md: add honouring of suspend_{lo,hi} to raid1.
[safe/jmp/linux-2.6] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/delay.h>
35 #include <linux/blkdev.h>
36 #include <linux/seq_file.h>
37 #include "md.h"
38 #include "raid1.h"
39 #include "bitmap.h"
40
41 #define DEBUG 0
42 #if DEBUG
43 #define PRINTK(x...) printk(x)
44 #else
45 #define PRINTK(x...)
46 #endif
47
48 /*
49  * Number of guaranteed r1bios in case of extreme VM load:
50  */
51 #define NR_RAID1_BIOS 256
52
53
54 static void unplug_slaves(mddev_t *mddev);
55
56 static void allow_barrier(conf_t *conf);
57 static void lower_barrier(conf_t *conf);
58
59 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
60 {
61         struct pool_info *pi = data;
62         r1bio_t *r1_bio;
63         int size = offsetof(r1bio_t, bios[pi->raid_disks]);
64
65         /* allocate a r1bio with room for raid_disks entries in the bios array */
66         r1_bio = kzalloc(size, gfp_flags);
67         if (!r1_bio && pi->mddev)
68                 unplug_slaves(pi->mddev);
69
70         return r1_bio;
71 }
72
73 static void r1bio_pool_free(void *r1_bio, void *data)
74 {
75         kfree(r1_bio);
76 }
77
78 #define RESYNC_BLOCK_SIZE (64*1024)
79 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
80 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
81 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
82 #define RESYNC_WINDOW (2048*1024)
83
84 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
85 {
86         struct pool_info *pi = data;
87         struct page *page;
88         r1bio_t *r1_bio;
89         struct bio *bio;
90         int i, j;
91
92         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
93         if (!r1_bio) {
94                 unplug_slaves(pi->mddev);
95                 return NULL;
96         }
97
98         /*
99          * Allocate bios : 1 for reading, n-1 for writing
100          */
101         for (j = pi->raid_disks ; j-- ; ) {
102                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
103                 if (!bio)
104                         goto out_free_bio;
105                 r1_bio->bios[j] = bio;
106         }
107         /*
108          * Allocate RESYNC_PAGES data pages and attach them to
109          * the first bio.
110          * If this is a user-requested check/repair, allocate
111          * RESYNC_PAGES for each bio.
112          */
113         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
114                 j = pi->raid_disks;
115         else
116                 j = 1;
117         while(j--) {
118                 bio = r1_bio->bios[j];
119                 for (i = 0; i < RESYNC_PAGES; i++) {
120                         page = alloc_page(gfp_flags);
121                         if (unlikely(!page))
122                                 goto out_free_pages;
123
124                         bio->bi_io_vec[i].bv_page = page;
125                         bio->bi_vcnt = i+1;
126                 }
127         }
128         /* If not user-requests, copy the page pointers to all bios */
129         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
130                 for (i=0; i<RESYNC_PAGES ; i++)
131                         for (j=1; j<pi->raid_disks; j++)
132                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
133                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
134         }
135
136         r1_bio->master_bio = NULL;
137
138         return r1_bio;
139
140 out_free_pages:
141         for (j=0 ; j < pi->raid_disks; j++)
142                 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
143                         put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
144         j = -1;
145 out_free_bio:
146         while ( ++j < pi->raid_disks )
147                 bio_put(r1_bio->bios[j]);
148         r1bio_pool_free(r1_bio, data);
149         return NULL;
150 }
151
152 static void r1buf_pool_free(void *__r1_bio, void *data)
153 {
154         struct pool_info *pi = data;
155         int i,j;
156         r1bio_t *r1bio = __r1_bio;
157
158         for (i = 0; i < RESYNC_PAGES; i++)
159                 for (j = pi->raid_disks; j-- ;) {
160                         if (j == 0 ||
161                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
162                             r1bio->bios[0]->bi_io_vec[i].bv_page)
163                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
164                 }
165         for (i=0 ; i < pi->raid_disks; i++)
166                 bio_put(r1bio->bios[i]);
167
168         r1bio_pool_free(r1bio, data);
169 }
170
171 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
172 {
173         int i;
174
175         for (i = 0; i < conf->raid_disks; i++) {
176                 struct bio **bio = r1_bio->bios + i;
177                 if (*bio && *bio != IO_BLOCKED)
178                         bio_put(*bio);
179                 *bio = NULL;
180         }
181 }
182
183 static void free_r1bio(r1bio_t *r1_bio)
184 {
185         conf_t *conf = r1_bio->mddev->private;
186
187         /*
188          * Wake up any possible resync thread that waits for the device
189          * to go idle.
190          */
191         allow_barrier(conf);
192
193         put_all_bios(conf, r1_bio);
194         mempool_free(r1_bio, conf->r1bio_pool);
195 }
196
197 static void put_buf(r1bio_t *r1_bio)
198 {
199         conf_t *conf = r1_bio->mddev->private;
200         int i;
201
202         for (i=0; i<conf->raid_disks; i++) {
203                 struct bio *bio = r1_bio->bios[i];
204                 if (bio->bi_end_io)
205                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206         }
207
208         mempool_free(r1_bio, conf->r1buf_pool);
209
210         lower_barrier(conf);
211 }
212
213 static void reschedule_retry(r1bio_t *r1_bio)
214 {
215         unsigned long flags;
216         mddev_t *mddev = r1_bio->mddev;
217         conf_t *conf = mddev->private;
218
219         spin_lock_irqsave(&conf->device_lock, flags);
220         list_add(&r1_bio->retry_list, &conf->retry_list);
221         conf->nr_queued ++;
222         spin_unlock_irqrestore(&conf->device_lock, flags);
223
224         wake_up(&conf->wait_barrier);
225         md_wakeup_thread(mddev->thread);
226 }
227
228 /*
229  * raid_end_bio_io() is called when we have finished servicing a mirrored
230  * operation and are ready to return a success/failure code to the buffer
231  * cache layer.
232  */
233 static void raid_end_bio_io(r1bio_t *r1_bio)
234 {
235         struct bio *bio = r1_bio->master_bio;
236
237         /* if nobody has done the final endio yet, do it now */
238         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
239                 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
240                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
241                         (unsigned long long) bio->bi_sector,
242                         (unsigned long long) bio->bi_sector +
243                                 (bio->bi_size >> 9) - 1);
244
245                 bio_endio(bio,
246                         test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
247         }
248         free_r1bio(r1_bio);
249 }
250
251 /*
252  * Update disk head position estimator based on IRQ completion info.
253  */
254 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
255 {
256         conf_t *conf = r1_bio->mddev->private;
257
258         conf->mirrors[disk].head_position =
259                 r1_bio->sector + (r1_bio->sectors);
260 }
261
262 static void raid1_end_read_request(struct bio *bio, int error)
263 {
264         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
265         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
266         int mirror;
267         conf_t *conf = r1_bio->mddev->private;
268
269         mirror = r1_bio->read_disk;
270         /*
271          * this branch is our 'one mirror IO has finished' event handler:
272          */
273         update_head_pos(mirror, r1_bio);
274
275         if (uptodate)
276                 set_bit(R1BIO_Uptodate, &r1_bio->state);
277         else {
278                 /* If all other devices have failed, we want to return
279                  * the error upwards rather than fail the last device.
280                  * Here we redefine "uptodate" to mean "Don't want to retry"
281                  */
282                 unsigned long flags;
283                 spin_lock_irqsave(&conf->device_lock, flags);
284                 if (r1_bio->mddev->degraded == conf->raid_disks ||
285                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
286                      !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
287                         uptodate = 1;
288                 spin_unlock_irqrestore(&conf->device_lock, flags);
289         }
290
291         if (uptodate)
292                 raid_end_bio_io(r1_bio);
293         else {
294                 /*
295                  * oops, read error:
296                  */
297                 char b[BDEVNAME_SIZE];
298                 if (printk_ratelimit())
299                         printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
300                                bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
301                 reschedule_retry(r1_bio);
302         }
303
304         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
305 }
306
307 static void raid1_end_write_request(struct bio *bio, int error)
308 {
309         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
311         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
312         conf_t *conf = r1_bio->mddev->private;
313         struct bio *to_put = NULL;
314
315
316         for (mirror = 0; mirror < conf->raid_disks; mirror++)
317                 if (r1_bio->bios[mirror] == bio)
318                         break;
319
320         if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
321                 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
322                 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
323                 r1_bio->mddev->barriers_work = 0;
324                 /* Don't rdev_dec_pending in this branch - keep it for the retry */
325         } else {
326                 /*
327                  * this branch is our 'one mirror IO has finished' event handler:
328                  */
329                 r1_bio->bios[mirror] = NULL;
330                 to_put = bio;
331                 if (!uptodate) {
332                         md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
333                         /* an I/O failed, we can't clear the bitmap */
334                         set_bit(R1BIO_Degraded, &r1_bio->state);
335                 } else
336                         /*
337                          * Set R1BIO_Uptodate in our master bio, so that
338                          * we will return a good error code for to the higher
339                          * levels even if IO on some other mirrored buffer fails.
340                          *
341                          * The 'master' represents the composite IO operation to
342                          * user-side. So if something waits for IO, then it will
343                          * wait for the 'master' bio.
