7549b0bad326557e504f25969c670047507c1dd5
[safe/jmp/linux-2.6] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/delay.h>
35 #include <linux/blkdev.h>
36 #include <linux/seq_file.h>
37 #include "md.h"
38 #include "raid1.h"
39 #include "bitmap.h"
40
41 #define DEBUG 0
42 #if DEBUG
43 #define PRINTK(x...) printk(x)
44 #else
45 #define PRINTK(x...)
46 #endif
47
48 /*
49  * Number of guaranteed r1bios in case of extreme VM load:
50  */
51 #define NR_RAID1_BIOS 256
52
53
54 static void unplug_slaves(mddev_t *mddev);
55
56 static void allow_barrier(conf_t *conf);
57 static void lower_barrier(conf_t *conf);
58
59 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
60 {
61         struct pool_info *pi = data;
62         r1bio_t *r1_bio;
63         int size = offsetof(r1bio_t, bios[pi->raid_disks]);
64
65         /* allocate a r1bio with room for raid_disks entries in the bios array */
66         r1_bio = kzalloc(size, gfp_flags);
67         if (!r1_bio && pi->mddev)
68                 unplug_slaves(pi->mddev);
69
70         return r1_bio;
71 }
72
73 static void r1bio_pool_free(void *r1_bio, void *data)
74 {
75         kfree(r1_bio);
76 }
77
78 #define RESYNC_BLOCK_SIZE (64*1024)
79 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
80 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
81 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
82 #define RESYNC_WINDOW (2048*1024)
83
84 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
85 {
86         struct pool_info *pi = data;
87         struct page *page;
88         r1bio_t *r1_bio;
89         struct bio *bio;
90         int i, j;
91
92         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
93         if (!r1_bio) {
94                 unplug_slaves(pi->mddev);
95                 return NULL;
96         }
97
98         /*
99          * Allocate bios : 1 for reading, n-1 for writing
100          */
101         for (j = pi->raid_disks ; j-- ; ) {
102                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
103                 if (!bio)
104                         goto out_free_bio;
105                 r1_bio->bios[j] = bio;
106         }
107         /*
108          * Allocate RESYNC_PAGES data pages and attach them to
109          * the first bio.
110          * If this is a user-requested check/repair, allocate
111          * RESYNC_PAGES for each bio.
112          */
113         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
114                 j = pi->raid_disks;
115         else
116                 j = 1;
117         while(j--) {
118                 bio = r1_bio->bios[j];
119                 for (i = 0; i < RESYNC_PAGES; i++) {
120                         page = alloc_page(gfp_flags);
121                         if (unlikely(!page))
122                                 goto out_free_pages;
123
124                         bio->bi_io_vec[i].bv_page = page;
125                         bio->bi_vcnt = i+1;
126                 }
127         }
128         /* If not user-requests, copy the page pointers to all bios */
129         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
130                 for (i=0; i<RESYNC_PAGES ; i++)
131                         for (j=1; j<pi->raid_disks; j++)
132                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
133                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
134         }
135
136         r1_bio->master_bio = NULL;
137
138         return r1_bio;
139
140 out_free_pages:
141         for (j=0 ; j < pi->raid_disks; j++)
142                 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
143                         put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
144         j = -1;
145 out_free_bio:
146         while ( ++j < pi->raid_disks )
147                 bio_put(r1_bio->bios[j]);
148         r1bio_pool_free(r1_bio, data);
149         return NULL;
150 }
151
152 static void r1buf_pool_free(void *__r1_bio, void *data)
153 {
154         struct pool_info *pi = data;
155         int i,j;
156         r1bio_t *r1bio = __r1_bio;
157
158         for (i = 0; i < RESYNC_PAGES; i++)
159                 for (j = pi->raid_disks; j-- ;) {
160                         if (j == 0 ||
161                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
162                             r1bio->bios[0]->bi_io_vec[i].bv_page)
163                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
164                 }
165         for (i=0 ; i < pi->raid_disks; i++)
166                 bio_put(r1bio->bios[i]);
167
168         r1bio_pool_free(r1bio, data);
169 }
170
171 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
172 {
173         int i;
174
175         for (i = 0; i < conf->raid_disks; i++) {
176                 struct bio **bio = r1_bio->bios + i;
177                 if (*bio && *bio != IO_BLOCKED)
178                         bio_put(*bio);
179                 *bio = NULL;
180         }
181 }
182
183 static void free_r1bio(r1bio_t *r1_bio)
184 {
185         conf_t *conf = r1_bio->mddev->private;
186
187         /*
188          * Wake up any possible resync thread that waits for the device
189          * to go idle.
