[PATCH] md: improve read speed to raid10 arrays using 'far copies'
[safe/jmp/linux-2.6] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/raid/raid10.h>
22
23 /*
24  * RAID10 provides a combination of RAID0 and RAID1 functionality.
25  * The layout of data is defined by
26  *    chunk_size
27  *    raid_disks
28  *    near_copies (stored in low byte of layout)
29  *    far_copies (stored in second byte of layout)
30  *
31  * The data to be stored is divided into chunks using chunksize.
32  * Each device is divided into far_copies sections.
33  * In each section, chunks are laid out in a style similar to raid0, but
34  * near_copies copies of each chunk is stored (each on a different drive).
35  * The starting device for each section is offset near_copies from the starting
36  * device of the previous section.
37  * Thus there are (near_copies*far_copies) of each chunk, and each is on a different
38  * drive.
39  * near_copies and far_copies must be at least one, and their product is at most
40  * raid_disks.
41  */
42
43 /*
44  * Number of guaranteed r10bios in case of extreme VM load:
45  */
46 #define NR_RAID10_BIOS 256
47
48 static void unplug_slaves(mddev_t *mddev);
49
50 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
51 {
52         conf_t *conf = data;
53         r10bio_t *r10_bio;
54         int size = offsetof(struct r10bio_s, devs[conf->copies]);
55
56         /* allocate a r10bio with room for raid_disks entries in the bios array */
57         r10_bio = kmalloc(size, gfp_flags);
58         if (r10_bio)
59                 memset(r10_bio, 0, size);
60         else
61                 unplug_slaves(conf->mddev);
62
63         return r10_bio;
64 }
65
66 static void r10bio_pool_free(void *r10_bio, void *data)
67 {
68         kfree(r10_bio);
69 }
70
71 #define RESYNC_BLOCK_SIZE (64*1024)
72 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
73 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
74 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
75 #define RESYNC_WINDOW (2048*1024)
76
77 /*
78  * When performing a resync, we need to read and compare, so
79  * we need as many pages are there are copies.
80  * When performing a recovery, we need 2 bios, one for read,
81  * one for write (we recover only one drive per r10buf)
82  *
83  */
84 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
85 {
86         conf_t *conf = data;
87         struct page *page;
88         r10bio_t *r10_bio;
89         struct bio *bio;
90         int i, j;
91         int nalloc;
92
93         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
94         if (!r10_bio) {
95                 unplug_slaves(conf->mddev);
96                 return NULL;
97         }
98
99         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
100                 nalloc = conf->copies; /* resync */
101         else
102                 nalloc = 2; /* recovery */
103
104         /*
105          * Allocate bios.
106          */
107         for (j = nalloc ; j-- ; ) {
108                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
109                 if (!bio)
110                         goto out_free_bio;
111                 r10_bio->devs[j].bio = bio;
112         }
113         /*
114          * Allocate RESYNC_PAGES data pages and attach them
115          * where needed.
116          */
117         for (j = 0 ; j < nalloc; j++) {
118                 bio = r10_bio->devs[j].bio;
119                 for (i = 0; i < RESYNC_PAGES; i++) {
120                         page = alloc_page(gfp_flags);
121                         if (unlikely(!page))
122                                 goto out_free_pages;
123
124                         bio->bi_io_vec[i].bv_page = page;
125                 }
126         }
127
128         return r10_bio;
129
130 out_free_pages:
131         for ( ; i > 0 ; i--)
132                 __free_page(bio->bi_io_vec[i-1].bv_page);
133         while (j--)
134                 for (i = 0; i < RESYNC_PAGES ; i++)
135                         __free_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
136         j = -1;
137 out_free_bio:
138         while ( ++j < nalloc )
139                 bio_put(r10_bio->devs[j].bio);
140         r10bio_pool_free(r10_bio, conf);
141         return NULL;
142 }
143
144 static void r10buf_pool_free(void *__r10_bio, void *data)
145 {
146         int i;
147         conf_t *conf = data;
148         r10bio_t *r10bio = __r10_bio;
149         int j;
150
151         for (j=0; j < conf->copies; j++) {
152                 struct bio *bio = r10bio->devs[j].bio;
153                 if (bio) {
154                         for (i = 0; i < RESYNC_PAGES; i++) {
155                                 __free_page(bio->bi_io_vec[i].bv_page);
156                                 bio->bi_io_vec[i].bv_page = NULL;
157                         }
158                         bio_put(bio);
159                 }
160         }
161         r10bio_pool_free(r10bio, conf);
162 }
163
164 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
165 {
166         int i;
167
168         for (i = 0; i < conf->copies; i++) {
169                 struct bio **bio = & r10_bio->devs[i].bio;
170                 if (*bio)
171                         bio_put(*bio);
172                 *bio = NULL;
173         }
174 }
175
176 static inline void free_r10bio(r10bio_t *r10_bio)
177 {
178         unsigned long flags;
179
180         conf_t *conf = mddev_to_conf(r10_bio->mddev);
181
182         /*
183          * Wake up any possible resync thread that waits for the device
184          * to go idle.
185          */
186         spin_lock_irqsave(&conf->resync_lock, flags);
187         if (!--conf->nr_pending) {
188                 wake_up(&conf->wait_idle);
189                 wake_up(&conf->wait_resume);
190         }
191         spin_unlock_irqrestore(&conf->resync_lock, flags);
192
193         put_all_bios(conf, r10_bio);
194         mempool_free(r10_bio, conf->r10bio_pool);
195 }
196
197 static inline void put_buf(r10bio_t *r10_bio)
198 {
199         conf_t *conf = mddev_to_conf(r10_bio->mddev);
200         unsigned long flags;
201
202         mempool_free(r10_bio, conf->r10buf_pool);
203
204         spin_lock_irqsave(&conf->resync_lock, flags);
205         if (!conf->barrier)
206                 BUG();
207         --conf->barrier;
208         wake_up(&conf->wait_resume);
209         wake_up(&conf->wait_idle);
210
211         if (!--conf->nr_pending) {
212                 wake_up(&conf->wait_idle);
213                 wake_up(&conf->wait_resume);
214         }
215         spin_unlock_irqrestore(&conf->resync_lock, flags);
216 }
217
218 static void reschedule_retry(r10bio_t *r10_bio)
219 {
220         unsigned long flags;
221         mddev_t *mddev = r10_bio->mddev;
222         conf_t *conf = mddev_to_conf(mddev);
223
224         spin_lock_irqsave(&conf->device_lock, flags);
225         list_add(&r10_bio->retry_list, &conf->retry_list);
226         spin_unlock_irqrestore(&conf->device_lock, flags);
227
228         md_wakeup_thread(mddev->thread);
229 }
230
231 /*
232  * raid_end_bio_io() is called when we have finished servicing a mirrored
233  * operation and are ready to return a success/failure code to the buffer
234  * cache layer.
235  */
236 static void raid_end_bio_io(r10bio_t *r10_bio)
237 {
238         struct bio *bio = r10_bio->master_bio;
239
240         bio_endio(bio, bio->bi_size,
241                 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
242         free_r10bio(r10_bio);
243 }
244
245 /*
246  * Update disk head position estimator based on IRQ completion info.