344                          */
345                         set_bit(R1BIO_Uptodate, &r1_bio->state);
346
347                 update_head_pos(mirror, r1_bio);
348
349                 if (behind) {
350                         if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
351                                 atomic_dec(&r1_bio->behind_remaining);
352
353                         /* In behind mode, we ACK the master bio once the I/O has safely
354                          * reached all non-writemostly disks. Setting the Returned bit
355                          * ensures that this gets done only once -- we don't ever want to
356                          * return -EIO here, instead we'll wait */
357
358                         if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
359                             test_bit(R1BIO_Uptodate, &r1_bio->state)) {
360                                 /* Maybe we can return now */
361                                 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
362                                         struct bio *mbio = r1_bio->master_bio;
363                                         PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
364                                                (unsigned long long) mbio->bi_sector,
365                                                (unsigned long long) mbio->bi_sector +
366                                                (mbio->bi_size >> 9) - 1);
367                                         bio_endio(mbio, 0);
368                                 }
369                         }
370                 }
371                 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
372         }
373         /*
374          *
375          * Let's see if all mirrored write operations have finished
376          * already.
377          */
378         if (atomic_dec_and_test(&r1_bio->remaining)) {
379                 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
380                         reschedule_retry(r1_bio);
381                 else {
382                         /* it really is the end of this request */
383                         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
384                                 /* free extra copy of the data pages */
385                                 int i = bio->bi_vcnt;
386                                 while (i--)
387                                         safe_put_page(bio->bi_io_vec[i].bv_page);
388                         }
389                         /* clear the bitmap if all writes complete successfully */
390                         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
391                                         r1_bio->sectors,
392                                         !test_bit(R1BIO_Degraded, &r1_bio->state),
393                                         behind);
394                         md_write_end(r1_bio->mddev);
395                         raid_end_bio_io(r1_bio);
396                 }
397         }
398
399         if (to_put)
400                 bio_put(to_put);
401 }
402
403
404 /*
405  * This routine returns the disk from which the requested read should
406  * be done. There is a per-array 'next expected sequential IO' sector
407  * number - if this matches on the next IO then we use the last disk.
408  * There is also a per-disk 'last know head position' sector that is
409  * maintained from IRQ contexts, both the normal and the resync IO
410  * completion handlers update this position correctly. If there is no
411  * perfect sequential match then we pick the disk whose head is closest.
412  *
413  * If there are 2 mirrors in the same 2 devices, performance degrades
414  * because position is mirror, not device based.
415  *
416  * The rdev for the device selected will have nr_pending incremented.
417  */
418 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
419 {
420         const unsigned long this_sector = r1_bio->sector;
421         int new_disk = conf->last_used, disk = new_disk;
422         int wonly_disk = -1;
423         const int sectors = r1_bio->sectors;
424         sector_t new_distance, current_distance;
425         mdk_rdev_t *rdev;
426
427         rcu_read_lock();
428         /*
429          * Check if we can balance. We can balance on the whole
430          * device if no resync is going on, or below the resync window.
431          * We take the first readable disk when above the resync window.
432          */
433  retry:
434         if (conf->mddev->recovery_cp < MaxSector &&
435             (this_sector + sectors >= conf->next_resync)) {
436                 /* Choose the first operation device, for consistancy */
437                 new_disk = 0;
438
439                 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
440                      r1_bio->bios[new_disk] == IO_BLOCKED ||
441                      !rdev || !test_bit(In_sync, &rdev->flags)
442                              || test_bit(WriteMostly, &rdev->flags);
443                      rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
444
445                         if (rdev && test_bit(In_sync, &rdev->flags) &&
446                                 r1_bio->bios[new_disk] != IO_BLOCKED)
447                                 wonly_disk = new_disk;
448
449                         if (new_disk == conf->raid_disks - 1) {
450                                 new_disk = wonly_disk;
451                                 break;
452                         }
453                 }
454                 goto rb_out;
455         }
456
457
458         /* make sure the disk is operational */
459         for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
460              r1_bio->bios[new_disk] == IO_BLOCKED ||
461              !rdev || !test_bit(In_sync, &rdev->flags) ||
462                      test_bit(WriteMostly, &rdev->flags);
463              rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
464
465                 if (rdev && test_bit(In_sync, &rdev->flags) &&
466                     r1_bio->bios[new_disk] != IO_BLOCKED)
467                         wonly_disk = new_disk;
468
469                 if (new_disk <= 0)
470                         new_disk = conf->raid_disks;
471                 new_disk--;
472                 if (new_disk == disk) {
473                         new_disk = wonly_disk;
474                         break;
475                 }
476         }
477
478         if (new_disk < 0)
479                 goto rb_out;
480
481         disk = new_disk;
482         /* now disk == new_disk == starting point for search */
483
484         /*
485          * Don't change to another disk for sequential reads:
486          */
487         if (conf->next_seq_sect == this_sector)
488                 goto rb_out;
489         if (this_sector == conf->mirrors[new_disk].head_position)
490                 goto rb_out;
491
492         current_distance = abs(this_sector - conf->mirrors[disk].head_position);
493
494         /* Find the disk whose head is closest */
495
496         do {
497                 if (disk <= 0)
498                         disk = conf->raid_disks;
499                 disk--;
500
501                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
502
503                 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
504                     !test_bit(In_sync, &rdev->flags) ||
505                     test_bit(WriteMostly, &rdev->flags))
506                         continue;
507
508                 if (!atomic_read(&rdev->nr_pending)) {
509                         new_disk = disk;
510                         break;
511                 }
512                 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
513                 if (new_distance < current_distance) {
514                         current_distance = new_distance;
515                         new_disk = disk;
516                 }
517         } while (disk != conf->last_used);
518
519  rb_out:
520
521
522         if (new_disk >= 0) {
523                 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
524                 if (!rdev)
525                         goto retry;
526                 atomic_inc(&rdev->nr_pending);
527                 if (!test_bit(In_sync, &rdev->flags)) {
528                         /* cannot risk returning a device that failed
529                          * before we inc'ed nr_pending
530                          */
531                         rdev_dec_pending(rdev, conf->mddev);
532                         goto retry;
533                 }
534                 conf->next_seq_sect = this_sector + sectors;
535                 conf->last_used = new_disk;
536         }
537         rcu_read_unlock();
538
539         return new_disk;
540 }
541
542 static void unplug_slaves(mddev_t *mddev)
543 {
544         conf_t *conf = mddev->private;
545         int i;
546
547         rcu_read_lock();
548         for (i=0; i<mddev->raid_disks; i++) {
549                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
550                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
551                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
552
553                         atomic_inc(&rdev->nr_pending);
554                         rcu_read_unlock();
555
556                         blk_unplug(r_queue);
557
558                         rdev_dec_pending(rdev, mddev);
559                         rcu_read_lock();
560                 }
561         }
562         rcu_read_unlock();
563 }
564
565 static void raid1_unplug(struct request_queue *q)
566 {
567         mddev_t *mddev = q->queuedata;
568
569         unplug_slaves(mddev);
570         md_wakeup_thread(mddev->thread);
571 }
572
573 static int raid1_congested(void *data, int bits)
574 {
575         mddev_t *mddev = data;
576         conf_t *conf = mddev->private;
577         int i, ret = 0;
578
579         if (mddev_congested(mddev, bits))
580                 return 1;
581
582         rcu_read_lock();
583         for (i = 0; i < mddev->raid_disks; i++) {
584                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
585                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
586                         struct request_queue *q = bdev_get_queue(rdev->bdev);
587
588                         /* Note the '|| 1' - when read_balance prefers
589                          * non-congested targets, it can be removed
590                          */
591                         if ((bits & (1<<BDI_async_congested)) || 1)
592                                 ret |= bdi_congested(&q->backing_dev_info, bits);
593                         else
594                                 ret &= bdi_congested(&q->backing_dev_info, bits);
595                 }
596         }
597         rcu_read_unlock();
598         return ret;
599 }
600
601
602 static int flush_pending_writes(conf_t *conf)
603 {
604         /* Any writes that have been queued but are awaiting
605          * bitmap updates get flushed here.
606          * We return 1 if any requests were actually submitted.
607          */
608         int rv = 0;
609
610         spin_lock_irq(&conf->device_lock);
611
612         if (conf->pending_bio_list.head) {
613                 struct bio *bio;
614                 bio = bio_list_get(&conf->pending_bio_list);
615                 blk_remove_plug(conf->mddev->queue);
616                 spin_unlock_irq(&conf->device_lock);
617                 /* flush any pending bitmap writes to
618                  * disk before proceeding w/ I/O */
619                 bitmap_unplug(conf->mddev->bitmap);
620
621                 while (bio) { /* submit pending writes */
622                         struct bio *next = bio->bi_next;
623                         bio->bi_next = NULL;
624                         generic_make_request(bio);
625                         bio = next;
626                 }
627                 rv = 1;
628         } else
629                 spin_unlock_irq(&conf->device_lock);
630         return rv;
631 }
632
633 /* Barriers....
634  * Sometimes we need to suspend IO while we do something else,
635  * either some resync/recovery, or reconfigure the array.
636  * To do this we raise a 'barrier'.
637  * The 'barrier' is a counter that can be raised multiple times
638  * to count how many activities are happening which preclude
639  * normal IO.
640  * We can only raise the barrier if there is no pending IO.
641  * i.e. if nr_pending == 0.
642  * We choose only to raise the barrier if no-one is waiting for the
643  * barrier to go down.  This means that as soon as an IO request
644  * is ready, no other operations which require a barrier will start
645  * until the IO request has had a chance.
646  *
647  * So: regular IO calls 'wait_barrier'.  When that returns there
648  *    is no backgroup IO happening,  It must arrange to call
649  *    allow_barrier when it has finished its IO.
650  * backgroup IO calls must call raise_barrier.  Once that returns
651  *    there is no normal IO happeing.  It must arrange to call
652  *    lower_barrier when the particular background IO completes.
