[PATCH] md: Improve detection of lack of barrier support in raid1
[safe/jmp/linux-2.6] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
37
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
44
45 /*
46  * Number of guaranteed r1bios in case of extreme VM load:
47  */
48 #define NR_RAID1_BIOS 256
49
50
51 static void unplug_slaves(mddev_t *mddev);
52
53 static void allow_barrier(conf_t *conf);
54 static void lower_barrier(conf_t *conf);
55
56 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
57 {
58         struct pool_info *pi = data;
59         r1bio_t *r1_bio;
60         int size = offsetof(r1bio_t, bios[pi->raid_disks]);
61
62         /* allocate a r1bio with room for raid_disks entries in the bios array */
63         r1_bio = kzalloc(size, gfp_flags);
64         if (!r1_bio)
65                 unplug_slaves(pi->mddev);
66
67         return r1_bio;
68 }
69
70 static void r1bio_pool_free(void *r1_bio, void *data)
71 {
72         kfree(r1_bio);
73 }
74
75 #define RESYNC_BLOCK_SIZE (64*1024)
76 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
77 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
78 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
79 #define RESYNC_WINDOW (2048*1024)
80
81 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
82 {
83         struct pool_info *pi = data;
84         struct page *page;
85         r1bio_t *r1_bio;
86         struct bio *bio;
87         int i, j;
88
89         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
90         if (!r1_bio) {
91                 unplug_slaves(pi->mddev);
92                 return NULL;
93         }
94
95         /*
96          * Allocate bios : 1 for reading, n-1 for writing
97          */
98         for (j = pi->raid_disks ; j-- ; ) {
99                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
100                 if (!bio)
101                         goto out_free_bio;
102                 r1_bio->bios[j] = bio;
103         }
104         /*
105          * Allocate RESYNC_PAGES data pages and attach them to
106          * the first bio.
107          * If this is a user-requested check/repair, allocate
108          * RESYNC_PAGES for each bio.
109          */
110         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
111                 j = pi->raid_disks;
112         else
113                 j = 1;
114         while(j--) {
115                 bio = r1_bio->bios[j];
116                 for (i = 0; i < RESYNC_PAGES; i++) {
117                         page = alloc_page(gfp_flags);
118                         if (unlikely(!page))
119                                 goto out_free_pages;
120
121                         bio->bi_io_vec[i].bv_page = page;
122                 }
123         }
124         /* If not user-requests, copy the page pointers to all bios */
125         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
126                 for (i=0; i<RESYNC_PAGES ; i++)
127                         for (j=1; j<pi->raid_disks; j++)
128                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
129                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
130         }
131
132         r1_bio->master_bio = NULL;
133
134         return r1_bio;
135
136 out_free_pages:
137         for (i=0; i < RESYNC_PAGES ; i++)
138                 for (j=0 ; j < pi->raid_disks; j++)
139                         safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
140         j = -1;
141 out_free_bio:
142         while ( ++j < pi->raid_disks )
143                 bio_put(r1_bio->bios[j]);
144         r1bio_pool_free(r1_bio, data);
145         return NULL;
146 }
147
148 static void r1buf_pool_free(void *__r1_bio, void *data)
149 {
150         struct pool_info *pi = data;
151         int i,j;
152         r1bio_t *r1bio = __r1_bio;
153
154         for (i = 0; i < RESYNC_PAGES; i++)
155                 for (j = pi->raid_disks; j-- ;) {
156                         if (j == 0 ||
157                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
158                             r1bio->bios[0]->bi_io_vec[i].bv_page)
159                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
160                 }
161         for (i=0 ; i < pi->raid_disks; i++)
162                 bio_put(r1bio->bios[i]);
163
164         r1bio_pool_free(r1bio, data);
165 }
166
167 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
168 {
169         int i;
170
171         for (i = 0; i < conf->raid_disks; i++) {
172                 struct bio **bio = r1_bio->bios + i;
173                 if (*bio && *bio != IO_BLOCKED)
174                         bio_put(*bio);
175                 *bio = NULL;
176         }
177 }
178
179 static void free_r1bio(r1bio_t *r1_bio)
180 {
181         conf_t *conf = mddev_to_conf(r1_bio->mddev);
182
183         /*
184          * Wake up any possible resync thread that waits for the device
185          * to go idle.
186          */
187         allow_barrier(conf);
188
189         put_all_bios(conf, r1_bio);
190         mempool_free(r1_bio, conf->r1bio_pool);
191 }
192
193 static void put_buf(r1bio_t *r1_bio)
194 {
195         conf_t *conf = mddev_to_conf(r1_bio->mddev);
196         int i;
197
198         for (i=0; i<conf->raid_disks; i++) {
199                 struct bio *bio = r1_bio->bios[i];
200                 if (bio->bi_end_io)
201                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
202         }
203
204         mempool_free(r1_bio, conf->r1buf_pool);
205
206         lower_barrier(conf);
207 }
208
209 static void reschedule_retry(r1bio_t *r1_bio)
210 {
211         unsigned long flags;
212         mddev_t *mddev = r1_bio->mddev;
213         conf_t *conf = mddev_to_conf(mddev);
214
215         spin_lock_irqsave(&conf->device_lock, flags);
216         list_add(&r1_bio->retry_list, &conf->retry_list);
217         conf->nr_queued ++;
218         spin_unlock_irqrestore(&conf->device_lock, flags);
219
220         wake_up(&conf->wait_barrier);
221         md_wakeup_thread(mddev->thread);
222 }
223
224 /*
225  * raid_end_bio_io() is called when we have finished servicing a mirrored
226  * operation and are ready to return a success/failure code to the buffer
227  * cache layer.
228  */
229 static void raid_end_bio_io(r1bio_t *r1_bio)
230 {
231         struct bio *bio = r1_bio->master_bio;
232
233         /* if nobody has done the final endio yet, do it now */
234         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
235                 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
236                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
237                         (unsigned long long) bio->bi_sector,
238                         (unsigned long long) bio->bi_sector +
239                                 (bio->bi_size >> 9) - 1);
240
241                 bio_endio(bio, bio->bi_size,
242                         test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
243         }
244         free_r1bio(r1_bio);
245 }
246
247 /*
248  * Update disk head position estimator based on IRQ completion info.
249  */
250 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
251 {
252         conf_t *conf = mddev_to_conf(r1_bio->mddev);
253
254         conf->mirrors[disk].head_position =
255                 r1_bio->sector + (r1_bio->sectors);
256 }
257
258 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
259 {
260         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
261         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
262         int mirror;
263         conf_t *conf = mddev_to_conf(r1_bio->mddev);
264
265         if (bio->bi_size)
266                 return 1;
267         
268         mirror = r1_bio->read_disk;
269         /*
270          * this branch is our 'one mirror IO has finished' event handler:
271          */
272         update_head_pos(mirror, r1_bio);
273
274         if (uptodate || conf->working_disks <= 1) {
275                 /*
276                  * Set R1BIO_Uptodate in our master bio, so that
277                  * we will return a good error code for to the higher
278                  * levels even if IO on some other mirrored buffer fails.
279                  *
280                  * The 'master' represents the composite IO operation to
281                  * user-side. So if something waits for IO, then it will
282                  * wait for the 'master' bio.
283                  */
284                 if (uptodate)
285                         set_bit(R1BIO_Uptodate, &r1_bio->state);
286
287                 raid_end_bio_io(r1_bio);
288         } else {
289                 /*
290                  * oops, read error:
291                  */
292                 char b[BDEVNAME_SIZE];
293                 if (printk_ratelimit())
294                         printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
295                                bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
296                 reschedule_retry(r1_bio);
297         }
298
299         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
300         return 0;
301 }
302
303 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
304 {
305         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
306         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
307         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
308         conf_t *conf = mddev_to_conf(r1_bio->mddev);
309         struct bio *to_put = NULL;
310
311         if (bio->bi_size)
312                 return 1;
313
314         for (mirror = 0; mirror < conf->raid_disks; mirror++)
315                 if (r1_bio->bios[mirror] == bio)
316                         break;
317
318         if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
319                 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
320                 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
321                 r1_bio->mddev->barriers_work = 0;
322         } else {
323                 /*
324                  * this branch is our 'one mirror IO has finished' event handler:
325                  */
326                 r1_bio->bios[mirror] = NULL;
327                 to_put = bio;
328                 if (!uptodate) {
329                         md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
330                         /* an I/O failed, we can't clear the bitmap */
331                         set_bit(R1BIO_Degraded, &r1_bio->state);
332                 } else
333                         /*
334                          * Set R1BIO_Uptodate in our master bio, so that
335                          * we will return a good error code for to the higher
336                          * levels even if IO on some other mirrored buffer fails.