247  */
248 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
249 {
250         conf_t *conf = mddev_to_conf(r10_bio->mddev);
251
252         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
253                 r10_bio->devs[slot].addr + (r10_bio->sectors);
254 }
255
256 static int raid10_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
257 {
258         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
259         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
260         int slot, dev;
261         conf_t *conf = mddev_to_conf(r10_bio->mddev);
262
263         if (bio->bi_size)
264                 return 1;
265
266         slot = r10_bio->read_slot;
267         dev = r10_bio->devs[slot].devnum;
268         /*
269          * this branch is our 'one mirror IO has finished' event handler:
270          */
271         if (!uptodate)
272                 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
273         else
274                 /*
275                  * Set R10BIO_Uptodate in our master bio, so that
276                  * we will return a good error code to the higher
277                  * levels even if IO on some other mirrored buffer fails.
278                  *
279                  * The 'master' represents the composite IO operation to
280                  * user-side. So if something waits for IO, then it will
281                  * wait for the 'master' bio.
282                  */
283                 set_bit(R10BIO_Uptodate, &r10_bio->state);
284
285         update_head_pos(slot, r10_bio);
286
287         /*
288          * we have only one bio on the read side
289          */
290         if (uptodate)
291                 raid_end_bio_io(r10_bio);
292         else {
293                 /*
294                  * oops, read error:
295                  */
296                 char b[BDEVNAME_SIZE];
297                 if (printk_ratelimit())
298                         printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
299                                bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
300                 reschedule_retry(r10_bio);
301         }
302
303         rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
304         return 0;
305 }
306
307 static int raid10_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
308 {
309         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
311         int slot, dev;
312         conf_t *conf = mddev_to_conf(r10_bio->mddev);
313
314         if (bio->bi_size)
315                 return 1;
316
317         for (slot = 0; slot < conf->copies; slot++)
318                 if (r10_bio->devs[slot].bio == bio)
319                         break;
320         dev = r10_bio->devs[slot].devnum;
321
322         /*
323          * this branch is our 'one mirror IO has finished' event handler:
324          */
325         if (!uptodate)
326                 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
327         else
328                 /*
329                  * Set R10BIO_Uptodate in our master bio, so that
330                  * we will return a good error code for to the higher
331                  * levels even if IO on some other mirrored buffer fails.
332                  *
333                  * The 'master' represents the composite IO operation to
334                  * user-side. So if something waits for IO, then it will
335                  * wait for the 'master' bio.
336                  */
337                 set_bit(R10BIO_Uptodate, &r10_bio->state);
338
339         update_head_pos(slot, r10_bio);
340
341         /*
342          *
343          * Let's see if all mirrored write operations have finished
344          * already.
345          */
346         if (atomic_dec_and_test(&r10_bio->remaining)) {
347                 md_write_end(r10_bio->mddev);
348                 raid_end_bio_io(r10_bio);
349         }
350
351         rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
352         return 0;
353 }
354
355
356 /*
357  * RAID10 layout manager
358  * Aswell as the chunksize and raid_disks count, there are two
359  * parameters: near_copies and far_copies.
360  * near_copies * far_copies must be <= raid_disks.
361  * Normally one of these will be 1.
362  * If both are 1, we get raid0.
363  * If near_copies == raid_disks, we get raid1.
364  *
365  * Chunks are layed out in raid0 style with near_copies copies of the
366  * first chunk, followed by near_copies copies of the next chunk and
367  * so on.
368  * If far_copies > 1, then after 1/far_copies of the array has been assigned
369  * as described above, we start again with a device offset of near_copies.
370  * So we effectively have another copy of the whole array further down all
371  * the drives, but with blocks on different drives.
372  * With this layout, and block is never stored twice on the one device.
373  *
374  * raid10_find_phys finds the sector offset of a given virtual sector
375  * on each device that it is on. If a block isn't on a device,
376  * that entry in the array is set to MaxSector.
377  *
378  * raid10_find_virt does the reverse mapping, from a device and a
379  * sector offset to a virtual address
380  */
381
382 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
383 {
384         int n,f;
385         sector_t sector;
386         sector_t chunk;
387         sector_t stripe;
388         int dev;
389
390         int slot = 0;
391
392         /* now calculate first sector/dev */
393         chunk = r10bio->sector >> conf->chunk_shift;
394         sector = r10bio->sector & conf->chunk_mask;
395
396         chunk *= conf->near_copies;
397         stripe = chunk;
398         dev = sector_div(stripe, conf->raid_disks);
399
400         sector += stripe << conf->chunk_shift;
401
402         /* and calculate all the others */
403         for (n=0; n < conf->near_copies; n++) {
404                 int d = dev;
405                 sector_t s = sector;
406                 r10bio->devs[slot].addr = sector;
407                 r10bio->devs[slot].devnum = d;
408                 slot++;
409
410                 for (f = 1; f < conf->far_copies; f++) {
411                         d += conf->near_copies;
412                         if (d >= conf->raid_disks)
413                                 d -= conf->raid_disks;
414                         s += conf->stride;
415                         r10bio->devs[slot].devnum = d;
416                         r10bio->devs[slot].addr = s;
417                         slot++;
418                 }
419                 dev++;
420                 if (dev >= conf->raid_disks) {
421                         dev = 0;
422                         sector += (conf->chunk_mask + 1);
423                 }
424         }
425         BUG_ON(slot != conf->copies);
426 }
427
428 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
429 {
430         sector_t offset, chunk, vchunk;
431
432         while (sector > conf->stride) {
433                 sector -= conf->stride;
434                 if (dev < conf->near_copies)
435                         dev += conf->raid_disks - conf->near_copies;
436                 else
437                         dev -= conf->near_copies;
438         }
439
440         offset = sector & conf->chunk_mask;
441         chunk = sector >> conf->chunk_shift;
442         vchunk = chunk * conf->raid_disks + dev;
443         sector_div(vchunk, conf->near_copies);
444         return (vchunk << conf->chunk_shift) + offset;
445 }
446
447 /**
448  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
449  *      @q: request queue
450  *      @bio: the buffer head that's been built up so far
451  *      @biovec: the request that could be merged to it.
452  *
453  *      Return amount of bytes we can accept at this offset
454  *      If near_copies == raid_disk, there are no striping issues,
455  *      but in that case, the function isn't called at all.
456  */
457 static int raid10_mergeable_bvec(request_queue_t *q, struct bio *bio,
458                                 struct bio_vec *bio_vec)
459 {
460         mddev_t *mddev = q->queuedata;
461         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
462         int max;
463         unsigned int chunk_sectors = mddev->chunk_size >> 9;
464         unsigned int bio_sectors = bio->bi_size >> 9;
465
466         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
467         if (max < 0) max = 0; /* bio_add cannot handle a negative return */
468         if (max <= bio_vec->bv_len && bio_sectors == 0)
469                 return bio_vec->bv_len;
470         else
471                 return max;
472 }
473
474 /*
475  * This routine returns the disk from which the requested read should
476  * be done. There is a per-array 'next expected sequential IO' sector
477  * number - if this matches on the next IO then we use the last disk.
478  * There is also a per-disk 'last know head position' sector that is
479  * maintained from IRQ contexts, both the normal and the resync IO
480  * completion handlers update this position correctly. If there is no
481  * perfect sequential match then we pick the disk whose head is closest.
482  *
483  * If there are 2 mirrors in the same 2 devices, performance degrades
484  * because position is mirror, not device based.
485  *
486  * The rdev for the device selected will have nr_pending incremented.
487  */
488
489 /*
490  * FIXME: possibly should rethink readbalancing and do it differently
491  * depending on near_copies / far_copies geometry.