653  */
654 #define RESYNC_DEPTH 32
655
656 static void raise_barrier(conf_t *conf)
657 {
658         spin_lock_irq(&conf->resync_lock);
659
660         /* Wait until no block IO is waiting */
661         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
662                             conf->resync_lock,
663                             raid1_unplug(conf->mddev->queue));
664
665         /* block any new IO from starting */
666         conf->barrier++;
667
668         /* No wait for all pending IO to complete */
669         wait_event_lock_irq(conf->wait_barrier,
670                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
671                             conf->resync_lock,
672                             raid1_unplug(conf->mddev->queue));
673
674         spin_unlock_irq(&conf->resync_lock);
675 }
676
677 static void lower_barrier(conf_t *conf)
678 {
679         unsigned long flags;
680         spin_lock_irqsave(&conf->resync_lock, flags);
681         conf->barrier--;
682         spin_unlock_irqrestore(&conf->resync_lock, flags);
683         wake_up(&conf->wait_barrier);
684 }
685
686 static void wait_barrier(conf_t *conf)
687 {
688         spin_lock_irq(&conf->resync_lock);
689         if (conf->barrier) {
690                 conf->nr_waiting++;
691                 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
692                                     conf->resync_lock,
693                                     raid1_unplug(conf->mddev->queue));
694                 conf->nr_waiting--;
695         }
696         conf->nr_pending++;
697         spin_unlock_irq(&conf->resync_lock);
698 }
699
700 static void allow_barrier(conf_t *conf)
701 {
702         unsigned long flags;
703         spin_lock_irqsave(&conf->resync_lock, flags);
704         conf->nr_pending--;
705         spin_unlock_irqrestore(&conf->resync_lock, flags);
706         wake_up(&conf->wait_barrier);
707 }
708
709 static void freeze_array(conf_t *conf)
710 {
711         /* stop syncio and normal IO and wait for everything to
712          * go quite.
713          * We increment barrier and nr_waiting, and then
714          * wait until nr_pending match nr_queued+1
715          * This is called in the context of one normal IO request
716          * that has failed. Thus any sync request that might be pending
717          * will be blocked by nr_pending, and we need to wait for
718          * pending IO requests to complete or be queued for re-try.
719          * Thus the number queued (nr_queued) plus this request (1)
720          * must match the number of pending IOs (nr_pending) before
721          * we continue.
722          */
723         spin_lock_irq(&conf->resync_lock);
724         conf->barrier++;
725         conf->nr_waiting++;
726         wait_event_lock_irq(conf->wait_barrier,
727                             conf->nr_pending == conf->nr_queued+1,
728                             conf->resync_lock,
729                             ({ flush_pending_writes(conf);
730                                raid1_unplug(conf->mddev->queue); }));
731         spin_unlock_irq(&conf->resync_lock);
732 }
733 static void unfreeze_array(conf_t *conf)
734 {
735         /* reverse the effect of the freeze */
736         spin_lock_irq(&conf->resync_lock);
737         conf->barrier--;
738         conf->nr_waiting--;
739         wake_up(&conf->wait_barrier);
740         spin_unlock_irq(&conf->resync_lock);
741 }
742
743
744 /* duplicate the data pages for behind I/O */
745 static struct page **alloc_behind_pages(struct bio *bio)
746 {
747         int i;
748         struct bio_vec *bvec;
749         struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
750                                         GFP_NOIO);
751         if (unlikely(!pages))
752                 goto do_sync_io;
753
754         bio_for_each_segment(bvec, bio, i) {
755                 pages[i] = alloc_page(GFP_NOIO);
756                 if (unlikely(!pages[i]))
757                         goto do_sync_io;
758                 memcpy(kmap(pages[i]) + bvec->bv_offset,
759                         kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
760                 kunmap(pages[i]);
761                 kunmap(bvec->bv_page);
762         }
763
764         return pages;
765
766 do_sync_io:
767         if (pages)
768                 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
769                         put_page(pages[i]);
770         kfree(pages);
771         PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
772         return NULL;
773 }
774
775 static int make_request(struct request_queue *q, struct bio * bio)
776 {
777         mddev_t *mddev = q->queuedata;
778         conf_t *conf = mddev->private;
779         mirror_info_t *mirror;
780         r1bio_t *r1_bio;
781         struct bio *read_bio;
782         int i, targets = 0, disks;
783         struct bitmap *bitmap;
784         unsigned long flags;
785         struct bio_list bl;
786         struct page **behind_pages = NULL;
787         const int rw = bio_data_dir(bio);
788         const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
789         int cpu;
790         bool do_barriers;
791         mdk_rdev_t *blocked_rdev;
792
793         /*
794          * Register the new request and wait if the reconstruction
795          * thread has put up a bar for new requests.
796          * Continue immediately if no resync is active currently.
797          * We test barriers_work *after* md_write_start as md_write_start
798          * may cause the first superblock write, and that will check out
799          * if barriers work.
800          */
801
802         md_write_start(mddev, bio); /* wait on superblock update early */
803
804         if (bio_data_dir(bio) == WRITE &&
805             bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
806             bio->bi_sector < mddev->suspend_hi) {
807                 /* As the suspend_* range is controlled by
808                  * userspace, we want an interruptible
809                  * wait.
810                  */
811                 DEFINE_WAIT(w);
812                 for (;;) {
813                         flush_signals(current);
814                         prepare_to_wait(&conf->wait_barrier,
815                                         &w, TASK_INTERRUPTIBLE);
816                         if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
817                             bio->bi_sector >= mddev->suspend_hi)
818                                 break;
819                         schedule();
820                 }
821                 finish_wait(&conf->wait_barrier, &w);
822         }
823         if (unlikely(!mddev->barriers_work &&
824                      bio_rw_flagged(bio, BIO_RW_BARRIER))) {
825                 if (rw == WRITE)
826                         md_write_end(mddev);
827                 bio_endio(bio, -EOPNOTSUPP);
828                 return 0;
829         }
830
831         wait_barrier(conf);
832
833         bitmap = mddev->bitmap;
834
835         cpu = part_stat_lock();
836         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
837         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
838                       bio_sectors(bio));
839         part_stat_unlock();
840
841         /*
842          * make_request() can abort the operation when READA is being
843          * used and no empty request is available.
844          *
845          */
846         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
847
848         r1_bio->master_bio = bio;
849         r1_bio->sectors = bio->bi_size >> 9;
850         r1_bio->state = 0;
851         r1_bio->mddev = mddev;
852         r1_bio->sector = bio->bi_sector;
853
854         if (rw == READ) {
855                 /*
856                  * read balancing logic:
857                  */
858                 int rdisk = read_balance(conf, r1_bio);
859
860                 if (rdisk < 0) {
861                         /* couldn't find anywhere to read from */
862                         raid_end_bio_io(r1_bio);
863                         return 0;
864                 }
865                 mirror = conf->mirrors + rdisk;
866
867                 r1_bio->read_disk = rdisk;
868
869                 read_bio = bio_clone(bio, GFP_NOIO);
870
871                 r1_bio->bios[rdisk] = read_bio;
872
873                 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
874                 read_bio->bi_bdev = mirror->rdev->bdev;
875                 read_bio->bi_end_io = raid1_end_read_request;
876                 read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
877                 read_bio->bi_private = r1_bio;
878
879                 generic_make_request(read_bio);
880                 return 0;
881         }
882
883         /*
884          * WRITE:
885          */
886         /* first select target devices under spinlock and
887          * inc refcount on their rdev.  Record them by setting
888          * bios[x] to bio
889          */
890         disks = conf->raid_disks;
891 #if 0
892         { static int first=1;
893         if (first) printk("First Write sector %llu disks %d\n",
894                           (unsigned long long)r1_bio->sector, disks);
895         first = 0;
896         }
897 #endif
898  retry_write:
899         blocked_rdev = NULL;
900         rcu_read_lock();
901         for (i = 0;  i < disks; i++) {
902                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
903                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
904                         atomic_inc(&rdev->nr_pending);
905                         blocked_rdev = rdev;
906                         break;
907                 }
908                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
909                         atomic_inc(&rdev->nr_pending);
910                         if (test_bit(Faulty, &rdev->flags)) {
911                                 rdev_dec_pending(rdev, mddev);
912                                 r1_bio->bios[i] = NULL;
913                         } else
914                                 r1_bio->bios[i] = bio;
915                         targets++;
916                 } else
917                         r1_bio->bios[i] = NULL;
918         }
919         rcu_read_unlock();
920
921         if (unlikely(blocked_rdev)) {
922                 /* Wait for this device to become unblocked */
923                 int j;
924
925                 for (j = 0; j < i; j++)
926                         if (r1_bio->bios[j])
927                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
928
929                 allow_barrier(conf);
930                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
931                 wait_barrier(conf);
932                 goto retry_write;
933         }
934
935         BUG_ON(targets == 0); /* we never fail the last device */
936
937         if (targets < conf->raid_disks) {
938                 /* array is degraded, we will not clear the bitmap
939                  * on I/O completion (see raid1_end_write_request) */
940                 set_bit(R1BIO_Degraded, &r1_bio->state);
941         }
942
943         /* do behind I/O ? */
944         if (bitmap &&
945             atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
