                                  * add failed due to overlap.  Flush everything
3938                                  * and wait a while
3939                                  */
3940                                 raid5_unplug_device(mddev->queue);
3941                                 release_stripe(sh);
3942                                 schedule();
3943                                 goto retry;
3944                         }
3945                         finish_wait(&conf->wait_for_overlap, &w);
3946                         set_bit(STRIPE_HANDLE, &sh->state);
3947                         clear_bit(STRIPE_DELAYED, &sh->state);
3948                         release_stripe(sh);
3949                 } else {
3950                         /* cannot get stripe for read-ahead, just give-up */
3951                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3952                         finish_wait(&conf->wait_for_overlap, &w);
3953                         break;
3954                 }
3955                         
3956         }
3957         spin_lock_irq(&conf->device_lock);
3958         remaining = raid5_dec_bi_phys_segments(bi);
3959         spin_unlock_irq(&conf->device_lock);
3960         if (remaining == 0) {
3961
3962                 if ( rw == WRITE )
3963                         md_write_end(mddev);
3964
3965                 bio_endio(bi, 0);
3966         }
3967         return 0;
3968 }
3969
3970 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3971
3972 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3973 {
3974         /* reshaping is quite different to recovery/resync so it is
3975          * handled quite separately ... here.
3976          *
3977          * On each call to sync_request, we gather one chunk worth of
3978          * destination stripes and flag them as expanding.
3979          * Then we find all the source stripes and request reads.
3980          * As the reads complete, handle_stripe will copy the data
3981          * into the destination stripe and release that stripe.
3982          */
3983         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3984         struct stripe_head *sh;
3985         sector_t first_sector, last_sector;
3986         int raid_disks = conf->previous_raid_disks;
3987         int data_disks = raid_disks - conf->max_degraded;
3988         int new_data_disks = conf->raid_disks - conf->max_degraded;
3989         int i;
3990         int dd_idx;
3991         sector_t writepos, readpos, safepos;
3992         sector_t stripe_addr;
3993         int reshape_sectors;
3994         struct list_head stripes;
3995
3996         if (sector_nr == 0) {
3997                 /* If restarting in the middle, skip the initial sectors */
3998                 if (mddev->delta_disks < 0 &&
3999                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4000                         sector_nr = raid5_size(mddev, 0, 0)
4001                                 - conf->reshape_progress;
4002                 } else if (mddev->delta_disks >= 0 &&
4003                            conf->reshape_progress > 0)
4004                         sector_nr = conf->reshape_progress;
4005                 sector_div(sector_nr, new_data_disks);
4006                 if (sector_nr) {
4007                         *skipped = 1;
4008                         return sector_nr;
4009                 }
4010         }
4011
4012         /* We need to process a full chunk at a time.
4013          * If old and new chunk sizes differ, we need to process the
4014          * largest of these
4015          */
4016         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4017                 reshape_sectors = mddev->new_chunk_sectors;
4018         else
4019                 reshape_sectors = mddev->chunk_sectors;
4020
4021         /* we update the metadata when there is more than 3Meg
4022          * in the block range (that is rather arbitrary, should
4023          * probably be time based) or when the data about to be
4024          * copied would over-write the source of the data at
4025          * the front of the range.
4026          * i.e. one new_stripe along from reshape_progress new_maps
4027          * to after where reshape_safe old_maps to
4028          */
4029         writepos = conf->reshape_progress;
4030         sector_div(writepos, new_data_disks);
4031         readpos = conf->reshape_progress;
4032         sector_div(readpos, data_disks);
4033         safepos = conf->reshape_safe;
4034         sector_div(safepos, data_disks);
4035         if (mddev->delta_disks < 0) {
4036                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4037                 readpos += reshape_sectors;
4038                 safepos += reshape_sectors;
4039         } else {
4040                 writepos += reshape_sectors;
4041                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4042                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4043         }
4044
4045         /* 'writepos' is the most advanced device address we might write.
4046          * 'readpos' is the least advanced device address we might read.
4047          * 'safepos' is the least address recorded in the metadata as having
4048          *     been reshaped.
4049          * If 'readpos' is behind 'writepos', then there is no way that we can
4050          * ensure safety in the face of a crash - that must be done by userspace
4051          * making a backup of the data.  So in that case there is no particular
4052          * rush to update metadata.
4053          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4054          * update the metadata to advance 'safepos' to match 'readpos' so that
4055          * we can be safe in the event of a crash.
4056          * So we insist on updating metadata if safepos is behind writepos and
4057          * readpos is beyond writepos.
4058          * In any case, update the metadata every 10 seconds.
4059          * Maybe that number should be configurable, but I'm not sure it is
4060          * worth it.... maybe it could be a multiple of safemode_delay???
4061          */
4062         if ((mddev->delta_disks < 0
4063              ? (safepos > writepos && readpos < writepos)
4064              : (safepos < writepos && readpos > writepos)) ||
4065             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4066                 /* Cannot proceed until we've updated the superblock... */
4067                 wait_event(conf->wait_for_overlap,
4068                            atomic_read(&conf->reshape_stripes)==0);
4069                 mddev->reshape_position = conf->reshape_progress;
4070                 mddev->curr_resync_completed = mddev->curr_resync;
4071                 conf->reshape_checkpoint = jiffies;
4072                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4073                 md_wakeup_thread(mddev->thread);
4074                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4075                            kthread_should_stop());
4076                 spin_lock_irq(&conf->device_lock);
4077                 conf->reshape_safe = mddev->reshape_position;
4078                 spin_unlock_irq(&conf->device_lock);
4079                 wake_up(&conf->wait_for_overlap);
4080                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4081         }
4082
4083         if (mddev->delta_disks < 0) {
4084                 BUG_ON(conf->reshape_progress == 0);
4085                 stripe_addr = writepos;
4086                 BUG_ON((mddev->dev_sectors &
4087                         ~((sector_t)reshape_sectors - 1))
4088                        - reshape_sectors - stripe_addr
4089                        != sector_nr);
4090         } else {
4091                 BUG_ON(writepos != sector_nr + reshape_sectors);
4092                 stripe_addr = sector_nr;
4093         }
4094         INIT_LIST_HEAD(&stripes);
4095         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4096                 int j;
4097                 int skipped = 0;
4098                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4099                 set_bit(STRIPE_EXPANDING, &sh->state);
4100                 atomic_inc(&conf->reshape_stripes);
4101                 /* If any of this stripe is beyond the end of the old
4102                  * array, then we need to zero those blocks
4103                  */
4104                 for (j=sh->disks; j--;) {
4105                         sector_t s;
4106                         if (j == sh->pd_idx)
4107                                 continue;
4108                         if (conf->level == 6 &&
4109                             j == sh->qd_idx)
4110                                 continue;
4111                         s = compute_blocknr(sh, j, 0);
4112                         if (s < raid5_size(mddev, 0, 0)) {
4113                                 skipped = 1;
4114                                 continue;
4115                         }
4116                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4117                         set_bit(R5_Expanded, &sh->dev[j].flags);
4118                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4119                 }
4120                 if (!skipped) {
4121                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4122                         set_bit(STRIPE_HANDLE, &sh->state);
4123                 }
4124                 list_add(&sh->lru, &stripes);
4125         }
4126         spin_lock_irq(&conf->device_lock);
4127         if (mddev->delta_disks < 0)
4128                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4129         else
4130                 conf->reshape_progress += reshape_sectors * new_data_disks;
4131         spin_unlock_irq(&conf->device_lock);
4132         /* Ok, those stripe are ready. We can start scheduling
4133          * reads on the source stripes.
4134          * The source stripes are determined by mapping the first and last
4135          * block on the destination stripes.
