md/raid1: delay reads that could overtake behind-writes.
[safe/jmp/linux-2.6] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/delay.h>
22 #include <linux/blkdev.h>
23 #include <linux/seq_file.h>
24 #include "md.h"
25 #include "raid10.h"
26 #include "raid0.h"
27 #include "bitmap.h"
28
29 /*
30  * RAID10 provides a combination of RAID0 and RAID1 functionality.
31  * The layout of data is defined by
32  *    chunk_size
33  *    raid_disks
34  *    near_copies (stored in low byte of layout)
35  *    far_copies (stored in second byte of layout)
36  *    far_offset (stored in bit 16 of layout )
37  *
38  * The data to be stored is divided into chunks using chunksize.
39  * Each device is divided into far_copies sections.
40  * In each section, chunks are laid out in a style similar to raid0, but
41  * near_copies copies of each chunk is stored (each on a different drive).
42  * The starting device for each section is offset near_copies from the starting
43  * device of the previous section.
44  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
45  * drive.
46  * near_copies and far_copies must be at least one, and their product is at most
47  * raid_disks.
48  *
49  * If far_offset is true, then the far_copies are handled a bit differently.
50  * The copies are still in different stripes, but instead of be very far apart
51  * on disk, there are adjacent stripes.
52  */
53
54 /*
55  * Number of guaranteed r10bios in case of extreme VM load:
56  */
57 #define NR_RAID10_BIOS 256
58
59 static void unplug_slaves(mddev_t *mddev);
60
61 static void allow_barrier(conf_t *conf);
62 static void lower_barrier(conf_t *conf);
63
64 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
65 {
66         conf_t *conf = data;
67         r10bio_t *r10_bio;
68         int size = offsetof(struct r10bio_s, devs[conf->copies]);
69
70         /* allocate a r10bio with room for raid_disks entries in the bios array */
71         r10_bio = kzalloc(size, gfp_flags);
72         if (!r10_bio && conf->mddev)
73                 unplug_slaves(conf->mddev);
74
75         return r10_bio;
76 }
77
78 static void r10bio_pool_free(void *r10_bio, void *data)
79 {
80         kfree(r10_bio);
81 }
82
83 /* Maximum size of each resync request */
84 #define RESYNC_BLOCK_SIZE (64*1024)
85 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
86 /* amount of memory to reserve for resync requests */
87 #define RESYNC_WINDOW (1024*1024)
88 /* maximum number of concurrent requests, memory permitting */
89 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
90
91 /*
92  * When performing a resync, we need to read and compare, so
93  * we need as many pages are there are copies.
94  * When performing a recovery, we need 2 bios, one for read,
95  * one for write (we recover only one drive per r10buf)
96  *
97  */
98 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
99 {
100         conf_t *conf = data;
101         struct page *page;
102         r10bio_t *r10_bio;
103         struct bio *bio;
104         int i, j;
105         int nalloc;
106
107         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
108         if (!r10_bio) {
109                 unplug_slaves(conf->mddev);
110                 return NULL;
111         }
112
113         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
114                 nalloc = conf->copies; /* resync */
115         else
116                 nalloc = 2; /* recovery */
117
118         /*
119          * Allocate bios.
120          */
121         for (j = nalloc ; j-- ; ) {
122                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
123                 if (!bio)
124                         goto out_free_bio;
125                 r10_bio->devs[j].bio = bio;
126         }
127         /*
128          * Allocate RESYNC_PAGES data pages and attach them
129          * where needed.
130          */
131         for (j = 0 ; j < nalloc; j++) {
132                 bio = r10_bio->devs[j].bio;
133                 for (i = 0; i < RESYNC_PAGES; i++) {
134                         page = alloc_page(gfp_flags);
135                         if (unlikely(!page))
136                                 goto out_free_pages;
137
138                         bio->bi_io_vec[i].bv_page = page;
139                 }
140         }
141
142         return r10_bio;
143
144 out_free_pages:
145         for ( ; i > 0 ; i--)
146                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
147         while (j--)
148                 for (i = 0; i < RESYNC_PAGES ; i++)
149                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
150         j = -1;
151 out_free_bio:
152         while ( ++j < nalloc )
153                 bio_put(r10_bio->devs[j].bio);
154         r10bio_pool_free(r10_bio, conf);
155         return NULL;
156 }
157
158 static void r10buf_pool_free(void *__r10_bio, void *data)
159 {
160         int i;
161         conf_t *conf = data;
162         r10bio_t *r10bio = __r10_bio;
163         int j;
164
165         for (j=0; j < conf->copies; j++) {
166                 struct bio *bio = r10bio->devs[j].bio;
167                 if (bio) {
168                         for (i = 0; i < RESYNC_PAGES; i++) {
169                                 safe_put_page(bio->bi_io_vec[i].bv_page);
170                                 bio->bi_io_vec[i].bv_page = NULL;
171                         }
172                         bio_put(bio);
173                 }
174         }
175         r10bio_pool_free(r10bio, conf);
176 }
177
178 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
179 {
180         int i;
181
182         for (i = 0; i < conf->copies; i++) {
183                 struct bio **bio = & r10_bio->devs[i].bio;
184                 if (*bio && *bio != IO_BLOCKED)
185                         bio_put(*bio);
186                 *bio = NULL;
187         }
188 }
189
190 static void free_r10bio(r10bio_t *r10_bio)
191 {
192         conf_t *conf = r10_bio->mddev->private;
193
194         /*
195          * Wake up any possible resync thread that waits for the device
196          * to go idle.
197          */
198         allow_barrier(conf);
199
200         put_all_bios(conf, r10_bio);
201         mempool_free(r10_bio, conf->r10bio_pool);
202 }
203
204 static void put_buf(r10bio_t *r10_bio)
205 {
206         conf_t *conf = r10_bio->mddev->private;
207
208         mempool_free(r10_bio, conf->r10buf_pool);
209
210         lower_barrier(conf);
211 }
212
213 static void reschedule_retry(r10bio_t *r10_bio)
214 {
215         unsigned long flags;
216         mddev_t *mddev = r10_bio->mddev;
217         conf_t *conf = mddev->private;
218
219         spin_lock_irqsave(&conf->device_lock, flags);
220         list_add(&r10_bio->retry_list, &conf->retry_list);
221         conf->nr_queued ++;
222         spin_unlock_irqrestore(&conf->device_lock, flags);
223
224         /* wake up frozen array... */
225         wake_up(&conf->wait_barrier);
226
227         md_wakeup_thread(mddev->thread);
228 }
229
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void raid_end_bio_io(r10bio_t *r10_bio)
236 {
237         struct bio *bio = r10_bio->master_bio;
238
239         bio_endio(bio,
240                 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
241         free_r10bio(r10_bio);
242 }
243
244 /*
245  * Update disk head position estimator based on IRQ completion info.
246  */
247 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
248 {
249         conf_t *conf = r10_bio->mddev->private;
250
251         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
252                 r10_bio->devs[slot].addr + (r10_bio->sectors);
253 }
254
255 static void raid10_end_read_request(struct bio *bio, int error)
256 {
257         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
258         r10bio_t *r10_bio = bio->bi_private;
259         int slot, dev;
260         conf_t *conf = r10_bio->mddev->private;
261
262
263         slot = r10_bio->read_slot;
264         dev = r10_bio->devs[slot].devnum;
265         /*
266          * this branch is our 'one mirror IO has finished' event handler:
267          */
268         update_head_pos(slot, r10_bio);
269
270         if (uptodate) {
271                 /*
272                  * Set R10BIO_Uptodate in our master bio, so that
273                  * we will return a good error code to the higher
274                  * levels even if IO on some other mirrored buffer fails.
275                  *
276                  * The 'master' represents the composite IO operation to
277                  * user-side. So if something waits for IO, then it will
278                  * wait for the 'master' bio.
279                  */
280                 set_bit(R10BIO_Uptodate, &r10_bio->state);
281                 raid_end_bio_io(r10_bio);
282         } else {
283                 /*
284                  * oops, read error:
285                  */
286                 char b[BDEVNAME_SIZE];
287                 if (printk_ratelimit())
288                         printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
289                                bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
290                 reschedule_retry(r10_bio);
291         }
292
293         rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
294 }
295
296 static void raid10_end_write_request(struct bio *bio, int error)
297 {
298         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
299         r10bio_t *r10_bio = bio->bi_private;
300         int slot, dev;
301         conf_t *conf = r10_bio->mddev->private;
302
303         for (slot = 0; slot < conf->copies; slot++)
304                 if (r10_bio->devs[slot].bio == bio)
305                         break;
306         dev = r10_bio->devs[slot].devnum;
307
308         /*
309          * this branch is our 'one mirror IO has finished' event handler:
310          */
311         if (!uptodate) {
312                 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
313                 /* an I/O failed, we can't clear the bitmap */
314                 set_bit(R10BIO_Degraded, &r10_bio->state);
315         } else
316                 /*
317                  * Set R10BIO_Uptodate in our master bio, so that
318                  * we will return a good error code for to the higher
319                  * levels even if IO on some other mirrored buffer fails.
320                  *
321                  * The 'master' represents the composite IO operation to
322                  * user-side. So if something waits for IO, then it will
323                  * wait for the 'master' bio.
324                  */
325                 set_bit(R10BIO_Uptodate, &r10_bio->state);
326
327         update_head_pos(slot, r10_bio);
328
329         /*
330          *
331          * Let's see if all mirrored write operations have finished
332          * already.
333          */
334         if (atomic_dec_and_test(&r10_bio->remaining)) {
335                 /* clear the bitmap if all writes complete successfully */
336                 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
337                                 r10_bio->sectors,
338                                 !test_bit(R10BIO_Degraded, &r10_bio->state),
339                                 0);
340                 md_write_end(r10_bio->mddev);
341                 raid_end_bio_io(r10_bio);
342         }
343
344         rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
345 }
346
347
348 /*
349  * RAID10 layout manager
350  * Aswell as the chunksize and raid_disks count, there are two
351  * parameters: near_copies and far_copies.
352  * near_copies * far_copies must be <= raid_disks.
353  * Normally one of these will be 1.
354  * If both are 1, we get raid0.
355  * If near_copies == raid_disks, we get raid1.
356  *
357  * Chunks are layed out in raid0 style with near_copies copies of the
358  * first chunk, followed by near_copies copies of the next chunk and
359  * so on.