946             (behind_pages = alloc_behind_pages(bio)) != NULL)
947                 set_bit(R1BIO_BehindIO, &r1_bio->state);
948
949         atomic_set(&r1_bio->remaining, 0);
950         atomic_set(&r1_bio->behind_remaining, 0);
951
952         do_barriers = bio_rw_flagged(bio, BIO_RW_BARRIER);
953         if (do_barriers)
954                 set_bit(R1BIO_Barrier, &r1_bio->state);
955
956         bio_list_init(&bl);
957         for (i = 0; i < disks; i++) {
958                 struct bio *mbio;
959                 if (!r1_bio->bios[i])
960                         continue;
961
962                 mbio = bio_clone(bio, GFP_NOIO);
963                 r1_bio->bios[i] = mbio;
964
965                 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
966                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
967                 mbio->bi_end_io = raid1_end_write_request;
968                 mbio->bi_rw = WRITE | (do_barriers << BIO_RW_BARRIER) |
969                         (do_sync << BIO_RW_SYNCIO);
970                 mbio->bi_private = r1_bio;
971
972                 if (behind_pages) {
973                         struct bio_vec *bvec;
974                         int j;
975
976                         /* Yes, I really want the '__' version so that
977                          * we clear any unused pointer in the io_vec, rather
978                          * than leave them unchanged.  This is important
979                          * because when we come to free the pages, we won't
980                          * know the originial bi_idx, so we just free
981                          * them all
982                          */
983                         __bio_for_each_segment(bvec, mbio, j, 0)
984                                 bvec->bv_page = behind_pages[j];
985                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
986                                 atomic_inc(&r1_bio->behind_remaining);
987                 }
988
989                 atomic_inc(&r1_bio->remaining);
990
991                 bio_list_add(&bl, mbio);
992         }
993         kfree(behind_pages); /* the behind pages are attached to the bios now */
994
995         bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
996                                 test_bit(R1BIO_BehindIO, &r1_bio->state));
997         spin_lock_irqsave(&conf->device_lock, flags);
998         bio_list_merge(&conf->pending_bio_list, &bl);
999         bio_list_init(&bl);
1000
1001         blk_plug_device(mddev->queue);
1002         spin_unlock_irqrestore(&conf->device_lock, flags);
1003
1004         /* In case raid1d snuck into freeze_array */
1005         wake_up(&conf->wait_barrier);
1006
1007         if (do_sync)
1008                 md_wakeup_thread(mddev->thread);
1009 #if 0
1010         while ((bio = bio_list_pop(&bl)) != NULL)
1011                 generic_make_request(bio);
1012 #endif
1013
1014         return 0;
1015 }
1016
1017 static void status(struct seq_file *seq, mddev_t *mddev)
1018 {
1019         conf_t *conf = mddev->private;
1020         int i;
1021
1022         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1023                    conf->raid_disks - mddev->degraded);
1024         rcu_read_lock();
1025         for (i = 0; i < conf->raid_disks; i++) {
1026                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1027                 seq_printf(seq, "%s",
1028                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1029         }
1030         rcu_read_unlock();
1031         seq_printf(seq, "]");
1032 }
1033
1034
1035 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1036 {
1037         char b[BDEVNAME_SIZE];
1038         conf_t *conf = mddev->private;
1039
1040         /*
1041          * If it is not operational, then we have already marked it as dead
1042          * else if it is the last working disks, ignore the error, let the
1043          * next level up know.
1044          * else mark the drive as failed
1045          */
1046         if (test_bit(In_sync, &rdev->flags)
1047             && (conf->raid_disks - mddev->degraded) == 1) {
1048                 /*
1049                  * Don't fail the drive, act as though we were just a
1050                  * normal single drive.
1051                  * However don't try a recovery from this drive as
1052                  * it is very likely to fail.
1053                  */
1054                 mddev->recovery_disabled = 1;
1055                 return;
1056         }
1057         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1058                 unsigned long flags;
1059                 spin_lock_irqsave(&conf->device_lock, flags);
1060                 mddev->degraded++;
1061                 set_bit(Faulty, &rdev->flags);
1062                 spin_unlock_irqrestore(&conf->device_lock, flags);
1063                 /*
1064                  * if recovery is running, make sure it aborts.
1065                  */
1066                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1067         } else
1068                 set_bit(Faulty, &rdev->flags);
1069         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1070         printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n"
1071                 "raid1: Operation continuing on %d devices.\n",
1072                 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1073 }
1074
1075 static void print_conf(conf_t *conf)
1076 {
1077         int i;
1078
1079         printk("RAID1 conf printout:\n");
1080         if (!conf) {
1081                 printk("(!conf)\n");
1082                 return;
1083         }
1084         printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1085                 conf->raid_disks);
1086
1087         rcu_read_lock();
1088         for (i = 0; i < conf->raid_disks; i++) {
1089                 char b[BDEVNAME_SIZE];
1090                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1091                 if (rdev)
1092                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1093                                i, !test_bit(In_sync, &rdev->flags),
1094                                !test_bit(Faulty, &rdev->flags),
1095                                bdevname(rdev->bdev,b));
1096         }
1097         rcu_read_unlock();
1098 }
1099
1100 static void close_sync(conf_t *conf)
1101 {
1102         wait_barrier(conf);
1103         allow_barrier(conf);
1104
1105         mempool_destroy(conf->r1buf_pool);
1106         conf->r1buf_pool = NULL;
1107 }
1108
1109 static int raid1_spare_active(mddev_t *mddev)
1110 {
1111         int i;
1112         conf_t *conf = mddev->private;
1113
1114         /*
1115          * Find all failed disks within the RAID1 configuration 
1116          * and mark them readable.
1117          * Called under mddev lock, so rcu protection not needed.
1118          */
1119         for (i = 0; i < conf->raid_disks; i++) {
1120                 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1121                 if (rdev
1122                     && !test_bit(Faulty, &rdev->flags)
1123                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1124                         unsigned long flags;
1125                         spin_lock_irqsave(&conf->device_lock, flags);
1126                         mddev->degraded--;
1127                         spin_unlock_irqrestore(&conf->device_lock, flags);
1128                 }
1129         }
1130
1131         print_conf(conf);
1132         return 0;
1133 }
1134
1135
1136 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1137 {
1138         conf_t *conf = mddev->private;
1139         int err = -EEXIST;
1140         int mirror = 0;
1141         mirror_info_t *p;
1142         int first = 0;
1143         int last = mddev->raid_disks - 1;
1144
1145         if (rdev->raid_disk >= 0)
1146                 first = last = rdev->raid_disk;
1147
1148         for (mirror = first; mirror <= last; mirror++)
1149                 if ( !(p=conf->mirrors+mirror)->rdev) {
1150
1151                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1152                                           rdev->data_offset << 9);
1153                         /* as we don't honour merge_bvec_fn, we must never risk
1154                          * violating it, so limit ->max_sector to one PAGE, as
1155                          * a one page request is never in violation.
1156                          */
1157                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1158                             queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
1159                                 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1160
1161                         p->head_position = 0;
1162                         rdev->raid_disk = mirror;
1163                         err = 0;
1164                         /* As all devices are equivalent, we don't need a full recovery
1165                          * if this was recently any drive of the array
1166                          */
1167                         if (rdev->saved_raid_disk < 0)
1168                                 conf->fullsync = 1;
1169                         rcu_assign_pointer(p->rdev, rdev);
1170                         break;
1171                 }
1172         md_integrity_add_rdev(rdev, mddev);
1173         print_conf(conf);
1174         return err;
1175 }
1176
1177 static int raid1_remove_disk(mddev_t *mddev, int number)
1178 {
1179         conf_t *conf = mddev->private;
1180         int err = 0;
1181         mdk_rdev_t *rdev;
1182         mirror_info_t *p = conf->mirrors+ number;
1183
1184         print_conf(conf);
1185         rdev = p->rdev;
1186         if (rdev) {
1187                 if (test_bit(In_sync, &rdev->flags) ||
1188                     atomic_read(&rdev->nr_pending)) {
1189                         err = -EBUSY;
1190                         goto abort;
1191                 }
1192                 /* Only remove non-faulty devices is recovery
1193                  * is not possible.
1194                  */
1195                 if (!test_bit(Faulty, &rdev->flags) &&
1196                     mddev->degraded < conf->raid_disks) {
1197                         err = -EBUSY;
1198                         goto abort;
1199                 }
1200                 p->rdev = NULL;
1201                 synchronize_rcu();
1202                 if (atomic_read(&rdev->nr_pending)) {
1203                         /* lost the race, try later */
1204                         err = -EBUSY;
1205                         p->rdev = rdev;
1206                         goto abort;
1207                 }
1208                 md_integrity_register(mddev);
1209         }
1210 abort:
1211
1212         print_conf(conf);
1213         return err;
1214 }
1215
1216
1217 static void end_sync_read(struct bio *bio, int error)
1218 {
1219         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1220         int i;
1221
1222         for (i=r1_bio->mddev->raid_disks; i--; )
1223                 if (r1_bio->bios[i] == bio)
1224                         break;
1225         BUG_ON(i < 0);
1226         update_head_pos(i, r1_bio);
1227         /*
1228          * we have read a block, now it needs to be re-written,
1229          * or re-read if the read failed.