337                          *
338                          * The 'master' represents the composite IO operation to
339                          * user-side. So if something waits for IO, then it will
340                          * wait for the 'master' bio.
341                          */
342                         set_bit(R1BIO_Uptodate, &r1_bio->state);
343
344                 update_head_pos(mirror, r1_bio);
345
346                 if (behind) {
347                         if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
348                                 atomic_dec(&r1_bio->behind_remaining);
349
350                         /* In behind mode, we ACK the master bio once the I/O has safely
351                          * reached all non-writemostly disks. Setting the Returned bit
352                          * ensures that this gets done only once -- we don't ever want to
353                          * return -EIO here, instead we'll wait */
354
355                         if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
356                             test_bit(R1BIO_Uptodate, &r1_bio->state)) {
357                                 /* Maybe we can return now */
358                                 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
359                                         struct bio *mbio = r1_bio->master_bio;
360                                         PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
361                                                (unsigned long long) mbio->bi_sector,
362                                                (unsigned long long) mbio->bi_sector +
363                                                (mbio->bi_size >> 9) - 1);
364                                         bio_endio(mbio, mbio->bi_size, 0);
365                                 }
366                         }
367                 }
368         }
369         /*
370          *
371          * Let's see if all mirrored write operations have finished
372          * already.
373          */
374         if (atomic_dec_and_test(&r1_bio->remaining)) {
375                 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
376                         reschedule_retry(r1_bio);
377                         /* Don't dec_pending yet, we want to hold
378                          * the reference over the retry
379                          */
380                         goto out;
381                 }
382                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
383                         /* free extra copy of the data pages */
384                         int i = bio->bi_vcnt;
385                         while (i--)
386                                 safe_put_page(bio->bi_io_vec[i].bv_page);
387                 }
388                 /* clear the bitmap if all writes complete successfully */
389                 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
390                                 r1_bio->sectors,
391                                 !test_bit(R1BIO_Degraded, &r1_bio->state),
392                                 behind);
393                 md_write_end(r1_bio->mddev);
394                 raid_end_bio_io(r1_bio);
395         }
396
397         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
398  out:
399         if (to_put)
400                 bio_put(to_put);
401
402         return 0;
403 }
404
405
406 /*
407  * This routine returns the disk from which the requested read should
408  * be done. There is a per-array 'next expected sequential IO' sector
409  * number - if this matches on the next IO then we use the last disk.
410  * There is also a per-disk 'last know head position' sector that is
411  * maintained from IRQ contexts, both the normal and the resync IO
412  * completion handlers update this position correctly. If there is no
413  * perfect sequential match then we pick the disk whose head is closest.
414  *
415  * If there are 2 mirrors in the same 2 devices, performance degrades
416  * because position is mirror, not device based.
417  *
418  * The rdev for the device selected will have nr_pending incremented.
419  */
420 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
421 {
422         const unsigned long this_sector = r1_bio->sector;
423         int new_disk = conf->last_used, disk = new_disk;
424         int wonly_disk = -1;
425         const int sectors = r1_bio->sectors;
426         sector_t new_distance, current_distance;
427         mdk_rdev_t *rdev;
428
429         rcu_read_lock();
430         /*
431          * Check if we can balance. We can balance on the whole
432          * device if no resync is going on, or below the resync window.
433          * We take the first readable disk when above the resync window.
434          */
435  retry:
436         if (conf->mddev->recovery_cp < MaxSector &&
437             (this_sector + sectors >= conf->next_resync)) {
438                 /* Choose the first operation device, for consistancy */
439                 new_disk = 0;
440
441                 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
442                      r1_bio->bios[new_disk] == IO_BLOCKED ||
443                      !rdev || !test_bit(In_sync, &rdev->flags)
444                              || test_bit(WriteMostly, &rdev->flags);
445                      rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
446
447                         if (rdev && test_bit(In_sync, &rdev->flags) &&
448                                 r1_bio->bios[new_disk] != IO_BLOCKED)
449                                 wonly_disk = new_disk;
450
451                         if (new_disk == conf->raid_disks - 1) {
452                                 new_disk = wonly_disk;
453                                 break;
454                         }
455                 }
456                 goto rb_out;
457         }
458
459
460         /* make sure the disk is operational */
461         for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
462              r1_bio->bios[new_disk] == IO_BLOCKED ||
463              !rdev || !test_bit(In_sync, &rdev->flags) ||
464                      test_bit(WriteMostly, &rdev->flags);
465              rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
466
467                 if (rdev && test_bit(In_sync, &rdev->flags) &&
468                     r1_bio->bios[new_disk] != IO_BLOCKED)
469                         wonly_disk = new_disk;
470
471                 if (new_disk <= 0)
472                         new_disk = conf->raid_disks;
473                 new_disk--;
474                 if (new_disk == disk) {
475                         new_disk = wonly_disk;
476                         break;
477                 }
478         }
479
480         if (new_disk < 0)
481                 goto rb_out;
482
483         disk = new_disk;
484         /* now disk == new_disk == starting point for search */
485
486         /*
487          * Don't change to another disk for sequential reads:
488          */
489         if (conf->next_seq_sect == this_sector)
490                 goto rb_out;
491         if (this_sector == conf->mirrors[new_disk].head_position)
492                 goto rb_out;
493
494         current_distance = abs(this_sector - conf->mirrors[disk].head_position);
495
496         /* Find the disk whose head is closest */
497
498         do {
499                 if (disk <= 0)
500                         disk = conf->raid_disks;
501                 disk--;
502
503                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
504
505                 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
506                     !test_bit(In_sync, &rdev->flags) ||
507                     test_bit(WriteMostly, &rdev->flags))
508                         continue;
509
510                 if (!atomic_read(&rdev->nr_pending)) {
511                         new_disk = disk;
512                         break;
513                 }
514                 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
515                 if (new_distance < current_distance) {
516                         current_distance = new_distance;
517                         new_disk = disk;
518                 }
519         } while (disk != conf->last_used);
520
521  rb_out:
522
523
524         if (new_disk >= 0) {
525                 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
526                 if (!rdev)
527                         goto retry;
528                 atomic_inc(&rdev->nr_pending);
529                 if (!test_bit(In_sync, &rdev->flags)) {
530                         /* cannot risk returning a device that failed
531                          * before we inc'ed nr_pending
532                          */
533                         rdev_dec_pending(rdev, conf->mddev);
534                         goto retry;
535                 }
536                 conf->next_seq_sect = this_sector + sectors;
537                 conf->last_used = new_disk;
538         }
539         rcu_read_unlock();
540
541         return new_disk;
542 }
543
544 static void unplug_slaves(mddev_t *mddev)
545 {
546         conf_t *conf = mddev_to_conf(mddev);
547         int i;
548
549         rcu_read_lock();
550         for (i=0; i<mddev->raid_disks; i++) {
551                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
552                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
553                         request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
554
555                         atomic_inc(&rdev->nr_pending);
556                         rcu_read_unlock();
557
558                         if (r_queue->unplug_fn)
559                                 r_queue->unplug_fn(r_queue);
560
561                         rdev_dec_pending(rdev, mddev);
562                         rcu_read_lock();
563                 }
564         }
565         rcu_read_unlock();
566 }
567
568 static void raid1_unplug(request_queue_t *q)
569 {
570         mddev_t *mddev = q->queuedata;
571
572         unplug_slaves(mddev);
573         md_wakeup_thread(mddev->thread);
574 }
575
576 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
577                              sector_t *error_sector)
578 {
579         mddev_t *mddev = q->queuedata;
580         conf_t *conf = mddev_to_conf(mddev);
581         int i, ret = 0;
582
583         rcu_read_lock();
584         for (i=0; i<mddev->raid_disks && ret == 0; i++) {
585                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
586                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
587                         struct block_device *bdev = rdev->bdev;
588                         request_queue_t *r_queue = bdev_get_queue(bdev);
589
590                         if (!r_queue->issue_flush_fn)
591                                 ret = -EOPNOTSUPP;
592                         else {
593                                 atomic_inc(&rdev->nr_pending);
594                                 rcu_read_unlock();
595                                 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
596                                                               error_sector);
597                                 rdev_dec_pending(rdev, mddev);
598                                 rcu_read_lock();
599                         }
600                 }
601         }
602         rcu_read_unlock();
603         return ret;
604 }
605
606 /* Barriers....
607  * Sometimes we need to suspend IO while we do something else,
608  * either some resync/recovery, or reconfigure the array.
609  * To do this we raise a 'barrier'.
610  * The 'barrier' is a counter that can be raised multiple times
611  * to count how many activities are happening which preclude
612  * normal IO.
613  * We can only raise the barrier if there is no pending IO.
614  * i.e. if nr_pending == 0.
615  * We choose only to raise the barrier if no-one is waiting for the
616  * barrier to go down.  This means that as soon as an IO request
617  * is ready, no other operations which require a barrier will start
618  * until the IO request has had a chance.