360  * If far_copies > 1, then after 1/far_copies of the array has been assigned
361  * as described above, we start again with a device offset of near_copies.
362  * So we effectively have another copy of the whole array further down all
363  * the drives, but with blocks on different drives.
364  * With this layout, and block is never stored twice on the one device.
365  *
366  * raid10_find_phys finds the sector offset of a given virtual sector
367  * on each device that it is on.
368  *
369  * raid10_find_virt does the reverse mapping, from a device and a
370  * sector offset to a virtual address
371  */
372
373 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
374 {
375         int n,f;
376         sector_t sector;
377         sector_t chunk;
378         sector_t stripe;
379         int dev;
380
381         int slot = 0;
382
383         /* now calculate first sector/dev */
384         chunk = r10bio->sector >> conf->chunk_shift;
385         sector = r10bio->sector & conf->chunk_mask;
386
387         chunk *= conf->near_copies;
388         stripe = chunk;
389         dev = sector_div(stripe, conf->raid_disks);
390         if (conf->far_offset)
391                 stripe *= conf->far_copies;
392
393         sector += stripe << conf->chunk_shift;
394
395         /* and calculate all the others */
396         for (n=0; n < conf->near_copies; n++) {
397                 int d = dev;
398                 sector_t s = sector;
399                 r10bio->devs[slot].addr = sector;
400                 r10bio->devs[slot].devnum = d;
401                 slot++;
402
403                 for (f = 1; f < conf->far_copies; f++) {
404                         d += conf->near_copies;
405                         if (d >= conf->raid_disks)
406                                 d -= conf->raid_disks;
407                         s += conf->stride;
408                         r10bio->devs[slot].devnum = d;
409                         r10bio->devs[slot].addr = s;
410                         slot++;
411                 }
412                 dev++;
413                 if (dev >= conf->raid_disks) {
414                         dev = 0;
415                         sector += (conf->chunk_mask + 1);
416                 }
417         }
418         BUG_ON(slot != conf->copies);
419 }
420
421 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
422 {
423         sector_t offset, chunk, vchunk;
424
425         offset = sector & conf->chunk_mask;
426         if (conf->far_offset) {
427                 int fc;
428                 chunk = sector >> conf->chunk_shift;
429                 fc = sector_div(chunk, conf->far_copies);
430                 dev -= fc * conf->near_copies;
431                 if (dev < 0)
432                         dev += conf->raid_disks;
433         } else {
434                 while (sector >= conf->stride) {
435                         sector -= conf->stride;
436                         if (dev < conf->near_copies)
437                                 dev += conf->raid_disks - conf->near_copies;
438                         else
439                                 dev -= conf->near_copies;
440                 }
441                 chunk = sector >> conf->chunk_shift;
442         }
443         vchunk = chunk * conf->raid_disks + dev;
444         sector_div(vchunk, conf->near_copies);
445         return (vchunk << conf->chunk_shift) + offset;
446 }
447
448 /**
449  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
450  *      @q: request queue
451  *      @bvm: properties of new bio
452  *      @biovec: the request that could be merged to it.
453  *
454  *      Return amount of bytes we can accept at this offset
455  *      If near_copies == raid_disk, there are no striping issues,
456  *      but in that case, the function isn't called at all.
457  */
458 static int raid10_mergeable_bvec(struct request_queue *q,
459                                  struct bvec_merge_data *bvm,
460                                  struct bio_vec *biovec)
461 {
462         mddev_t *mddev = q->queuedata;
463         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
464         int max;
465         unsigned int chunk_sectors = mddev->chunk_sectors;
466         unsigned int bio_sectors = bvm->bi_size >> 9;
467
468         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
469         if (max < 0) max = 0; /* bio_add cannot handle a negative return */
470         if (max <= biovec->bv_len && bio_sectors == 0)
471                 return biovec->bv_len;
472         else
473                 return max;
474 }
475
476 /*
477  * This routine returns the disk from which the requested read should
478  * be done. There is a per-array 'next expected sequential IO' sector
479  * number - if this matches on the next IO then we use the last disk.
480  * There is also a per-disk 'last know head position' sector that is
481  * maintained from IRQ contexts, both the normal and the resync IO
482  * completion handlers update this position correctly. If there is no
483  * perfect sequential match then we pick the disk whose head is closest.
484  *
485  * If there are 2 mirrors in the same 2 devices, performance degrades
486  * because position is mirror, not device based.
487  *
488  * The rdev for the device selected will have nr_pending incremented.
489  */
490
491 /*
492  * FIXME: possibly should rethink readbalancing and do it differently
493  * depending on near_copies / far_copies geometry.
494  */
495 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
496 {
497         const unsigned long this_sector = r10_bio->sector;
498         int disk, slot, nslot;
499         const int sectors = r10_bio->sectors;
500         sector_t new_distance, current_distance;
501         mdk_rdev_t *rdev;
502
503         raid10_find_phys(conf, r10_bio);
504         rcu_read_lock();
505         /*
506          * Check if we can balance. We can balance on the whole
507          * device if no resync is going on (recovery is ok), or below
508          * the resync window. We take the first readable disk when
509          * above the resync window.
510          */
511         if (conf->mddev->recovery_cp < MaxSector
512             && (this_sector + sectors >= conf->next_resync)) {
513                 /* make sure that disk is operational */
514                 slot = 0;
515                 disk = r10_bio->devs[slot].devnum;
516
517                 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
518                        r10_bio->devs[slot].bio == IO_BLOCKED ||
519                        !test_bit(In_sync, &rdev->flags)) {
520                         slot++;
521                         if (slot == conf->copies) {
522                                 slot = 0;
523                                 disk = -1;
524                                 break;
525                         }
526                         disk = r10_bio->devs[slot].devnum;
527                 }
528                 goto rb_out;
529         }
530
531
532         /* make sure the disk is operational */
533         slot = 0;
534         disk = r10_bio->devs[slot].devnum;
535         while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
536                r10_bio->devs[slot].bio == IO_BLOCKED ||
537                !test_bit(In_sync, &rdev->flags)) {
538                 slot ++;
539                 if (slot == conf->copies) {
540                         disk = -1;
541                         goto rb_out;
542                 }
543                 disk = r10_bio->devs[slot].devnum;
544         }
545
546
547         current_distance = abs(r10_bio->devs[slot].addr -
548                                conf->mirrors[disk].head_position);
549
550         /* Find the disk whose head is closest,
551          * or - for far > 1 - find the closest to partition beginning */
552
553         for (nslot = slot; nslot < conf->copies; nslot++) {
554                 int ndisk = r10_bio->devs[nslot].devnum;
555
556
557                 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
558                     r10_bio->devs[nslot].bio == IO_BLOCKED ||
559                     !test_bit(In_sync, &rdev->flags))
560                         continue;
561
562                 /* This optimisation is debatable, and completely destroys
563                  * sequential read speed for 'far copies' arrays.  So only
564                  * keep it for 'near' arrays, and review those later.
565                  */
566                 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
567                         disk = ndisk;
568                         slot = nslot;
569                         break;
570                 }
571
572                 /* for far > 1 always use the lowest address */
573                 if (conf->far_copies > 1)
574                         new_distance = r10_bio->devs[nslot].addr;
575                 else
576                         new_distance = abs(r10_bio->devs[nslot].addr -
577                                            conf->mirrors[ndisk].head_position);
578                 if (new_distance < current_distance) {
579                         current_distance = new_distance;
580                         disk = ndisk;
581                         slot = nslot;
582                 }
583         }
584
585 rb_out:
586         r10_bio->read_slot = slot;
587 /*      conf->next_seq_sect = this_sector + sectors;*/
588
589         if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
590                 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
591         else
592                 disk = -1;
593         rcu_read_unlock();
594
595         return disk;
596 }
597
598 static void unplug_slaves(mddev_t *mddev)
599 {
600         conf_t *conf = mddev->private;
601         int i;
602
603         rcu_read_lock();
604         for (i=0; i < conf->raid_disks; i++) {
605                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
606                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
607                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
608
609                         atomic_inc(&rdev->nr_pending);
610                         rcu_read_unlock();
611
612                         blk_unplug(r_queue);
613
614                         rdev_dec_pending(rdev, mddev);
615                         rcu_read_lock();
616                 }
617         }
618         rcu_read_unlock();
619 }
620
621 static void raid10_unplug(struct request_queue *q)
622 {
623         mddev_t *mddev = q->queuedata;
624
625         unplug_slaves(q->queuedata);
626         md_wakeup_thread(mddev->thread);
627 }
628
629 static int raid10_congested(void *data, int bits)
630 {
631         mddev_t *mddev = data;
632         conf_t *conf = mddev->private;
633         int i, ret = 0;
634
635         if (mddev_congested(mddev, bits))
636                 return 1;
637         rcu_read_lock();
638         for (i = 0; i < conf->raid_disks && ret == 0; i++) {
639                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
640                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
641                         struct request_queue *q = bdev_get_queue(rdev->bdev);
642
643                         ret |= bdi_congested(&q->backing_dev_info, bits);
644                 }
645         }
646         rcu_read_unlock();
647         return ret;
648 }
649
650 static int flush_pending_writes(conf_t *conf)
651 {
652         /* Any writes that have been queued but are awaiting
653          * bitmap updates get flushed here.
654          * We return 1 if any requests were actually submitted.
655          */
656         int rv = 0;
657
658         spin_lock_irq(&conf->device_lock);
659
660         if (conf->pending_bio_list.head) {
661                 struct bio *bio;
662                 bio = bio_list_get(&conf->pending_bio_list);
663                 blk_remove_plug(conf->mddev->queue);
664                 spin_unlock_irq(&conf->device_lock);
665                 /* flush any pending bitmap writes to disk
666                  * before proceeding w/ I/O */
667                 bitmap_unplug(conf->mddev->bitmap);
668
669                 while (bio) { /* submit pending writes */
670                         struct bio *next = bio->bi_next;
671                         bio->bi_next = NULL;
672                         generic_make_request(bio);
673                         bio = next;
674                 }
675                 rv = 1;
676         } else
677                 spin_unlock_irq(&conf->device_lock);
678         return rv;
679 }
680 /* Barriers....
681  * Sometimes we need to suspend IO while we do something else,
682  * either some resync/recovery, or reconfigure the array.
683  * To do this we raise a 'barrier'.
684  * The 'barrier' is a counter that can be raised multiple times
685  * to count how many activities are happening which preclude
686  * normal IO.