492  */
493 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
494 {
495         const unsigned long this_sector = r10_bio->sector;
496         int disk, slot, nslot;
497         const int sectors = r10_bio->sectors;
498         sector_t new_distance, current_distance;
499         mdk_rdev_t *rdev;
500
501         raid10_find_phys(conf, r10_bio);
502         rcu_read_lock();
503         /*
504          * Check if we can balance. We can balance on the whole
505          * device if no resync is going on, or below the resync window.
506          * We take the first readable disk when above the resync window.
507          */
508         if (conf->mddev->recovery_cp < MaxSector
509             && (this_sector + sectors >= conf->next_resync)) {
510                 /* make sure that disk is operational */
511                 slot = 0;
512                 disk = r10_bio->devs[slot].devnum;
513
514                 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
515                        !test_bit(In_sync, &rdev->flags)) {
516                         slot++;
517                         if (slot == conf->copies) {
518                                 slot = 0;
519                                 disk = -1;
520                                 break;
521                         }
522                         disk = r10_bio->devs[slot].devnum;
523                 }
524                 goto rb_out;
525         }
526
527
528         /* make sure the disk is operational */
529         slot = 0;
530         disk = r10_bio->devs[slot].devnum;
531         while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
532                !test_bit(In_sync, &rdev->flags)) {
533                 slot ++;
534                 if (slot == conf->copies) {
535                         disk = -1;
536                         goto rb_out;
537                 }
538                 disk = r10_bio->devs[slot].devnum;
539         }
540
541
542         current_distance = abs(r10_bio->devs[slot].addr -
543                                conf->mirrors[disk].head_position);
544
545         /* Find the disk whose head is closest */
546
547         for (nslot = slot; nslot < conf->copies; nslot++) {
548                 int ndisk = r10_bio->devs[nslot].devnum;
549
550
551                 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
552                     !test_bit(In_sync, &rdev->flags))
553                         continue;
554
555                 /* This optimisation is debatable, and completely destroys
556                  * sequential read speed for 'far copies' arrays.  So only
557                  * keep it for 'near' arrays, and review those later.
558                  */
559                 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
560                         disk = ndisk;
561                         slot = nslot;
562                         break;
563                 }
564                 new_distance = abs(r10_bio->devs[nslot].addr -
565                                    conf->mirrors[ndisk].head_position);
566                 if (new_distance < current_distance) {
567                         current_distance = new_distance;
568                         disk = ndisk;
569                         slot = nslot;
570                 }
571         }
572
573 rb_out:
574         r10_bio->read_slot = slot;
575 /*      conf->next_seq_sect = this_sector + sectors;*/
576
577         if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
578                 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
579         rcu_read_unlock();
580
581         return disk;
582 }
583
584 static void unplug_slaves(mddev_t *mddev)
585 {
586         conf_t *conf = mddev_to_conf(mddev);
587         int i;
588
589         rcu_read_lock();
590         for (i=0; i<mddev->raid_disks; i++) {
591                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
592                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
593                         request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
594
595                         atomic_inc(&rdev->nr_pending);
596                         rcu_read_unlock();
597
598                         if (r_queue->unplug_fn)
599                                 r_queue->unplug_fn(r_queue);
600
601                         rdev_dec_pending(rdev, mddev);
602                         rcu_read_lock();
603                 }
604         }
605         rcu_read_unlock();
606 }
607
608 static void raid10_unplug(request_queue_t *q)
609 {
610         unplug_slaves(q->queuedata);
611 }
612
613 static int raid10_issue_flush(request_queue_t *q, struct gendisk *disk,
614                              sector_t *error_sector)
615 {
616         mddev_t *mddev = q->queuedata;
617         conf_t *conf = mddev_to_conf(mddev);
618         int i, ret = 0;
619
620         rcu_read_lock();
621         for (i=0; i<mddev->raid_disks && ret == 0; i++) {
622                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
623                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
624                         struct block_device *bdev = rdev->bdev;
625                         request_queue_t *r_queue = bdev_get_queue(bdev);
626
627                         if (!r_queue->issue_flush_fn)
628                                 ret = -EOPNOTSUPP;
629                         else {
630                                 atomic_inc(&rdev->nr_pending);
631                                 rcu_read_unlock();
632                                 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
633                                                               error_sector);
634                                 rdev_dec_pending(rdev, mddev);
635                                 rcu_read_lock();
636                         }
637                 }
638         }
639         rcu_read_unlock();
640         return ret;
641 }
642
643 /*
644  * Throttle resync depth, so that we can both get proper overlapping of
645  * requests, but are still able to handle normal requests quickly.
646  */
647 #define RESYNC_DEPTH 32
648
649 static void device_barrier(conf_t *conf, sector_t sect)
650 {
651         spin_lock_irq(&conf->resync_lock);
652         wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume),
653                             conf->resync_lock, unplug_slaves(conf->mddev));
654
655         if (!conf->barrier++) {
656                 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
657                                     conf->resync_lock, unplug_slaves(conf->mddev));
658                 if (conf->nr_pending)
659                         BUG();
660         }
661         wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH,
662                             conf->resync_lock, unplug_slaves(conf->mddev));
663         conf->next_resync = sect;
664         spin_unlock_irq(&conf->resync_lock);
665 }
666
667 static int make_request(request_queue_t *q, struct bio * bio)
668 {
669         mddev_t *mddev = q->queuedata;
670         conf_t *conf = mddev_to_conf(mddev);
671         mirror_info_t *mirror;
672         r10bio_t *r10_bio;
673         struct bio *read_bio;
674         int i;
675         int chunk_sects = conf->chunk_mask + 1;
676         const int rw = bio_data_dir(bio);
677
678         if (unlikely(bio_barrier(bio))) {
679                 bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
680                 return 0;
681         }
682
683         /* If this request crosses a chunk boundary, we need to
684          * split it.  This will only happen for 1 PAGE (or less) requests.
685          */
686         if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
687                       > chunk_sects &&
688                     conf->near_copies < conf->raid_disks)) {
689                 struct bio_pair *bp;
690                 /* Sanity check -- queue functions should prevent this happening */
691                 if (bio->bi_vcnt != 1 ||
692                     bio->bi_idx != 0)
693                         goto bad_map;
694                 /* This is a one page bio that upper layers
695                  * refuse to split for us, so we need to split it.
696                  */
697                 bp = bio_split(bio, bio_split_pool,
698                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
699                 if (make_request(q, &bp->bio1))
700                         generic_make_request(&bp->bio1);
701                 if (make_request(q, &bp->bio2))
702                         generic_make_request(&bp->bio2);
703
704                 bio_pair_release(bp);
705                 return 0;
706         bad_map:
707                 printk("raid10_make_request bug: can't convert block across chunks"
708                        " or bigger than %dk %llu %d\n", chunk_sects/2,
709                        (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
710
711                 bio_io_error(bio, bio->bi_size);
712                 return 0;
713         }
714
715         md_write_start(mddev, bio);
716
717         /*
718          * Register the new request and wait if the reconstruction
719          * thread has put up a bar for new requests.
720          * Continue immediately if no resync is active currently.