619  *
620  * So: regular IO calls 'wait_barrier'.  When that returns there
621  *    is no backgroup IO happening,  It must arrange to call
622  *    allow_barrier when it has finished its IO.
623  * backgroup IO calls must call raise_barrier.  Once that returns
624  *    there is no normal IO happeing.  It must arrange to call
625  *    lower_barrier when the particular background IO completes.
626  */
627 #define RESYNC_DEPTH 32
628
629 static void raise_barrier(conf_t *conf)
630 {
631         spin_lock_irq(&conf->resync_lock);
632
633         /* Wait until no block IO is waiting */
634         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
635                             conf->resync_lock,
636                             raid1_unplug(conf->mddev->queue));
637
638         /* block any new IO from starting */
639         conf->barrier++;
640
641         /* No wait for all pending IO to complete */
642         wait_event_lock_irq(conf->wait_barrier,
643                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
644                             conf->resync_lock,
645                             raid1_unplug(conf->mddev->queue));
646
647         spin_unlock_irq(&conf->resync_lock);
648 }
649
650 static void lower_barrier(conf_t *conf)
651 {
652         unsigned long flags;
653         spin_lock_irqsave(&conf->resync_lock, flags);
654         conf->barrier--;
655         spin_unlock_irqrestore(&conf->resync_lock, flags);
656         wake_up(&conf->wait_barrier);
657 }
658
659 static void wait_barrier(conf_t *conf)
660 {
661         spin_lock_irq(&conf->resync_lock);
662         if (conf->barrier) {
663                 conf->nr_waiting++;
664                 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
665                                     conf->resync_lock,
666                                     raid1_unplug(conf->mddev->queue));
667                 conf->nr_waiting--;
668         }
669         conf->nr_pending++;
670         spin_unlock_irq(&conf->resync_lock);
671 }
672
673 static void allow_barrier(conf_t *conf)
674 {
675         unsigned long flags;
676         spin_lock_irqsave(&conf->resync_lock, flags);
677         conf->nr_pending--;
678         spin_unlock_irqrestore(&conf->resync_lock, flags);
679         wake_up(&conf->wait_barrier);
680 }
681
682 static void freeze_array(conf_t *conf)
683 {
684         /* stop syncio and normal IO and wait for everything to
685          * go quite.
686          * We increment barrier and nr_waiting, and then
687          * wait until barrier+nr_pending match nr_queued+2
688          */
689         spin_lock_irq(&conf->resync_lock);
690         conf->barrier++;
691         conf->nr_waiting++;
692         wait_event_lock_irq(conf->wait_barrier,
693                             conf->barrier+conf->nr_pending == conf->nr_queued+2,
694                             conf->resync_lock,
695                             raid1_unplug(conf->mddev->queue));
696         spin_unlock_irq(&conf->resync_lock);
697 }
698 static void unfreeze_array(conf_t *conf)
699 {
700         /* reverse the effect of the freeze */
701         spin_lock_irq(&conf->resync_lock);
702         conf->barrier--;
703         conf->nr_waiting--;
704         wake_up(&conf->wait_barrier);
705         spin_unlock_irq(&conf->resync_lock);
706 }
707
708
709 /* duplicate the data pages for behind I/O */
710 static struct page **alloc_behind_pages(struct bio *bio)
711 {
712         int i;
713         struct bio_vec *bvec;
714         struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
715                                         GFP_NOIO);
716         if (unlikely(!pages))
717                 goto do_sync_io;
718
719         bio_for_each_segment(bvec, bio, i) {
720                 pages[i] = alloc_page(GFP_NOIO);
721                 if (unlikely(!pages[i]))
722                         goto do_sync_io;
723                 memcpy(kmap(pages[i]) + bvec->bv_offset,
724                         kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
725                 kunmap(pages[i]);
726                 kunmap(bvec->bv_page);
727         }
728
729         return pages;
730
731 do_sync_io:
732         if (pages)
733                 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
734                         put_page(pages[i]);
735         kfree(pages);
736         PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
737         return NULL;
738 }
739
740 static int make_request(request_queue_t *q, struct bio * bio)
741 {
742         mddev_t *mddev = q->queuedata;
743         conf_t *conf = mddev_to_conf(mddev);
744         mirror_info_t *mirror;
745         r1bio_t *r1_bio;
746         struct bio *read_bio;
747         int i, targets = 0, disks;
748         mdk_rdev_t *rdev;
749         struct bitmap *bitmap = mddev->bitmap;
750         unsigned long flags;
751         struct bio_list bl;
752         struct page **behind_pages = NULL;
753         const int rw = bio_data_dir(bio);
754         int do_barriers;
755
756         /*
757          * Register the new request and wait if the reconstruction
758          * thread has put up a bar for new requests.
759          * Continue immediately if no resync is active currently.
760          * We test barriers_work *after* md_write_start as md_write_start
761          * may cause the first superblock write, and that will check out
762          * if barriers work.
763          */
764
765         md_write_start(mddev, bio); /* wait on superblock update early */
766
767         if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
768                 if (rw == WRITE)
769                         md_write_end(mddev);
770                 bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
771                 return 0;
772         }
773
774         wait_barrier(conf);
775
776         disk_stat_inc(mddev->gendisk, ios[rw]);
777         disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
778
779         /*
780          * make_request() can abort the operation when READA is being
781          * used and no empty request is available.
782          *
783          */
784         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
785
786         r1_bio->master_bio = bio;
787         r1_bio->sectors = bio->bi_size >> 9;
788         r1_bio->state = 0;
789         r1_bio->mddev = mddev;
790         r1_bio->sector = bio->bi_sector;
791
792         if (rw == READ) {
793                 /*
794                  * read balancing logic:
795                  */
796                 int rdisk = read_balance(conf, r1_bio);
797
798                 if (rdisk < 0) {
799                         /* couldn't find anywhere to read from */
800                         raid_end_bio_io(r1_bio);
801                         return 0;
802                 }
803                 mirror = conf->mirrors + rdisk;
804
805                 r1_bio->read_disk = rdisk;
806
807                 read_bio = bio_clone(bio, GFP_NOIO);
808
809                 r1_bio->bios[rdisk] = read_bio;
810
811                 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
812                 read_bio->bi_bdev = mirror->rdev->bdev;
813                 read_bio->bi_end_io = raid1_end_read_request;
814                 read_bio->bi_rw = READ;
815                 read_bio->bi_private = r1_bio;
816
817                 generic_make_request(read_bio);
818                 return 0;
819         }
820
821         /*
822          * WRITE:
823          */
824         /* first select target devices under spinlock and
825          * inc refcount on their rdev.  Record them by setting
826          * bios[x] to bio
827          */
828         disks = conf->raid_disks;
829 #if 0
830         { static int first=1;
831         if (first) printk("First Write sector %llu disks %d\n",
832                           (unsigned long long)r1_bio->sector, disks);
833         first = 0;
834         }
835 #endif
836         rcu_read_lock();
837         for (i = 0;  i < disks; i++) {
838                 if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
839                     !test_bit(Faulty, &rdev->flags)) {
840                         atomic_inc(&rdev->nr_pending);
841                         if (test_bit(Faulty, &rdev->flags)) {
842                                 rdev_dec_pending(rdev, mddev);
843                                 r1_bio->bios[i] = NULL;
844                         } else
845                                 r1_bio->bios[i] = bio;
846                         targets++;
847                 } else
848                         r1_bio->bios[i] = NULL;
849         }
850         rcu_read_unlock();
851
852         BUG_ON(targets == 0); /* we never fail the last device */
853
854         if (targets < conf->raid_disks) {
855                 /* array is degraded, we will not clear the bitmap
856                  * on I/O completion (see raid1_end_write_request) */
857                 set_bit(R1BIO_Degraded, &r1_bio->state);
858         }
859
860         /* do behind I/O ? */
861         if (bitmap &&
862             atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
863             (behind_pages = alloc_behind_pages(bio)) != NULL)
864                 set_bit(R1BIO_BehindIO, &r1_bio->state);
865
866         atomic_set(&r1_bio->remaining, 0);
867         atomic_set(&r1_bio->behind_remaining, 0);
868
869         do_barriers = bio_barrier(bio);
870         if (do_barriers)
871                 set_bit(R1BIO_Barrier, &r1_bio->state);
872
873         bio_list_init(&bl);
874         for (i = 0; i < disks; i++) {
875                 struct bio *mbio;
876                 if (!r1_bio->bios[i])
877                         continue;
878
879                 mbio = bio_clone(bio, GFP_NOIO);
880                 r1_bio->bios[i] = mbio;
881
882                 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
883                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
884                 mbio->bi_end_io = raid1_end_write_request;
885                 mbio->bi_rw = WRITE | do_barriers;
886                 mbio->bi_private = r1_bio;
887
888                 if (behind_pages) {
889                         struct bio_vec *bvec;
890                         int j;
891
892                         /* Yes, I really want the '__' version so that
893                          * we clear any unused pointer in the io_vec, rather
894                          * than leave them unchanged.  This is important
895                          * because when we come to free the pages, we won't
896                          * know the originial bi_idx, so we just free
897                          * them all
898                          */
899                         __bio_for_each_segment(bvec, mbio, j, 0)
900                                 bvec->bv_page = behind_pages[j];
901                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
902                                 atomic_inc(&r1_bio->behind_remaining);
903                 }
904
905                 atomic_inc(&r1_bio->remaining);
906
907                 bio_list_add(&bl, mbio);
908         }
909         kfree(behind_pages); /* the behind pages are attached to the bios now */
910
911         bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
912                                 test_bit(R1BIO_BehindIO, &r1_bio->state));
913         spin_lock_irqsave(&conf->device_lock, flags);
914         bio_list_merge(&conf->pending_bio_list, &bl);
915         bio_list_init(&bl);
916
917         blk_plug_device(mddev->queue);
918         spin_unlock_irqrestore(&conf->device_lock, flags);
919
920 #if 0
921         while ((bio = bio_list_pop(&bl)) != NULL)
922                 generic_make_request(bio);
923 #endif
924
925         return 0;
926 }
927
928 static void status(struct seq_file *seq, mddev_t *mddev)
929 {
930         conf_t *conf = mddev_to_conf(mddev);
931         int i;
932
933         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
934                                                 conf->working_disks);
935         for (i = 0; i < conf->raid_disks; i++)
936                 seq_printf(seq, "%s",
937                               conf->mirrors[i].rdev &&
938                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
939         seq_printf(seq, "]");
940 }
941
942
943 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
944 {
945         char b[BDEVNAME_SIZE];
946         conf_t *conf = mddev_to_conf(mddev);
947
948         /*
949          * If it is not operational, then we have already marked it as dead
950          * else if it is the last working disks, ignore the error, let the
951          * next level up know.