687  * We can only raise the barrier if there is no pending IO.
688  * i.e. if nr_pending == 0.
689  * We choose only to raise the barrier if no-one is waiting for the
690  * barrier to go down.  This means that as soon as an IO request
691  * is ready, no other operations which require a barrier will start
692  * until the IO request has had a chance.
693  *
694  * So: regular IO calls 'wait_barrier'.  When that returns there
695  *    is no backgroup IO happening,  It must arrange to call
696  *    allow_barrier when it has finished its IO.
697  * backgroup IO calls must call raise_barrier.  Once that returns
698  *    there is no normal IO happeing.  It must arrange to call
699  *    lower_barrier when the particular background IO completes.
700  */
701
702 static void raise_barrier(conf_t *conf, int force)
703 {
704         BUG_ON(force && !conf->barrier);
705         spin_lock_irq(&conf->resync_lock);
706
707         /* Wait until no block IO is waiting (unless 'force') */
708         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
709                             conf->resync_lock,
710                             raid10_unplug(conf->mddev->queue));
711
712         /* block any new IO from starting */
713         conf->barrier++;
714
715         /* No wait for all pending IO to complete */
716         wait_event_lock_irq(conf->wait_barrier,
717                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
718                             conf->resync_lock,
719                             raid10_unplug(conf->mddev->queue));
720
721         spin_unlock_irq(&conf->resync_lock);
722 }
723
724 static void lower_barrier(conf_t *conf)
725 {
726         unsigned long flags;
727         spin_lock_irqsave(&conf->resync_lock, flags);
728         conf->barrier--;
729         spin_unlock_irqrestore(&conf->resync_lock, flags);
730         wake_up(&conf->wait_barrier);
731 }
732
733 static void wait_barrier(conf_t *conf)
734 {
735         spin_lock_irq(&conf->resync_lock);
736         if (conf->barrier) {
737                 conf->nr_waiting++;
738                 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
739                                     conf->resync_lock,
740                                     raid10_unplug(conf->mddev->queue));
741                 conf->nr_waiting--;
742         }
743         conf->nr_pending++;
744         spin_unlock_irq(&conf->resync_lock);
745 }
746
747 static void allow_barrier(conf_t *conf)
748 {
749         unsigned long flags;
750         spin_lock_irqsave(&conf->resync_lock, flags);
751         conf->nr_pending--;
752         spin_unlock_irqrestore(&conf->resync_lock, flags);
753         wake_up(&conf->wait_barrier);
754 }
755
756 static void freeze_array(conf_t *conf)
757 {
758         /* stop syncio and normal IO and wait for everything to
759          * go quiet.
760          * We increment barrier and nr_waiting, and then
761          * wait until nr_pending match nr_queued+1
762          * This is called in the context of one normal IO request
763          * that has failed. Thus any sync request that might be pending
764          * will be blocked by nr_pending, and we need to wait for
765          * pending IO requests to complete or be queued for re-try.
766          * Thus the number queued (nr_queued) plus this request (1)
767          * must match the number of pending IOs (nr_pending) before
768          * we continue.
769          */
770         spin_lock_irq(&conf->resync_lock);
771         conf->barrier++;
772         conf->nr_waiting++;
773         wait_event_lock_irq(conf->wait_barrier,
774                             conf->nr_pending == conf->nr_queued+1,
775                             conf->resync_lock,
776                             ({ flush_pending_writes(conf);
777                                raid10_unplug(conf->mddev->queue); }));
778         spin_unlock_irq(&conf->resync_lock);
779 }
780
781 static void unfreeze_array(conf_t *conf)
782 {
783         /* reverse the effect of the freeze */
784         spin_lock_irq(&conf->resync_lock);
785         conf->barrier--;
786         conf->nr_waiting--;
787         wake_up(&conf->wait_barrier);
788         spin_unlock_irq(&conf->resync_lock);
789 }
790
791 static int make_request(mddev_t *mddev, struct bio * bio)
792 {
793         conf_t *conf = mddev->private;
794         mirror_info_t *mirror;
795         r10bio_t *r10_bio;
796         struct bio *read_bio;
797         int i;
798         int chunk_sects = conf->chunk_mask + 1;
799         const int rw = bio_data_dir(bio);
800         const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
801         struct bio_list bl;
802         unsigned long flags;
803         mdk_rdev_t *blocked_rdev;
804
805         if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
806                 md_barrier_request(mddev, bio);
807                 return 0;
808         }
809
810         /* If this request crosses a chunk boundary, we need to
811          * split it.  This will only happen for 1 PAGE (or less) requests.
812          */
813         if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
814                       > chunk_sects &&
815                     conf->near_copies < conf->raid_disks)) {
816                 struct bio_pair *bp;
817                 /* Sanity check -- queue functions should prevent this happening */
818                 if (bio->bi_vcnt != 1 ||
819                     bio->bi_idx != 0)
820                         goto bad_map;
821                 /* This is a one page bio that upper layers
822                  * refuse to split for us, so we need to split it.
823                  */
824                 bp = bio_split(bio,
825                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
826                 if (make_request(mddev, &bp->bio1))
827                         generic_make_request(&bp->bio1);
828                 if (make_request(mddev, &bp->bio2))
829                         generic_make_request(&bp->bio2);
830
831                 bio_pair_release(bp);
832                 return 0;
833         bad_map:
834                 printk("raid10_make_request bug: can't convert block across chunks"
835                        " or bigger than %dk %llu %d\n", chunk_sects/2,
836                        (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
837
838                 bio_io_error(bio);
839                 return 0;
840         }
841
842         md_write_start(mddev, bio);
843
844         /*
845          * Register the new request and wait if the reconstruction
846          * thread has put up a bar for new requests.
847          * Continue immediately if no resync is active currently.
848          */
849         wait_barrier(conf);
850
851         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
852
853         r10_bio->master_bio = bio;
854         r10_bio->sectors = bio->bi_size >> 9;
855
856         r10_bio->mddev = mddev;
857         r10_bio->sector = bio->bi_sector;
858         r10_bio->state = 0;
859
860         if (rw == READ) {
861                 /*
862                  * read balancing logic:
863                  */
864                 int disk = read_balance(conf, r10_bio);
865                 int slot = r10_bio->read_slot;
866                 if (disk < 0) {
867                         raid_end_bio_io(r10_bio);
868                         return 0;
869                 }
870                 mirror = conf->mirrors + disk;
871
872                 read_bio = bio_clone(bio, GFP_NOIO);
873
874                 r10_bio->devs[slot].bio = read_bio;
875
876                 read_bio->bi_sector = r10_bio->devs[slot].addr +
877                         mirror->rdev->data_offset;
878                 read_bio->bi_bdev = mirror->rdev->bdev;
879                 read_bio->bi_end_io = raid10_end_read_request;
880                 read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
881                 read_bio->bi_private = r10_bio;
882
883                 generic_make_request(read_bio);
884                 return 0;
885         }
886
887         /*
888          * WRITE:
889          */
890         /* first select target devices under rcu_lock and
891          * inc refcount on their rdev.  Record them by setting
892          * bios[x] to bio
893          */
894         raid10_find_phys(conf, r10_bio);
895  retry_write:
896         blocked_rdev = NULL;
897         rcu_read_lock();
898         for (i = 0;  i < conf->copies; i++) {
899                 int d = r10_bio->devs[i].devnum;
900                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
901                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
902                         atomic_inc(&rdev->nr_pending);
903                         blocked_rdev = rdev;
904                         break;
905                 }
906                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
907                         atomic_inc(&rdev->nr_pending);
908                         r10_bio->devs[i].bio = bio;
909                 } else {
910                         r10_bio->devs[i].bio = NULL;
911                         set_bit(R10BIO_Degraded, &r10_bio->state);
912                 }
913         }
914         rcu_read_unlock();
915
916         if (unlikely(blocked_rdev)) {
917                 /* Have to wait for this device to get unblocked, then retry */
918                 int j;
919                 int d;
920
921                 for (j = 0; j < i; j++)
922                         if (r10_bio->devs[j].bio) {
923                                 d = r10_bio->devs[j].devnum;
924                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
925                         }
926                 allow_barrier(conf);
927                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
928                 wait_barrier(conf);
929                 goto retry_write;
930         }
931
932         atomic_set(&r10_bio->remaining, 0);
933
934         bio_list_init(&bl);
935         for (i = 0; i < conf->copies; i++) {
936                 struct bio *mbio;
937                 int d = r10_bio->devs[i].devnum;
938                 if (!r10_bio->devs[i].bio)
939                         continue;
940
941                 mbio = bio_clone(bio, GFP_NOIO);
942                 r10_bio->devs[i].bio = mbio;
943
944                 mbio->bi_sector = r10_bio->devs[i].addr+
945                         conf->mirrors[d].rdev->data_offset;
946                 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
947                 mbio->bi_end_io = raid10_end_write_request;
948                 mbio->bi_rw = WRITE | (do_sync << BIO_RW_SYNCIO);
949                 mbio->bi_private = r10_bio;
950
951                 atomic_inc(&r10_bio->remaining);
952                 bio_list_add(&bl, mbio);
953         }
954
955         if (unlikely(!atomic_read(&r10_bio->remaining))) {
956                 /* the array is dead */
957                 md_write_end(mddev);
958                 raid_end_bio_io(r10_bio);
959                 return 0;
960         }
961
962         bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
963         spin_lock_irqsave(&conf->device_lock, flags);
964         bio_list_merge(&conf->pending_bio_list, &bl);
965         blk_plug_device(mddev->queue);
966         spin_unlock_irqrestore(&conf->device_lock, flags);
967
968         /* In case raid10d snuck in to freeze_array */
969         wake_up(&conf->wait_barrier);
970
971         if (do_sync)
972                 md_wakeup_thread(mddev->thread);
973
974         return 0;
975 }
976
977 static void status(struct seq_file *seq, mddev_t *mddev)
978 {
979         conf_t *conf = mddev->private;
980         int i;
981
982         if (conf->near_copies < conf->raid_disks)
983                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
984         if (conf->near_copies > 1)
985                 seq_printf(seq, " %d near-copies", conf->near_copies);
986         if (conf->far_copies > 1) {
987                 if (conf->far_offset)
988                         seq_printf(seq, " %d offset-copies", conf->far_copies);
989                 else
990                         seq_printf(seq, " %d far-copies", conf->far_copies);
991         }
992         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
993                                         conf->raid_disks - mddev->degraded);
994         for (i = 0; i < conf->raid_disks; i++)
995                 seq_printf(seq, "%s",
996                               conf->mirrors[i].rdev &&
997                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
998         seq_printf(seq, "]");
999 }
1000
1001 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1002 {
1003         char b[BDEVNAME_SIZE];
1004         conf_t *conf = mddev->private;
1005
1006         /*
1007          * If it is not operational, then we have already marked it as dead
1008          * else if it is the last working disks, ignore the error, let the
1009          * next level up know.