190          */
191         allow_barrier(conf);
192
193         put_all_bios(conf, r1_bio);
194         mempool_free(r1_bio, conf->r1bio_pool);
195 }
196
197 static void put_buf(r1bio_t *r1_bio)
198 {
199         conf_t *conf = r1_bio->mddev->private;
200         int i;
201
202         for (i=0; i<conf->raid_disks; i++) {
203                 struct bio *bio = r1_bio->bios[i];
204                 if (bio->bi_end_io)
205                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206         }
207
208         mempool_free(r1_bio, conf->r1buf_pool);
209
210         lower_barrier(conf);
211 }
212
213 static void reschedule_retry(r1bio_t *r1_bio)
214 {
215         unsigned long flags;
216         mddev_t *mddev = r1_bio->mddev;
217         conf_t *conf = mddev->private;
218
219         spin_lock_irqsave(&conf->device_lock, flags);
220         list_add(&r1_bio->retry_list, &conf->retry_list);
221         conf->nr_queued ++;
222         spin_unlock_irqrestore(&conf->device_lock, flags);
223
224         wake_up(&conf->wait_barrier);
225         md_wakeup_thread(mddev->thread);
226 }
227
228 /*
229  * raid_end_bio_io() is called when we have finished servicing a mirrored
230  * operation and are ready to return a success/failure code to the buffer
231  * cache layer.
232  */
233 static void raid_end_bio_io(r1bio_t *r1_bio)
234 {
235         struct bio *bio = r1_bio->master_bio;
236
237         /* if nobody has done the final endio yet, do it now */
238         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
239                 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
240                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
241                         (unsigned long long) bio->bi_sector,
242                         (unsigned long long) bio->bi_sector +
243                                 (bio->bi_size >> 9) - 1);
244
245                 bio_endio(bio,
246                         test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
247         }
248         free_r1bio(r1_bio);
249 }
250
251 /*
252  * Update disk head position estimator based on IRQ completion info.
253  */
254 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
255 {
256         conf_t *conf = r1_bio->mddev->private;
257
258         conf->mirrors[disk].head_position =
259                 r1_bio->sector + (r1_bio->sectors);
260 }
261
262 static void raid1_end_read_request(struct bio *bio, int error)
263 {
264         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
265         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
266         int mirror;
267         conf_t *conf = r1_bio->mddev->private;
268
269         mirror = r1_bio->read_disk;
270         /*
271          * this branch is our 'one mirror IO has finished' event handler:
272          */
273         update_head_pos(mirror, r1_bio);
274
275         if (uptodate)
276                 set_bit(R1BIO_Uptodate, &r1_bio->state);
277         else {
278                 /* If all other devices have failed, we want to return
279                  * the error upwards rather than fail the last device.
280                  * Here we redefine "uptodate" to mean "Don't want to retry"
281                  */
282                 unsigned long flags;
283                 spin_lock_irqsave(&conf->device_lock, flags);
284                 if (r1_bio->mddev->degraded == conf->raid_disks ||
285                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
286                      !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
287                         uptodate = 1;
288                 spin_unlock_irqrestore(&conf->device_lock, flags);
289         }
290
291         if (uptodate)
292                 raid_end_bio_io(r1_bio);
293         else {
294                 /*
295                  * oops, read error:
296                  */
297                 char b[BDEVNAME_SIZE];
298                 if (printk_ratelimit())
299                         printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
300                                bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
301                 reschedule_retry(r1_bio);
302         }
303
304         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
305 }
306
307 static void raid1_end_write_request(struct bio *bio, int error)
308 {
309         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
311         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
312         conf_t *conf = r1_bio->mddev->private;
313         struct bio *to_put = NULL;
314
315
316         for (mirror = 0; mirror < conf->raid_disks; mirror++)
317                 if (r1_bio->bios[mirror] == bio)
318                         break;
319
320         if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
321                 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
322                 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
323                 r1_bio->mddev->barriers_work = 0;
324                 /* Don't rdev_dec_pending in this branch - keep it for the retry */
325         } else {
326                 /*
327                  * this branch is our 'one mirror IO has finished' event handler:
328                  */
329                 r1_bio->bios[mirror] = NULL;
330                 to_put = bio;
331                 if (!uptodate) {
332                         md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
333                         /* an I/O failed, we can't clear the bitmap */
334                         set_bit(R1BIO_Degraded, &r1_bio->state);
335                 } else
336                         /*
337                          * Set R1BIO_Uptodate in our master bio, so that
338                          * we will return a good error code for to the higher
339                          * levels even if IO on some other mirrored buffer fails.
340                          *
341                          * The 'master' represents the composite IO operation to
342                          * user-side. So if something waits for IO, then it will
343                          * wait for the 'master' bio.