721          */
722         spin_lock_irq(&conf->resync_lock);
723         wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, );
724         conf->nr_pending++;
725         spin_unlock_irq(&conf->resync_lock);
726
727         disk_stat_inc(mddev->gendisk, ios[rw]);
728         disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
729
730         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
731
732         r10_bio->master_bio = bio;
733         r10_bio->sectors = bio->bi_size >> 9;
734
735         r10_bio->mddev = mddev;
736         r10_bio->sector = bio->bi_sector;
737
738         if (rw == READ) {
739                 /*
740                  * read balancing logic:
741                  */
742                 int disk = read_balance(conf, r10_bio);
743                 int slot = r10_bio->read_slot;
744                 if (disk < 0) {
745                         raid_end_bio_io(r10_bio);
746                         return 0;
747                 }
748                 mirror = conf->mirrors + disk;
749
750                 read_bio = bio_clone(bio, GFP_NOIO);
751
752                 r10_bio->devs[slot].bio = read_bio;
753
754                 read_bio->bi_sector = r10_bio->devs[slot].addr +
755                         mirror->rdev->data_offset;
756                 read_bio->bi_bdev = mirror->rdev->bdev;
757                 read_bio->bi_end_io = raid10_end_read_request;
758                 read_bio->bi_rw = READ;
759                 read_bio->bi_private = r10_bio;
760
761                 generic_make_request(read_bio);
762                 return 0;
763         }
764
765         /*
766          * WRITE:
767          */
768         /* first select target devices under spinlock and
769          * inc refcount on their rdev.  Record them by setting
770          * bios[x] to bio
771          */
772         raid10_find_phys(conf, r10_bio);
773         rcu_read_lock();
774         for (i = 0;  i < conf->copies; i++) {
775                 int d = r10_bio->devs[i].devnum;
776                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
777                 if (rdev &&
778                     !test_bit(Faulty, &rdev->flags)) {
779                         atomic_inc(&rdev->nr_pending);
780                         r10_bio->devs[i].bio = bio;
781                 } else
782                         r10_bio->devs[i].bio = NULL;
783         }
784         rcu_read_unlock();
785
786         atomic_set(&r10_bio->remaining, 1);
787
788         for (i = 0; i < conf->copies; i++) {
789                 struct bio *mbio;
790                 int d = r10_bio->devs[i].devnum;
791                 if (!r10_bio->devs[i].bio)
792                         continue;
793
794                 mbio = bio_clone(bio, GFP_NOIO);
795                 r10_bio->devs[i].bio = mbio;
796
797                 mbio->bi_sector = r10_bio->devs[i].addr+
798                         conf->mirrors[d].rdev->data_offset;
799                 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
800                 mbio->bi_end_io = raid10_end_write_request;
801                 mbio->bi_rw = WRITE;
802                 mbio->bi_private = r10_bio;
803
804                 atomic_inc(&r10_bio->remaining);
805                 generic_make_request(mbio);
806         }
807
808         if (atomic_dec_and_test(&r10_bio->remaining)) {
809                 md_write_end(mddev);
810                 raid_end_bio_io(r10_bio);
811         }
812
813         return 0;
814 }
815
816 static void status(struct seq_file *seq, mddev_t *mddev)
817 {
818         conf_t *conf = mddev_to_conf(mddev);
819         int i;
820
821         if (conf->near_copies < conf->raid_disks)
822                 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
823         if (conf->near_copies > 1)
824                 seq_printf(seq, " %d near-copies", conf->near_copies);
825         if (conf->far_copies > 1)
826                 seq_printf(seq, " %d far-copies", conf->far_copies);
827
828         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
829                                                 conf->working_disks);
830         for (i = 0; i < conf->raid_disks; i++)
831                 seq_printf(seq, "%s",
832                               conf->mirrors[i].rdev &&
833                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
834         seq_printf(seq, "]");
835 }
836
837 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
838 {
839         char b[BDEVNAME_SIZE];
840         conf_t *conf = mddev_to_conf(mddev);
841
842         /*
843          * If it is not operational, then we have already marked it as dead
844          * else if it is the last working disks, ignore the error, let the
845          * next level up know.
846          * else mark the drive as failed
847          */
848         if (test_bit(In_sync, &rdev->flags)
849             && conf->working_disks == 1)
850                 /*
851                  * Don't fail the drive, just return an IO error.
852                  * The test should really be more sophisticated than
853                  * "working_disks == 1", but it isn't critical, and
854                  * can wait until we do more sophisticated "is the drive
855                  * really dead" tests...
856                  */
857                 return;
858         if (test_bit(In_sync, &rdev->flags)) {
859                 mddev->degraded++;
860                 conf->working_disks--;
861                 /*
862                  * if recovery is running, make sure it aborts.
863                  */
864                 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
865         }
866         clear_bit(In_sync, &rdev->flags);
867         set_bit(Faulty, &rdev->flags);
868         mddev->sb_dirty = 1;
869         printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
870                 "       Operation continuing on %d devices\n",
871                 bdevname(rdev->bdev,b), conf->working_disks);
872 }
873
874 static void print_conf(conf_t *conf)
875 {
876         int i;
877         mirror_info_t *tmp;
878
879         printk("RAID10 conf printout:\n");
880         if (!conf) {
881                 printk("(!conf)\n");
882                 return;
883         }
884         printk(" --- wd:%d rd:%d\n", conf->working_disks,
885                 conf->raid_disks);
886
887         for (i = 0; i < conf->raid_disks; i++) {
888                 char b[BDEVNAME_SIZE];
889                 tmp = conf->mirrors + i;
890                 if (tmp->rdev)
891                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
892                                 i, !test_bit(In_sync, &tmp->rdev->flags),
893                                 !test_bit(Faulty, &tmp->rdev->flags),
894                                 bdevname(tmp->rdev->bdev,b));
895         }
896 }
897
898 static void close_sync(conf_t *conf)
899 {
900         spin_lock_irq(&conf->resync_lock);
901         wait_event_lock_irq(conf->wait_resume, !conf->barrier,
902                             conf->resync_lock,  unplug_slaves(conf->mddev));
903         spin_unlock_irq(&conf->resync_lock);
904
905         if (conf->barrier) BUG();
906         if (waitqueue_active(&conf->wait_idle)) BUG();
907
908         mempool_destroy(conf->r10buf_pool);
909         conf->r10buf_pool = NULL;
910 }
911
912 /* check if there are enough drives for
913  * every block to appear on atleast one
914  */
915 static int enough(conf_t *conf)
916 {
917         int first = 0;
918
919         do {
920                 int n = conf->copies;
921                 int cnt = 0;
922                 while (n--) {
923                         if (conf->mirrors[first].rdev)
924                                 cnt++;
925                         first = (first+1) % conf->raid_disks;
926                 }
927                 if (cnt == 0)
928                         return 0;
929         } while (first != 0);
930         return 1;
931 }
932
933 static int raid10_spare_active(mddev_t *mddev)
934 {
935         int i;
936         conf_t *conf = mddev->private;
937         mirror_info_t *tmp;
938
939         /*
940          * Find all non-in_sync disks within the RAID10 configuration
941          * and mark them in_sync
942          */
943         for (i = 0; i < conf->raid_disks; i++) {
944                 tmp = conf->mirrors + i;
945                 if (tmp->rdev
946                     && !test_bit(Faulty, &tmp->rdev->flags)
947                     && !test_bit(In_sync, &tmp->rdev->flags)) {
948                         conf->working_disks++;
949                         mddev->degraded--;
950                         set_bit(In_sync, &tmp->rdev->flags);
951                 }
952         }
953
954         print_conf(conf);
955         return 0;
956 }
957
958
959 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
960 {
961         conf_t *conf = mddev->private;
962         int found = 0;
963         int mirror;
964         mirror_info_t *p;
965
966         if (mddev->recovery_cp < MaxSector)
967                 /* only hot-add to in-sync arrays, as recovery is
968                  * very different from resync
969                  */
970                 return 0;
971         if (!enough(conf))
972                 return 0;
973
974         for (mirror=0; mirror < mddev->raid_disks; mirror++)
975                 if ( !(p=conf->mirrors+mirror)->rdev) {
976
977                         blk_queue_stack_limits(mddev->queue,
978                                                rdev->bdev->bd_disk->queue);
979                         /* as we don't honour merge_bvec_fn, we must never risk
980                          * violating it, so limit ->max_sector to one PAGE, as
981                          * a one page request is never in violation.