1010          * else mark the drive as failed
1011          */
1012         if (test_bit(In_sync, &rdev->flags)
1013             && conf->raid_disks-mddev->degraded == 1)
1014                 /*
1015                  * Don't fail the drive, just return an IO error.
1016                  * The test should really be more sophisticated than
1017                  * "working_disks == 1", but it isn't critical, and
1018                  * can wait until we do more sophisticated "is the drive
1019                  * really dead" tests...
1020                  */
1021                 return;
1022         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1023                 unsigned long flags;
1024                 spin_lock_irqsave(&conf->device_lock, flags);
1025                 mddev->degraded++;
1026                 spin_unlock_irqrestore(&conf->device_lock, flags);
1027                 /*
1028                  * if recovery is running, make sure it aborts.
1029                  */
1030                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1031         }
1032         set_bit(Faulty, &rdev->flags);
1033         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1034         printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
1035                 "raid10: Operation continuing on %d devices.\n",
1036                 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1037 }
1038
1039 static void print_conf(conf_t *conf)
1040 {
1041         int i;
1042         mirror_info_t *tmp;
1043
1044         printk("RAID10 conf printout:\n");
1045         if (!conf) {
1046                 printk("(!conf)\n");
1047                 return;
1048         }
1049         printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1050                 conf->raid_disks);
1051
1052         for (i = 0; i < conf->raid_disks; i++) {
1053                 char b[BDEVNAME_SIZE];
1054                 tmp = conf->mirrors + i;
1055                 if (tmp->rdev)
1056                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1057                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1058                                 !test_bit(Faulty, &tmp->rdev->flags),
1059                                 bdevname(tmp->rdev->bdev,b));
1060         }
1061 }
1062
1063 static void close_sync(conf_t *conf)
1064 {
1065         wait_barrier(conf);
1066         allow_barrier(conf);
1067
1068         mempool_destroy(conf->r10buf_pool);
1069         conf->r10buf_pool = NULL;
1070 }
1071
1072 /* check if there are enough drives for
1073  * every block to appear on atleast one
1074  */
1075 static int enough(conf_t *conf)
1076 {
1077         int first = 0;
1078
1079         do {
1080                 int n = conf->copies;
1081                 int cnt = 0;
1082                 while (n--) {
1083                         if (conf->mirrors[first].rdev)
1084                                 cnt++;
1085                         first = (first+1) % conf->raid_disks;
1086                 }
1087                 if (cnt == 0)
1088                         return 0;
1089         } while (first != 0);
1090         return 1;
1091 }
1092
1093 static int raid10_spare_active(mddev_t *mddev)
1094 {
1095         int i;
1096         conf_t *conf = mddev->private;
1097         mirror_info_t *tmp;
1098
1099         /*
1100          * Find all non-in_sync disks within the RAID10 configuration
1101          * and mark them in_sync
1102          */
1103         for (i = 0; i < conf->raid_disks; i++) {
1104                 tmp = conf->mirrors + i;
1105                 if (tmp->rdev
1106                     && !test_bit(Faulty, &tmp->rdev->flags)
1107                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1108                         unsigned long flags;
1109                         spin_lock_irqsave(&conf->device_lock, flags);
1110                         mddev->degraded--;
1111                         spin_unlock_irqrestore(&conf->device_lock, flags);
1112                 }
1113         }
1114
1115         print_conf(conf);
1116         return 0;
1117 }
1118
1119
1120 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1121 {
1122         conf_t *conf = mddev->private;
1123         int err = -EEXIST;
1124         int mirror;
1125         mirror_info_t *p;
1126         int first = 0;
1127         int last = conf->raid_disks - 1;
1128
1129         if (mddev->recovery_cp < MaxSector)
1130                 /* only hot-add to in-sync arrays, as recovery is
1131                  * very different from resync
1132                  */
1133                 return -EBUSY;
1134         if (!enough(conf))
1135                 return -EINVAL;
1136
1137         if (rdev->raid_disk >= 0)
1138                 first = last = rdev->raid_disk;
1139
1140         if (rdev->saved_raid_disk >= 0 &&
1141             rdev->saved_raid_disk >= first &&
1142             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1143                 mirror = rdev->saved_raid_disk;
1144         else
1145                 mirror = first;
1146         for ( ; mirror <= last ; mirror++)
1147                 if ( !(p=conf->mirrors+mirror)->rdev) {
1148
1149                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1150                                           rdev->data_offset << 9);
1151                         /* as we don't honour merge_bvec_fn, we must
1152                          * never risk violating it, so limit
1153                          * ->max_segments to one lying with a single
1154                          * page, as a one page request is never in
1155                          * violation.
1156                          */
1157                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1158                                 blk_queue_max_segments(mddev->queue, 1);
1159                                 blk_queue_segment_boundary(mddev->queue,
1160                                                            PAGE_CACHE_SIZE - 1);
1161                         }
1162
1163                         p->head_position = 0;
1164                         rdev->raid_disk = mirror;
1165                         err = 0;
1166                         if (rdev->saved_raid_disk != mirror)
1167                                 conf->fullsync = 1;
1168                         rcu_assign_pointer(p->rdev, rdev);
1169                         break;
1170                 }
1171
1172         md_integrity_add_rdev(rdev, mddev);
1173         print_conf(conf);
1174         return err;
1175 }
1176
1177 static int raid10_remove_disk(mddev_t *mddev, int number)
1178 {
1179         conf_t *conf = mddev->private;
1180         int err = 0;
1181         mdk_rdev_t *rdev;
1182         mirror_info_t *p = conf->mirrors+ number;
1183
1184         print_conf(conf);
1185         rdev = p->rdev;
1186         if (rdev) {
1187                 if (test_bit(In_sync, &rdev->flags) ||
1188                     atomic_read(&rdev->nr_pending)) {
1189                         err = -EBUSY;
1190                         goto abort;
1191                 }
1192                 /* Only remove faulty devices in recovery
1193                  * is not possible.
1194                  */
1195                 if (!test_bit(Faulty, &rdev->flags) &&
1196                     enough(conf)) {
1197                         err = -EBUSY;
1198                         goto abort;
1199                 }
1200                 p->rdev = NULL;
1201                 synchronize_rcu();
1202                 if (atomic_read(&rdev->nr_pending)) {
1203                         /* lost the race, try later */
1204                         err = -EBUSY;
1205                         p->rdev = rdev;
1206                         goto abort;
1207                 }
1208                 md_integrity_register(mddev);
1209         }
1210 abort:
1211
1212         print_conf(conf);
1213         return err;
1214 }
1215
1216
1217 static void end_sync_read(struct bio *bio, int error)
1218 {
1219         r10bio_t *r10_bio = bio->bi_private;
1220         conf_t *conf = r10_bio->mddev->private;
1221         int i,d;
1222
1223         for (i=0; i<conf->copies; i++)
1224                 if (r10_bio->devs[i].bio == bio)
1225                         break;
1226         BUG_ON(i == conf->copies);
1227         update_head_pos(i, r10_bio);
1228         d = r10_bio->devs[i].devnum;
1229
1230         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1231                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1232         else {
1233                 atomic_add(r10_bio->sectors,
1234                            &conf->mirrors[d].rdev->corrected_errors);
1235                 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1236                         md_error(r10_bio->mddev,
1237                                  conf->mirrors[d].rdev);
1238         }
1239
1240         /* for reconstruct, we always reschedule after a read.
1241          * for resync, only after all reads
1242          */
1243         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1244         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1245             atomic_dec_and_test(&r10_bio->remaining)) {
1246                 /* we have read all the blocks,
1247                  * do the comparison in process context in raid10d
1248                  */
1249                 reschedule_retry(r10_bio);
1250         }
1251 }
1252
1253 static void end_sync_write(struct bio *bio, int error)
1254 {
1255         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1256         r10bio_t *r10_bio = bio->bi_private;
1257         mddev_t *mddev = r10_bio->mddev;
1258         conf_t *conf = mddev->private;
1259         int i,d;
1260
1261         for (i = 0; i < conf->copies; i++)
1262                 if (r10_bio->devs[i].bio == bio)
1263                         break;
1264         d = r10_bio->devs[i].devnum;
1265
1266         if (!uptodate)
1267                 md_error(mddev, conf->mirrors[d].rdev);
1268
1269         update_head_pos(i, r10_bio);
1270
1271         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1272         while (atomic_dec_and_test(&r10_bio->remaining)) {
1273                 if (r10_bio->master_bio == NULL) {
1274                         /* the primary of several recovery bios */
1275                         sector_t s = r10_bio->sectors;
1276                         put_buf(r10_bio);
1277                         md_done_sync(mddev, s, 1);
1278                         break;
1279                 } else {
1280                         r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1281                         put_buf(r10_bio);
1282                         r10_bio = r10_bio2;
1283                 }
1284         }
1285 }
1286
1287 /*
1288  * Note: sync and recover and handled very differently for raid10
1289  * This code is for resync.
1290  * For resync, we read through virtual addresses and read all blocks.
1291  * If there is any error, we schedule a write.  The lowest numbered
1292  * drive is authoritative.
1293  * However requests come for physical address, so we need to map.
1294  * For every physical address there are raid_disks/copies virtual addresses,
1295  * which is always are least one, but is not necessarly an integer.
1296  * This means that a physical address can span multiple chunks, so we may
1297  * have to submit multiple io requests for a single sync request.
1298  */
1299 /*
1300  * We check if all blocks are in-sync and only write to blocks that
1301  * aren't in sync
1302  */
1303 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1304 {
1305         conf_t *conf = mddev->private;
1306         int i, first;
1307         struct bio *tbio, *fbio;
1308
1309         atomic_set(&r10_bio->remaining, 1);
1310
1311         /* find the first device with a block */
1312         for (i=0; i<conf->copies; i++)
1313                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1314                         break;
1315
1316         if (i == conf->copies)
1317                 goto done;
1318
1319         first = i;
1320         fbio = r10_bio->devs[i].bio;
1321
1322         /* now find blocks with errors */
1323         for (i=0 ; i < conf->copies ; i++) {
1324                 int  j, d;
1325                 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1326
1327                 tbio = r10_bio->devs[i].bio;
1328
1329                 if (tbio->bi_end_io != end_sync_read)
1330                         continue;
1331                 if (i == first)
1332                         continue;
1333                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1334                         /* We know that the bi_io_vec layout is the same for
1335                          * both 'first' and 'i', so we just compare them.