4136          */
4137         first_sector =
4138                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4139                                      1, &dd_idx, NULL);
4140         last_sector =
4141                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4142                                             * new_data_disks - 1),
4143                                      1, &dd_idx, NULL);
4144         if (last_sector >= mddev->dev_sectors)
4145                 last_sector = mddev->dev_sectors - 1;
4146         while (first_sector <= last_sector) {
4147                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4148                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4149                 set_bit(STRIPE_HANDLE, &sh->state);
4150                 release_stripe(sh);
4151                 first_sector += STRIPE_SECTORS;
4152         }
4153         /* Now that the sources are clearly marked, we can release
4154          * the destination stripes
4155          */
4156         while (!list_empty(&stripes)) {
4157                 sh = list_entry(stripes.next, struct stripe_head, lru);
4158                 list_del_init(&sh->lru);
4159                 release_stripe(sh);
4160         }
4161         /* If this takes us to the resync_max point where we have to pause,
4162          * then we need to write out the superblock.
4163          */
4164         sector_nr += reshape_sectors;
4165         if ((sector_nr - mddev->curr_resync_completed) * 2
4166             >= mddev->resync_max - mddev->curr_resync_completed) {
4167                 /* Cannot proceed until we've updated the superblock... */
4168                 wait_event(conf->wait_for_overlap,
4169                            atomic_read(&conf->reshape_stripes) == 0);
4170                 mddev->reshape_position = conf->reshape_progress;
4171                 mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4172                 conf->reshape_checkpoint = jiffies;
4173                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4174                 md_wakeup_thread(mddev->thread);
4175                 wait_event(mddev->sb_wait,
4176                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4177                            || kthread_should_stop());
4178                 spin_lock_irq(&conf->device_lock);
4179                 conf->reshape_safe = mddev->reshape_position;
4180                 spin_unlock_irq(&conf->device_lock);
4181                 wake_up(&conf->wait_for_overlap);
4182                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4183         }
4184         return reshape_sectors;
4185 }
4186
4187 /* FIXME go_faster isn't used */
4188 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4189 {
4190         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4191         struct stripe_head *sh;
4192         sector_t max_sector = mddev->dev_sectors;
4193         int sync_blocks;
4194         int still_degraded = 0;
4195         int i;
4196
4197         if (sector_nr >= max_sector) {
4198                 /* just being told to finish up .. nothing much to do */
4199                 unplug_slaves(mddev);
4200
4201                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4202                         end_reshape(conf);
4203                         return 0;
4204                 }
4205
4206                 if (mddev->curr_resync < max_sector) /* aborted */
4207                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4208                                         &sync_blocks, 1);
4209                 else /* completed sync */
4210                         conf->fullsync = 0;
4211                 bitmap_close_sync(mddev->bitmap);
4212
4213                 return 0;
4214         }
4215
4216         /* Allow raid5_quiesce to complete */
4217         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4218
4219         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4220                 return reshape_request(mddev, sector_nr, skipped);
4221
4222         /* No need to check resync_max as we never do more than one
4223          * stripe, and as resync_max will always be on a chunk boundary,
4224          * if the check in md_do_sync didn't fire, there is no chance
4225          * of overstepping resync_max here
4226          */
4227
4228         /* if there is too many failed drives and we are trying
4229          * to resync, then assert that we are finished, because there is
4230          * nothing we can do.
4231          */
4232         if (mddev->degraded >= conf->max_degraded &&
4233             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4234                 sector_t rv = mddev->dev_sectors - sector_nr;
4235                 *skipped = 1;
4236                 return rv;
4237         }
4238         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4239             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4240             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4241                 /* we can skip this block, and probably more */
4242                 sync_blocks /= STRIPE_SECTORS;
4243                 *skipped = 1;
4244                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4245         }
4246
4247
4248         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4249
4250         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4251         if (sh == NULL) {
4252                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4253                 /* make sure we don't swamp the stripe cache if someone else
4254                  * is trying to get access
4255                  */
4256                 schedule_timeout_uninterruptible(1);
4257         }
4258         /* Need to check if array will still be degraded after recovery/resync
4259          * We don't need to check the 'failed' flag as when that gets set,
4260          * recovery aborts.
4261          */
4262         for (i = 0; i < conf->raid_disks; i++)
4263                 if (conf->disks[i].rdev == NULL)
4264                         still_degraded = 1;
4265
4266         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4267
4268         spin_lock(&sh->lock);
4269         set_bit(STRIPE_SYNCING, &sh->state);
4270         clear_bit(STRIPE_INSYNC, &sh->state);
4271         spin_unlock(&sh->lock);
4272
4273         /* wait for any blocked device to be handled */
4274         while (unlikely(!handle_stripe(sh)))
4275                 ;
4276         release_stripe(sh);
4277
4278         return STRIPE_SECTORS;
4279 }
4280
4281 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4282 {
4283         /* We may not be able to submit a whole bio at once as there
4284          * may not be enough stripe_heads available.
4285          * We cannot pre-allocate enough stripe_heads as we may need
4286          * more than exist in the cache (if we allow ever large chunks).
4287          * So we do one stripe head at a time and record in
4288          * ->bi_hw_segments how many have been done.
4289          *
4290          * We *know* that this entire raid_bio is in one chunk, so
4291          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4292          */
4293         struct stripe_head *sh;
4294         int dd_idx;
4295         sector_t sector, logical_sector, last_sector;
4296         int scnt = 0;
4297         int remaining;
4298         int handled = 0;
4299
4300         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4301         sector = raid5_compute_sector(conf, logical_sector,
4302                                       0, &dd_idx, NULL);
4303         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4304
4305         for (; logical_sector < last_sector;
4306              logical_sector += STRIPE_SECTORS,
4307                      sector += STRIPE_SECTORS,
4308                      scnt++) {
4309
4310                 if (scnt < raid5_bi_hw_segments(raid_bio))
4311                         /* already done this stripe */
4312                         continue;
4313
4314                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4315
4316                 if (!sh) {
4317                         /* failed to get a stripe - must wait */
4318                         raid5_set_bi_hw_segments(raid_bio, scnt);
4319                         conf->retry_read_aligned = raid_bio;
4320                         return handled;
4321                 }
4322
4323                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4324                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4325                         release_stripe(sh);
4326                         raid5_set_bi_hw_segments(raid_bio, scnt);
4327                         conf->retry_read_aligned = raid_bio;
4328                         return handled;
4329                 }
4330
4331                 handle_stripe(sh);
4332                 release_stripe(sh);
4333                 handled++;
4334         }
4335         spin_lock_irq(&conf->device_lock);
4336         remaining = raid5_dec_bi_phys_segments(raid_bio);
4337         spin_unlock_irq(&conf->device_lock);
4338         if (remaining == 0)
4339                 bio_endio(raid_bio, 0);
4340         if (atomic_dec_and_test(&conf->active_aligned_reads))
4341                 wake_up(&conf->wait_for_stripe);
4342         return handled;
4343 }
4344
4345 #ifdef CONFIG_MULTICORE_RAID456
4346 static void __process_stripe(void *param, async_cookie_t cookie)
4347 {
4348         struct stripe_head *sh = param;
4349
4350         handle_stripe(sh);
4351         release_stripe(sh);
4352 }
4353
4354 static void process_stripe(struct stripe_head *sh, struct list_head *domain)
4355 {
4356         async_schedule_domain(__process_stripe, sh, domain);
4357 }
4358
4359 static void synchronize_stripe_processing(struct list_head *domain)
4360 {
4361         async_synchronize_full_domain(domain);
4362 }
4363 #else
4364 static void process_stripe(struct stripe_head *sh, struct list_head *domain)
4365 {
4366         handle_stripe(sh);
4367         release_stripe(sh);
4368         cond_resched();
4369 }
4370
4371 static void synchronize_stripe_processing(struct list_head *domain)
4372 {
4373 }
4374 #endif
4375
4376
4377 /*
4378  * This is our raid5 kernel thread.
4379  *
4380  * We scan the hash table for stripes which can be handled now.
4381  * During the scan, completed stripes are saved for us by the interrupt
4382  * handler, so that they will not have to wait for our next wakeup.