982                          */
983                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
984                             mddev->queue->max_sectors > (PAGE_SIZE>>9))
985                                 mddev->queue->max_sectors = (PAGE_SIZE>>9);
986
987                         p->head_position = 0;
988                         rdev->raid_disk = mirror;
989                         found = 1;
990                         rcu_assign_pointer(p->rdev, rdev);
991                         break;
992                 }
993
994         print_conf(conf);
995         return found;
996 }
997
998 static int raid10_remove_disk(mddev_t *mddev, int number)
999 {
1000         conf_t *conf = mddev->private;
1001         int err = 0;
1002         mdk_rdev_t *rdev;
1003         mirror_info_t *p = conf->mirrors+ number;
1004
1005         print_conf(conf);
1006         rdev = p->rdev;
1007         if (rdev) {
1008                 if (test_bit(In_sync, &rdev->flags) ||
1009                     atomic_read(&rdev->nr_pending)) {
1010                         err = -EBUSY;
1011                         goto abort;
1012                 }
1013                 p->rdev = NULL;
1014                 synchronize_rcu();
1015                 if (atomic_read(&rdev->nr_pending)) {
1016                         /* lost the race, try later */
1017                         err = -EBUSY;
1018                         p->rdev = rdev;
1019                 }
1020         }
1021 abort:
1022
1023         print_conf(conf);
1024         return err;
1025 }
1026
1027
1028 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1029 {
1030         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1031         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1032         conf_t *conf = mddev_to_conf(r10_bio->mddev);
1033         int i,d;
1034
1035         if (bio->bi_size)
1036                 return 1;
1037
1038         for (i=0; i<conf->copies; i++)
1039                 if (r10_bio->devs[i].bio == bio)
1040                         break;
1041         if (i == conf->copies)
1042                 BUG();
1043         update_head_pos(i, r10_bio);
1044         d = r10_bio->devs[i].devnum;
1045         if (!uptodate)
1046                 md_error(r10_bio->mddev,
1047                          conf->mirrors[d].rdev);
1048
1049         /* for reconstruct, we always reschedule after a read.
1050          * for resync, only after all reads
1051          */
1052         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1053             atomic_dec_and_test(&r10_bio->remaining)) {
1054                 /* we have read all the blocks,
1055                  * do the comparison in process context in raid10d
1056                  */
1057                 reschedule_retry(r10_bio);
1058         }
1059         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1060         return 0;
1061 }
1062
1063 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1064 {
1065         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1066         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1067         mddev_t *mddev = r10_bio->mddev;
1068         conf_t *conf = mddev_to_conf(mddev);
1069         int i,d;
1070
1071         if (bio->bi_size)
1072                 return 1;
1073
1074         for (i = 0; i < conf->copies; i++)
1075                 if (r10_bio->devs[i].bio == bio)
1076                         break;
1077         d = r10_bio->devs[i].devnum;
1078
1079         if (!uptodate)
1080                 md_error(mddev, conf->mirrors[d].rdev);
1081         update_head_pos(i, r10_bio);
1082
1083         while (atomic_dec_and_test(&r10_bio->remaining)) {
1084                 if (r10_bio->master_bio == NULL) {
1085                         /* the primary of several recovery bios */
1086                         md_done_sync(mddev, r10_bio->sectors, 1);
1087                         put_buf(r10_bio);
1088                         break;
1089                 } else {
1090                         r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1091                         put_buf(r10_bio);
1092                         r10_bio = r10_bio2;
1093                 }
1094         }
1095         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1096         return 0;
1097 }
1098
1099 /*
1100  * Note: sync and recover and handled very differently for raid10
1101  * This code is for resync.
1102  * For resync, we read through virtual addresses and read all blocks.
1103  * If there is any error, we schedule a write.  The lowest numbered
1104  * drive is authoritative.
1105  * However requests come for physical address, so we need to map.
1106  * For every physical address there are raid_disks/copies virtual addresses,
1107  * which is always are least one, but is not necessarly an integer.
1108  * This means that a physical address can span multiple chunks, so we may
1109  * have to submit multiple io requests for a single sync request.
1110  */
1111 /*
1112  * We check if all blocks are in-sync and only write to blocks that
1113  * aren't in sync
1114  */
1115 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1116 {
1117         conf_t *conf = mddev_to_conf(mddev);
1118         int i, first;
1119         struct bio *tbio, *fbio;
1120
1121         atomic_set(&r10_bio->remaining, 1);
1122
1123         /* find the first device with a block */
1124         for (i=0; i<conf->copies; i++)
1125                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1126                         break;
1127
1128         if (i == conf->copies)
1129                 goto done;
1130
1131         first = i;
1132         fbio = r10_bio->devs[i].bio;
1133
1134         /* now find blocks with errors */
1135         for (i=first+1 ; i < conf->copies ; i++) {
1136                 int vcnt, j, d;
1137
1138                 if (!test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1139                         continue;
1140                 /* We know that the bi_io_vec layout is the same for
1141                  * both 'first' and 'i', so we just compare them.
1142                  * All vec entries are PAGE_SIZE;
1143                  */
1144                 tbio = r10_bio->devs[i].bio;
1145                 vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1146                 for (j = 0; j < vcnt; j++)
1147                         if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1148                                    page_address(tbio->bi_io_vec[j].bv_page),
1149                                    PAGE_SIZE))
1150                                 break;
1151                 if (j == vcnt)
1152                         continue;
1153                 /* Ok, we need to write this bio
1154                  * First we need to fixup bv_offset, bv_len and
1155                  * bi_vecs, as the read request might have corrupted these
1156                  */
1157                 tbio->bi_vcnt = vcnt;
1158                 tbio->bi_size = r10_bio->sectors << 9;
1159                 tbio->bi_idx = 0;
1160                 tbio->bi_phys_segments = 0;
1161                 tbio->bi_hw_segments = 0;
1162                 tbio->bi_hw_front_size = 0;
1163                 tbio->bi_hw_back_size = 0;
1164                 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1165                 tbio->bi_flags |= 1 << BIO_UPTODATE;
1166                 tbio->bi_next = NULL;
1167                 tbio->bi_rw = WRITE;
1168                 tbio->bi_private = r10_bio;
1169                 tbio->bi_sector = r10_bio->devs[i].addr;
1170
1171                 for (j=0; j < vcnt ; j++) {
1172                         tbio->bi_io_vec[j].bv_offset = 0;
1173                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1174
1175                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1176                                page_address(fbio->bi_io_vec[j].bv_page),
1177                                PAGE_SIZE);
1178                 }
1179                 tbio->bi_end_io = end_sync_write;
1180
1181                 d = r10_bio->devs[i].devnum;
1182                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1183                 atomic_inc(&r10_bio->remaining);
1184                 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1185
1186                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1187                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1188                 generic_make_request(tbio);
1189         }
1190
1191 done:
1192         if (atomic_dec_and_test(&r10_bio->remaining)) {
1193                 md_done_sync(mddev, r10_bio->sectors, 1);
1194                 put_buf(r10_bio);
1195         }
1196 }
1197
1198 /*
1199  * Now for the recovery code.