1230          * We don't do much here, just schedule handling by raid1d
1231          */
1232         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1233                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1234
1235         if (atomic_dec_and_test(&r1_bio->remaining))
1236                 reschedule_retry(r1_bio);
1237 }
1238
1239 static void end_sync_write(struct bio *bio, int error)
1240 {
1241         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1242         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1243         mddev_t *mddev = r1_bio->mddev;
1244         conf_t *conf = mddev->private;
1245         int i;
1246         int mirror=0;
1247
1248         for (i = 0; i < conf->raid_disks; i++)
1249                 if (r1_bio->bios[i] == bio) {
1250                         mirror = i;
1251                         break;
1252                 }
1253         if (!uptodate) {
1254                 int sync_blocks = 0;
1255                 sector_t s = r1_bio->sector;
1256                 long sectors_to_go = r1_bio->sectors;
1257                 /* make sure these bits doesn't get cleared. */
1258                 do {
1259                         bitmap_end_sync(mddev->bitmap, s,
1260                                         &sync_blocks, 1);
1261                         s += sync_blocks;
1262                         sectors_to_go -= sync_blocks;
1263                 } while (sectors_to_go > 0);
1264                 md_error(mddev, conf->mirrors[mirror].rdev);
1265         }
1266
1267         update_head_pos(mirror, r1_bio);
1268
1269         if (atomic_dec_and_test(&r1_bio->remaining)) {
1270                 sector_t s = r1_bio->sectors;
1271                 put_buf(r1_bio);
1272                 md_done_sync(mddev, s, uptodate);
1273         }
1274 }
1275
1276 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1277 {
1278         conf_t *conf = mddev->private;
1279         int i;
1280         int disks = conf->raid_disks;
1281         struct bio *bio, *wbio;
1282
1283         bio = r1_bio->bios[r1_bio->read_disk];
1284
1285
1286         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1287                 /* We have read all readable devices.  If we haven't
1288                  * got the block, then there is no hope left.
1289                  * If we have, then we want to do a comparison
1290                  * and skip the write if everything is the same.
1291                  * If any blocks failed to read, then we need to
1292                  * attempt an over-write
1293                  */
1294                 int primary;
1295                 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1296                         for (i=0; i<mddev->raid_disks; i++)
1297                                 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1298                                         md_error(mddev, conf->mirrors[i].rdev);
1299
1300                         md_done_sync(mddev, r1_bio->sectors, 1);
1301                         put_buf(r1_bio);
1302                         return;
1303                 }
1304                 for (primary=0; primary<mddev->raid_disks; primary++)
1305                         if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1306                             test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1307                                 r1_bio->bios[primary]->bi_end_io = NULL;
1308                                 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1309                                 break;
1310                         }
1311                 r1_bio->read_disk = primary;
1312                 for (i=0; i<mddev->raid_disks; i++)
1313                         if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1314                                 int j;
1315                                 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1316                                 struct bio *pbio = r1_bio->bios[primary];
1317                                 struct bio *sbio = r1_bio->bios[i];
1318
1319                                 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1320                                         for (j = vcnt; j-- ; ) {
1321                                                 struct page *p, *s;
1322                                                 p = pbio->bi_io_vec[j].bv_page;
1323                                                 s = sbio->bi_io_vec[j].bv_page;
1324                                                 if (memcmp(page_address(p),
1325                                                            page_address(s),
1326                                                            PAGE_SIZE))
1327                                                         break;
1328                                         }
1329                                 } else
1330                                         j = 0;
1331                                 if (j >= 0)
1332                                         mddev->resync_mismatches += r1_bio->sectors;
1333                                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1334                                               && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1335                                         sbio->bi_end_io = NULL;
1336                                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1337                                 } else {
1338                                         /* fixup the bio for reuse */
1339                                         int size;
1340                                         sbio->bi_vcnt = vcnt;
1341                                         sbio->bi_size = r1_bio->sectors << 9;
1342                                         sbio->bi_idx = 0;
1343                                         sbio->bi_phys_segments = 0;
1344                                         sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1345                                         sbio->bi_flags |= 1 << BIO_UPTODATE;
1346                                         sbio->bi_next = NULL;
1347                                         sbio->bi_sector = r1_bio->sector +
1348                                                 conf->mirrors[i].rdev->data_offset;
1349                                         sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1350                                         size = sbio->bi_size;
1351                                         for (j = 0; j < vcnt ; j++) {
1352                                                 struct bio_vec *bi;
1353                                                 bi = &sbio->bi_io_vec[j];
1354                                                 bi->bv_offset = 0;
1355                                                 if (size > PAGE_SIZE)
1356                                                         bi->bv_len = PAGE_SIZE;
1357                                                 else
1358                                                         bi->bv_len = size;
1359                                                 size -= PAGE_SIZE;
1360                                                 memcpy(page_address(bi->bv_page),
1361                                                        page_address(pbio->bi_io_vec[j].bv_page),
1362                                                        PAGE_SIZE);
1363                                         }
1364
1365                                 }
1366                         }
1367         }
1368         if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1369                 /* ouch - failed to read all of that.
1370                  * Try some synchronous reads of other devices to get
1371                  * good data, much like with normal read errors.  Only
1372                  * read into the pages we already have so we don't
1373                  * need to re-issue the read request.
1374                  * We don't need to freeze the array, because being in an
1375                  * active sync request, there is no normal IO, and
1376                  * no overlapping syncs.
1377                  */
1378                 sector_t sect = r1_bio->sector;
1379                 int sectors = r1_bio->sectors;
1380                 int idx = 0;
1381
1382                 while(sectors) {
1383                         int s = sectors;
1384                         int d = r1_bio->read_disk;
1385                         int success = 0;
1386                         mdk_rdev_t *rdev;
1387
1388                         if (s > (PAGE_SIZE>>9))
1389                                 s = PAGE_SIZE >> 9;
1390                         do {
1391                                 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1392                                         /* No rcu protection needed here devices
1393                                          * can only be removed when no resync is
1394                                          * active, and resync is currently active
1395                                          */
1396                                         rdev = conf->mirrors[d].rdev;
1397                                         if (sync_page_io(rdev->bdev,
1398                                                          sect + rdev->data_offset,
1399                                                          s<<9,
1400                                                          bio->bi_io_vec[idx].bv_page,
1401                                                          READ)) {
1402                                                 success = 1;
1403                                                 break;
1404                                         }
1405                                 }
1406                                 d++;
1407                                 if (d == conf->raid_disks)
1408                                         d = 0;
1409                         } while (!success && d != r1_bio->read_disk);
1410
1411                         if (success) {
1412                                 int start = d;
1413                                 /* write it back and re-read */
1414                                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1415                                 while (d != r1_bio->read_disk) {
1416                                         if (d == 0)
1417                                                 d = conf->raid_disks;
1418                                         d--;
1419                                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1420                                                 continue;
1421                                         rdev = conf->mirrors[d].rdev;
1422                                         atomic_add(s, &rdev->corrected_errors);
1423                                         if (sync_page_io(rdev->bdev,
1424                                                          sect + rdev->data_offset,
1425                                                          s<<9,
1426                                                          bio->bi_io_vec[idx].bv_page,
1427                                                          WRITE) == 0)
1428                                                 md_error(mddev, rdev);
1429                                 }
1430                                 d = start;
1431                                 while (d != r1_bio->read_disk) {
1432                                         if (d == 0)
1433                                                 d = conf->raid_disks;
1434                                         d--;
1435                                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1436                                                 continue;
1437                                         rdev = conf->mirrors[d].rdev;
1438                                         if (sync_page_io(rdev->bdev,
1439                                                          sect + rdev->data_offset,
1440                                                          s<<9,
1441                                                          bio->bi_io_vec[idx].bv_page,
1442                                                          READ) == 0)
1443                                                 md_error(mddev, rdev);
1444                                 }
1445                         } else {
1446                                 char b[BDEVNAME_SIZE];
1447                                 /* Cannot read from anywhere, array is toast */
1448                                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1449                                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1450                                        " for block %llu\n",
1451                                        bdevname(bio->bi_bdev,b),
1452                                        (unsigned long long)r1_bio->sector);
1453                                 md_done_sync(mddev, r1_bio->sectors, 0);
1454                                 put_buf(r1_bio);
1455                                 return;
1456                         }
1457                         sectors -= s;
1458                         sect += s;
1459                         idx ++;
1460                 }
1461         }
1462
1463         /*
1464          * schedule writes
1465          */
1466         atomic_set(&r1_bio->remaining, 1);
1467         for (i = 0; i < disks ; i++) {
1468                 wbio = r1_bio->bios[i];
1469                 if (wbio->bi_end_io == NULL ||
1470                     (wbio->bi_end_io == end_sync_read &&
1471                      (i == r1_bio->read_disk ||
1472                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1473                         continue;
1474
1475                 wbio->bi_rw = WRITE;
1476                 wbio->bi_end_io = end_sync_write;
1477                 atomic_inc(&r1_bio->remaining);
1478                 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1479
1480                 generic_make_request(wbio);
1481         }
1482
1483         if (atomic_dec_and_test(&r1_bio->remaining)) {
1484                 /* if we're here, all write(s) have completed, so clean up */
1485                 md_done_sync(mddev, r1_bio->sectors, 1);
1486                 put_buf(r1_bio);
1487         }
1488 }
1489
1490 /*
1491  * This is a kernel thread which:
1492  *
1493  *      1.      Retries failed read operations on working mirrors.
1494  *      2.      Updates the raid superblock when problems encounter.
1495  *      3.      Performs writes following reads for array syncronising.
1496  */
1497
1498 static void fix_read_error(conf_t *conf, int read_disk,
1499                            sector_t sect, int sectors)
1500 {
1501         mddev_t *mddev = conf->mddev;
1502         while(sectors) {
1503                 int s = sectors;
1504                 int d = read_disk;
1505                 int success = 0;
1506                 int start;
1507                 mdk_rdev_t *rdev;
1508
1509                 if (s > (PAGE_SIZE>>9))
1510                         s = PAGE_SIZE >> 9;
1511
1512                 do {
1513                         /* Note: no rcu protection needed here
1514                          * as this is synchronous in the raid1d thread
1515                          * which is the thread that might remove
1516                          * a device.  If raid1d ever becomes multi-threaded....