952          * else mark the drive as failed
953          */
954         if (test_bit(In_sync, &rdev->flags)
955             && conf->working_disks == 1)
956                 /*
957                  * Don't fail the drive, act as though we were just a
958                  * normal single drive
959                  */
960                 return;
961         if (test_bit(In_sync, &rdev->flags)) {
962                 mddev->degraded++;
963                 conf->working_disks--;
964                 /*
965                  * if recovery is running, make sure it aborts.
966                  */
967                 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
968         }
969         clear_bit(In_sync, &rdev->flags);
970         set_bit(Faulty, &rdev->flags);
971         mddev->sb_dirty = 1;
972         printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
973                 "       Operation continuing on %d devices\n",
974                 bdevname(rdev->bdev,b), conf->working_disks);
975 }
976
977 static void print_conf(conf_t *conf)
978 {
979         int i;
980         mirror_info_t *tmp;
981
982         printk("RAID1 conf printout:\n");
983         if (!conf) {
984                 printk("(!conf)\n");
985                 return;
986         }
987         printk(" --- wd:%d rd:%d\n", conf->working_disks,
988                 conf->raid_disks);
989
990         for (i = 0; i < conf->raid_disks; i++) {
991                 char b[BDEVNAME_SIZE];
992                 tmp = conf->mirrors + i;
993                 if (tmp->rdev)
994                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
995                                 i, !test_bit(In_sync, &tmp->rdev->flags), !test_bit(Faulty, &tmp->rdev->flags),
996                                 bdevname(tmp->rdev->bdev,b));
997         }
998 }
999
1000 static void close_sync(conf_t *conf)
1001 {
1002         wait_barrier(conf);
1003         allow_barrier(conf);
1004
1005         mempool_destroy(conf->r1buf_pool);
1006         conf->r1buf_pool = NULL;
1007 }
1008
1009 static int raid1_spare_active(mddev_t *mddev)
1010 {
1011         int i;
1012         conf_t *conf = mddev->private;
1013         mirror_info_t *tmp;
1014
1015         /*
1016          * Find all failed disks within the RAID1 configuration 
1017          * and mark them readable
1018          */
1019         for (i = 0; i < conf->raid_disks; i++) {
1020                 tmp = conf->mirrors + i;
1021                 if (tmp->rdev 
1022                     && !test_bit(Faulty, &tmp->rdev->flags)
1023                     && !test_bit(In_sync, &tmp->rdev->flags)) {
1024                         conf->working_disks++;
1025                         mddev->degraded--;
1026                         set_bit(In_sync, &tmp->rdev->flags);
1027                 }
1028         }
1029
1030         print_conf(conf);
1031         return 0;
1032 }
1033
1034
1035 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1036 {
1037         conf_t *conf = mddev->private;
1038         int found = 0;
1039         int mirror = 0;
1040         mirror_info_t *p;
1041
1042         for (mirror=0; mirror < mddev->raid_disks; mirror++)
1043                 if ( !(p=conf->mirrors+mirror)->rdev) {
1044
1045                         blk_queue_stack_limits(mddev->queue,
1046                                                rdev->bdev->bd_disk->queue);
1047                         /* as we don't honour merge_bvec_fn, we must never risk
1048                          * violating it, so limit ->max_sector to one PAGE, as
1049                          * a one page request is never in violation.
1050                          */
1051                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1052                             mddev->queue->max_sectors > (PAGE_SIZE>>9))
1053                                 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1054
1055                         p->head_position = 0;
1056                         rdev->raid_disk = mirror;
1057                         found = 1;
1058                         /* As all devices are equivalent, we don't need a full recovery
1059                          * if this was recently any drive of the array
1060                          */
1061                         if (rdev->saved_raid_disk < 0)
1062                                 conf->fullsync = 1;
1063                         rcu_assign_pointer(p->rdev, rdev);
1064                         break;
1065                 }
1066
1067         print_conf(conf);
1068         return found;
1069 }
1070
1071 static int raid1_remove_disk(mddev_t *mddev, int number)
1072 {
1073         conf_t *conf = mddev->private;
1074         int err = 0;
1075         mdk_rdev_t *rdev;
1076         mirror_info_t *p = conf->mirrors+ number;
1077
1078         print_conf(conf);
1079         rdev = p->rdev;
1080         if (rdev) {
1081                 if (test_bit(In_sync, &rdev->flags) ||
1082                     atomic_read(&rdev->nr_pending)) {
1083                         err = -EBUSY;
1084                         goto abort;
1085                 }
1086                 p->rdev = NULL;
1087                 synchronize_rcu();
1088                 if (atomic_read(&rdev->nr_pending)) {
1089                         /* lost the race, try later */
1090                         err = -EBUSY;
1091                         p->rdev = rdev;
1092                 }
1093         }
1094 abort:
1095
1096         print_conf(conf);
1097         return err;
1098 }
1099
1100
1101 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
1102 {
1103         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1104         int i;
1105
1106         if (bio->bi_size)
1107                 return 1;
1108
1109         for (i=r1_bio->mddev->raid_disks; i--; )
1110                 if (r1_bio->bios[i] == bio)
1111                         break;
1112         BUG_ON(i < 0);
1113         update_head_pos(i, r1_bio);
1114         /*
1115          * we have read a block, now it needs to be re-written,
1116          * or re-read if the read failed.
1117          * We don't do much here, just schedule handling by raid1d
1118          */
1119         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1120                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1121
1122         if (atomic_dec_and_test(&r1_bio->remaining))
1123                 reschedule_retry(r1_bio);
1124         return 0;
1125 }
1126
1127 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
1128 {
1129         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1130         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1131         mddev_t *mddev = r1_bio->mddev;
1132         conf_t *conf = mddev_to_conf(mddev);
1133         int i;
1134         int mirror=0;
1135
1136         if (bio->bi_size)
1137                 return 1;
1138
1139         for (i = 0; i < conf->raid_disks; i++)
1140                 if (r1_bio->bios[i] == bio) {
1141                         mirror = i;
1142                         break;
1143                 }
1144         if (!uptodate) {
1145                 int sync_blocks = 0;
1146                 sector_t s = r1_bio->sector;
1147                 long sectors_to_go = r1_bio->sectors;
1148                 /* make sure these bits doesn't get cleared. */
1149                 do {
1150                         bitmap_end_sync(mddev->bitmap, r1_bio->sector,
1151                                         &sync_blocks, 1);
1152                         s += sync_blocks;
1153                         sectors_to_go -= sync_blocks;
1154                 } while (sectors_to_go > 0);
1155                 md_error(mddev, conf->mirrors[mirror].rdev);
1156         }
1157
1158         update_head_pos(mirror, r1_bio);
1159
1160         if (atomic_dec_and_test(&r1_bio->remaining)) {
1161                 md_done_sync(mddev, r1_bio->sectors, uptodate);
1162                 put_buf(r1_bio);
1163         }
1164         return 0;
1165 }
1166
1167 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1168 {
1169         conf_t *conf = mddev_to_conf(mddev);
1170         int i;
1171         int disks = conf->raid_disks;
1172         struct bio *bio, *wbio;
1173
1174         bio = r1_bio->bios[r1_bio->read_disk];
1175
1176
1177         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1178                 /* We have read all readable devices.  If we haven't
1179                  * got the block, then there is no hope left.