1200  * Recovery happens across physical sectors.
1201  * We recover all non-is_sync drives by finding the virtual address of
1202  * each, and then choose a working drive that also has that virt address.
1203  * There is a separate r10_bio for each non-in_sync drive.
1204  * Only the first two slots are in use. The first for reading,
1205  * The second for writing.
1206  *
1207  */
1208
1209 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1210 {
1211         conf_t *conf = mddev_to_conf(mddev);
1212         int i, d;
1213         struct bio *bio, *wbio;
1214
1215
1216         /* move the pages across to the second bio
1217          * and submit the write request
1218          */
1219         bio = r10_bio->devs[0].bio;
1220         wbio = r10_bio->devs[1].bio;
1221         for (i=0; i < wbio->bi_vcnt; i++) {
1222                 struct page *p = bio->bi_io_vec[i].bv_page;
1223                 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1224                 wbio->bi_io_vec[i].bv_page = p;
1225         }
1226         d = r10_bio->devs[1].devnum;
1227
1228         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1229         md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1230         generic_make_request(wbio);
1231 }
1232
1233
1234 /*
1235  * This is a kernel thread which:
1236  *
1237  *      1.      Retries failed read operations on working mirrors.
1238  *      2.      Updates the raid superblock when problems encounter.
1239  *      3.      Performs writes following reads for array syncronising.
1240  */
1241
1242 static void raid10d(mddev_t *mddev)
1243 {
1244         r10bio_t *r10_bio;
1245         struct bio *bio;
1246         unsigned long flags;
1247         conf_t *conf = mddev_to_conf(mddev);
1248         struct list_head *head = &conf->retry_list;
1249         int unplug=0;
1250         mdk_rdev_t *rdev;
1251
1252         md_check_recovery(mddev);
1253
1254         for (;;) {
1255                 char b[BDEVNAME_SIZE];
1256                 spin_lock_irqsave(&conf->device_lock, flags);
1257                 if (list_empty(head))
1258                         break;
1259                 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1260                 list_del(head->prev);
1261                 spin_unlock_irqrestore(&conf->device_lock, flags);
1262
1263                 mddev = r10_bio->mddev;
1264                 conf = mddev_to_conf(mddev);
1265                 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1266                         sync_request_write(mddev, r10_bio);
1267                         unplug = 1;
1268                 } else  if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1269                         recovery_request_write(mddev, r10_bio);
1270                         unplug = 1;
1271                 } else {
1272                         int mirror;
1273                         bio = r10_bio->devs[r10_bio->read_slot].bio;
1274                         r10_bio->devs[r10_bio->read_slot].bio = NULL;
1275                         bio_put(bio);
1276                         mirror = read_balance(conf, r10_bio);
1277                         if (mirror == -1) {
1278                                 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1279                                        " read error for block %llu\n",
1280                                        bdevname(bio->bi_bdev,b),
1281                                        (unsigned long long)r10_bio->sector);
1282                                 raid_end_bio_io(r10_bio);
1283                         } else {
1284                                 rdev = conf->mirrors[mirror].rdev;
1285                                 if (printk_ratelimit())
1286                                         printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1287                                                " another mirror\n",
1288                                                bdevname(rdev->bdev,b),
1289                                                (unsigned long long)r10_bio->sector);
1290                                 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1291                                 r10_bio->devs[r10_bio->read_slot].bio = bio;
1292                                 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1293                                         + rdev->data_offset;
1294                                 bio->bi_bdev = rdev->bdev;
1295                                 bio->bi_rw = READ;
1296                                 bio->bi_private = r10_bio;
1297                                 bio->bi_end_io = raid10_end_read_request;
1298                                 unplug = 1;
1299                                 generic_make_request(bio);
1300                         }
1301                 }
1302         }
1303         spin_unlock_irqrestore(&conf->device_lock, flags);
1304         if (unplug)
1305                 unplug_slaves(mddev);
1306 }
1307
1308
1309 static int init_resync(conf_t *conf)
1310 {
1311         int buffs;
1312
1313         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1314         if (conf->r10buf_pool)
1315                 BUG();
1316         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1317         if (!conf->r10buf_pool)
1318                 return -ENOMEM;
1319         conf->next_resync = 0;
1320         return 0;
1321 }
1322
1323 /*
1324  * perform a "sync" on one "block"
1325  *
1326  * We need to make sure that no normal I/O request - particularly write
1327  * requests - conflict with active sync requests.
1328  *
1329  * This is achieved by tracking pending requests and a 'barrier' concept
1330  * that can be installed to exclude normal IO requests.
1331  *
1332  * Resync and recovery are handled very differently.
1333  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1334  *
1335  * For resync, we iterate over virtual addresses, read all copies,
1336  * and update if there are differences.  If only one copy is live,
1337  * skip it.
1338  * For recovery, we iterate over physical addresses, read a good
1339  * value for each non-in_sync drive, and over-write.
1340  *
1341  * So, for recovery we may have several outstanding complex requests for a
1342  * given address, one for each out-of-sync device.  We model this by allocating
1343  * a number of r10_bio structures, one for each out-of-sync device.
1344  * As we setup these structures, we collect all bio's together into a list
1345  * which we then process collectively to add pages, and then process again
1346  * to pass to generic_make_request.
1347  *
1348  * The r10_bio structures are linked using a borrowed master_bio pointer.
1349  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1350  * has its remaining count decremented to 0, the whole complex operation
1351  * is complete.
1352  *
1353  */
1354
1355 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1356 {
1357         conf_t *conf = mddev_to_conf(mddev);
1358         r10bio_t *r10_bio;
1359         struct bio *biolist = NULL, *bio;
1360         sector_t max_sector, nr_sectors;
1361         int disk;
1362         int i;
1363
1364         sector_t sectors_skipped = 0;
1365         int chunks_skipped = 0;
1366
1367         if (!conf->r10buf_pool)
1368                 if (init_resync(conf))
1369                         return 0;
1370
1371  skipped:
1372         max_sector = mddev->size << 1;
1373         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1374                 max_sector = mddev->resync_max_sectors;
1375         if (sector_nr >= max_sector) {
1376                 close_sync(conf);
1377                 *skipped = 1;
1378                 return sectors_skipped;
1379         }
1380         if (chunks_skipped >= conf->raid_disks) {
1381                 /* if there has been nothing to do on any drive,
1382                  * then there is nothing to do at all..
1383                  */
1384                 *skipped = 1;
1385                 return (max_sector - sector_nr) + sectors_skipped;
1386         }
1387
1388         /* make sure whole request will fit in a chunk - if chunks
1389          * are meaningful
1390          */
1391         if (conf->near_copies < conf->raid_disks &&
1392             max_sector > (sector_nr | conf->chunk_mask))
1393                 max_sector = (sector_nr | conf->chunk_mask) + 1;
1394         /*
1395          * If there is non-resync activity waiting for us then
1396          * put in a delay to throttle resync.
1397          */
1398         if (!go_faster && waitqueue_active(&conf->wait_resume))
1399                 msleep_interruptible(1000);
1400         device_barrier(conf, sector_nr + RESYNC_SECTORS);
1401
1402         /* Again, very different code for resync and recovery.
1403          * Both must result in an r10bio with a list of bios that
1404          * have bi_end_io, bi_sector, bi_bdev set,
1405          * and bi_private set to the r10bio.
1406          * For recovery, we may actually create several r10bios
1407          * with 2 bios in each, that correspond to the bios in the main one.