1336                          * All vec entries are PAGE_SIZE;
1337                          */
1338                         for (j = 0; j < vcnt; j++)
1339                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1340                                            page_address(tbio->bi_io_vec[j].bv_page),
1341                                            PAGE_SIZE))
1342                                         break;
1343                         if (j == vcnt)
1344                                 continue;
1345                         mddev->resync_mismatches += r10_bio->sectors;
1346                 }
1347                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1348                         /* Don't fix anything. */
1349                         continue;
1350                 /* Ok, we need to write this bio
1351                  * First we need to fixup bv_offset, bv_len and
1352                  * bi_vecs, as the read request might have corrupted these
1353                  */
1354                 tbio->bi_vcnt = vcnt;
1355                 tbio->bi_size = r10_bio->sectors << 9;
1356                 tbio->bi_idx = 0;
1357                 tbio->bi_phys_segments = 0;
1358                 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1359                 tbio->bi_flags |= 1 << BIO_UPTODATE;
1360                 tbio->bi_next = NULL;
1361                 tbio->bi_rw = WRITE;
1362                 tbio->bi_private = r10_bio;
1363                 tbio->bi_sector = r10_bio->devs[i].addr;
1364
1365                 for (j=0; j < vcnt ; j++) {
1366                         tbio->bi_io_vec[j].bv_offset = 0;
1367                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1368
1369                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1370                                page_address(fbio->bi_io_vec[j].bv_page),
1371                                PAGE_SIZE);
1372                 }
1373                 tbio->bi_end_io = end_sync_write;
1374
1375                 d = r10_bio->devs[i].devnum;
1376                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1377                 atomic_inc(&r10_bio->remaining);
1378                 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1379
1380                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1381                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1382                 generic_make_request(tbio);
1383         }
1384
1385 done:
1386         if (atomic_dec_and_test(&r10_bio->remaining)) {
1387                 md_done_sync(mddev, r10_bio->sectors, 1);
1388                 put_buf(r10_bio);
1389         }
1390 }
1391
1392 /*
1393  * Now for the recovery code.
1394  * Recovery happens across physical sectors.
1395  * We recover all non-is_sync drives by finding the virtual address of
1396  * each, and then choose a working drive that also has that virt address.
1397  * There is a separate r10_bio for each non-in_sync drive.
1398  * Only the first two slots are in use. The first for reading,
1399  * The second for writing.
1400  *
1401  */
1402
1403 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1404 {
1405         conf_t *conf = mddev->private;
1406         int i, d;
1407         struct bio *bio, *wbio;
1408
1409
1410         /* move the pages across to the second bio
1411          * and submit the write request
1412          */
1413         bio = r10_bio->devs[0].bio;
1414         wbio = r10_bio->devs[1].bio;
1415         for (i=0; i < wbio->bi_vcnt; i++) {
1416                 struct page *p = bio->bi_io_vec[i].bv_page;
1417                 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1418                 wbio->bi_io_vec[i].bv_page = p;
1419         }
1420         d = r10_bio->devs[1].devnum;
1421
1422         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1423         md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1424         if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1425                 generic_make_request(wbio);
1426         else
1427                 bio_endio(wbio, -EIO);
1428 }
1429
1430
1431 /*
1432  * Used by fix_read_error() to decay the per rdev read_errors.
1433  * We halve the read error count for every hour that has elapsed
1434  * since the last recorded read error.
1435  *
1436  */
1437 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1438 {
1439         struct timespec cur_time_mon;
1440         unsigned long hours_since_last;
1441         unsigned int read_errors = atomic_read(&rdev->read_errors);
1442
1443         ktime_get_ts(&cur_time_mon);
1444
1445         if (rdev->last_read_error.tv_sec == 0 &&
1446             rdev->last_read_error.tv_nsec == 0) {
1447                 /* first time we've seen a read error */
1448                 rdev->last_read_error = cur_time_mon;
1449                 return;
1450         }
1451
1452         hours_since_last = (cur_time_mon.tv_sec -
1453                             rdev->last_read_error.tv_sec) / 3600;
1454
1455         rdev->last_read_error = cur_time_mon;
1456
1457         /*
1458          * if hours_since_last is > the number of bits in read_errors
1459          * just set read errors to 0. We do this to avoid
1460          * overflowing the shift of read_errors by hours_since_last.
1461          */
1462         if (hours_since_last >= 8 * sizeof(read_errors))
1463                 atomic_set(&rdev->read_errors, 0);
1464         else
1465                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1466 }
1467
1468 /*
1469  * This is a kernel thread which:
1470  *
1471  *      1.      Retries failed read operations on working mirrors.
1472  *      2.      Updates the raid superblock when problems encounter.
1473  *      3.      Performs writes following reads for array synchronising.
1474  */
1475
1476 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1477 {
1478         int sect = 0; /* Offset from r10_bio->sector */
1479         int sectors = r10_bio->sectors;
1480         mdk_rdev_t*rdev;
1481         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1482
1483         rcu_read_lock();
1484         {
1485                 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1486                 char b[BDEVNAME_SIZE];
1487                 int cur_read_error_count = 0;
1488
1489                 rdev = rcu_dereference(conf->mirrors[d].rdev);
1490                 bdevname(rdev->bdev, b);
1491
1492                 if (test_bit(Faulty, &rdev->flags)) {
1493                         rcu_read_unlock();
1494                         /* drive has already been failed, just ignore any
1495                            more fix_read_error() attempts */
1496                         return;
1497                 }
1498
1499                 check_decay_read_errors(mddev, rdev);
1500                 atomic_inc(&rdev->read_errors);
1501                 cur_read_error_count = atomic_read(&rdev->read_errors);
1502                 if (cur_read_error_count > max_read_errors) {
1503                         rcu_read_unlock();
1504                         printk(KERN_NOTICE
1505                                "raid10: %s: Raid device exceeded "
1506                                "read_error threshold "
1507                                "[cur %d:max %d]\n",
1508                                b, cur_read_error_count, max_read_errors);
1509                         printk(KERN_NOTICE
1510                                "raid10: %s: Failing raid "
1511                                "device\n", b);
1512                         md_error(mddev, conf->mirrors[d].rdev);
1513                         return;
1514                 }
1515         }
1516         rcu_read_unlock();
1517
1518         while(sectors) {
1519                 int s = sectors;
1520                 int sl = r10_bio->read_slot;
1521                 int success = 0;
1522                 int start;
1523
1524                 if (s > (PAGE_SIZE>>9))
1525                         s = PAGE_SIZE >> 9;
1526
1527                 rcu_read_lock();
1528                 do {
1529                         int d = r10_bio->devs[sl].devnum;
1530                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1531                         if (rdev &&
1532                             test_bit(In_sync, &rdev->flags)) {
1533                                 atomic_inc(&rdev->nr_pending);
1534                                 rcu_read_unlock();
1535                                 success = sync_page_io(rdev->bdev,
1536                                                        r10_bio->devs[sl].addr +
1537                                                        sect + rdev->data_offset,
1538                                                        s<<9,
1539                                                        conf->tmppage, READ);
1540                                 rdev_dec_pending(rdev, mddev);
1541                                 rcu_read_lock();
1542                                 if (success)
1543                                         break;
1544                         }
1545                         sl++;
1546                         if (sl == conf->copies)
1547                                 sl = 0;
1548                 } while (!success && sl != r10_bio->read_slot);
1549                 rcu_read_unlock();
1550
1551                 if (!success) {
1552                         /* Cannot read from anywhere -- bye bye array */
1553                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1554                         md_error(mddev, conf->mirrors[dn].rdev);
1555                         break;
1556                 }
1557
1558                 start = sl;
1559                 /* write it back and re-read */
1560                 rcu_read_lock();
1561                 while (sl != r10_bio->read_slot) {
1562                         char b[BDEVNAME_SIZE];
1563                         int d;
1564                         if (sl==0)
1565                                 sl = conf->copies;
1566                         sl--;
1567                         d = r10_bio->devs[sl].devnum;
1568                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1569                         if (rdev &&
1570                             test_bit(In_sync, &rdev->flags)) {
1571                                 atomic_inc(&rdev->nr_pending);
1572                                 rcu_read_unlock();
1573                                 atomic_add(s, &rdev->corrected_errors);
1574                                 if (sync_page_io(rdev->bdev,
1575                                                  r10_bio->devs[sl].addr +
1576                                                  sect + rdev->data_offset,
1577                                                  s<<9, conf->tmppage, WRITE)
1578                                     == 0) {
1579                                         /* Well, this device is dead */
1580                                         printk(KERN_NOTICE
1581                                                "raid10:%s: read correction "
1582                                                "write failed"
1583                                                " (%d sectors at %llu on %s)\n",
1584                                                mdname(mddev), s,
1585                                                (unsigned long long)(sect+
1586                                                rdev->data_offset),
1587                                                bdevname(rdev->bdev, b));
1588                                         printk(KERN_NOTICE "raid10:%s: failing "
1589                                                "drive\n",
1590                                                bdevname(rdev->bdev, b));
1591                                         md_error(mddev, rdev);
1592                                 }
1593                                 rdev_dec_pending(rdev, mddev);
1594                                 rcu_read_lock();
1595                         }
1596                 }
1597                 sl = start;
1598                 while (sl != r10_bio->read_slot) {
1599                         int d;
1600                         if (sl==0)
1601                                 sl = conf->copies;
1602                         sl--;
1603                         d = r10_bio->devs[sl].devnum;
1604                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1605                         if (rdev &&
1606                             test_bit(In_sync, &rdev->flags)) {
1607                                 char b[BDEVNAME_SIZE];
1608                                 atomic_inc(&rdev->nr_pending);
1609                                 rcu_read_unlock();
1610                                 if (sync_page_io(rdev->bdev,
1611                                                  r10_bio->devs[sl].addr +
1612                                                  sect + rdev->data_offset,
1613                                                  s<<9, conf->tmppage,
1614                                                  READ) == 0) {
1615                                         /* Well, this device is dead */
1616                                         printk(KERN_NOTICE
1617                                                "raid10:%s: unable to read back "
1618                                                "corrected sectors"
1619                                                " (%d sectors at %llu on %s)\n",
1620                                                mdname(mddev), s,
1621                                                (unsigned long long)(sect+
1622                                                     rdev->data_offset),
1623                                                bdevname(rdev->bdev, b));
1624                                         printk(KERN_NOTICE "raid10:%s: failing drive\n",
1625                                                bdevname(rdev->bdev, b));
1626
1627                                         md_error(mddev, rdev);
1628                                 } else {
1629                                         printk(KERN_INFO
1630                                                "raid10:%s: read error corrected"
1631                                                " (%d sectors at %llu on %s)\n",
1632                                                mdname(mddev), s,
1633                                                (unsigned long long)(sect+
1634                                                     rdev->data_offset),
1635                                                bdevname(rdev->bdev, b));
1636                                 }
1637
1638                                 rdev_dec_pending(rdev, mddev);
1639                                 rcu_read_lock();
1640                         }
1641                 }
1642                 rcu_read_unlock();
1643
1644                 sectors -= s;
1645                 sect += s;
1646         }
1647 }
1648
1649 static void raid10d(mddev_t *mddev)
1650 {
1651         r10bio_t *r10_bio;
1652         struct bio *bio;
1653         unsigned long flags;
1654         conf_t *conf = mddev->private;
1655         struct list_head *head = &conf->retry_list;
1656         int unplug=0;
1657         mdk_rdev_t *rdev;
1658
1659         md_check_recovery(mddev);
1660
1661         for (;;) {
1662                 char b[BDEVNAME_SIZE];
1663
1664                 unplug += flush_pending_writes(conf);
1665
1666                 spin_lock_irqsave(&conf->device_lock, flags);
1667                 if (list_empty(head)) {
1668                         spin_unlock_irqrestore(&conf->device_lock, flags);
1669                         break;
1670                 }
1671                 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1672                 list_del(head->prev);
1673                 conf->nr_queued--;
1674                 spin_unlock_irqrestore(&conf->device_lock, flags);
1675
1676                 mddev = r10_bio->mddev;
1677                 conf = mddev->private;
1678                 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1679                         sync_request_write(mddev, r10_bio);
1680                         unplug = 1;
1681                 } else  if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1682                         recovery_request_write(mddev, r10_bio);
1683                         unplug = 1;
1684                 } else {
1685                         int mirror;
1686                         /* we got a read error. Maybe the drive is bad.  Maybe just
1687                          * the block and we can fix it.