1180                  * If we have, then we want to do a comparison
1181                  * and skip the write if everything is the same.
1182                  * If any blocks failed to read, then we need to
1183                  * attempt an over-write
1184                  */
1185                 int primary;
1186                 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1187                         for (i=0; i<mddev->raid_disks; i++)
1188                                 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1189                                         md_error(mddev, conf->mirrors[i].rdev);
1190
1191                         md_done_sync(mddev, r1_bio->sectors, 1);
1192                         put_buf(r1_bio);
1193                         return;
1194                 }
1195                 for (primary=0; primary<mddev->raid_disks; primary++)
1196                         if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1197                             test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1198                                 r1_bio->bios[primary]->bi_end_io = NULL;
1199                                 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1200                                 break;
1201                         }
1202                 r1_bio->read_disk = primary;
1203                 for (i=0; i<mddev->raid_disks; i++)
1204                         if (r1_bio->bios[i]->bi_end_io == end_sync_read &&
1205                             test_bit(BIO_UPTODATE, &r1_bio->bios[i]->bi_flags)) {
1206                                 int j;
1207                                 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1208                                 struct bio *pbio = r1_bio->bios[primary];
1209                                 struct bio *sbio = r1_bio->bios[i];
1210                                 for (j = vcnt; j-- ; )
1211                                         if (memcmp(page_address(pbio->bi_io_vec[j].bv_page),
1212                                                    page_address(sbio->bi_io_vec[j].bv_page),
1213                                                    PAGE_SIZE))
1214                                                 break;
1215                                 if (j >= 0)
1216                                         mddev->resync_mismatches += r1_bio->sectors;
1217                                 if (j < 0 || test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
1218                                         sbio->bi_end_io = NULL;
1219                                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1220                                 } else {
1221                                         /* fixup the bio for reuse */
1222                                         sbio->bi_vcnt = vcnt;
1223                                         sbio->bi_size = r1_bio->sectors << 9;
1224                                         sbio->bi_idx = 0;
1225                                         sbio->bi_phys_segments = 0;
1226                                         sbio->bi_hw_segments = 0;
1227                                         sbio->bi_hw_front_size = 0;
1228                                         sbio->bi_hw_back_size = 0;
1229                                         sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1230                                         sbio->bi_flags |= 1 << BIO_UPTODATE;
1231                                         sbio->bi_next = NULL;
1232                                         sbio->bi_sector = r1_bio->sector +
1233                                                 conf->mirrors[i].rdev->data_offset;
1234                                         sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1235                                 }
1236                         }
1237         }
1238         if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1239                 /* ouch - failed to read all of that.
1240                  * Try some synchronous reads of other devices to get
1241                  * good data, much like with normal read errors.  Only
1242                  * read into the pages we already have so they we don't
1243                  * need to re-issue the read request.
1244                  * We don't need to freeze the array, because being in an
1245                  * active sync request, there is no normal IO, and
1246                  * no overlapping syncs.
1247                  */
1248                 sector_t sect = r1_bio->sector;
1249                 int sectors = r1_bio->sectors;
1250                 int idx = 0;
1251
1252                 while(sectors) {
1253                         int s = sectors;
1254                         int d = r1_bio->read_disk;
1255                         int success = 0;
1256                         mdk_rdev_t *rdev;
1257
1258                         if (s > (PAGE_SIZE>>9))
1259                                 s = PAGE_SIZE >> 9;
1260                         do {
1261                                 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1262                                         rdev = conf->mirrors[d].rdev;
1263                                         if (sync_page_io(rdev->bdev,
1264                                                          sect + rdev->data_offset,
1265                                                          s<<9,
1266                                                          bio->bi_io_vec[idx].bv_page,
1267                                                          READ)) {
1268                                                 success = 1;
1269                                                 break;
1270                                         }
1271                                 }
1272                                 d++;
1273                                 if (d == conf->raid_disks)
1274                                         d = 0;
1275                         } while (!success && d != r1_bio->read_disk);
1276
1277                         if (success) {
1278                                 int start = d;
1279                                 /* write it back and re-read */
1280                                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1281                                 while (d != r1_bio->read_disk) {
1282                                         if (d == 0)
1283                                                 d = conf->raid_disks;
1284                                         d--;
1285                                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1286                                                 continue;
1287                                         rdev = conf->mirrors[d].rdev;
1288                                         atomic_add(s, &rdev->corrected_errors);
1289                                         if (sync_page_io(rdev->bdev,
1290                                                          sect + rdev->data_offset,
1291                                                          s<<9,
1292                                                          bio->bi_io_vec[idx].bv_page,
1293                                                          WRITE) == 0)
1294                                                 md_error(mddev, rdev);
1295                                 }
1296                                 d = start;
1297                                 while (d != r1_bio->read_disk) {
1298                                         if (d == 0)
1299                                                 d = conf->raid_disks;
1300                                         d--;
1301                                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1302                                                 continue;
1303                                         rdev = conf->mirrors[d].rdev;
1304                                         if (sync_page_io(rdev->bdev,
1305                                                          sect + rdev->data_offset,
1306                                                          s<<9,
1307                                                          bio->bi_io_vec[idx].bv_page,
1308                                                          READ) == 0)
1309                                                 md_error(mddev, rdev);
1310                                 }
1311                         } else {
1312                                 char b[BDEVNAME_SIZE];
1313                                 /* Cannot read from anywhere, array is toast */
1314                                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1315                                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1316                                        " for block %llu\n",
1317                                        bdevname(bio->bi_bdev,b),
1318                                        (unsigned long long)r1_bio->sector);
1319                                 md_done_sync(mddev, r1_bio->sectors, 0);
1320                                 put_buf(r1_bio);
1321                                 return;
1322                         }
1323                         sectors -= s;
1324                         sect += s;
1325                         idx ++;
1326                 }
1327         }
1328
1329         /*
1330          * schedule writes
1331          */
1332         atomic_set(&r1_bio->remaining, 1);
1333         for (i = 0; i < disks ; i++) {
1334                 wbio = r1_bio->bios[i];
1335                 if (wbio->bi_end_io == NULL ||
1336                     (wbio->bi_end_io == end_sync_read &&
1337                      (i == r1_bio->read_disk ||
1338                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1339                         continue;
1340
1341                 wbio->bi_rw = WRITE;
1342                 wbio->bi_end_io = end_sync_write;
1343                 atomic_inc(&r1_bio->remaining);
1344                 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1345
1346                 generic_make_request(wbio);
1347         }
1348
1349         if (atomic_dec_and_test(&r1_bio->remaining)) {
1350                 /* if we're here, all write(s) have completed, so clean up */
1351                 md_done_sync(mddev, r1_bio->sectors, 1);
1352                 put_buf(r1_bio);
1353         }
1354 }
1355
1356 /*
1357  * This is a kernel thread which:
1358  *
1359  *      1.      Retries failed read operations on working mirrors.
1360  *      2.      Updates the raid superblock when problems encounter.
1361  *      3.      Performs writes following reads for array syncronising.
1362  */
1363
1364 static void raid1d(mddev_t *mddev)
1365 {
1366         r1bio_t *r1_bio;
1367         struct bio *bio;
1368         unsigned long flags;
1369         conf_t *conf = mddev_to_conf(mddev);
1370         struct list_head *head = &conf->retry_list;
1371         int unplug=0;
1372         mdk_rdev_t *rdev;
1373
1374         md_check_recovery(mddev);
1375         
1376         for (;;) {
1377                 char b[BDEVNAME_SIZE];
1378                 spin_lock_irqsave(&conf->device_lock, flags);
1379
1380                 if (conf->pending_bio_list.head) {
1381                         bio = bio_list_get(&conf->pending_bio_list);
1382                         blk_remove_plug(mddev->queue);
1383                         spin_unlock_irqrestore(&conf->device_lock, flags);
1384                         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
1385                         if (bitmap_unplug(mddev->bitmap) != 0)
1386                                 printk("%s: bitmap file write failed!\n", mdname(mddev));
1387
1388                         while (bio) { /* submit pending writes */
1389                                 struct bio *next = bio->bi_next;
1390                                 bio->bi_next = NULL;
1391                                 generic_make_request(bio);
1392                                 bio = next;
1393                         }
1394                         unplug = 1;
1395
1396                         continue;
1397                 }
1398
1399                 if (list_empty(head))
1400                         break;
1401                 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1402                 list_del(head->prev);
1403                 conf->nr_queued--;
1404                 spin_unlock_irqrestore(&conf->device_lock, flags);
1405
1406                 mddev = r1_bio->mddev;
1407                 conf = mddev_to_conf(mddev);
1408                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1409                         sync_request_write(mddev, r1_bio);
1410                         unplug = 1;
1411                 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1412                         /* some requests in the r1bio were BIO_RW_BARRIER
1413                          * requests which failed with -EOPNOTSUPP.  Hohumm..