1408          * In this case, the subordinate r10bios link back through a
1409          * borrowed master_bio pointer, and the counter in the master
1410          * includes a ref from each subordinate.
1411          */
1412         /* First, we decide what to do and set ->bi_end_io
1413          * To end_sync_read if we want to read, and
1414          * end_sync_write if we will want to write.
1415          */
1416
1417         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1418                 /* recovery... the complicated one */
1419                 int i, j, k;
1420                 r10_bio = NULL;
1421
1422                 for (i=0 ; i<conf->raid_disks; i++)
1423                         if (conf->mirrors[i].rdev &&
1424                             !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1425                                 /* want to reconstruct this device */
1426                                 r10bio_t *rb2 = r10_bio;
1427
1428                                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1429                                 spin_lock_irq(&conf->resync_lock);
1430                                 conf->nr_pending++;
1431                                 if (rb2) conf->barrier++;
1432                                 spin_unlock_irq(&conf->resync_lock);
1433                                 atomic_set(&r10_bio->remaining, 0);
1434
1435                                 r10_bio->master_bio = (struct bio*)rb2;
1436                                 if (rb2)
1437                                         atomic_inc(&rb2->remaining);
1438                                 r10_bio->mddev = mddev;
1439                                 set_bit(R10BIO_IsRecover, &r10_bio->state);
1440                                 r10_bio->sector = raid10_find_virt(conf, sector_nr, i);
1441                                 raid10_find_phys(conf, r10_bio);
1442                                 for (j=0; j<conf->copies;j++) {
1443                                         int d = r10_bio->devs[j].devnum;
1444                                         if (conf->mirrors[d].rdev &&
1445                                             test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1446                                                 /* This is where we read from */
1447                                                 bio = r10_bio->devs[0].bio;
1448                                                 bio->bi_next = biolist;
1449                                                 biolist = bio;
1450                                                 bio->bi_private = r10_bio;
1451                                                 bio->bi_end_io = end_sync_read;
1452                                                 bio->bi_rw = 0;
1453                                                 bio->bi_sector = r10_bio->devs[j].addr +
1454                                                         conf->mirrors[d].rdev->data_offset;
1455                                                 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1456                                                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1457                                                 atomic_inc(&r10_bio->remaining);
1458                                                 /* and we write to 'i' */
1459
1460                                                 for (k=0; k<conf->copies; k++)
1461                                                         if (r10_bio->devs[k].devnum == i)
1462                                                                 break;
1463                                                 bio = r10_bio->devs[1].bio;
1464                                                 bio->bi_next = biolist;
1465                                                 biolist = bio;
1466                                                 bio->bi_private = r10_bio;
1467                                                 bio->bi_end_io = end_sync_write;
1468                                                 bio->bi_rw = 1;
1469                                                 bio->bi_sector = r10_bio->devs[k].addr +
1470                                                         conf->mirrors[i].rdev->data_offset;
1471                                                 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1472
1473                                                 r10_bio->devs[0].devnum = d;
1474                                                 r10_bio->devs[1].devnum = i;
1475
1476                                                 break;
1477                                         }
1478                                 }
1479                                 if (j == conf->copies) {
1480                                         /* Cannot recover, so abort the recovery */
1481                                         put_buf(r10_bio);
1482                                         r10_bio = rb2;
1483                                         if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery))
1484                                                 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1485                                                        mdname(mddev));
1486                                         break;
1487                                 }
1488                         }
1489                 if (biolist == NULL) {
1490                         while (r10_bio) {
1491                                 r10bio_t *rb2 = r10_bio;
1492                                 r10_bio = (r10bio_t*) rb2->master_bio;
1493                                 rb2->master_bio = NULL;
1494                                 put_buf(rb2);
1495                         }
1496                         goto giveup;
1497                 }
1498         } else {
1499                 /* resync. Schedule a read for every block at this virt offset */
1500                 int count = 0;
1501                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1502
1503                 spin_lock_irq(&conf->resync_lock);
1504                 conf->nr_pending++;
1505                 spin_unlock_irq(&conf->resync_lock);
1506
1507                 r10_bio->mddev = mddev;
1508                 atomic_set(&r10_bio->remaining, 0);
1509
1510                 r10_bio->master_bio = NULL;
1511                 r10_bio->sector = sector_nr;
1512                 set_bit(R10BIO_IsSync, &r10_bio->state);
1513                 raid10_find_phys(conf, r10_bio);
1514                 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1515
1516                 for (i=0; i<conf->copies; i++) {
1517                         int d = r10_bio->devs[i].devnum;
1518                         bio = r10_bio->devs[i].bio;
1519                         bio->bi_end_io = NULL;
1520                         if (conf->mirrors[d].rdev == NULL ||
1521                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1522                                 continue;
1523                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1524                         atomic_inc(&r10_bio->remaining);
1525                         bio->bi_next = biolist;
1526                         biolist = bio;
1527                         bio->bi_private = r10_bio;
1528                         bio->bi_end_io = end_sync_read;
1529                         bio->bi_rw = 0;
1530                         bio->bi_sector = r10_bio->devs[i].addr +
1531                                 conf->mirrors[d].rdev->data_offset;
1532                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1533                         count++;
1534                 }
1535
1536                 if (count < 2) {
1537                         for (i=0; i<conf->copies; i++) {
1538                                 int d = r10_bio->devs[i].devnum;
1539                                 if (r10_bio->devs[i].bio->bi_end_io)
1540                                         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1541                         }
1542                         put_buf(r10_bio);
1543                         biolist = NULL;
1544                         goto giveup;
1545                 }
1546         }
1547
1548         for (bio = biolist; bio ; bio=bio->bi_next) {
1549
1550                 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1551                 if (bio->bi_end_io)
1552                         bio->bi_flags |= 1 << BIO_UPTODATE;
1553                 bio->bi_vcnt = 0;
1554                 bio->bi_idx = 0;
1555                 bio->bi_phys_segments = 0;
1556                 bio->bi_hw_segments = 0;
1557                 bio->bi_size = 0;
1558         }
1559
1560         nr_sectors = 0;
1561         do {
1562                 struct page *page;
1563                 int len = PAGE_SIZE;
1564                 disk = 0;
1565                 if (sector_nr + (len>>9) > max_sector)
1566                         len = (max_sector - sector_nr) << 9;
1567                 if (len == 0)
1568                         break;
1569                 for (bio= biolist ; bio ; bio=bio->bi_next) {
1570                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1571                         if (bio_add_page(bio, page, len, 0) == 0) {
1572                                 /* stop here */
1573                                 struct bio *bio2;
1574                                 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1575                                 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1576                                         /* remove last page from this bio */
1577                                         bio2->bi_vcnt--;
1578                                         bio2->bi_size -= len;
1579                                         bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1580                                 }
1581                                 goto bio_full;
1582                         }
1583                         disk = i;
1584                 }
1585                 nr_sectors += len>>9;
1586                 sector_nr += len>>9;
1587         } while (biolist->bi_vcnt < RESYNC_PAGES);
1588  bio_full:
1589         r10_bio->sectors = nr_sectors;
1590
1591         while (biolist) {
1592                 bio = biolist;
1593                 biolist = biolist->bi_next;
1594
1595                 bio->bi_next = NULL;
1596                 r10_bio = bio->bi_private;
1597                 r10_bio->sectors = nr_sectors;
1598
1599                 if (bio->bi_end_io == end_sync_read) {
1600                         md_sync_acct(bio->bi_bdev, nr_sectors);
1601                         generic_make_request(bio);
1602                 }
1603         }
1604
1605         if (sectors_skipped)
1606                 /* pretend they weren't skipped, it makes
1607                  * no important difference in this case
1608                  */
1609                 md_done_sync(mddev, sectors_skipped, 1);
1610
1611         return sectors_skipped + nr_sectors;
1612  giveup:
1613         /* There is nowhere to write, so all non-sync
1614          * drives must be failed, so try the next chunk...