1517                          */
1518                         rdev = conf->mirrors[d].rdev;
1519                         if (rdev &&
1520                             test_bit(In_sync, &rdev->flags) &&
1521                             sync_page_io(rdev->bdev,
1522                                          sect + rdev->data_offset,
1523                                          s<<9,
1524                                          conf->tmppage, READ))
1525                                 success = 1;
1526                         else {
1527                                 d++;
1528                                 if (d == conf->raid_disks)
1529                                         d = 0;
1530                         }
1531                 } while (!success && d != read_disk);
1532
1533                 if (!success) {
1534                         /* Cannot read from anywhere -- bye bye array */
1535                         md_error(mddev, conf->mirrors[read_disk].rdev);
1536                         break;
1537                 }
1538                 /* write it back and re-read */
1539                 start = d;
1540                 while (d != read_disk) {
1541                         if (d==0)
1542                                 d = conf->raid_disks;
1543                         d--;
1544                         rdev = conf->mirrors[d].rdev;
1545                         if (rdev &&
1546                             test_bit(In_sync, &rdev->flags)) {
1547                                 if (sync_page_io(rdev->bdev,
1548                                                  sect + rdev->data_offset,
1549                                                  s<<9, conf->tmppage, WRITE)
1550                                     == 0)
1551                                         /* Well, this device is dead */
1552                                         md_error(mddev, rdev);
1553                         }
1554                 }
1555                 d = start;
1556                 while (d != read_disk) {
1557                         char b[BDEVNAME_SIZE];
1558                         if (d==0)
1559                                 d = conf->raid_disks;
1560                         d--;
1561                         rdev = conf->mirrors[d].rdev;
1562                         if (rdev &&
1563                             test_bit(In_sync, &rdev->flags)) {
1564                                 if (sync_page_io(rdev->bdev,
1565                                                  sect + rdev->data_offset,
1566                                                  s<<9, conf->tmppage, READ)
1567                                     == 0)
1568                                         /* Well, this device is dead */
1569                                         md_error(mddev, rdev);
1570                                 else {
1571                                         atomic_add(s, &rdev->corrected_errors);
1572                                         printk(KERN_INFO
1573                                                "raid1:%s: read error corrected "
1574                                                "(%d sectors at %llu on %s)\n",
1575                                                mdname(mddev), s,
1576                                                (unsigned long long)(sect +
1577                                                    rdev->data_offset),
1578                                                bdevname(rdev->bdev, b));
1579                                 }
1580                         }
1581                 }
1582                 sectors -= s;
1583                 sect += s;
1584         }
1585 }
1586
1587 static void raid1d(mddev_t *mddev)
1588 {
1589         r1bio_t *r1_bio;
1590         struct bio *bio;
1591         unsigned long flags;
1592         conf_t *conf = mddev->private;
1593         struct list_head *head = &conf->retry_list;
1594         int unplug=0;
1595         mdk_rdev_t *rdev;
1596
1597         md_check_recovery(mddev);
1598         
1599         for (;;) {
1600                 char b[BDEVNAME_SIZE];
1601
1602                 unplug += flush_pending_writes(conf);
1603
1604                 spin_lock_irqsave(&conf->device_lock, flags);
1605                 if (list_empty(head)) {
1606                         spin_unlock_irqrestore(&conf->device_lock, flags);
1607                         break;
1608                 }
1609                 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1610                 list_del(head->prev);
1611                 conf->nr_queued--;
1612                 spin_unlock_irqrestore(&conf->device_lock, flags);
1613
1614                 mddev = r1_bio->mddev;
1615                 conf = mddev->private;
1616                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1617                         sync_request_write(mddev, r1_bio);
1618                         unplug = 1;
1619                 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1620                         /* some requests in the r1bio were BIO_RW_BARRIER
1621                          * requests which failed with -EOPNOTSUPP.  Hohumm..
1622                          * Better resubmit without the barrier.
1623                          * We know which devices to resubmit for, because
1624                          * all others have had their bios[] entry cleared.
1625                          * We already have a nr_pending reference on these rdevs.
1626                          */
1627                         int i;
1628                         const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
1629                         clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1630                         clear_bit(R1BIO_Barrier, &r1_bio->state);
1631                         for (i=0; i < conf->raid_disks; i++)
1632                                 if (r1_bio->bios[i])
1633                                         atomic_inc(&r1_bio->remaining);
1634                         for (i=0; i < conf->raid_disks; i++)
1635                                 if (r1_bio->bios[i]) {
1636                                         struct bio_vec *bvec;
1637                                         int j;
1638
1639                                         bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1640                                         /* copy pages from the failed bio, as
1641                                          * this might be a write-behind device */
1642                                         __bio_for_each_segment(bvec, bio, j, 0)
1643                                                 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1644                                         bio_put(r1_bio->bios[i]);
1645                                         bio->bi_sector = r1_bio->sector +
1646                                                 conf->mirrors[i].rdev->data_offset;
1647                                         bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1648                                         bio->bi_end_io = raid1_end_write_request;
1649                                         bio->bi_rw = WRITE |
1650                                                 (do_sync << BIO_RW_SYNCIO);
1651                                         bio->bi_private = r1_bio;
1652                                         r1_bio->bios[i] = bio;
1653                                         generic_make_request(bio);
1654                                 }
1655                 } else {
1656                         int disk;
1657
1658                         /* we got a read error. Maybe the drive is bad.  Maybe just
1659                          * the block and we can fix it.
1660                          * We freeze all other IO, and try reading the block from
1661                          * other devices.  When we find one, we re-write
1662                          * and check it that fixes the read error.
1663                          * This is all done synchronously while the array is
1664                          * frozen
1665                          */
1666                         if (mddev->ro == 0) {
1667                                 freeze_array(conf);
1668                                 fix_read_error(conf, r1_bio->read_disk,
1669                                                r1_bio->sector,
1670                                                r1_bio->sectors);
1671                                 unfreeze_array(conf);
1672                         } else
1673                                 md_error(mddev,
1674                                          conf->mirrors[r1_bio->read_disk].rdev);
1675
1676                         bio = r1_bio->bios[r1_bio->read_disk];
1677                         if ((disk=read_balance(conf, r1_bio)) == -1) {
1678                                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1679                                        " read error for block %llu\n",
1680                                        bdevname(bio->bi_bdev,b),
1681                                        (unsigned long long)r1_bio->sector);
1682                                 raid_end_bio_io(r1_bio);
1683                         } else {
1684                                 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
1685                                 r1_bio->bios[r1_bio->read_disk] =
1686                                         mddev->ro ? IO_BLOCKED : NULL;
1687                                 r1_bio->read_disk = disk;
1688                                 bio_put(bio);
1689                                 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1690                                 r1_bio->bios[r1_bio->read_disk] = bio;
1691                                 rdev = conf->mirrors[disk].rdev;
1692                                 if (printk_ratelimit())
1693                                         printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1694                                                " another mirror\n",
1695                                                bdevname(rdev->bdev,b),
1696                                                (unsigned long long)r1_bio->sector);
1697                                 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1698                                 bio->bi_bdev = rdev->bdev;
1699                                 bio->bi_end_io = raid1_end_read_request;
1700                                 bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
1701                                 bio->bi_private = r1_bio;
1702                                 unplug = 1;
1703                                 generic_make_request(bio);
1704                         }
1705                 }
1706                 cond_resched();
1707         }
1708         if (unplug)
1709                 unplug_slaves(mddev);
1710 }
1711
1712
1713 static int init_resync(conf_t *conf)
1714 {
1715         int buffs;
1716
1717         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1718         BUG_ON(conf->r1buf_pool);
1719         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1720                                           conf->poolinfo);
1721         if (!conf->r1buf_pool)
1722                 return -ENOMEM;
1723         conf->next_resync = 0;
1724         return 0;
1725 }
1726
1727 /*
1728  * perform a "sync" on one "block"
1729  *
1730  * We need to make sure that no normal I/O request - particularly write
1731  * requests - conflict with active sync requests.
1732  *
1733  * This is achieved by tracking pending requests and a 'barrier' concept
1734  * that can be installed to exclude normal IO requests.
1735  */
1736
1737 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1738 {
1739         conf_t *conf = mddev->private;
1740         r1bio_t *r1_bio;
1741         struct bio *bio;
1742         sector_t max_sector, nr_sectors;
1743         int disk = -1;
1744         int i;
1745         int wonly = -1;
1746         int write_targets = 0, read_targets = 0;
1747         int sync_blocks;
1748         int still_degraded = 0;
1749
1750         if (!conf->r1buf_pool)
1751         {
1752 /*
1753                 printk("sync start - bitmap %p\n", mddev->bitmap);
1754 */
1755                 if (init_resync(conf))
1756                         return 0;
1757         }
1758
1759         max_sector = mddev->dev_sectors;
1760         if (sector_nr >= max_sector) {
1761                 /* If we aborted, we need to abort the
1762                  * sync on the 'current' bitmap chunk (there will
1763                  * only be one in raid1 resync.
1764                  * We can find the current addess in mddev->curr_resync
1765                  */
1766                 if (mddev->curr_resync < max_sector) /* aborted */
1767                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1768                                                 &sync_blocks, 1);
1769                 else /* completed sync */
1770                         conf->fullsync = 0;
1771
1772                 bitmap_close_sync(mddev->bitmap);
1773                 close_sync(conf);
1774                 return 0;
1775         }
1776
1777         if (mddev->bitmap == NULL &&
1778             mddev->recovery_cp == MaxSector &&
1779             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1780             conf->fullsync == 0) {
1781                 *skipped = 1;
1782                 return max_sector - sector_nr;
1783         }
1784         /* before building a request, check if we can skip these blocks..