1414                          * Better resubmit without the barrier.
1415                          * We know which devices to resubmit for, because
1416                          * all others have had their bios[] entry cleared.
1417                          */
1418                         int i;
1419                         clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1420                         clear_bit(R1BIO_Barrier, &r1_bio->state);
1421                         for (i=0; i < conf->raid_disks; i++)
1422                                 if (r1_bio->bios[i])
1423                                         atomic_inc(&r1_bio->remaining);
1424                         for (i=0; i < conf->raid_disks; i++)
1425                                 if (r1_bio->bios[i]) {
1426                                         struct bio_vec *bvec;
1427                                         int j;
1428
1429                                         bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1430                                         /* copy pages from the failed bio, as
1431                                          * this might be a write-behind device */
1432                                         __bio_for_each_segment(bvec, bio, j, 0)
1433                                                 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1434                                         bio_put(r1_bio->bios[i]);
1435                                         bio->bi_sector = r1_bio->sector +
1436                                                 conf->mirrors[i].rdev->data_offset;
1437                                         bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1438                                         bio->bi_end_io = raid1_end_write_request;
1439                                         bio->bi_rw = WRITE;
1440                                         bio->bi_private = r1_bio;
1441                                         r1_bio->bios[i] = bio;
1442                                         generic_make_request(bio);
1443                                 }
1444                 } else {
1445                         int disk;
1446
1447                         /* we got a read error. Maybe the drive is bad.  Maybe just
1448                          * the block and we can fix it.
1449                          * We freeze all other IO, and try reading the block from
1450                          * other devices.  When we find one, we re-write
1451                          * and check it that fixes the read error.
1452                          * This is all done synchronously while the array is
1453                          * frozen
1454                          */
1455                         sector_t sect = r1_bio->sector;
1456                         int sectors = r1_bio->sectors;
1457                         freeze_array(conf);
1458                         if (mddev->ro == 0) while(sectors) {
1459                                 int s = sectors;
1460                                 int d = r1_bio->read_disk;
1461                                 int success = 0;
1462
1463                                 if (s > (PAGE_SIZE>>9))
1464                                         s = PAGE_SIZE >> 9;
1465
1466                                 do {
1467                                         rdev = conf->mirrors[d].rdev;
1468                                         if (rdev &&
1469                                             test_bit(In_sync, &rdev->flags) &&
1470                                             sync_page_io(rdev->bdev,
1471                                                          sect + rdev->data_offset,
1472                                                          s<<9,
1473                                                          conf->tmppage, READ))
1474                                                 success = 1;
1475                                         else {
1476                                                 d++;
1477                                                 if (d == conf->raid_disks)
1478                                                         d = 0;
1479                                         }
1480                                 } while (!success && d != r1_bio->read_disk);
1481
1482                                 if (success) {
1483                                         /* write it back and re-read */
1484                                         int start = d;
1485                                         while (d != r1_bio->read_disk) {
1486                                                 if (d==0)
1487                                                         d = conf->raid_disks;
1488                                                 d--;
1489                                                 rdev = conf->mirrors[d].rdev;
1490                                                 atomic_add(s, &rdev->corrected_errors);
1491                                                 if (rdev &&
1492                                                     test_bit(In_sync, &rdev->flags)) {
1493                                                         if (sync_page_io(rdev->bdev,
1494                                                                          sect + rdev->data_offset,
1495                                                                          s<<9, conf->tmppage, WRITE) == 0)
1496                                                                 /* Well, this device is dead */
1497                                                                 md_error(mddev, rdev);
1498                                                 }
1499                                         }
1500                                         d = start;
1501                                         while (d != r1_bio->read_disk) {
1502                                                 if (d==0)
1503                                                         d = conf->raid_disks;
1504                                                 d--;
1505                                                 rdev = conf->mirrors[d].rdev;
1506                                                 if (rdev &&
1507                                                     test_bit(In_sync, &rdev->flags)) {
1508                                                         if (sync_page_io(rdev->bdev,
1509                                                                          sect + rdev->data_offset,
1510                                                                          s<<9, conf->tmppage, READ) == 0)
1511                                                                 /* Well, this device is dead */
1512                                                                 md_error(mddev, rdev);
1513                                                 }
1514                                         }
1515                                 } else {
1516                                         /* Cannot read from anywhere -- bye bye array */
1517                                         md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1518                                         break;
1519                                 }
1520                                 sectors -= s;
1521                                 sect += s;
1522                         }
1523
1524                         unfreeze_array(conf);
1525
1526                         bio = r1_bio->bios[r1_bio->read_disk];
1527                         if ((disk=read_balance(conf, r1_bio)) == -1) {
1528                                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1529                                        " read error for block %llu\n",
1530                                        bdevname(bio->bi_bdev,b),
1531                                        (unsigned long long)r1_bio->sector);
1532                                 raid_end_bio_io(r1_bio);
1533                         } else {
1534                                 r1_bio->bios[r1_bio->read_disk] =
1535                                         mddev->ro ? IO_BLOCKED : NULL;
1536                                 r1_bio->read_disk = disk;
1537                                 bio_put(bio);
1538                                 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1539                                 r1_bio->bios[r1_bio->read_disk] = bio;
1540                                 rdev = conf->mirrors[disk].rdev;
1541                                 if (printk_ratelimit())
1542                                         printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1543                                                " another mirror\n",
1544                                                bdevname(rdev->bdev,b),
1545                                                (unsigned long long)r1_bio->sector);
1546                                 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1547                                 bio->bi_bdev = rdev->bdev;
1548                                 bio->bi_end_io = raid1_end_read_request;
1549                                 bio->bi_rw = READ;
1550                                 bio->bi_private = r1_bio;
1551                                 unplug = 1;
1552                                 generic_make_request(bio);
1553                         }
1554                 }
1555         }
1556         spin_unlock_irqrestore(&conf->device_lock, flags);
1557         if (unplug)
1558                 unplug_slaves(mddev);
1559 }
1560
1561
1562 static int init_resync(conf_t *conf)
1563 {
1564         int buffs;
1565
1566         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1567         BUG_ON(conf->r1buf_pool);
1568         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1569                                           conf->poolinfo);
1570         if (!conf->r1buf_pool)
1571                 return -ENOMEM;
1572         conf->next_resync = 0;
1573         return 0;
1574 }
1575
1576 /*
1577  * perform a "sync" on one "block"
1578  *
1579  * We need to make sure that no normal I/O request - particularly write
1580  * requests - conflict with active sync requests.
1581  *
1582  * This is achieved by tracking pending requests and a 'barrier' concept
1583  * that can be installed to exclude normal IO requests.
1584  */
1585
1586 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1587 {
1588         conf_t *conf = mddev_to_conf(mddev);
1589         r1bio_t *r1_bio;
1590         struct bio *bio;
1591         sector_t max_sector, nr_sectors;
1592         int disk = -1;
1593         int i;
1594         int wonly = -1;
1595         int write_targets = 0, read_targets = 0;
1596         int sync_blocks;
1597         int still_degraded = 0;
1598
1599         if (!conf->r1buf_pool)
1600         {
1601 /*
1602                 printk("sync start - bitmap %p\n", mddev->bitmap);
1603 */
1604                 if (init_resync(conf))
1605                         return 0;
1606         }
1607
1608         max_sector = mddev->size << 1;
1609         if (sector_nr >= max_sector) {
1610                 /* If we aborted, we need to abort the
1611                  * sync on the 'current' bitmap chunk (there will
1612                  * only be one in raid1 resync.
1613                  * We can find the current addess in mddev->curr_resync
1614                  */
1615                 if (mddev->curr_resync < max_sector) /* aborted */
1616                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1617                                                 &sync_blocks, 1);
1618                 else /* completed sync */
1619                         conf->fullsync = 0;
1620
1621                 bitmap_close_sync(mddev->bitmap);
1622                 close_sync(conf);
1623                 return 0;
1624         }
1625
1626         /* before building a request, check if we can skip these blocks..