1688                          * We freeze all other IO, and try reading the block from
1689                          * other devices.  When we find one, we re-write
1690                          * and check it that fixes the read error.
1691                          * This is all done synchronously while the array is
1692                          * frozen.
1693                          */
1694                         if (mddev->ro == 0) {
1695                                 freeze_array(conf);
1696                                 fix_read_error(conf, mddev, r10_bio);
1697                                 unfreeze_array(conf);
1698                         }
1699
1700                         bio = r10_bio->devs[r10_bio->read_slot].bio;
1701                         r10_bio->devs[r10_bio->read_slot].bio =
1702                                 mddev->ro ? IO_BLOCKED : NULL;
1703                         mirror = read_balance(conf, r10_bio);
1704                         if (mirror == -1) {
1705                                 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1706                                        " read error for block %llu\n",
1707                                        bdevname(bio->bi_bdev,b),
1708                                        (unsigned long long)r10_bio->sector);
1709                                 raid_end_bio_io(r10_bio);
1710                                 bio_put(bio);
1711                         } else {
1712                                 const bool do_sync = bio_rw_flagged(r10_bio->master_bio, BIO_RW_SYNCIO);
1713                                 bio_put(bio);
1714                                 rdev = conf->mirrors[mirror].rdev;
1715                                 if (printk_ratelimit())
1716                                         printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1717                                                " another mirror\n",
1718                                                bdevname(rdev->bdev,b),
1719                                                (unsigned long long)r10_bio->sector);
1720                                 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1721                                 r10_bio->devs[r10_bio->read_slot].bio = bio;
1722                                 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1723                                         + rdev->data_offset;
1724                                 bio->bi_bdev = rdev->bdev;
1725                                 bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
1726                                 bio->bi_private = r10_bio;
1727                                 bio->bi_end_io = raid10_end_read_request;
1728                                 unplug = 1;
1729                                 generic_make_request(bio);
1730                         }
1731                 }
1732                 cond_resched();
1733         }
1734         if (unplug)
1735                 unplug_slaves(mddev);
1736 }
1737
1738
1739 static int init_resync(conf_t *conf)
1740 {
1741         int buffs;
1742
1743         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1744         BUG_ON(conf->r10buf_pool);
1745         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1746         if (!conf->r10buf_pool)
1747                 return -ENOMEM;
1748         conf->next_resync = 0;
1749         return 0;
1750 }
1751
1752 /*
1753  * perform a "sync" on one "block"
1754  *
1755  * We need to make sure that no normal I/O request - particularly write
1756  * requests - conflict with active sync requests.
1757  *
1758  * This is achieved by tracking pending requests and a 'barrier' concept
1759  * that can be installed to exclude normal IO requests.
1760  *
1761  * Resync and recovery are handled very differently.
1762  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1763  *
1764  * For resync, we iterate over virtual addresses, read all copies,
1765  * and update if there are differences.  If only one copy is live,
1766  * skip it.
1767  * For recovery, we iterate over physical addresses, read a good
1768  * value for each non-in_sync drive, and over-write.
1769  *
1770  * So, for recovery we may have several outstanding complex requests for a
1771  * given address, one for each out-of-sync device.  We model this by allocating
1772  * a number of r10_bio structures, one for each out-of-sync device.
1773  * As we setup these structures, we collect all bio's together into a list
1774  * which we then process collectively to add pages, and then process again
1775  * to pass to generic_make_request.
1776  *
1777  * The r10_bio structures are linked using a borrowed master_bio pointer.
1778  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1779  * has its remaining count decremented to 0, the whole complex operation
1780  * is complete.
1781  *
1782  */
1783
1784 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1785 {
1786         conf_t *conf = mddev->private;
1787         r10bio_t *r10_bio;
1788         struct bio *biolist = NULL, *bio;
1789         sector_t max_sector, nr_sectors;
1790         int disk;
1791         int i;
1792         int max_sync;
1793         int sync_blocks;
1794
1795         sector_t sectors_skipped = 0;
1796         int chunks_skipped = 0;
1797
1798         if (!conf->r10buf_pool)
1799                 if (init_resync(conf))
1800                         return 0;
1801
1802  skipped:
1803         max_sector = mddev->dev_sectors;
1804         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1805                 max_sector = mddev->resync_max_sectors;
1806         if (sector_nr >= max_sector) {
1807                 /* If we aborted, we need to abort the
1808                  * sync on the 'current' bitmap chucks (there can
1809                  * be several when recovering multiple devices).
1810                  * as we may have started syncing it but not finished.
1811                  * We can find the current address in
1812                  * mddev->curr_resync, but for recovery,
1813                  * we need to convert that to several
1814                  * virtual addresses.
1815                  */
1816                 if (mddev->curr_resync < max_sector) { /* aborted */
1817                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1818                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1819                                                 &sync_blocks, 1);
1820                         else for (i=0; i<conf->raid_disks; i++) {
1821                                 sector_t sect =
1822                                         raid10_find_virt(conf, mddev->curr_resync, i);
1823                                 bitmap_end_sync(mddev->bitmap, sect,
1824                                                 &sync_blocks, 1);
1825                         }
1826                 } else /* completed sync */
1827                         conf->fullsync = 0;
1828
1829                 bitmap_close_sync(mddev->bitmap);
1830                 close_sync(conf);
1831                 *skipped = 1;
1832                 return sectors_skipped;
1833         }
1834         if (chunks_skipped >= conf->raid_disks) {
1835                 /* if there has been nothing to do on any drive,
1836                  * then there is nothing to do at all..
1837                  */
1838                 *skipped = 1;
1839                 return (max_sector - sector_nr) + sectors_skipped;
1840         }
1841
1842         if (max_sector > mddev->resync_max)
1843                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1844
1845         /* make sure whole request will fit in a chunk - if chunks
1846          * are meaningful
1847          */
1848         if (conf->near_copies < conf->raid_disks &&
1849             max_sector > (sector_nr | conf->chunk_mask))
1850                 max_sector = (sector_nr | conf->chunk_mask) + 1;
1851         /*
1852          * If there is non-resync activity waiting for us then
1853          * put in a delay to throttle resync.
1854          */
1855         if (!go_faster && conf->nr_waiting)
1856                 msleep_interruptible(1000);
1857
1858         /* Again, very different code for resync and recovery.
1859          * Both must result in an r10bio with a list of bios that
1860          * have bi_end_io, bi_sector, bi_bdev set,
1861          * and bi_private set to the r10bio.
1862          * For recovery, we may actually create several r10bios
1863          * with 2 bios in each, that correspond to the bios in the main one.
1864          * In this case, the subordinate r10bios link back through a
1865          * borrowed master_bio pointer, and the counter in the master
1866          * includes a ref from each subordinate.
1867          */
1868         /* First, we decide what to do and set ->bi_end_io
1869          * To end_sync_read if we want to read, and
1870          * end_sync_write if we will want to write.