1785          * This call the bitmap_start_sync doesn't actually record anything
1786          */
1787         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1788             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1789                 /* We can skip this block, and probably several more */
1790                 *skipped = 1;
1791                 return sync_blocks;
1792         }
1793         /*
1794          * If there is non-resync activity waiting for a turn,
1795          * and resync is going fast enough,
1796          * then let it though before starting on this new sync request.
1797          */
1798         if (!go_faster && conf->nr_waiting)
1799                 msleep_interruptible(1000);
1800
1801         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1802         raise_barrier(conf);
1803
1804         conf->next_resync = sector_nr;
1805
1806         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1807         rcu_read_lock();
1808         /*
1809          * If we get a correctably read error during resync or recovery,
1810          * we might want to read from a different device.  So we
1811          * flag all drives that could conceivably be read from for READ,
1812          * and any others (which will be non-In_sync devices) for WRITE.
1813          * If a read fails, we try reading from something else for which READ
1814          * is OK.
1815          */
1816
1817         r1_bio->mddev = mddev;
1818         r1_bio->sector = sector_nr;
1819         r1_bio->state = 0;
1820         set_bit(R1BIO_IsSync, &r1_bio->state);
1821
1822         for (i=0; i < conf->raid_disks; i++) {
1823                 mdk_rdev_t *rdev;
1824                 bio = r1_bio->bios[i];
1825
1826                 /* take from bio_init */
1827                 bio->bi_next = NULL;
1828                 bio->bi_flags |= 1 << BIO_UPTODATE;
1829                 bio->bi_rw = READ;
1830                 bio->bi_vcnt = 0;
1831                 bio->bi_idx = 0;
1832                 bio->bi_phys_segments = 0;
1833                 bio->bi_size = 0;
1834                 bio->bi_end_io = NULL;
1835                 bio->bi_private = NULL;
1836
1837                 rdev = rcu_dereference(conf->mirrors[i].rdev);
1838                 if (rdev == NULL ||
1839                            test_bit(Faulty, &rdev->flags)) {
1840                         still_degraded = 1;
1841                         continue;
1842                 } else if (!test_bit(In_sync, &rdev->flags)) {
1843                         bio->bi_rw = WRITE;
1844                         bio->bi_end_io = end_sync_write;
1845                         write_targets ++;
1846                 } else {
1847                         /* may need to read from here */
1848                         bio->bi_rw = READ;
1849                         bio->bi_end_io = end_sync_read;
1850                         if (test_bit(WriteMostly, &rdev->flags)) {
1851                                 if (wonly < 0)
1852                                         wonly = i;
1853                         } else {
1854                                 if (disk < 0)
1855                                         disk = i;
1856                         }
1857                         read_targets++;
1858                 }
1859                 atomic_inc(&rdev->nr_pending);
1860                 bio->bi_sector = sector_nr + rdev->data_offset;
1861                 bio->bi_bdev = rdev->bdev;
1862                 bio->bi_private = r1_bio;
1863         }
1864         rcu_read_unlock();
1865         if (disk < 0)
1866                 disk = wonly;
1867         r1_bio->read_disk = disk;
1868
1869         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1870                 /* extra read targets are also write targets */
1871                 write_targets += read_targets-1;
1872
1873         if (write_targets == 0 || read_targets == 0) {
1874                 /* There is nowhere to write, so all non-sync
1875                  * drives must be failed - so we are finished
1876                  */
1877                 sector_t rv = max_sector - sector_nr;
1878                 *skipped = 1;
1879                 put_buf(r1_bio);
1880                 return rv;
1881         }
1882
1883         if (max_sector > mddev->resync_max)
1884                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1885         nr_sectors = 0;
1886         sync_blocks = 0;
1887         do {
1888                 struct page *page;
1889                 int len = PAGE_SIZE;
1890                 if (sector_nr + (len>>9) > max_sector)
1891                         len = (max_sector - sector_nr) << 9;
1892                 if (len == 0)
1893                         break;
1894                 if (sync_blocks == 0) {
1895                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1896                                                &sync_blocks, still_degraded) &&
1897                             !conf->fullsync &&
1898                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1899                                 break;
1900                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1901                         if (len > (sync_blocks<<9))
1902                                 len = sync_blocks<<9;
1903                 }
1904
1905                 for (i=0 ; i < conf->raid_disks; i++) {
1906                         bio = r1_bio->bios[i];
1907                         if (bio->bi_end_io) {
1908                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1909                                 if (bio_add_page(bio, page, len, 0) == 0) {
1910                                         /* stop here */
1911                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1912                                         while (i > 0) {
1913                                                 i--;
1914                                                 bio = r1_bio->bios[i];
1915                                                 if (bio->bi_end_io==NULL)
1916                                                         continue;
1917                                                 /* remove last page from this bio */
1918                                                 bio->bi_vcnt--;
1919                                                 bio->bi_size -= len;
1920                                                 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1921                                         }
1922                                         goto bio_full;
1923                                 }
1924                         }
1925                 }
1926                 nr_sectors += len>>9;
1927                 sector_nr += len>>9;
1928                 sync_blocks -= (len>>9);
1929         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1930  bio_full:
1931         r1_bio->sectors = nr_sectors;
1932
1933         /* For a user-requested sync, we read all readable devices and do a
1934          * compare
1935          */
1936         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1937                 atomic_set(&r1_bio->remaining, read_targets);
1938                 for (i=0; i<conf->raid_disks; i++) {
1939                         bio = r1_bio->bios[i];
1940                         if (bio->bi_end_io == end_sync_read) {
1941                                 md_sync_acct(bio->bi_bdev, nr_sectors);
1942                                 generic_make_request(bio);
1943                         }
1944                 }
1945         } else {
1946                 atomic_set(&r1_bio->remaining, 1);
1947                 bio = r1_bio->bios[r1_bio->read_disk];
1948                 md_sync_acct(bio->bi_bdev, nr_sectors);
1949                 generic_make_request(bio);
1950
1951         }
1952         return nr_sectors;
1953 }
1954
1955 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1956 {
1957         if (sectors)
1958                 return sectors;
1959
1960         return mddev->dev_sectors;
1961 }
1962
1963 static int run(mddev_t *mddev)
1964 {
1965         conf_t *conf;
1966         int i, j, disk_idx;
1967         mirror_info_t *disk;
1968         mdk_rdev_t *rdev;
1969
1970         if (mddev->level != 1) {
1971                 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1972                        mdname(mddev), mddev->level);
1973                 goto out;
1974         }
1975         if (mddev->reshape_position != MaxSector) {
1976                 printk("raid1: %s: reshape_position set but not supported\n",
1977                        mdname(mddev));
1978                 goto out;
1979         }
1980         /*
1981          * copy the already verified devices into our private RAID1
1982          * bookkeeping area. [whatever we allocate in run(),
1983          * should be freed in stop()]
1984          */
1985         conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1986         mddev->private = conf;
1987         if (!conf)
1988                 goto out_no_mem;
1989
1990         conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1991                                  GFP_KERNEL);
1992         if (!conf->mirrors)
1993                 goto out_no_mem;
1994
1995         conf->tmppage = alloc_page(GFP_KERNEL);
1996         if (!conf->tmppage)
1997                 goto out_no_mem;
1998
1999         conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2000         if (!conf->poolinfo)
2001                 goto out_no_mem;
2002         conf->poolinfo->mddev = NULL;
2003         conf->poolinfo->raid_disks = mddev->raid_disks;
2004         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2005                                           r1bio_pool_free,
2006                                           conf->poolinfo);
2007         if (!conf->r1bio_pool)
2008                 goto out_no_mem;
2009         conf->poolinfo->mddev = mddev;
2010
2011         spin_lock_init(&conf->device_lock);
2012         mddev->queue->queue_lock = &conf->device_lock;
2013
2014         list_for_each_entry(rdev, &mddev->disks, same_set) {
2015                 disk_idx = rdev->raid_disk;
2016                 if (disk_idx >= mddev->raid_disks
2017                     || disk_idx < 0)
2018                         continue;
2019                 disk = conf->mirrors + disk_idx;
2020
2021                 disk->rdev = rdev;
2022                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2023                                   rdev->data_offset << 9);
2024                 /* as we don't honour merge_bvec_fn, we must never risk
2025                  * violating it, so limit ->max_sector to one PAGE, as
2026                  * a one page request is never in violation.
2027                  */
2028                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2029                     queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
2030                         blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
2031
2032                 disk->head_position = 0;
2033         }
2034         conf->raid_disks = mddev->raid_disks;
2035         conf->mddev = mddev;
2036         INIT_LIST_HEAD(&conf->retry_list);
2037
2038         spin_lock_init(&conf->resync_lock);
2039         init_waitqueue_head(&conf->wait_barrier);
2040
2041         bio_list_init(&conf->pending_bio_list);
2042         bio_list_init(&conf->flushing_bio_list);
2043
2044
2045         mddev->degraded = 0;
2046         for (i = 0; i < conf->raid_disks; i++) {
2047
2048                 disk = conf->mirrors + i;
2049
2050                 if (!disk->rdev ||
2051                     !test_bit(In_sync, &disk->rdev->flags)) {
2052                         disk->head_position = 0;
2053                         mddev->degraded++;
2054                         if (disk->rdev)
2055                                 conf->fullsync = 1;
2056                 }
2057         }
2058         if (mddev->degraded == conf->raid_disks) {
2059                 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
2060                         mdname(mddev));
2061                 goto out_free_conf;
2062         }
2063         if (conf->raid_disks - mddev->degraded == 1)
2064                 mddev->recovery_cp = MaxSector;
2065
2066         /*
2067          * find the first working one and use it as a starting point
2068          * to read balancing.