1627          * This call the bitmap_start_sync doesn't actually record anything
1628          */
1629         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1630             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1631                 /* We can skip this block, and probably several more */
1632                 *skipped = 1;
1633                 return sync_blocks;
1634         }
1635         /*
1636          * If there is non-resync activity waiting for a turn,
1637          * and resync is going fast enough,
1638          * then let it though before starting on this new sync request.
1639          */
1640         if (!go_faster && conf->nr_waiting)
1641                 msleep_interruptible(1000);
1642
1643         raise_barrier(conf);
1644
1645         conf->next_resync = sector_nr;
1646
1647         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1648         rcu_read_lock();
1649         /*
1650          * If we get a correctably read error during resync or recovery,
1651          * we might want to read from a different device.  So we
1652          * flag all drives that could conceivably be read from for READ,
1653          * and any others (which will be non-In_sync devices) for WRITE.
1654          * If a read fails, we try reading from something else for which READ
1655          * is OK.
1656          */
1657
1658         r1_bio->mddev = mddev;
1659         r1_bio->sector = sector_nr;
1660         r1_bio->state = 0;
1661         set_bit(R1BIO_IsSync, &r1_bio->state);
1662
1663         for (i=0; i < conf->raid_disks; i++) {
1664                 mdk_rdev_t *rdev;
1665                 bio = r1_bio->bios[i];
1666
1667                 /* take from bio_init */
1668                 bio->bi_next = NULL;
1669                 bio->bi_flags |= 1 << BIO_UPTODATE;
1670                 bio->bi_rw = 0;
1671                 bio->bi_vcnt = 0;
1672                 bio->bi_idx = 0;
1673                 bio->bi_phys_segments = 0;
1674                 bio->bi_hw_segments = 0;
1675                 bio->bi_size = 0;
1676                 bio->bi_end_io = NULL;
1677                 bio->bi_private = NULL;
1678
1679                 rdev = rcu_dereference(conf->mirrors[i].rdev);
1680                 if (rdev == NULL ||
1681                            test_bit(Faulty, &rdev->flags)) {
1682                         still_degraded = 1;
1683                         continue;
1684                 } else if (!test_bit(In_sync, &rdev->flags)) {
1685                         bio->bi_rw = WRITE;
1686                         bio->bi_end_io = end_sync_write;
1687                         write_targets ++;
1688                 } else {
1689                         /* may need to read from here */
1690                         bio->bi_rw = READ;
1691                         bio->bi_end_io = end_sync_read;
1692                         if (test_bit(WriteMostly, &rdev->flags)) {
1693                                 if (wonly < 0)
1694                                         wonly = i;
1695                         } else {
1696                                 if (disk < 0)
1697                                         disk = i;
1698                         }
1699                         read_targets++;
1700                 }
1701                 atomic_inc(&rdev->nr_pending);
1702                 bio->bi_sector = sector_nr + rdev->data_offset;
1703                 bio->bi_bdev = rdev->bdev;
1704                 bio->bi_private = r1_bio;
1705         }
1706         rcu_read_unlock();
1707         if (disk < 0)
1708                 disk = wonly;
1709         r1_bio->read_disk = disk;
1710
1711         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1712                 /* extra read targets are also write targets */
1713                 write_targets += read_targets-1;
1714
1715         if (write_targets == 0 || read_targets == 0) {
1716                 /* There is nowhere to write, so all non-sync
1717                  * drives must be failed - so we are finished
1718                  */
1719                 sector_t rv = max_sector - sector_nr;
1720                 *skipped = 1;
1721                 put_buf(r1_bio);
1722                 return rv;
1723         }
1724
1725         nr_sectors = 0;
1726         sync_blocks = 0;
1727         do {
1728                 struct page *page;
1729                 int len = PAGE_SIZE;
1730                 if (sector_nr + (len>>9) > max_sector)
1731                         len = (max_sector - sector_nr) << 9;
1732                 if (len == 0)
1733                         break;
1734                 if (sync_blocks == 0) {
1735                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1736                                                &sync_blocks, still_degraded) &&
1737                             !conf->fullsync &&
1738                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1739                                 break;
1740                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1741                         if (len > (sync_blocks<<9))
1742                                 len = sync_blocks<<9;
1743                 }
1744
1745                 for (i=0 ; i < conf->raid_disks; i++) {
1746                         bio = r1_bio->bios[i];
1747                         if (bio->bi_end_io) {
1748                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1749                                 if (bio_add_page(bio, page, len, 0) == 0) {
1750                                         /* stop here */
1751                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1752                                         while (i > 0) {
1753                                                 i--;
1754                                                 bio = r1_bio->bios[i];
1755                                                 if (bio->bi_end_io==NULL)
1756                                                         continue;
1757                                                 /* remove last page from this bio */
1758                                                 bio->bi_vcnt--;
1759                                                 bio->bi_size -= len;
1760                                                 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1761                                         }
1762                                         goto bio_full;
1763                                 }
1764                         }
1765                 }
1766                 nr_sectors += len>>9;
1767                 sector_nr += len>>9;
1768                 sync_blocks -= (len>>9);
1769         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1770  bio_full:
1771         r1_bio->sectors = nr_sectors;
1772
1773         /* For a user-requested sync, we read all readable devices and do a
1774          * compare
1775          */
1776         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1777                 atomic_set(&r1_bio->remaining, read_targets);
1778                 for (i=0; i<conf->raid_disks; i++) {
1779                         bio = r1_bio->bios[i];
1780                         if (bio->bi_end_io == end_sync_read) {
1781                                 md_sync_acct(conf->mirrors[i].rdev->bdev, nr_sectors);
1782                                 generic_make_request(bio);
1783                         }
1784                 }
1785         } else {
1786                 atomic_set(&r1_bio->remaining, 1);
1787                 bio = r1_bio->bios[r1_bio->read_disk];
1788                 md_sync_acct(conf->mirrors[r1_bio->read_disk].rdev->bdev,
1789                              nr_sectors);
1790                 generic_make_request(bio);
1791
1792         }
1793
1794         return nr_sectors;
1795 }
1796
1797 static int run(mddev_t *mddev)
1798 {
1799         conf_t *conf;
1800         int i, j, disk_idx;
1801         mirror_info_t *disk;
1802         mdk_rdev_t *rdev;
1803         struct list_head *tmp;
1804
1805         if (mddev->level != 1) {
1806                 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1807                        mdname(mddev), mddev->level);
1808                 goto out;
1809         }
1810         if (mddev->reshape_position != MaxSector) {
1811                 printk("raid1: %s: reshape_position set but not supported\n",
1812                        mdname(mddev));
1813                 goto out;
1814         }
1815         /*
1816          * copy the already verified devices into our private RAID1
1817          * bookkeeping area. [whatever we allocate in run(),
1818          * should be freed in stop()]
1819          */
1820         conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1821         mddev->private = conf;
1822         if (!conf)
1823                 goto out_no_mem;
1824
1825         conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1826                                  GFP_KERNEL);
1827         if (!conf->mirrors)
1828                 goto out_no_mem;
1829
1830         conf->tmppage = alloc_page(GFP_KERNEL);
1831         if (!conf->tmppage)
1832                 goto out_no_mem;
1833
1834         conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1835         if (!conf->poolinfo)
1836                 goto out_no_mem;
1837         conf->poolinfo->mddev = mddev;
1838         conf->poolinfo->raid_disks = mddev->raid_disks;
1839         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1840                                           r1bio_pool_free,
1841                                           conf->poolinfo);
1842         if (!conf->r1bio_pool)
1843                 goto out_no_mem;
1844
1845         ITERATE_RDEV(mddev, rdev, tmp) {
1846                 disk_idx = rdev->raid_disk;
1847                 if (disk_idx >= mddev->raid_disks
1848                     || disk_idx < 0)
1849                         continue;
1850                 disk = conf->mirrors + disk_idx;
1851
1852                 disk->rdev = rdev;
1853
1854                 blk_queue_stack_limits(mddev->queue,
1855                                        rdev->bdev->bd_disk->queue);
1856                 /* as we don't honour merge_bvec_fn, we must never risk
1857                  * violating it, so limit ->max_sector to one PAGE, as
1858                  * a one page request is never in violation.