344                          */
345                         set_bit(R1BIO_Uptodate, &r1_bio->state);
346
347                 update_head_pos(mirror, r1_bio);
348
349                 if (behind) {
350                         if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
351                                 atomic_dec(&r1_bio->behind_remaining);
352
353                         /* In behind mode, we ACK the master bio once the I/O has safely
354                          * reached all non-writemostly disks. Setting the Returned bit
355                          * ensures that this gets done only once -- we don't ever want to
356                          * return -EIO here, instead we'll wait */
357
358                         if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
359                             test_bit(R1BIO_Uptodate, &r1_bio->state)) {
360                                 /* Maybe we can return now */
361                                 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
362                                         struct bio *mbio = r1_bio->master_bio;
363                                         PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
364                                                (unsigned long long) mbio->bi_sector,
365                                                (unsigned long long) mbio->bi_sector +
366                                                (mbio->bi_size >> 9) - 1);
367                                         bio_endio(mbio, 0);
368                                 }
369                         }
370                 }
371                 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
372         }
373         /*
374          *
375          * Let's see if all mirrored write operations have finished
376          * already.
377          */
378         if (atomic_dec_and_test(&r1_bio->remaining)) {
379                 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
380                         reschedule_retry(r1_bio);
381                 else {
382                         /* it really is the end of this request */
383                         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
384                                 /* free extra copy of the data pages */
385                                 int i = bio->bi_vcnt;
386                                 while (i--)
387                                         safe_put_page(bio->bi_io_vec[i].bv_page);
388                         }
389                         /* clear the bitmap if all writes complete successfully */
390                         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
391                                         r1_bio->sectors,
392                                         !test_bit(R1BIO_Degraded, &r1_bio->state),
393                                         behind);
394                         md_write_end(r1_bio->mddev);
395                         raid_end_bio_io(r1_bio);
396                 }
397         }
398
399         if (to_put)
400                 bio_put(to_put);
401 }
402
403
404 /*
405  * This routine returns the disk from which the requested read should
406  * be done. There is a per-array 'next expected sequential IO' sector
407  * number - if this matches on the next IO then we use the last disk.
408  * There is also a per-disk 'last know head position' sector that is
409  * maintained from IRQ contexts, both the normal and the resync IO
410  * completion handlers update this position correctly. If there is no
411  * perfect sequential match then we pick the disk whose head is closest.
412  *
413  * If there are 2 mirrors in the same 2 devices, performance degrades
414  * because position is mirror, not device based.
415  *
416  * The rdev for the device selected will have nr_pending incremented.
417  */
418 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
419 {
420         const unsigned long this_sector = r1_bio->sector;
421         int new_disk = conf->last_used, disk = new_disk;
422         int wonly_disk = -1;
423         const int sectors = r1_bio->sectors;
424         sector_t new_distance, current_distance;
425         mdk_rdev_t *rdev;
426
427         rcu_read_lock();
428         /*
429          * Check if we can balance. We can balance on the whole
430          * device if no resync is going on, or below the resync window.
431          * We take the first readable disk when above the resync window.
432          */
433  retry:
434         if (conf->mddev->recovery_cp < MaxSector &&
435             (this_sector + sectors >= conf->next_resync)) {
436                 /* Choose the first operation device, for consistancy */
437                 new_disk = 0;
438
439                 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
440                      r1_bio->bios[new_disk] == IO_BLOCKED ||
441                      !rdev || !test_bit(In_sync, &rdev->flags)
442                              || test_bit(WriteMostly, &rdev->flags);
443                      rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
444
445                         if (rdev && test_bit(In_sync, &rdev->flags) &&
446                                 r1_bio->bios[new_disk] != IO_BLOCKED)
447                                 wonly_disk = new_disk;
448
449                         if (new_disk == conf->raid_disks - 1) {
450                                 new_disk = wonly_disk;
451                                 break;
452                         }
453                 }
454                 goto rb_out;
455         }
456
457
458         /* make sure the disk is operational */
459         for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
460              r1_bio->bios[new_disk] == IO_BLOCKED ||
461              !rdev || !test_bit(In_sync, &rdev->flags) ||
462                      test_bit(WriteMostly, &rdev->flags);
463              rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
464
465                 if (rdev && test_bit(In_sync, &rdev->flags) &&
466                     r1_bio->bios[new_disk] != IO_BLOCKED)
467                         wonly_disk = new_disk;
468
469                 if (new_disk <= 0)
470                         new_disk = conf->raid_disks;
471                 new_disk--;
472                 if (new_disk == disk) {
473                         new_disk = wonly_disk;
474                         break;