1615          */
1616         {
1617         sector_t sec = max_sector - sector_nr;
1618         sectors_skipped += sec;
1619         chunks_skipped ++;
1620         sector_nr = max_sector;
1621         goto skipped;
1622         }
1623 }
1624
1625 static int run(mddev_t *mddev)
1626 {
1627         conf_t *conf;
1628         int i, disk_idx;
1629         mirror_info_t *disk;
1630         mdk_rdev_t *rdev;
1631         struct list_head *tmp;
1632         int nc, fc;
1633         sector_t stride, size;
1634
1635         if (mddev->level != 10) {
1636                 printk(KERN_ERR "raid10: %s: raid level not set correctly... (%d)\n",
1637                        mdname(mddev), mddev->level);
1638                 goto out;
1639         }
1640         nc = mddev->layout & 255;
1641         fc = (mddev->layout >> 8) & 255;
1642         if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
1643             (mddev->layout >> 16)) {
1644                 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
1645                        mdname(mddev), mddev->layout);
1646                 goto out;
1647         }
1648         /*
1649          * copy the already verified devices into our private RAID10
1650          * bookkeeping area. [whatever we allocate in run(),
1651          * should be freed in stop()]
1652          */
1653         conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
1654         mddev->private = conf;
1655         if (!conf) {
1656                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1657                         mdname(mddev));
1658                 goto out;
1659         }
1660         memset(conf, 0, sizeof(*conf));
1661         conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1662                                  GFP_KERNEL);
1663         if (!conf->mirrors) {
1664                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1665                        mdname(mddev));
1666                 goto out_free_conf;
1667         }
1668         memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
1669
1670         conf->near_copies = nc;
1671         conf->far_copies = fc;
1672         conf->copies = nc*fc;
1673         conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
1674         conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
1675         stride = mddev->size >> (conf->chunk_shift-1);
1676         sector_div(stride, fc);
1677         conf->stride = stride << conf->chunk_shift;
1678
1679         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
1680                                                 r10bio_pool_free, conf);
1681         if (!conf->r10bio_pool) {
1682                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1683                         mdname(mddev));
1684                 goto out_free_conf;
1685         }
1686
1687         ITERATE_RDEV(mddev, rdev, tmp) {
1688                 disk_idx = rdev->raid_disk;
1689                 if (disk_idx >= mddev->raid_disks
1690                     || disk_idx < 0)
1691                         continue;
1692                 disk = conf->mirrors + disk_idx;
1693
1694                 disk->rdev = rdev;
1695
1696                 blk_queue_stack_limits(mddev->queue,
1697                                        rdev->bdev->bd_disk->queue);
1698                 /* as we don't honour merge_bvec_fn, we must never risk
1699                  * violating it, so limit ->max_sector to one PAGE, as
1700                  * a one page request is never in violation.
1701                  */
1702                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1703                     mddev->queue->max_sectors > (PAGE_SIZE>>9))
1704                         mddev->queue->max_sectors = (PAGE_SIZE>>9);
1705
1706                 disk->head_position = 0;
1707                 if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags))
1708                         conf->working_disks++;
1709         }
1710         conf->raid_disks = mddev->raid_disks;
1711         conf->mddev = mddev;
1712         spin_lock_init(&conf->device_lock);
1713         INIT_LIST_HEAD(&conf->retry_list);
1714
1715         spin_lock_init(&conf->resync_lock);
1716         init_waitqueue_head(&conf->wait_idle);
1717         init_waitqueue_head(&conf->wait_resume);
1718
1719         /* need to check that every block has at least one working mirror */
1720         if (!enough(conf)) {
1721                 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
1722                        mdname(mddev));
1723                 goto out_free_conf;
1724         }
1725
1726         mddev->degraded = 0;
1727         for (i = 0; i < conf->raid_disks; i++) {
1728
1729                 disk = conf->mirrors + i;
1730
1731                 if (!disk->rdev) {
1732                         disk->head_position = 0;
1733                         mddev->degraded++;
1734                 }
1735         }
1736
1737
1738         mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
1739         if (!mddev->thread) {
1740                 printk(KERN_ERR
1741                        "raid10: couldn't allocate thread for %s\n",
1742                        mdname(mddev));
1743                 goto out_free_conf;
1744         }
1745
1746         printk(KERN_INFO
1747                 "raid10: raid set %s active with %d out of %d devices\n",
1748                 mdname(mddev), mddev->raid_disks - mddev->degraded,
1749                 mddev->raid_disks);
1750         /*
1751          * Ok, everything is just fine now
1752          */
1753         size = conf->stride * conf->raid_disks;
1754         sector_div(size, conf->near_copies);
1755         mddev->array_size = size/2;
1756         mddev->resync_max_sectors = size;
1757
1758         mddev->queue->unplug_fn = raid10_unplug;
1759         mddev->queue->issue_flush_fn = raid10_issue_flush;
1760
1761         /* Calculate max read-ahead size.
1762          * We need to readahead at least twice a whole stripe....
1763          * maybe...
1764          */
1765         {
1766                 int stripe = conf->raid_disks * mddev->chunk_size / PAGE_CACHE_SIZE;
1767                 stripe /= conf->near_copies;
1768                 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
1769                         mddev->queue->backing_dev_info.ra_pages = 2* stripe;
1770         }
1771
1772         if (conf->near_copies < mddev->raid_disks)
1773                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
1774         return 0;
1775
1776 out_free_conf:
1777         if (conf->r10bio_pool)
1778                 mempool_destroy(conf->r10bio_pool);
1779         kfree(conf->mirrors);
1780         kfree(conf);
1781         mddev->private = NULL;
1782 out:
1783         return -EIO;
1784 }
1785
1786 static int stop(mddev_t *mddev)
1787 {
1788         conf_t *conf = mddev_to_conf(mddev);
1789
1790         md_unregister_thread(mddev->thread);
1791         mddev->thread = NULL;
1792         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1793         if (conf->r10bio_pool)
1794                 mempool_destroy(conf->r10bio_pool);
1795         kfree(conf->mirrors);
1796         kfree(conf);
1797         mddev->private = NULL;
1798         return 0;
1799 }
1800
1801
1802 static mdk_personality_t raid10_personality =
1803 {
1804         .name           = "raid10",
1805         .owner          = THIS_MODULE,
1806         .make_request   = make_request,
1807         .run            = run,
1808         .stop           = stop,
1809         .status         = status,
1810         .error_handler  = error,
1811         .hot_add_disk   = raid10_add_disk,
1812         .hot_remove_disk= raid10_remove_disk,
1813         .spare_active   = raid10_spare_active,
1814         .sync_request   = sync_request,
1815 };
1816
1817 static int __init raid_init(void)
1818 {
1819         return register_md_personality(RAID10, &raid10_personality);
1820 }
1821
1822 static void raid_exit(void)
1823 {
1824         unregister_md_personality(RAID10);
1825 }
1826
1827 module_init(raid_init);
1828 module_exit(raid_exit);
1829 MODULE_LICENSE("GPL");
1830 MODULE_ALIAS("md-personality-9"); /* RAID10 */