4383  */
4384 static void raid5d(mddev_t *mddev)
4385 {
4386         struct stripe_head *sh;
4387         raid5_conf_t *conf = mddev->private;
4388         int handled;
4389         LIST_HEAD(raid_domain);
4390
4391         pr_debug("+++ raid5d active\n");
4392
4393         md_check_recovery(mddev);
4394
4395         handled = 0;
4396         spin_lock_irq(&conf->device_lock);
4397         while (1) {
4398                 struct bio *bio;
4399
4400                 if (conf->seq_flush != conf->seq_write) {
4401                         int seq = conf->seq_flush;
4402                         spin_unlock_irq(&conf->device_lock);
4403                         bitmap_unplug(mddev->bitmap);
4404                         spin_lock_irq(&conf->device_lock);
4405                         conf->seq_write = seq;
4406                         activate_bit_delay(conf);
4407                 }
4408
4409                 while ((bio = remove_bio_from_retry(conf))) {
4410                         int ok;
4411                         spin_unlock_irq(&conf->device_lock);
4412                         ok = retry_aligned_read(conf, bio);
4413                         spin_lock_irq(&conf->device_lock);
4414                         if (!ok)
4415                                 break;
4416                         handled++;
4417                 }
4418
4419                 sh = __get_priority_stripe(conf);
4420
4421                 if (!sh)
4422                         break;
4423                 spin_unlock_irq(&conf->device_lock);
4424                 
4425                 handled++;
4426                 process_stripe(sh, &raid_domain);
4427
4428                 spin_lock_irq(&conf->device_lock);
4429         }
4430         pr_debug("%d stripes handled\n", handled);
4431
4432         spin_unlock_irq(&conf->device_lock);
4433
4434         synchronize_stripe_processing(&raid_domain);
4435         async_tx_issue_pending_all();
4436         unplug_slaves(mddev);
4437
4438         pr_debug("--- raid5d inactive\n");
4439 }
4440
4441 static ssize_t
4442 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4443 {
4444         raid5_conf_t *conf = mddev->private;
4445         if (conf)
4446                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4447         else
4448                 return 0;
4449 }
4450
4451 static ssize_t
4452 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4453 {
4454         raid5_conf_t *conf = mddev->private;
4455         unsigned long new;
4456         int err;
4457
4458         if (len >= PAGE_SIZE)
4459                 return -EINVAL;
4460         if (!conf)
4461                 return -ENODEV;
4462
4463         if (strict_strtoul(page, 10, &new))
4464                 return -EINVAL;
4465         if (new <= 16 || new > 32768)
4466                 return -EINVAL;
4467         while (new < conf->max_nr_stripes) {
4468                 if (drop_one_stripe(conf))
4469                         conf->max_nr_stripes--;
4470                 else
4471                         break;
4472         }
4473         err = md_allow_write(mddev);
4474         if (err)
4475                 return err;
4476         while (new > conf->max_nr_stripes) {
4477                 if (grow_one_stripe(conf))
4478                         conf->max_nr_stripes++;
4479                 else break;
4480         }
4481         return len;
4482 }
4483
4484 static struct md_sysfs_entry
4485 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4486                                 raid5_show_stripe_cache_size,
4487                                 raid5_store_stripe_cache_size);
4488
4489 static ssize_t
4490 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4491 {
4492         raid5_conf_t *conf = mddev->private;
4493         if (conf)
4494                 return sprintf(page, "%d\n", conf->bypass_threshold);
4495         else
4496                 return 0;
4497 }
4498
4499 static ssize_t
4500 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4501 {
4502         raid5_conf_t *conf = mddev->private;
4503         unsigned long new;
4504         if (len >= PAGE_SIZE)
4505                 return -EINVAL;
4506         if (!conf)
4507                 return -ENODEV;
4508
4509         if (strict_strtoul(page, 10, &new))
4510                 return -EINVAL;
4511         if (new > conf->max_nr_stripes)
4512                 return -EINVAL;
4513         conf->bypass_threshold = new;
4514         return len;
4515 }
4516
4517 static struct md_sysfs_entry
4518 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4519                                         S_IRUGO | S_IWUSR,
4520                                         raid5_show_preread_threshold,
4521                                         raid5_store_preread_threshold);
4522
4523 static ssize_t
4524 stripe_cache_active_show(mddev_t *mddev, char *page)
4525 {
4526         raid5_conf_t *conf = mddev->private;
4527         if (conf)
4528                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4529         else
4530                 return 0;
4531 }
4532
4533 static struct md_sysfs_entry
4534 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4535
4536 static struct attribute *raid5_attrs[] =  {
4537         &raid5_stripecache_size.attr,
4538         &raid5_stripecache_active.attr,
4539         &raid5_preread_bypass_threshold.attr,
4540         NULL,
4541 };
4542 static struct attribute_group raid5_attrs_group = {
4543         .name = NULL,
4544         .attrs = raid5_attrs,
4545 };
4546
4547 static sector_t
4548 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4549 {
4550         raid5_conf_t *conf = mddev->private;
4551
4552         if (!sectors)
4553                 sectors = mddev->dev_sectors;
4554         if (!raid_disks) {
4555                 /* size is defined by the smallest of previous and new size */
4556                 if (conf->raid_disks < conf->previous_raid_disks)
4557                         raid_disks = conf->raid_disks;
4558                 else
4559                         raid_disks = conf->previous_raid_disks;
4560         }
4561
4562         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4563         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4564         return sectors * (raid_disks - conf->max_degraded);
4565 }
4566
4567 static void raid5_free_percpu(raid5_conf_t *conf)
4568 {
4569         struct raid5_percpu *percpu;
4570         unsigned long cpu;
4571
4572         if (!conf->percpu)
4573                 return;
4574
4575         get_online_cpus();
4576         for_each_possible_cpu(cpu) {
4577                 percpu = per_cpu_ptr(conf->percpu, cpu);
4578                 safe_put_page(percpu->spare_page);
4579                 kfree(percpu->scribble);
4580         }
4581 #ifdef CONFIG_HOTPLUG_CPU
4582         unregister_cpu_notifier(&conf->cpu_notify);
4583 #endif
4584         put_online_cpus();
4585
4586         free_percpu(conf->percpu);
4587 }
4588
4589 static void free_conf(raid5_conf_t *conf)
4590 {
4591         shrink_stripes(conf);
4592         raid5_free_percpu(conf);
4593         kfree(conf->disks);
4594         kfree(conf->stripe_hashtbl);
4595         kfree(conf);
4596 }
4597
4598 #ifdef CONFIG_HOTPLUG_CPU
4599 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4600                               void *hcpu)
4601 {
4602         raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4603         long cpu = (long)hcpu;
4604         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4605
4606         switch (action) {
4607         case CPU_UP_PREPARE:
4608         case CPU_UP_PREPARE_FROZEN:
4609                 if (conf->level == 6 && !percpu->spare_page)
4610                         percpu->spare_page = alloc_page(GFP_KERNEL);
4611                 if (!percpu->scribble)
4612                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4613
4614                 if (!percpu->scribble ||
4615                     (conf->level == 6 && !percpu->spare_page)) {
4616                         safe_put_page(percpu->spare_page);
4617                         kfree(percpu->scribble);
4618                         pr_err("%s: failed memory allocation for cpu%ld\n",
4619                                __func__, cpu);
4620                         return NOTIFY_BAD;
4621                 }
4622                 break;
4623         case CPU_DEAD:
4624         case CPU_DEAD_FROZEN:
4625                 safe_put_page(percpu->spare_page);
4626                 kfree(percpu->scribble);
4627                 percpu->spare_page = NULL;
4628                 percpu->scribble = NULL;
4629                 break;
4630         default:
4631                 break;
4632         }
4633         return NOTIFY_OK;
4634 }
4635 #endif
4636
4637 static int raid5_alloc_percpu(raid5_conf_t *conf)
4638 {
4639         unsigned long cpu;
4640         struct page *spare_page;
4641         struct raid5_percpu *allcpus;
4642         void *scribble;
4643         int err;
4644
4645         allcpus = alloc_percpu(struct raid5_percpu);
4646         if (!allcpus)
4647                 return -ENOMEM;
4648         conf->percpu = allcpus;
4649
4650         get_online_cpus();
4651         err = 0;
4652         for_each_present_cpu(cpu) {
4653                 if (conf->level == 6) {
4654                         spare_page = alloc_page(GFP_KERNEL);
4655                         if (!spare_page) {