1859                  */
1860                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1861                     mddev->queue->max_sectors > (PAGE_SIZE>>9))
1862                         blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1863
1864                 disk->head_position = 0;
1865                 if (!test_bit(Faulty, &rdev->flags) && test_bit(In_sync, &rdev->flags))
1866                         conf->working_disks++;
1867         }
1868         conf->raid_disks = mddev->raid_disks;
1869         conf->mddev = mddev;
1870         spin_lock_init(&conf->device_lock);
1871         INIT_LIST_HEAD(&conf->retry_list);
1872         if (conf->working_disks == 1)
1873                 mddev->recovery_cp = MaxSector;
1874
1875         spin_lock_init(&conf->resync_lock);
1876         init_waitqueue_head(&conf->wait_barrier);
1877
1878         bio_list_init(&conf->pending_bio_list);
1879         bio_list_init(&conf->flushing_bio_list);
1880
1881         if (!conf->working_disks) {
1882                 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1883                         mdname(mddev));
1884                 goto out_free_conf;
1885         }
1886
1887         mddev->degraded = 0;
1888         for (i = 0; i < conf->raid_disks; i++) {
1889
1890                 disk = conf->mirrors + i;
1891
1892                 if (!disk->rdev) {
1893                         disk->head_position = 0;
1894                         mddev->degraded++;
1895                 }
1896         }
1897
1898         /*
1899          * find the first working one and use it as a starting point
1900          * to read balancing.
1901          */
1902         for (j = 0; j < conf->raid_disks &&
1903                      (!conf->mirrors[j].rdev ||
1904                       !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
1905                 /* nothing */;
1906         conf->last_used = j;
1907
1908
1909         mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1910         if (!mddev->thread) {
1911                 printk(KERN_ERR
1912                        "raid1: couldn't allocate thread for %s\n",
1913                        mdname(mddev));
1914                 goto out_free_conf;
1915         }
1916
1917         printk(KERN_INFO 
1918                 "raid1: raid set %s active with %d out of %d mirrors\n",
1919                 mdname(mddev), mddev->raid_disks - mddev->degraded, 
1920                 mddev->raid_disks);
1921         /*
1922          * Ok, everything is just fine now
1923          */
1924         mddev->array_size = mddev->size;
1925
1926         mddev->queue->unplug_fn = raid1_unplug;
1927         mddev->queue->issue_flush_fn = raid1_issue_flush;
1928
1929         return 0;
1930
1931 out_no_mem:
1932         printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
1933                mdname(mddev));
1934
1935 out_free_conf:
1936         if (conf) {
1937                 if (conf->r1bio_pool)
1938                         mempool_destroy(conf->r1bio_pool);
1939                 kfree(conf->mirrors);
1940                 safe_put_page(conf->tmppage);
1941                 kfree(conf->poolinfo);
1942                 kfree(conf);
1943                 mddev->private = NULL;
1944         }
1945 out:
1946         return -EIO;
1947 }
1948
1949 static int stop(mddev_t *mddev)
1950 {
1951         conf_t *conf = mddev_to_conf(mddev);
1952         struct bitmap *bitmap = mddev->bitmap;
1953         int behind_wait = 0;
1954
1955         /* wait for behind writes to complete */
1956         while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
1957                 behind_wait++;
1958                 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
1959                 set_current_state(TASK_UNINTERRUPTIBLE);
1960                 schedule_timeout(HZ); /* wait a second */
1961                 /* need to kick something here to make sure I/O goes? */
1962         }
1963
1964         md_unregister_thread(mddev->thread);
1965         mddev->thread = NULL;
1966         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1967         if (conf->r1bio_pool)
1968                 mempool_destroy(conf->r1bio_pool);
1969         kfree(conf->mirrors);
1970         kfree(conf->poolinfo);
1971         kfree(conf);
1972         mddev->private = NULL;
1973         return 0;
1974 }
1975
1976 static int raid1_resize(mddev_t *mddev, sector_t sectors)
1977 {
1978         /* no resync is happening, and there is enough space
1979          * on all devices, so we can resize.
1980          * We need to make sure resync covers any new space.
1981          * If the array is shrinking we should possibly wait until
1982          * any io in the removed space completes, but it hardly seems
1983          * worth it.
1984          */
1985         mddev->array_size = sectors>>1;
1986         set_capacity(mddev->gendisk, mddev->array_size << 1);
1987         mddev->changed = 1;
1988         if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
1989                 mddev->recovery_cp = mddev->size << 1;
1990                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1991         }
1992         mddev->size = mddev->array_size;
1993         mddev->resync_max_sectors = sectors;
1994         return 0;
1995 }
1996
1997 static int raid1_reshape(mddev_t *mddev)
1998 {
1999         /* We need to:
2000          * 1/ resize the r1bio_pool
2001          * 2/ resize conf->mirrors
2002          *
2003          * We allocate a new r1bio_pool if we can.
2004          * Then raise a device barrier and wait until all IO stops.
2005          * Then resize conf->mirrors and swap in the new r1bio pool.
2006          *
2007          * At the same time, we "pack" the devices so that all the missing
2008          * devices have the higher raid_disk numbers.
2009          */
2010         mempool_t *newpool, *oldpool;
2011         struct pool_info *newpoolinfo;
2012         mirror_info_t *newmirrors;
2013         conf_t *conf = mddev_to_conf(mddev);
2014         int cnt, raid_disks;
2015
2016         int d, d2;
2017
2018         /* Cannot change chunk_size, layout, or level */
2019         if (mddev->chunk_size != mddev->new_chunk ||
2020             mddev->layout != mddev->new_layout ||
2021             mddev->level != mddev->new_level) {
2022                 mddev->new_chunk = mddev->chunk_size;
2023                 mddev->new_layout = mddev->layout;
2024                 mddev->new_level = mddev->level;
2025                 return -EINVAL;
2026         }
2027
2028         raid_disks = mddev->raid_disks + mddev->delta_disks;
2029
2030         if (raid_disks < conf->raid_disks) {
2031                 cnt=0;
2032                 for (d= 0; d < conf->raid_disks; d++)
2033                         if (conf->mirrors[d].rdev)
2034                                 cnt++;
2035                 if (cnt > raid_disks)
2036                         return -EBUSY;
2037         }
2038
2039         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2040         if (!newpoolinfo)
2041                 return -ENOMEM;
2042         newpoolinfo->mddev = mddev;
2043         newpoolinfo->raid_disks = raid_disks;
2044
2045         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2046                                  r1bio_pool_free, newpoolinfo);
2047         if (!newpool) {
2048                 kfree(newpoolinfo);
2049                 return -ENOMEM;
2050         }
2051         newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2052         if (!newmirrors) {
2053                 kfree(newpoolinfo);
2054                 mempool_destroy(newpool);
2055                 return -ENOMEM;
2056         }
2057
2058         raise_barrier(conf);
2059
2060         /* ok, everything is stopped */
2061         oldpool = conf->r1bio_pool;
2062         conf->r1bio_pool = newpool;
2063
2064         for (d=d2=0; d < conf->raid_disks; d++)
2065                 if (conf->mirrors[d].rdev) {
2066                         conf->mirrors[d].rdev->raid_disk = d2;
2067                         newmirrors[d2++].rdev = conf->mirrors[d].rdev;
2068                 }
2069         kfree(conf->mirrors);
2070         conf->mirrors = newmirrors;
2071         kfree(conf->poolinfo);
2072         conf->poolinfo = newpoolinfo;
2073
2074         mddev->degraded += (raid_disks - conf->raid_disks);
2075         conf->raid_disks = mddev->raid_disks = raid_disks;
2076         mddev->delta_disks = 0;
2077
2078         conf->last_used = 0; /* just make sure it is in-range */
2079         lower_barrier(conf);
2080
2081         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2082         md_wakeup_thread(mddev->thread);
2083
2084         mempool_destroy(oldpool);
2085         return 0;
2086 }
2087
2088 static void raid1_quiesce(mddev_t *mddev, int state)
2089 {
2090         conf_t *conf = mddev_to_conf(mddev);
2091
2092         switch(state) {
2093         case 1:
2094                 raise_barrier(conf);
2095                 break;
2096         case 0:
2097                 lower_barrier(conf);
2098                 break;
2099         }
2100 }
2101
2102
2103 static struct mdk_personality raid1_personality =
2104 {
2105         .name           = "raid1",
2106         .level          = 1,
2107         .owner          = THIS_MODULE,
2108         .make_request   = make_request,
2109         .run            = run,
2110         .stop           = stop,
2111         .status         = status,
2112         .error_handler  = error,
2113         .hot_add_disk   = raid1_add_disk,
2114         .hot_remove_disk= raid1_remove_disk,
2115         .spare_active   = raid1_spare_active,
2116         .sync_request   = sync_request,
2117         .resize         = raid1_resize,
2118         .check_reshape  = raid1_reshape,
2119         .quiesce        = raid1_quiesce,
2120 };
2121
2122 static int __init raid_init(void)
2123 {
2124         return register_md_personality(&raid1_personality);
2125 }
2126
2127 static void raid_exit(void)
2128 {
2129         unregister_md_personality(&raid1_personality);
2130 }
2131
2132 module_init(raid_init);
2133 module_exit(raid_exit);
2134 MODULE_LICENSE("GPL");
2135 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2136 MODULE_ALIAS("md-raid1");
2137 MODULE_ALIAS("md-level-1");