2069          */
2070         for (j = 0; j < conf->raid_disks &&
2071                      (!conf->mirrors[j].rdev ||
2072                       !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
2073                 /* nothing */;
2074         conf->last_used = j;
2075
2076
2077         mddev->thread = md_register_thread(raid1d, mddev, NULL);
2078         if (!mddev->thread) {
2079                 printk(KERN_ERR
2080                        "raid1: couldn't allocate thread for %s\n",
2081                        mdname(mddev));
2082                 goto out_free_conf;
2083         }
2084
2085         if (mddev->recovery_cp != MaxSector)
2086                 printk(KERN_NOTICE "raid1: %s is not clean"
2087                        " -- starting background reconstruction\n",
2088                        mdname(mddev));
2089         printk(KERN_INFO 
2090                 "raid1: raid set %s active with %d out of %d mirrors\n",
2091                 mdname(mddev), mddev->raid_disks - mddev->degraded, 
2092                 mddev->raid_disks);
2093         /*
2094          * Ok, everything is just fine now
2095          */
2096         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2097
2098         mddev->queue->unplug_fn = raid1_unplug;
2099         mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2100         mddev->queue->backing_dev_info.congested_data = mddev;
2101         md_integrity_register(mddev);
2102         return 0;
2103
2104 out_no_mem:
2105         printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
2106                mdname(mddev));
2107
2108 out_free_conf:
2109         if (conf) {
2110                 if (conf->r1bio_pool)
2111                         mempool_destroy(conf->r1bio_pool);
2112                 kfree(conf->mirrors);
2113                 safe_put_page(conf->tmppage);
2114                 kfree(conf->poolinfo);
2115                 kfree(conf);
2116                 mddev->private = NULL;
2117         }
2118 out:
2119         return -EIO;
2120 }
2121
2122 static int stop(mddev_t *mddev)
2123 {
2124         conf_t *conf = mddev->private;
2125         struct bitmap *bitmap = mddev->bitmap;
2126         int behind_wait = 0;
2127
2128         /* wait for behind writes to complete */
2129         while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2130                 behind_wait++;
2131                 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2132                 set_current_state(TASK_UNINTERRUPTIBLE);
2133                 schedule_timeout(HZ); /* wait a second */
2134                 /* need to kick something here to make sure I/O goes? */
2135         }
2136
2137         raise_barrier(conf);
2138         lower_barrier(conf);
2139
2140         md_unregister_thread(mddev->thread);
2141         mddev->thread = NULL;
2142         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2143         if (conf->r1bio_pool)
2144                 mempool_destroy(conf->r1bio_pool);
2145         kfree(conf->mirrors);
2146         kfree(conf->poolinfo);
2147         kfree(conf);
2148         mddev->private = NULL;
2149         return 0;
2150 }
2151
2152 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2153 {
2154         /* no resync is happening, and there is enough space
2155          * on all devices, so we can resize.
2156          * We need to make sure resync covers any new space.
2157          * If the array is shrinking we should possibly wait until
2158          * any io in the removed space completes, but it hardly seems
2159          * worth it.
2160          */
2161         md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2162         if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2163                 return -EINVAL;
2164         set_capacity(mddev->gendisk, mddev->array_sectors);
2165         mddev->changed = 1;
2166         revalidate_disk(mddev->gendisk);
2167         if (sectors > mddev->dev_sectors &&
2168             mddev->recovery_cp == MaxSector) {
2169                 mddev->recovery_cp = mddev->dev_sectors;
2170                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2171         }
2172         mddev->dev_sectors = sectors;
2173         mddev->resync_max_sectors = sectors;
2174         return 0;
2175 }
2176
2177 static int raid1_reshape(mddev_t *mddev)
2178 {
2179         /* We need to:
2180          * 1/ resize the r1bio_pool
2181          * 2/ resize conf->mirrors
2182          *
2183          * We allocate a new r1bio_pool if we can.
2184          * Then raise a device barrier and wait until all IO stops.
2185          * Then resize conf->mirrors and swap in the new r1bio pool.
2186          *
2187          * At the same time, we "pack" the devices so that all the missing
2188          * devices have the higher raid_disk numbers.
2189          */
2190         mempool_t *newpool, *oldpool;
2191         struct pool_info *newpoolinfo;
2192         mirror_info_t *newmirrors;
2193         conf_t *conf = mddev->private;
2194         int cnt, raid_disks;
2195         unsigned long flags;
2196         int d, d2, err;
2197
2198         /* Cannot change chunk_size, layout, or level */
2199         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2200             mddev->layout != mddev->new_layout ||
2201             mddev->level != mddev->new_level) {
2202                 mddev->new_chunk_sectors = mddev->chunk_sectors;
2203                 mddev->new_layout = mddev->layout;
2204                 mddev->new_level = mddev->level;
2205                 return -EINVAL;
2206         }
2207
2208         err = md_allow_write(mddev);
2209         if (err)
2210                 return err;
2211
2212         raid_disks = mddev->raid_disks + mddev->delta_disks;
2213
2214         if (raid_disks < conf->raid_disks) {
2215                 cnt=0;
2216                 for (d= 0; d < conf->raid_disks; d++)
2217                         if (conf->mirrors[d].rdev)
2218                                 cnt++;
2219                 if (cnt > raid_disks)
2220                         return -EBUSY;
2221         }
2222
2223         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2224         if (!newpoolinfo)
2225                 return -ENOMEM;
2226         newpoolinfo->mddev = mddev;
2227         newpoolinfo->raid_disks = raid_disks;
2228
2229         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2230                                  r1bio_pool_free, newpoolinfo);
2231         if (!newpool) {
2232                 kfree(newpoolinfo);
2233                 return -ENOMEM;
2234         }
2235         newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2236         if (!newmirrors) {
2237                 kfree(newpoolinfo);
2238                 mempool_destroy(newpool);
2239                 return -ENOMEM;
2240         }
2241
2242         raise_barrier(conf);
2243
2244         /* ok, everything is stopped */
2245         oldpool = conf->r1bio_pool;
2246         conf->r1bio_pool = newpool;
2247
2248         for (d = d2 = 0; d < conf->raid_disks; d++) {
2249                 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2250                 if (rdev && rdev->raid_disk != d2) {
2251                         char nm[20];
2252                         sprintf(nm, "rd%d", rdev->raid_disk);
2253                         sysfs_remove_link(&mddev->kobj, nm);
2254                         rdev->raid_disk = d2;
2255                         sprintf(nm, "rd%d", rdev->raid_disk);
2256                         sysfs_remove_link(&mddev->kobj, nm);
2257                         if (sysfs_create_link(&mddev->kobj,
2258                                               &rdev->kobj, nm))
2259                                 printk(KERN_WARNING
2260                                        "md/raid1: cannot register "
2261                                        "%s for %s\n",
2262                                        nm, mdname(mddev));
2263                 }
2264                 if (rdev)
2265                         newmirrors[d2++].rdev = rdev;
2266         }
2267         kfree(conf->mirrors);
2268         conf->mirrors = newmirrors;
2269         kfree(conf->poolinfo);
2270         conf->poolinfo = newpoolinfo;
2271
2272         spin_lock_irqsave(&conf->device_lock, flags);
2273         mddev->degraded += (raid_disks - conf->raid_disks);
2274         spin_unlock_irqrestore(&conf->device_lock, flags);
2275         conf->raid_disks = mddev->raid_disks = raid_disks;
2276         mddev->delta_disks = 0;
2277
2278         conf->last_used = 0; /* just make sure it is in-range */
2279         lower_barrier(conf);
2280
2281         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2282         md_wakeup_thread(mddev->thread);
2283
2284         mempool_destroy(oldpool);
2285         return 0;
2286 }
2287
2288 static void raid1_quiesce(mddev_t *mddev, int state)
2289 {
2290         conf_t *conf = mddev->private;
2291
2292         switch(state) {
2293         case 2: /* wake for suspend */
2294                 wake_up(&conf->wait_barrier);
2295                 break;
2296         case 1:
2297                 raise_barrier(conf);
2298                 break;
2299         case 0:
2300                 lower_barrier(conf);
2301                 break;
2302         }
2303 }
2304
2305
2306 static struct mdk_personality raid1_personality =
2307 {
2308         .name           = "raid1",
2309         .level          = 1,
2310         .owner          = THIS_MODULE,
2311         .make_request   = make_request,
2312         .run            = run,
2313         .stop           = stop,
2314         .status         = status,
2315         .error_handler  = error,
2316         .hot_add_disk   = raid1_add_disk,
2317         .hot_remove_disk= raid1_remove_disk,
2318         .spare_active   = raid1_spare_active,
2319         .sync_request   = sync_request,
2320         .resize         = raid1_resize,
2321         .size           = raid1_size,
2322         .check_reshape  = raid1_reshape,
2323         .quiesce        = raid1_quiesce,
2324 };
2325
2326 static int __init raid_init(void)
2327 {
2328         return register_md_personality(&raid1_personality);
2329 }
2330
2331 static void raid_exit(void)
2332 {
2333         unregister_md_personality(&raid1_personality);
2334 }
2335
2336 module_init(raid_init);
2337 module_exit(raid_exit);
2338 MODULE_LICENSE("GPL");
2339 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2340 MODULE_ALIAS("md-raid1");
2341 MODULE_ALIAS("md-level-1");