4656                                 err = -ENOMEM;
4657                                 break;
4658                         }
4659                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4660                 }
4661                 scribble = kmalloc(scribble_len(conf->raid_disks), GFP_KERNEL);
4662                 if (!scribble) {
4663                         err = -ENOMEM;
4664                         break;
4665                 }
4666                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4667         }
4668 #ifdef CONFIG_HOTPLUG_CPU
4669         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4670         conf->cpu_notify.priority = 0;
4671         if (err == 0)
4672                 err = register_cpu_notifier(&conf->cpu_notify);
4673 #endif
4674         put_online_cpus();
4675
4676         return err;
4677 }
4678
4679 static raid5_conf_t *setup_conf(mddev_t *mddev)
4680 {
4681         raid5_conf_t *conf;
4682         int raid_disk, memory;
4683         mdk_rdev_t *rdev;
4684         struct disk_info *disk;
4685
4686         if (mddev->new_level != 5
4687             && mddev->new_level != 4
4688             && mddev->new_level != 6) {
4689                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4690                        mdname(mddev), mddev->new_level);
4691                 return ERR_PTR(-EIO);
4692         }
4693         if ((mddev->new_level == 5
4694              && !algorithm_valid_raid5(mddev->new_layout)) ||
4695             (mddev->new_level == 6
4696              && !algorithm_valid_raid6(mddev->new_layout))) {
4697                 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4698                        mdname(mddev), mddev->new_layout);
4699                 return ERR_PTR(-EIO);
4700         }
4701         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4702                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4703                        mdname(mddev), mddev->raid_disks);
4704                 return ERR_PTR(-EINVAL);
4705         }
4706
4707         if (!mddev->new_chunk_sectors ||
4708             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4709             !is_power_of_2(mddev->new_chunk_sectors)) {
4710                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4711                        mddev->new_chunk_sectors << 9, mdname(mddev));
4712                 return ERR_PTR(-EINVAL);
4713         }
4714
4715         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4716         if (conf == NULL)
4717                 goto abort;
4718
4719         conf->raid_disks = mddev->raid_disks;
4720         conf->scribble_len = scribble_len(conf->raid_disks);
4721         if (mddev->reshape_position == MaxSector)
4722                 conf->previous_raid_disks = mddev->raid_disks;
4723         else
4724                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4725
4726         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4727                               GFP_KERNEL);
4728         if (!conf->disks)
4729                 goto abort;
4730
4731         conf->mddev = mddev;
4732
4733         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4734                 goto abort;
4735
4736         conf->level = mddev->new_level;
4737         if (raid5_alloc_percpu(conf) != 0)
4738                 goto abort;
4739
4740         spin_lock_init(&conf->device_lock);
4741         init_waitqueue_head(&conf->wait_for_stripe);
4742         init_waitqueue_head(&conf->wait_for_overlap);
4743         INIT_LIST_HEAD(&conf->handle_list);
4744         INIT_LIST_HEAD(&conf->hold_list);
4745         INIT_LIST_HEAD(&conf->delayed_list);
4746         INIT_LIST_HEAD(&conf->bitmap_list);
4747         INIT_LIST_HEAD(&conf->inactive_list);
4748         atomic_set(&conf->active_stripes, 0);
4749         atomic_set(&conf->preread_active_stripes, 0);
4750         atomic_set(&conf->active_aligned_reads, 0);
4751         conf->bypass_threshold = BYPASS_THRESHOLD;
4752
4753         pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4754
4755         list_for_each_entry(rdev, &mddev->disks, same_set) {
4756                 raid_disk = rdev->raid_disk;
4757                 if (raid_disk >= conf->raid_disks
4758                     || raid_disk < 0)
4759                         continue;
4760                 disk = conf->disks + raid_disk;
4761
4762                 disk->rdev = rdev;
4763
4764                 if (test_bit(In_sync, &rdev->flags)) {
4765                         char b[BDEVNAME_SIZE];
4766                         printk(KERN_INFO "raid5: device %s operational as raid"
4767                                 " disk %d\n", bdevname(rdev->bdev,b),
4768                                 raid_disk);
4769                 } else
4770                         /* Cannot rely on bitmap to complete recovery */
4771                         conf->fullsync = 1;
4772         }
4773
4774         conf->chunk_sectors = mddev->new_chunk_sectors;
4775         conf->level = mddev->new_level;
4776         if (conf->level == 6)
4777                 conf->max_degraded = 2;
4778         else
4779                 conf->max_degraded = 1;
4780         conf->algorithm = mddev->new_layout;
4781         conf->max_nr_stripes = NR_STRIPES;
4782         conf->reshape_progress = mddev->reshape_position;
4783         if (conf->reshape_progress != MaxSector) {
4784                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4785                 conf->prev_algo = mddev->layout;
4786         }
4787
4788         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4789                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4790         if (grow_stripes(conf, conf->max_nr_stripes)) {
4791                 printk(KERN_ERR
4792                         "raid5: couldn't allocate %dkB for buffers\n", memory);
4793                 goto abort;
4794         } else
4795                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4796                         memory, mdname(mddev));
4797
4798         conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4799         if (!conf->thread) {
4800                 printk(KERN_ERR
4801                        "raid5: couldn't allocate thread for %s\n",
4802                        mdname(mddev));
4803                 goto abort;
4804         }
4805
4806         return conf;
4807
4808  abort:
4809         if (conf) {
4810                 free_conf(conf);
4811                 return ERR_PTR(-EIO);
4812         } else
4813                 return ERR_PTR(-ENOMEM);
4814 }
4815
4816 static int run(mddev_t *mddev)
4817 {
4818         raid5_conf_t *conf;
4819         int working_disks = 0, chunk_size;
4820         mdk_rdev_t *rdev;
4821
4822         if (mddev->recovery_cp != MaxSector)
4823                 printk(KERN_NOTICE "raid5: %s is not clean"
4824                        " -- starting background reconstruction\n",
4825                        mdname(mddev));
4826         if (mddev->reshape_position != MaxSector) {
4827                 /* Check that we can continue the reshape.
4828                  * Currently only disks can change, it must
4829                  * increase, and we must be past the point where
4830                  * a stripe over-writes itself
4831                  */
4832                 sector_t here_new, here_old;
4833                 int old_disks;
4834                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4835
4836                 if (mddev->new_level != mddev->level) {
4837                         printk(KERN_ERR "raid5: %s: unsupported reshape "
4838                                "required - aborting.\n",
4839                                mdname(mddev));
4840                         return -EINVAL;
4841                 }
4842                 old_disks = mddev->raid_disks - mddev->delta_disks;
4843                 /* reshape_position must be on a new-stripe boundary, and one
4844                  * further up in new geometry must map after here in old
4845                  * geometry.
4846                  */
4847                 here_new = mddev->reshape_position;
4848                 if (sector_div(here_new, mddev->new_chunk_sectors *
4849                                (mddev->raid_disks - max_degraded))) {
4850                         printk(KERN_ERR "raid5: reshape_position not "
4851                                "on a stripe boundary\n");
4852                         return -EINVAL;
4853                 }
4854                 /* here_new is the stripe we will write to */
4855                 here_old = mddev->reshape_position;
4856                 sector_div(here_old, mddev->chunk_sectors *
4857                            (old_disks-max_degraded));
4858                 /* here_old is the first stripe that we might need to read
4859                  * from */
4860                 if (mddev->delta_disks == 0) {
4861                         /* We cannot be sure it is safe to start an in-place
4862                          * reshape.  It is only safe if user-space if monitoring
4863                          * and taking constant backups.
4864                          * mdadm always starts a situation like this in
4865                          * readonly mode so it can take control before
4866                          * allowing any writes.  So just check for that.