1871          */
1872
1873         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1874         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1875                 /* recovery... the complicated one */
1876                 int j, k;
1877                 r10_bio = NULL;
1878
1879                 for (i=0 ; i<conf->raid_disks; i++)
1880                         if (conf->mirrors[i].rdev &&
1881                             !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1882                                 int still_degraded = 0;
1883                                 /* want to reconstruct this device */
1884                                 r10bio_t *rb2 = r10_bio;
1885                                 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1886                                 int must_sync;
1887                                 /* Unless we are doing a full sync, we only need
1888                                  * to recover the block if it is set in the bitmap
1889                                  */
1890                                 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1891                                                               &sync_blocks, 1);
1892                                 if (sync_blocks < max_sync)
1893                                         max_sync = sync_blocks;
1894                                 if (!must_sync &&
1895                                     !conf->fullsync) {
1896                                         /* yep, skip the sync_blocks here, but don't assume
1897                                          * that there will never be anything to do here
1898                                          */
1899                                         chunks_skipped = -1;
1900                                         continue;
1901                                 }
1902
1903                                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1904                                 raise_barrier(conf, rb2 != NULL);
1905                                 atomic_set(&r10_bio->remaining, 0);
1906
1907                                 r10_bio->master_bio = (struct bio*)rb2;
1908                                 if (rb2)
1909                                         atomic_inc(&rb2->remaining);
1910                                 r10_bio->mddev = mddev;
1911                                 set_bit(R10BIO_IsRecover, &r10_bio->state);
1912                                 r10_bio->sector = sect;
1913
1914                                 raid10_find_phys(conf, r10_bio);
1915
1916                                 /* Need to check if the array will still be
1917                                  * degraded
1918                                  */
1919                                 for (j=0; j<conf->raid_disks; j++)
1920                                         if (conf->mirrors[j].rdev == NULL ||
1921                                             test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
1922                                                 still_degraded = 1;
1923                                                 break;
1924                                         }
1925
1926                                 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1927                                                               &sync_blocks, still_degraded);
1928
1929                                 for (j=0; j<conf->copies;j++) {
1930                                         int d = r10_bio->devs[j].devnum;
1931                                         if (conf->mirrors[d].rdev &&
1932                                             test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1933                                                 /* This is where we read from */
1934                                                 bio = r10_bio->devs[0].bio;
1935                                                 bio->bi_next = biolist;
1936                                                 biolist = bio;
1937                                                 bio->bi_private = r10_bio;
1938                                                 bio->bi_end_io = end_sync_read;
1939                                                 bio->bi_rw = READ;
1940                                                 bio->bi_sector = r10_bio->devs[j].addr +
1941                                                         conf->mirrors[d].rdev->data_offset;
1942                                                 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1943                                                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1944                                                 atomic_inc(&r10_bio->remaining);
1945                                                 /* and we write to 'i' */
1946
1947                                                 for (k=0; k<conf->copies; k++)
1948                                                         if (r10_bio->devs[k].devnum == i)
1949                                                                 break;
1950                                                 BUG_ON(k == conf->copies);
1951                                                 bio = r10_bio->devs[1].bio;
1952                                                 bio->bi_next = biolist;
1953                                                 biolist = bio;
1954                                                 bio->bi_private = r10_bio;
1955                                                 bio->bi_end_io = end_sync_write;
1956                                                 bio->bi_rw = WRITE;
1957                                                 bio->bi_sector = r10_bio->devs[k].addr +
1958                                                         conf->mirrors[i].rdev->data_offset;
1959                                                 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1960
1961                                                 r10_bio->devs[0].devnum = d;
1962                                                 r10_bio->devs[1].devnum = i;
1963
1964                                                 break;
1965                                         }
1966                                 }
1967                                 if (j == conf->copies) {
1968                                         /* Cannot recover, so abort the recovery */
1969                                         put_buf(r10_bio);
1970                                         if (rb2)
1971                                                 atomic_dec(&rb2->remaining);
1972                                         r10_bio = rb2;
1973                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
1974                                                               &mddev->recovery))
1975                                                 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1976                                                        mdname(mddev));
1977                                         break;
1978                                 }
1979                         }
1980                 if (biolist == NULL) {
1981                         while (r10_bio) {
1982                                 r10bio_t *rb2 = r10_bio;
1983                                 r10_bio = (r10bio_t*) rb2->master_bio;
1984                                 rb2->master_bio = NULL;
1985                                 put_buf(rb2);
1986                         }
1987                         goto giveup;
1988                 }
1989         } else {
1990                 /* resync. Schedule a read for every block at this virt offset */
1991                 int count = 0;
1992
1993                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1994
1995                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1996                                        &sync_blocks, mddev->degraded) &&
1997                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1998                         /* We can skip this block */
1999                         *skipped = 1;
2000                         return sync_blocks + sectors_skipped;
2001                 }
2002                 if (sync_blocks < max_sync)
2003                         max_sync = sync_blocks;
2004                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2005
2006                 r10_bio->mddev = mddev;
2007                 atomic_set(&r10_bio->remaining, 0);
2008                 raise_barrier(conf, 0);
2009                 conf->next_resync = sector_nr;
2010
2011                 r10_bio->master_bio = NULL;
2012                 r10_bio->sector = sector_nr;
2013                 set_bit(R10BIO_IsSync, &r10_bio->state);
2014                 raid10_find_phys(conf, r10_bio);
2015                 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2016
2017                 for (i=0; i<conf->copies; i++) {
2018                         int d = r10_bio->devs[i].devnum;
2019                         bio = r10_bio->devs[i].bio;
2020                         bio->bi_end_io = NULL;
2021                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
2022                         if (conf->mirrors[d].rdev == NULL ||
2023                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2024                                 continue;
2025                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2026                         atomic_inc(&r10_bio->remaining);
2027                         bio->bi_next = biolist;
2028                         biolist = bio;
2029                         bio->bi_private = r10_bio;
2030                         bio->bi_end_io = end_sync_read;
2031                         bio->bi_rw = READ;
2032                         bio->bi_sector = r10_bio->devs[i].addr +
2033                                 conf->mirrors[d].rdev->data_offset;
2034                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2035                         count++;
2036                 }
2037
2038                 if (count < 2) {
2039                         for (i=0; i<conf->copies; i++) {
2040                                 int d = r10_bio->devs[i].devnum;
2041                                 if (r10_bio->devs[i].bio->bi_end_io)
2042                                         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
2043                         }
2044                         put_buf(r10_bio);
2045                         biolist = NULL;
2046                         goto giveup;
2047                 }
2048         }
2049
2050         for (bio = biolist; bio ; bio=bio->bi_next) {
2051
2052                 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2053                 if (bio->bi_end_io)
2054                         bio->bi_flags |= 1 << BIO_UPTODATE;
2055                 bio->bi_vcnt = 0;
2056                 bio->bi_idx = 0;
2057                 bio->bi_phys_segments = 0;
2058                 bio->bi_size = 0;
2059         }
2060
2061         nr_sectors = 0;
2062         if (sector_nr + max_sync < max_sector)
2063                 max_sector = sector_nr + max_sync;
2064         do {
2065                 struct page *page;
2066                 int len = PAGE_SIZE;
2067                 disk = 0;
2068                 if (sector_nr + (len>>9) > max_sector)
2069                         len = (max_sector - sector_nr) << 9;
2070                 if (len == 0)
2071                         break;
2072                 for (bio= biolist ; bio ; bio=bio->bi_next) {
2073                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2074                         if (bio_add_page(bio, page, len, 0) == 0) {
2075                                 /* stop here */
2076                                 struct bio *bio2;
2077                                 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2078                                 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
2079                                         /* remove last page from this bio */
2080                                         bio2->bi_vcnt--;
2081                                         bio2->bi_size -= len;
2082                                         bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2083                                 }
2084                                 goto bio_full;
2085                         }
2086                         disk = i;
2087                 }
2088                 nr_sectors += len>>9;
2089                 sector_nr += len>>9;
2090         } while (biolist->bi_vcnt < RESYNC_PAGES);
2091  bio_full:
2092         r10_bio->sectors = nr_sectors;
2093
2094         while (biolist) {
2095                 bio = biolist;
2096                 biolist = biolist->bi_next;
2097
2098                 bio->bi_next = NULL;
2099                 r10_bio = bio->bi_private;
2100                 r10_bio->sectors = nr_sectors;
2101
2102                 if (bio->bi_end_io == end_sync_read) {
2103                         md_sync_acct(bio->bi_bdev, nr_sectors);
2104                         generic_make_request(bio);
2105                 }
2106         }
2107
2108         if (sectors_skipped)
2109                 /* pretend they weren't skipped, it makes
2110                  * no important difference in this case
2111                  */
2112                 md_done_sync(mddev, sectors_skipped, 1);
2113
2114         return sectors_skipped + nr_sectors;
2115  giveup:
2116         /* There is nowhere to write, so all non-sync
2117          * drives must be failed, so try the next chunk...
2118          */
2119         if (sector_nr + max_sync < max_sector)
2120                 max_sector = sector_nr + max_sync;
2121
2122         sectors_skipped += (max_sector - sector_nr);
2123         chunks_skipped ++;
2124         sector_nr = max_sector;
2125         goto skipped;
2126 }
2127
2128 static sector_t
2129 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2130 {
2131         sector_t size;
2132         conf_t *conf = mddev->private;
2133
2134         if (!raid_disks)
2135                 raid_disks = conf->raid_disks;
2136         if (!sectors)
2137                 sectors = conf->dev_sectors;
2138
2139         size = sectors >> conf->chunk_shift;
2140         sector_div(size, conf->far_copies);
2141         size = size * raid_disks;
2142         sector_div(size, conf->near_copies);
2143
2144         return size << conf->chunk_shift;
2145 }
2146
2147
2148 static conf_t *setup_conf(mddev_t *mddev)
2149 {
2150         conf_t *conf = NULL;
2151         int nc, fc, fo;
2152         sector_t stride, size;
2153         int err = -EINVAL;
2154
2155         if (mddev->chunk_sectors < (PAGE_SIZE >> 9) ||
2156             !is_power_of_2(mddev->chunk_sectors)) {
2157                 printk(KERN_ERR "md/raid10: chunk size must be "
2158                        "at least PAGE_SIZE(%ld) and be a power of 2.\n", PAGE_SIZE);
2159                 goto out;
2160         }
2161
2162         nc = mddev->layout & 255;
2163         fc = (mddev->layout >> 8) & 255;
2164         fo = mddev->layout & (1<<16);
2165
2166         if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2167             (mddev->layout >> 17)) {
2168                 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
2169                        mdname(mddev), mddev->layout);
2170                 goto out;
2171         }
2172
2173         err = -ENOMEM;
2174         conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2175         if (!conf)
2176                 goto out;
2177
2178         conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2179                                 GFP_KERNEL);
2180         if (!conf->mirrors)
2181                 goto out;
2182
2183         conf->tmppage = alloc_page(GFP_KERNEL);
2184         if (!conf->tmppage)
2185                 goto out;
2186
2187
2188         conf->raid_disks = mddev->raid_disks;
2189         conf->near_copies = nc;
2190         conf->far_copies = fc;
2191         conf->copies = nc*fc;
2192         conf->far_offset = fo;
2193         conf->chunk_mask = mddev->new_chunk_sectors - 1;
2194         conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2195
2196         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2197                                            r10bio_pool_free, conf);
2198         if (!conf->r10bio_pool)
2199                 goto out;
2200
2201         size = mddev->dev_sectors >> conf->chunk_shift;
2202         sector_div(size, fc);
2203         size = size * conf->raid_disks;
2204         sector_div(size, nc);
2205         /* 'size' is now the number of chunks in the array */
2206         /* calculate "used chunks per device" in 'stride' */
2207         stride = size * conf->copies;
2208
2209         /* We need to round up when dividing by raid_disks to
2210          * get the stride size.