4867                          */
4868                         if ((here_new * mddev->new_chunk_sectors != 
4869                              here_old * mddev->chunk_sectors) ||
4870                             mddev->ro == 0) {
4871                                 printk(KERN_ERR "raid5: in-place reshape must be started"
4872                                        " in read-only mode - aborting\n");
4873                                 return -EINVAL;
4874                         }
4875                 } else if (mddev->delta_disks < 0
4876                     ? (here_new * mddev->new_chunk_sectors <=
4877                        here_old * mddev->chunk_sectors)
4878                     : (here_new * mddev->new_chunk_sectors >=
4879                        here_old * mddev->chunk_sectors)) {
4880                         /* Reading from the same stripe as writing to - bad */
4881                         printk(KERN_ERR "raid5: reshape_position too early for "
4882                                "auto-recovery - aborting.\n");
4883                         return -EINVAL;
4884                 }
4885                 printk(KERN_INFO "raid5: reshape will continue\n");
4886                 /* OK, we should be able to continue; */
4887         } else {
4888                 BUG_ON(mddev->level != mddev->new_level);
4889                 BUG_ON(mddev->layout != mddev->new_layout);
4890                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4891                 BUG_ON(mddev->delta_disks != 0);
4892         }
4893
4894         if (mddev->private == NULL)
4895                 conf = setup_conf(mddev);
4896         else
4897                 conf = mddev->private;
4898
4899         if (IS_ERR(conf))
4900                 return PTR_ERR(conf);
4901
4902         mddev->thread = conf->thread;
4903         conf->thread = NULL;
4904         mddev->private = conf;
4905
4906         /*
4907          * 0 for a fully functional array, 1 or 2 for a degraded array.
4908          */
4909         list_for_each_entry(rdev, &mddev->disks, same_set)
4910                 if (rdev->raid_disk >= 0 &&
4911                     test_bit(In_sync, &rdev->flags))
4912                         working_disks++;
4913
4914         mddev->degraded = conf->raid_disks - working_disks;
4915
4916         if (mddev->degraded > conf->max_degraded) {
4917                 printk(KERN_ERR "raid5: not enough operational devices for %s"
4918                         " (%d/%d failed)\n",
4919                         mdname(mddev), mddev->degraded, conf->raid_disks);
4920                 goto abort;
4921         }
4922
4923         /* device size must be a multiple of chunk size */
4924         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4925         mddev->resync_max_sectors = mddev->dev_sectors;
4926
4927         if (mddev->degraded > 0 &&
4928             mddev->recovery_cp != MaxSector) {
4929                 if (mddev->ok_start_degraded)
4930                         printk(KERN_WARNING
4931                                "raid5: starting dirty degraded array: %s"
4932                                "- data corruption possible.\n",
4933                                mdname(mddev));
4934                 else {
4935                         printk(KERN_ERR
4936                                "raid5: cannot start dirty degraded array for %s\n",
4937                                mdname(mddev));
4938                         goto abort;
4939                 }
4940         }
4941
4942         if (mddev->degraded == 0)
4943                 printk("raid5: raid level %d set %s active with %d out of %d"
4944                        " devices, algorithm %d\n", conf->level, mdname(mddev),
4945                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4946                        mddev->new_layout);
4947         else
4948                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4949                         " out of %d devices, algorithm %d\n", conf->level,
4950                         mdname(mddev), mddev->raid_disks - mddev->degraded,
4951                         mddev->raid_disks, mddev->new_layout);
4952
4953         print_raid5_conf(conf);
4954
4955         if (conf->reshape_progress != MaxSector) {
4956                 printk("...ok start reshape thread\n");
4957                 conf->reshape_safe = conf->reshape_progress;
4958                 atomic_set(&conf->reshape_stripes, 0);
4959                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4960                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4961                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4962                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4963                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4964                                                         "%s_reshape");
4965         }
4966
4967         /* read-ahead size must cover two whole stripes, which is
4968          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4969          */
4970         {
4971                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4972                 int stripe = data_disks *
4973                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4974                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4975                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4976         }
4977
4978         /* Ok, everything is just fine now */
4979         if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4980                 printk(KERN_WARNING
4981                        "raid5: failed to create sysfs attributes for %s\n",
4982                        mdname(mddev));
4983
4984         mddev->queue->queue_lock = &conf->device_lock;
4985
4986         mddev->queue->unplug_fn = raid5_unplug_device;
4987         mddev->queue->backing_dev_info.congested_data = mddev;
4988         mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4989
4990         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4991
4992         blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4993         chunk_size = mddev->chunk_sectors << 9;
4994         blk_queue_io_min(mddev->queue, chunk_size);
4995         blk_queue_io_opt(mddev->queue, chunk_size *
4996                          (conf->raid_disks - conf->max_degraded));
4997
4998         list_for_each_entry(rdev, &mddev->disks, same_set)
4999                 disk_stack_limits(mddev->gendisk, rdev->bdev,
5000                                   rdev->data_offset << 9);
5001
5002         return 0;
5003 abort:
5004         md_unregister_thread(mddev->thread);
5005         mddev->thread = NULL;
5006         if (conf) {
5007                 print_raid5_conf(conf);
5008                 free_conf(conf);
5009         }
5010         mddev->private = NULL;
5011         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
5012         return -EIO;
5013 }
5014
5015
5016
5017 static int stop(mddev_t *mddev)
5018 {
5019         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5020
5021         md_unregister_thread(mddev->thread);
5022         mddev->thread = NULL;
5023         mddev->queue->backing_dev_info.congested_fn = NULL;
5024         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5025         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
5026         free_conf(conf);
5027         mddev->private = NULL;
5028         return 0;
5029 }
5030
5031 #ifdef DEBUG
5032 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5033 {
5034         int i;
5035
5036         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5037                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5038         seq_printf(seq, "sh %llu,  count %d.\n",
5039                    (unsigned long long)sh->sector, atomic_read(&sh->count));
5040         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5041         for (i = 0; i < sh->disks; i++) {
5042                 seq_printf(seq, "(cache%d: %p %ld) ",
5043                            i, sh->dev[i].page, sh->dev[i].flags);
5044         }
5045         seq_printf(seq, "\n");
5046 }
5047
5048 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5049 {
5050         struct stripe_head *sh;
5051         struct hlist_node *hn;
5052         int i;
5053
5054         spin_lock_irq(&conf->device_lock);
5055         for (i = 0; i < NR_HASH; i++) {
5056                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5057                         if (sh->raid_conf != conf)
5058                                 continue;
5059                         print_sh(seq, sh);
5060                 }
5061         }
5062         spin_unlock_irq(&conf->device_lock);
5063 }
5064 #endif
5065
5066 static void status(struct seq_file *seq, mddev_t *mddev)
5067 {
5068         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5069         int i;
5070
5071         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5072                 mddev->chunk_sectors / 2, mddev->layout);
5073         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5074         for (i = 0; i < conf->raid_disks; i++)
5075                 seq_printf (seq, "%s",
5076                                conf->disks[i].rdev &&
5077                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5078         seq_printf (seq, "]");
5079 #ifdef DEBUG
5080         seq_printf (seq, "\n");
5081         printall(seq, conf);
5082 #endif
5083 }
5084
5085 static void print_raid5_conf (raid5_conf_t *conf)
5086 {
5087         int i;
5088         struct disk_info *tmp;
5089
5090         printk("RAID5 conf printout:\n");
5091         if (!conf) {
5092                 printk("(conf==NULL)\n");
5093                 return;
5094         }
5095         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
5096                  conf->raid_disks - conf->mddev->degraded);
5097
5098         for (i = 0; i < conf->raid_disks; i++) {
5099                 char b[BDEVNAME_SIZE];
5100                 tmp = conf->disks + i;
5101                 if (tmp->rdev)
5102                 printk(" disk %d, o:%d, dev:%s\n",
5103                         i, !test_bit(Faulty, &tmp->rdev->flags),
5104                         bdevname(tmp->rdev->bdev,b));
5105         }
5106 }
5107
5108 static int raid5_spare_active(mddev_t *mddev)
5109 {
5110         int i;
5111         raid5_conf_t *conf = mddev->private;
5112         struct disk_info *tmp;
5113
5114         for (i = 0; i < conf->raid_disks; i++) {
5115                 tmp = conf->disks + i;
5116                 if (tmp->rdev
5117                     && !test_bit(Faulty, &tmp->rdev->flags)
5118                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5119                         unsigned long flags;
5120                         spin_lock_irqsave(&conf->device_lock, flags);
5121                         mddev->degraded--;
5122                         spin_unlock_irqrestore(&conf->device_lock, flags);
5123                 }
5124         }
5125         print_raid5_conf(conf);
5126         return 0;
5127 }
5128
5129 static int raid5_remove_disk(mddev_t *mddev, int number)
5130 {
5131         raid5_conf_t *conf = mddev->private;
5132         int err = 0;
5133         mdk_rdev_t *rdev;
5134         struct disk_info *p = conf->disks + number;
5135
5136         print_raid5_conf(conf);
5137         rdev = p->rdev;
5138         if (rdev) {
5139                 if (number >= conf->raid_disks &&
5140                     conf->reshape_progress == MaxSector)
5141                         clear_bit(In_sync, &rdev->flags);
5142
5143                 if (test_bit(In_sync, &rdev->flags) ||
5144                     atomic_read(&rdev->nr_pending)) {
5145                         err = -EBUSY;
5146                         goto abort;
5147                 }
5148                 /* Only remove non-faulty devices if recovery
5149                  * isn't possible.
5150                  */
5151                 if (!test_bit(Faulty, &rdev->flags) &&
5152                     mddev->degraded <= conf->max_degraded &&
5153                     number < conf->raid_disks) {
5154                         err = -EBUSY;
5155                         goto abort;
5156                 }
5157                 p->rdev = NULL;
5158                 synchronize_rcu();
5159                 if (atomic_read(&rdev->nr_pending)) {
5160                         /* lost the race, try later */
5161                         err = -EBUSY;
5162                         p->rdev = rdev;
5163                 }
5164         }
5165 abort:
5166
5167         print_raid5_conf(conf);
5168         return err;
5169 }
5170
5171 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5172 {
5173         raid5_conf_t *conf = mddev->private;
5174         int err = -EEXIST;
5175         int disk;
5176         struct disk_info *p;
5177         int first = 0;
5178         int last = conf->raid_disks - 1;
5179
5180         if (mddev->degraded > conf->max_degraded)
5181                 /* no point adding a device */
5182                 return -EINVAL;
5183
5184         if (rdev->raid_disk >= 0)
5185                 first = last = rdev->raid_disk;
5186
5187         /*
5188          * find the disk ... but prefer rdev->saved_raid_disk
5189          * if possible.
5190          */
5191         if (rdev->saved_raid_disk >= 0 &&
5192             rdev->saved_raid_disk >= first &&
5193             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5194                 disk = rdev->saved_raid_disk;
5195         else
5196                 disk = first;
5197         for ( ; disk <= last ; disk++)
5198                 if ((p=conf->disks + disk)->rdev == NULL) {
5199                         clear_bit(In_sync, &rdev->flags);
5200                         rdev->raid_disk = disk;
5201                         err = 0;
5202                         if (rdev->saved_raid_disk != disk)
5203                                 conf->fullsync = 1;
5204                         rcu_assign_pointer(p->rdev, rdev);
5205                         break;
5206                 }
5207         print_raid5_conf(conf);
5208         return err;
5209 }
5210
5211 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5212 {
5213         /* no resync is happening, and there is enough space
5214          * on all devices, so we can resize.
5215          * We need to make sure resync covers any new space.
5216          * If the array is shrinking we should possibly wait until
5217          * any io in the removed space completes, but it hardly seems
5218          * worth it.
5219          */
5220         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5221         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5222                                                mddev->raid_disks));
5223         if (mddev->array_sectors >
5224             raid5_size(mddev, sectors, mddev->raid_disks))
5225                 return -EINVAL;
5226         set_capacity(mddev->gendisk, mddev->array_sectors);
5227         mddev->changed = 1;
5228         revalidate_disk(mddev->gendisk);
5229         if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5230                 mddev->recovery_cp = mddev->dev_sectors;
5231                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5232         }
5233         mddev->dev_sectors = sectors;
5234         mddev->resync_max_sectors = sectors;
5235         return 0;
5236 }
5237
5238 static int check_stripe_cache(mddev_t *mddev)
5239 {
5240         /* Can only proceed if there are plenty of stripe_heads.
5241          * We need a minimum of one full stripe,, and for sensible progress
5242          * it is best to have about 4 times that.
5243          * If we require 4 times, then the default 256 4K stripe_heads will
5244          * allow for chunk sizes up to 256K, which is probably OK.
5245          * If the chunk size is greater, user-space should request more
5246          * stripe_heads first.
5247          */
5248         raid5_conf_t *conf = mddev->private;
5249         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5250             > conf->max_nr_stripes ||
5251             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5252             > conf->max_nr_stripes) {
5253                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
5254                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5255                         / STRIPE_SIZE)*4);
5256                 return 0;
5257         }
5258         return 1;
5259 }
5260
5261 static int check_reshape(mddev_t *mddev)
5262 {
5263         raid5_conf_t *conf = mddev->private;
5264
5265         if (mddev->delta_disks == 0 &&
5266             mddev->new_layout == mddev->layout &&
5267             mddev->new_chunk_sectors == mddev->chunk_sectors)
5268                 return 0; /* nothing to do */
5269         if (mddev->bitmap)
5270                 /* Cannot grow a bitmap yet */
5271                 return -EBUSY;
5272         if (mddev->degraded > conf->max_degraded)
5273                 return -EINVAL;
5274         if (mddev->delta_disks < 0) {
5275                 /* We might be able to shrink, but the devices must
5276                  * be made bigger first.
5277                  * For raid6, 4 is the minimum size.
5278                  * Otherwise 2 is the minimum
5279                  */
5280                 int min = 2;
5281                 if (mddev->level == 6)
5282                         min = 4;
5283                 if (mddev->raid_disks + mddev->delta_disks < min)
5284                         return -EINVAL;
5285         }
5286
5287         if (!check_stripe_cache(mddev))
5288                 return -ENOSPC;
5289
5290         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5291 }
5292
5293 static int raid5_start_reshape(mddev_t *mddev)
5294 {
5295         raid5_conf_t *conf = mddev->private;
5296         mdk_rdev_t *rdev;
5297         int spares = 0;
5298         int added_devices = 0;
5299         unsigned long flags;
5300
5301         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5302                 return -EBUSY;
5303
5304         if (!check_stripe_cache(mddev))
5305                 return -ENOSPC;
5306
5307         list_for_each_entry(rdev, &mddev->disks, same_set)
5308                 if (rdev->raid_disk < 0 &&
5309                     !test_bit(Faulty, &rdev->flags))
5310                         spares++;
5311
5312         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5313                 /* Not enough devices even to make a degraded array
5314                  * of that size
5315                  */
5316                 return -EINVAL;
5317
5318         /* Refuse to reduce size of the array.  Any reductions in
5319          * array size must be through explicit setting of array_size
5320          * attribute.
5321          */
5322         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5323             < mddev->array_sectors) {
5324                 printk(KERN_ERR "md: %s: array size must be reduced "
5325                        "before number of disks\n", mdname(mddev));
5326                 return -EINVAL;
5327         }
5328
5329         atomic_set(&conf->reshape_stripes, 0);
5330         spin_lock_irq(&conf->device_lock);
5331         conf->previous_raid_disks = conf->raid_disks;
5332         conf->raid_disks += mddev->delta_disks;
5333         conf->prev_chunk_sectors = conf->chunk_sectors;
5334         conf->chunk_sectors = mddev->new_chunk_sectors;
5335         conf->prev_algo = conf->algorithm;
5336         conf->algorithm = mddev->new_layout;
5337         if (mddev->delta_disks < 0)
5338                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5339         else
5340                 conf->reshape_progress = 0;
5341         conf->reshape_safe = conf->reshape_progress;
5342         conf->generation++;
5343         spin_unlock_irq(&conf->device_lock);
5344
5345         /* Add some new drives, as many as will fit.