2211          */
2212         stride += conf->raid_disks - 1;
2213         sector_div(stride, conf->raid_disks);
2214
2215         conf->dev_sectors = stride << conf->chunk_shift;
2216
2217         if (fo)
2218                 stride = 1;
2219         else
2220                 sector_div(stride, fc);
2221         conf->stride = stride << conf->chunk_shift;
2222
2223
2224         spin_lock_init(&conf->device_lock);
2225         INIT_LIST_HEAD(&conf->retry_list);
2226
2227         spin_lock_init(&conf->resync_lock);
2228         init_waitqueue_head(&conf->wait_barrier);
2229
2230         conf->thread = md_register_thread(raid10d, mddev, NULL);
2231         if (!conf->thread)
2232                 goto out;
2233
2234         conf->scale_disks = 0;
2235         conf->mddev = mddev;
2236         return conf;
2237
2238  out:
2239         printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2240                mdname(mddev));
2241         if (conf) {
2242                 if (conf->r10bio_pool)
2243                         mempool_destroy(conf->r10bio_pool);
2244                 kfree(conf->mirrors);
2245                 safe_put_page(conf->tmppage);
2246                 kfree(conf);
2247         }
2248         return ERR_PTR(err);
2249 }
2250
2251 static int run(mddev_t *mddev)
2252 {
2253         conf_t *conf;
2254         int i, disk_idx, chunk_size;
2255         mirror_info_t *disk;
2256         mdk_rdev_t *rdev;
2257         sector_t size;
2258
2259         /*
2260          * copy the already verified devices into our private RAID10
2261          * bookkeeping area. [whatever we allocate in run(),
2262          * should be freed in stop()]
2263          */
2264
2265         if (mddev->private == NULL) {
2266                 conf = setup_conf(mddev);
2267                 if (IS_ERR(conf))
2268                         return PTR_ERR(conf);
2269                 mddev->private = conf;
2270         }
2271         conf = mddev->private;
2272         if (!conf)
2273                 goto out;
2274
2275         mddev->queue->queue_lock = &conf->device_lock;
2276
2277         mddev->thread = conf->thread;
2278         conf->thread = NULL;
2279
2280         chunk_size = mddev->chunk_sectors << 9;
2281         blk_queue_io_min(mddev->queue, chunk_size);
2282         if (conf->raid_disks % conf->near_copies)
2283                 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2284         else
2285                 blk_queue_io_opt(mddev->queue, chunk_size *
2286                                  (conf->raid_disks / conf->near_copies));
2287
2288         list_for_each_entry(rdev, &mddev->disks, same_set) {
2289                 disk_idx = rdev->raid_disk;
2290                 if (disk_idx >= conf->raid_disks
2291                     || disk_idx < 0)
2292                         continue;
2293                 if (conf->scale_disks) {
2294                         disk_idx *= conf->scale_disks;
2295                         rdev->raid_disk = disk_idx;
2296                         /* MOVE 'rd%d' link !! */
2297                 }
2298                 disk = conf->mirrors + disk_idx;
2299
2300                 disk->rdev = rdev;
2301                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2302                                   rdev->data_offset << 9);
2303                 /* as we don't honour merge_bvec_fn, we must never risk
2304                  * violating it, so limit max_segments to 1 lying
2305                  * within a single page.
2306                  */
2307                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2308                         blk_queue_max_segments(mddev->queue, 1);
2309                         blk_queue_segment_boundary(mddev->queue,
2310                                                    PAGE_CACHE_SIZE - 1);
2311                 }
2312
2313                 disk->head_position = 0;
2314         }
2315         /* need to check that every block has at least one working mirror */
2316         if (!enough(conf)) {
2317                 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2318                        mdname(mddev));
2319                 goto out_free_conf;
2320         }
2321
2322         mddev->degraded = 0;
2323         for (i = 0; i < conf->raid_disks; i++) {
2324
2325                 disk = conf->mirrors + i;
2326
2327                 if (!disk->rdev ||
2328                     !test_bit(In_sync, &disk->rdev->flags)) {
2329                         disk->head_position = 0;
2330                         mddev->degraded++;
2331                         if (disk->rdev)
2332                                 conf->fullsync = 1;
2333                 }
2334         }
2335
2336         if (mddev->recovery_cp != MaxSector)
2337                 printk(KERN_NOTICE "raid10: %s is not clean"
2338                        " -- starting background reconstruction\n",
2339                        mdname(mddev));
2340         printk(KERN_INFO
2341                 "raid10: raid set %s active with %d out of %d devices\n",
2342                 mdname(mddev), conf->raid_disks - mddev->degraded,
2343                 conf->raid_disks);
2344         /*
2345          * Ok, everything is just fine now
2346          */
2347         mddev->dev_sectors = conf->dev_sectors;
2348         size = raid10_size(mddev, 0, 0);
2349         md_set_array_sectors(mddev, size);
2350         mddev->resync_max_sectors = size;
2351
2352         mddev->queue->unplug_fn = raid10_unplug;
2353         mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2354         mddev->queue->backing_dev_info.congested_data = mddev;
2355
2356         /* Calculate max read-ahead size.
2357          * We need to readahead at least twice a whole stripe....
2358          * maybe...
2359          */
2360         {
2361                 int stripe = conf->raid_disks *
2362                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
2363                 stripe /= conf->near_copies;
2364                 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2365                         mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2366         }
2367
2368         if (conf->near_copies < conf->raid_disks)
2369                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2370         md_integrity_register(mddev);
2371         return 0;
2372
2373 out_free_conf:
2374         if (conf->r10bio_pool)
2375                 mempool_destroy(conf->r10bio_pool);
2376         safe_put_page(conf->tmppage);
2377         kfree(conf->mirrors);
2378         kfree(conf);
2379         mddev->private = NULL;
2380         md_unregister_thread(mddev->thread);
2381 out:
2382         return -EIO;
2383 }
2384
2385 static int stop(mddev_t *mddev)
2386 {
2387         conf_t *conf = mddev->private;
2388
2389         raise_barrier(conf, 0);
2390         lower_barrier(conf);
2391
2392         md_unregister_thread(mddev->thread);
2393         mddev->thread = NULL;
2394         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2395         if (conf->r10bio_pool)
2396                 mempool_destroy(conf->r10bio_pool);
2397         kfree(conf->mirrors);
2398         kfree(conf);
2399         mddev->private = NULL;
2400         return 0;
2401 }
2402
2403 static void raid10_quiesce(mddev_t *mddev, int state)
2404 {
2405         conf_t *conf = mddev->private;
2406
2407         switch(state) {
2408         case 1:
2409                 raise_barrier(conf, 0);
2410                 break;
2411         case 0:
2412                 lower_barrier(conf);
2413                 break;
2414         }
2415 }
2416
2417 static void *raid10_takeover_raid0(mddev_t *mddev)
2418 {
2419         mdk_rdev_t *rdev;
2420         conf_t *conf;
2421
2422         if (mddev->degraded > 0) {
2423                 printk(KERN_ERR "error: degraded raid0!\n");
2424                 return ERR_PTR(-EINVAL);
2425         }
2426
2427         /* Update slot numbers to obtain
2428          * degraded raid10 with missing mirrors
2429          */
2430         list_for_each_entry(rdev, &mddev->disks, same_set) {
2431                 rdev->raid_disk *= 2;
2432         }
2433
2434         /* Set new parameters */
2435         mddev->new_level = 10;
2436         /* new layout: far_copies = 1, near_copies = 2 */
2437         mddev->new_layout = (1<<8) + 2;
2438         mddev->new_chunk_sectors = mddev->chunk_sectors;
2439         mddev->delta_disks = mddev->raid_disks;
2440         mddev->degraded = mddev->raid_disks;
2441         mddev->raid_disks *= 2;
2442         /* make sure it will be not marked as dirty */
2443         mddev->recovery_cp = MaxSector;
2444
2445         conf = setup_conf(mddev);
2446         conf->scale_disks = 2;
2447         return conf;
2448 }
2449
2450 static void *raid10_takeover(mddev_t *mddev)
2451 {
2452         struct raid0_private_data *raid0_priv;
2453
2454         /* raid10 can take over:
2455          *  raid0 - providing it has only two drives
2456          */
2457         if (mddev->level == 0) {
2458                 /* for raid0 takeover only one zone is supported */
2459                 raid0_priv = mddev->private;
2460                 if (raid0_priv->nr_strip_zones > 1) {
2461                         printk(KERN_ERR "md: cannot takeover raid 0 with more than one zone.\n");
2462                         return ERR_PTR(-EINVAL);
2463                 }
2464                 return raid10_takeover_raid0(mddev);
2465         }
2466         return ERR_PTR(-EINVAL);
2467 }
2468
2469 static struct mdk_personality raid10_personality =
2470 {
2471         .name           = "raid10",
2472         .level          = 10,
2473         .owner          = THIS_MODULE,
2474         .make_request   = make_request,
2475         .run            = run,
2476         .stop           = stop,
2477         .status         = status,
2478         .error_handler  = error,
2479         .hot_add_disk   = raid10_add_disk,
2480         .hot_remove_disk= raid10_remove_disk,
2481         .spare_active   = raid10_spare_active,
2482         .sync_request   = sync_request,
2483         .quiesce        = raid10_quiesce,
2484         .size           = raid10_size,
2485         .takeover       = raid10_takeover,
2486 };
2487
2488 static int __init raid_init(void)
2489 {
2490         return register_md_personality(&raid10_personality);
2491 }
2492
2493 static void raid_exit(void)
2494 {
2495         unregister_md_personality(&raid10_personality);
2496 }
2497
2498 module_init(raid_init);
2499 module_exit(raid_exit);
2500 MODULE_LICENSE("GPL");
2501 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2502 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2503 MODULE_ALIAS("md-raid10");
2504 MODULE_ALIAS("md-level-10");