5346          * We know there are enough to make the newly sized array work.
5347          */
5348         list_for_each_entry(rdev, &mddev->disks, same_set)
5349                 if (rdev->raid_disk < 0 &&
5350                     !test_bit(Faulty, &rdev->flags)) {
5351                         if (raid5_add_disk(mddev, rdev) == 0) {
5352                                 char nm[20];
5353                                 set_bit(In_sync, &rdev->flags);
5354                                 added_devices++;
5355                                 rdev->recovery_offset = 0;
5356                                 sprintf(nm, "rd%d", rdev->raid_disk);
5357                                 if (sysfs_create_link(&mddev->kobj,
5358                                                       &rdev->kobj, nm))
5359                                         printk(KERN_WARNING
5360                                                "raid5: failed to create "
5361                                                " link %s for %s\n",
5362                                                nm, mdname(mddev));
5363                         } else
5364                                 break;
5365                 }
5366
5367         if (mddev->delta_disks > 0) {
5368                 spin_lock_irqsave(&conf->device_lock, flags);
5369                 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
5370                         - added_devices;
5371                 spin_unlock_irqrestore(&conf->device_lock, flags);
5372         }
5373         mddev->raid_disks = conf->raid_disks;
5374         mddev->reshape_position = conf->reshape_progress;
5375         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5376
5377         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5378         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5379         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5380         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5381         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5382                                                 "%s_reshape");
5383         if (!mddev->sync_thread) {
5384                 mddev->recovery = 0;
5385                 spin_lock_irq(&conf->device_lock);
5386                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5387                 conf->reshape_progress = MaxSector;
5388                 spin_unlock_irq(&conf->device_lock);
5389                 return -EAGAIN;
5390         }
5391         conf->reshape_checkpoint = jiffies;
5392         md_wakeup_thread(mddev->sync_thread);
5393         md_new_event(mddev);
5394         return 0;
5395 }
5396
5397 /* This is called from the reshape thread and should make any
5398  * changes needed in 'conf'
5399  */
5400 static void end_reshape(raid5_conf_t *conf)
5401 {
5402
5403         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5404
5405                 spin_lock_irq(&conf->device_lock);
5406                 conf->previous_raid_disks = conf->raid_disks;
5407                 conf->reshape_progress = MaxSector;
5408                 spin_unlock_irq(&conf->device_lock);
5409                 wake_up(&conf->wait_for_overlap);
5410
5411                 /* read-ahead size must cover two whole stripes, which is
5412                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5413                  */
5414                 {
5415                         int data_disks = conf->raid_disks - conf->max_degraded;
5416                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5417                                                    / PAGE_SIZE);
5418                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5419                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5420                 }
5421         }
5422 }
5423
5424 /* This is called from the raid5d thread with mddev_lock held.
5425  * It makes config changes to the device.
5426  */
5427 static void raid5_finish_reshape(mddev_t *mddev)
5428 {
5429         raid5_conf_t *conf = mddev->private;
5430
5431         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5432
5433                 if (mddev->delta_disks > 0) {
5434                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5435                         set_capacity(mddev->gendisk, mddev->array_sectors);
5436                         mddev->changed = 1;
5437                         revalidate_disk(mddev->gendisk);
5438                 } else {
5439                         int d;
5440                         mddev->degraded = conf->raid_disks;
5441                         for (d = 0; d < conf->raid_disks ; d++)
5442                                 if (conf->disks[d].rdev &&
5443                                     test_bit(In_sync,
5444                                              &conf->disks[d].rdev->flags))
5445                                         mddev->degraded--;
5446                         for (d = conf->raid_disks ;
5447                              d < conf->raid_disks - mddev->delta_disks;
5448                              d++) {
5449                                 mdk_rdev_t *rdev = conf->disks[d].rdev;
5450                                 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5451                                         char nm[20];
5452                                         sprintf(nm, "rd%d", rdev->raid_disk);
5453                                         sysfs_remove_link(&mddev->kobj, nm);
5454                                         rdev->raid_disk = -1;
5455                                 }
5456                         }
5457                 }
5458                 mddev->layout = conf->algorithm;
5459                 mddev->chunk_sectors = conf->chunk_sectors;
5460                 mddev->reshape_position = MaxSector;
5461                 mddev->delta_disks = 0;
5462         }
5463 }
5464
5465 static void raid5_quiesce(mddev_t *mddev, int state)
5466 {
5467         raid5_conf_t *conf = mddev->private;
5468
5469         switch(state) {
5470         case 2: /* resume for a suspend */
5471                 wake_up(&conf->wait_for_overlap);
5472                 break;
5473
5474         case 1: /* stop all writes */
5475                 spin_lock_irq(&conf->device_lock);
5476                 /* '2' tells resync/reshape to pause so that all
5477                  * active stripes can drain
5478                  */
5479                 conf->quiesce = 2;
5480                 wait_event_lock_irq(conf->wait_for_stripe,
5481                                     atomic_read(&conf->active_stripes) == 0 &&
5482                                     atomic_read(&conf->active_aligned_reads) == 0,
5483                                     conf->device_lock, /* nothing */);
5484                 conf->quiesce = 1;
5485                 spin_unlock_irq(&conf->device_lock);
5486                 /* allow reshape to continue */
5487                 wake_up(&conf->wait_for_overlap);
5488                 break;
5489
5490         case 0: /* re-enable writes */
5491                 spin_lock_irq(&conf->device_lock);
5492                 conf->quiesce = 0;
5493                 wake_up(&conf->wait_for_stripe);
5494                 wake_up(&conf->wait_for_overlap);
5495                 spin_unlock_irq(&conf->device_lock);
5496                 break;
5497         }
5498 }
5499
5500
5501 static void *raid5_takeover_raid1(mddev_t *mddev)
5502 {
5503         int chunksect;
5504
5505         if (mddev->raid_disks != 2 ||
5506             mddev->degraded > 1)
5507                 return ERR_PTR(-EINVAL);
5508
5509         /* Should check if there are write-behind devices? */
5510
5511         chunksect = 64*2; /* 64K by default */
5512
5513         /* The array must be an exact multiple of chunksize */
5514         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5515                 chunksect >>= 1;
5516
5517         if ((chunksect<<9) < STRIPE_SIZE)
5518                 /* array size does not allow a suitable chunk size */
5519                 return ERR_PTR(-EINVAL);
5520
5521         mddev->new_level = 5;
5522         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5523         mddev->new_chunk_sectors = chunksect;
5524
5525         return setup_conf(mddev);
5526 }
5527
5528 static void *raid5_takeover_raid6(mddev_t *mddev)
5529 {
5530         int new_layout;
5531
5532         switch (mddev->layout) {
5533         case ALGORITHM_LEFT_ASYMMETRIC_6:
5534                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5535                 break;
5536         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5537                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5538                 break;
5539         case ALGORITHM_LEFT_SYMMETRIC_6:
5540                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5541                 break;
5542         case ALGORITHM_RIGHT_SYMMETRIC_6:
5543                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5544                 break;
5545         case ALGORITHM_PARITY_0_6:
5546                 new_layout = ALGORITHM_PARITY_0;
5547                 break;
5548         case ALGORITHM_PARITY_N:
5549                 new_layout = ALGORITHM_PARITY_N;
5550                 break;
5551         default:
5552                 return ERR_PTR(-EINVAL);
5553         }
5554         mddev->new_level = 5;
5555         mddev->new_layout = new_layout;
5556         mddev->delta_disks = -1;
5557         mddev->raid_disks -= 1;
5558         return setup_conf(mddev);
5559 }
5560
5561
5562 static int raid5_check_reshape(mddev_t *mddev)
5563 {
5564         /* For a 2-drive array, the layout and chunk size can be changed
5565          * immediately as not restriping is needed.
5566          * For larger arrays we record the new value - after validation
5567          * to be used by a reshape pass.
5568          */
5569         raid5_conf_t *conf = mddev->private;
5570         int new_chunk = mddev->new_chunk_sectors;
5571
5572         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5573                 return -EINVAL;
5574         if (new_chunk > 0) {
5575                 if (!is_power_of_2(new_chunk))
5576                         return -EINVAL;
5577                 if (new_chunk < (PAGE_SIZE>>9))
5578                         return -EINVAL;
5579                 if (mddev->array_sectors & (new_chunk-1))
5580                         /* not factor of array size */
5581                         return -EINVAL;
5582         }
5583
5584         /* They look valid */
5585
5586         if (mddev->raid_disks == 2) {
5587                 /* can make the change immediately */
5588                 if (mddev->new_layout >= 0) {
5589                         conf->algorithm = mddev->new_layout;
5590                         mddev->layout = mddev->new_layout;
5591                 }
5592                 if (new_chunk > 0) {
5593                         conf->chunk_sectors = new_chunk ;
5594                         mddev->chunk_sectors = new_chunk;
5595                 }
5596                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5597                 md_wakeup_thread(mddev->thread);
5598         }
5599         return check_reshape(mddev);
5600 }
5601
5602 static int raid6_check_reshape(mddev_t *mddev)
5603 {
5604         int new_chunk = mddev->new_chunk_sectors;
5605
5606         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5607                 return -EINVAL;
5608         if (new_chunk > 0) {
5609                 if (!is_power_of_2(new_chunk))
5610                         return -EINVAL;
5611                 if (new_chunk < (PAGE_SIZE >> 9))
5612                         return -EINVAL;
5613                 if (mddev->array_sectors & (new_chunk-1))
5614                         /* not factor of array size */
5615                         return -EINVAL;
5616         }
5617
5618         /* They look valid */
5619         return check_reshape(mddev);
5620 }
5621
5622 static void *raid5_takeover(mddev_t *mddev)
5623 {
5624         /* raid5 can take over:
5625          *  raid0 - if all devices are the same - make it a raid4 layout
5626          *  raid1 - if there are two drives.  We need to know the chunk size
5627          *  raid4 - trivial - just use a raid4 layout.
5628          *  raid6 - Providing it is a *_6 layout
5629          */
5630
5631         if (mddev->level == 1)
5632                 return raid5_takeover_raid1(mddev);
5633         if (mddev->level == 4) {
5634                 mddev->new_layout = ALGORITHM_PARITY_N;
5635                 mddev->new_level = 5;
5636                 return setup_conf(mddev);
5637         }
5638         if (mddev->level == 6)
5639                 return raid5_takeover_raid6(mddev);
5640
5641         return ERR_PTR(-EINVAL);
5642 }
5643
5644
5645 static struct mdk_personality raid5_personality;
5646
5647 static void *raid6_takeover(mddev_t *mddev)
5648 {
5649         /* Currently can only take over a raid5.  We map the
5650          * personality to an equivalent raid6 personality
5651          * with the Q block at the end.
5652          */
5653         int new_layout;
5654
5655         if (mddev->pers != &raid5_personality)
5656                 return ERR_PTR(-EINVAL);
5657         if (mddev->degraded > 1)
5658                 return ERR_PTR(-EINVAL);
5659         if (mddev->raid_disks > 253)
5660                 return ERR_PTR(-EINVAL);
5661         if (mddev->raid_disks < 3)
5662                 return ERR_PTR(-EINVAL);
5663
5664         switch (mddev->layout) {
5665         case ALGORITHM_LEFT_ASYMMETRIC:
5666                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5667                 break;
5668         case ALGORITHM_RIGHT_ASYMMETRIC:
5669                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5670                 break;
5671         case ALGORITHM_LEFT_SYMMETRIC:
5672                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5673                 break;
5674         case ALGORITHM_RIGHT_SYMMETRIC:
5675                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5676                 break;
5677         case ALGORITHM_PARITY_0:
5678                 new_layout = ALGORITHM_PARITY_0_6;
5679                 break;
5680         case ALGORITHM_PARITY_N:
5681                 new_layout = ALGORITHM_PARITY_N;
5682                 break;
5683         default:
5684                 return ERR_PTR(-EINVAL);
5685         }
5686         mddev->new_level = 6;
5687         mddev->new_layout = new_layout;
5688         mddev->delta_disks = 1;
5689         mddev->raid_disks += 1;
5690         return setup_conf(mddev);
5691 }
5692
5693
5694 static struct mdk_personality raid6_personality =
5695 {
5696         .name           = "raid6",
5697         .level          = 6,
5698         .owner          = THIS_MODULE,
5699         .make_request   = make_request,
5700         .run            = run,
5701         .stop           = stop,
5702         .status         = status,
5703         .error_handler  = error,
5704         .hot_add_disk   = raid5_add_disk,
5705         .hot_remove_disk= raid5_remove_disk,
5706         .spare_active   = raid5_spare_active,
5707         .sync_request   = sync_request,
5708         .resize         = raid5_resize,
5709         .size           = raid5_size,
5710         .check_reshape  = raid6_check_reshape,
5711         .start_reshape  = raid5_start_reshape,
5712         .finish_reshape = raid5_finish_reshape,
5713         .quiesce        = raid5_quiesce,
5714         .takeover       = raid6_takeover,
5715 };
5716 static struct mdk_personality raid5_personality =
5717 {
5718         .name           = "raid5",
5719         .level          = 5,
5720         .owner          = THIS_MODULE,
5721         .make_request   = make_request,
5722         .run            = run,
5723         .stop           = stop,
5724         .status         = status,
5725         .error_handler  = error,
5726         .hot_add_disk   = raid5_add_disk,
5727         .hot_remove_disk= raid5_remove_disk,
5728         .spare_active   = raid5_spare_active,
5729         .sync_request   = sync_request,
5730         .resize         = raid5_resize,
5731         .size           = raid5_size,
5732         .check_reshape  = raid5_check_reshape,
5733         .start_reshape  = raid5_start_reshape,
5734         .finish_reshape = raid5_finish_reshape,
5735         .quiesce        = raid5_quiesce,
5736         .takeover       = raid5_takeover,
5737 };
5738
5739 static struct mdk_personality raid4_personality =
5740 {
5741         .name           = "raid4",
5742         .level          = 4,
5743         .owner          = THIS_MODULE,
5744         .make_request   = make_request,
5745         .run            = run,
5746         .stop           = stop,
5747         .status         = status,
5748         .error_handler  = error,
5749         .hot_add_disk   = raid5_add_disk,
5750         .hot_remove_disk= raid5_remove_disk,
5751         .spare_active   = raid5_spare_active,
5752         .sync_request   = sync_request,
5753         .resize         = raid5_resize,
5754         .size           = raid5_size,
5755         .check_reshape  = raid5_check_reshape,
5756         .start_reshape  = raid5_start_reshape,
5757         .finish_reshape = raid5_finish_reshape,
5758         .quiesce        = raid5_quiesce,
5759 };
5760
5761 static int __init raid5_init(void)
5762 {
5763         register_md_personality(&raid6_personality);
5764         register_md_personality(&raid5_personality);
5765         register_md_personality(&raid4_personality);
5766         return 0;
5767 }
5768
5769 static void raid5_exit(void)
5770 {
5771         unregister_md_personality(&raid6_personality);
5772         unregister_md_personality(&raid5_personality);
5773         unregister_md_personality(&raid4_personality);
5774 }
5775
5776 module_init(raid5_init);
5777 module_exit(raid5_exit);
5778 MODULE_LICENSE("GPL");
5779 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5780 MODULE_ALIAS("md-raid5");
5781 MODULE_ALIAS("md-raid4");
5782 MODULE_ALIAS("md-level-5");
5783 MODULE_ALIAS("md-level-4");
5784 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5785 MODULE_ALIAS("md-raid6");
5786 MODULE_ALIAS("md-level-6");
5787
5788 /* This used to be two separate modules, they were: */
5789 MODULE_ALIAS("raid5");
5790 MODULE_ALIAS("raid6");