475                 }
476         }
477
478         if (new_disk < 0)
479                 goto rb_out;
480
481         disk = new_disk;
482         /* now disk == new_disk == starting point for search */
483
484         /*
485          * Don't change to another disk for sequential reads:
486          */
487         if (conf->next_seq_sect == this_sector)
488                 goto rb_out;
489         if (this_sector == conf->mirrors[new_disk].head_position)
490                 goto rb_out;
491
492         current_distance = abs(this_sector - conf->mirrors[disk].head_position);
493
494         /* Find the disk whose head is closest */
495
496         do {
497                 if (disk <= 0)
498                         disk = conf->raid_disks;
499                 disk--;
500
501                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
502
503                 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
504                     !test_bit(In_sync, &rdev->flags) ||
505                     test_bit(WriteMostly, &rdev->flags))
506                         continue;
507
508                 if (!atomic_read(&rdev->nr_pending)) {
509                         new_disk = disk;
510                         break;
511                 }
512                 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
513                 if (new_distance < current_distance) {
514                         current_distance = new_distance;
515                         new_disk = disk;
516                 }
517         } while (disk != conf->last_used);
518
519  rb_out:
520
521
522         if (new_disk >= 0) {
523                 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
524                 if (!rdev)
525                         goto retry;
526                 atomic_inc(&rdev->nr_pending);
527                 if (!test_bit(In_sync, &rdev->flags)) {
528                         /* cannot risk returning a device that failed
529                          * before we inc'ed nr_pending
530                          */
531                         rdev_dec_pending(rdev, conf->mddev);
532                         goto retry;
533                 }
534                 conf->next_seq_sect = this_sector + sectors;
535                 conf->last_used = new_disk;
536         }
537         rcu_read_unlock();
538
539         return new_disk;
540 }
541
542 static void unplug_slaves(mddev_t *mddev)
543 {
544         conf_t *conf = mddev->private;
545         int i;
546
547         rcu_read_lock();
548         for (i=0; i<mddev->raid_disks; i++) {
549                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
550                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
551                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
552
553                         atomic_inc(&rdev->nr_pending);
554                         rcu_read_unlock();
555
556                         blk_unplug(r_queue);
557
558                         rdev_dec_pending(rdev, mddev);
559                         rcu_read_lock();
560                 }
561         }
562         rcu_read_unlock();
563 }
564
565 static void raid1_unplug(struct request_queue *q)
566 {
567         mddev_t *mddev = q->queuedata;
568
569         unplug_slaves(mddev);
570         md_wakeup_thread(mddev->thread);
571 }
572
573 static int raid1_congested(void *data, int bits)
574 {
575         mddev_t *mddev = data;
576         conf_t *conf = mddev->private;
577         int i, ret = 0;
578
579         if (mddev_congested(mddev, bits))
580                 return 1;
581
582         rcu_read_lock();
583         for (i = 0; i < mddev->raid_disks; i++) {
584                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
585                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
586                         struct request_queue *q = bdev_get_queue(rdev->bdev);
587
588                         /* Note the '|| 1' - when read_balance prefers
589                          * non-congested targets, it can be removed
590                          */
591                         if ((bits & (1<<BDI_async_congested)) || 1)
592                                 ret |= bdi_congested(&q->backing_dev_info, bits);
593                         else
594                                 ret &= bdi_congested(&q->backing_dev_info, bits);
595                 }
596         }
597         rcu_read_unlock();
598         return ret;
599 }
600
601
602 static int flush_pending_writes(conf_t *conf)
603 {
604         /* Any writes that have been queued but are awaiting
605          * bitmap updates get flushed here.
606          * We return 1 if any requests were actually submitted.
607          */
608         int rv = 0;
609
610         spin_lock_irq(&conf->device_lock);
611
612         if (conf->pending_bio_list.head) {
613                 struct bio *bio;
614                 bio = bio_list_get(&conf->pending_bio_list);
615                 blk_remove_plug(conf->mddev->queue);
616                 spin_unlock_irq(&conf->device_lock);
617                 /* flush any pending bitmap writes to
618                  * disk before proceeding w/ I/O */
619                 bitmap_unplug(conf->mddev->bitmap);
620
621                 while (bio) { /* submit pending writes */
622                         struct bio *next = bio->bi_next;
623                         bio->bi_next = NULL;
624                         generic_make_request(bio);
625                         bio = next;
626                 }
627                 rv = 1;
628         } else
629                 spin_unlock_irq(&conf->device_lock);
630         return rv;
631 }
632
633 /* Barriers....
634  * Sometimes we need to suspend IO while we do something else,
635  * either some resync/recovery, or reconfigure the array.
636  * To do this we raise a 'barrier'.
637  * The 'barrier' is a counter that can be raised multiple times
638  * to count how many activities are happening which preclude
639  * normal IO.
640  * We can only raise the barrier if there is no pending IO.
641  * i.e. if nr_pending == 0.
642  * We choose only to raise the barrier if no-one is waiting for the
643  * barrier to go down.  This means that as soon as an IO request
644  * is ready, no other operations which require a barrier will start
645  * until the IO request has had a chance.
646  *
647  * So: regular IO calls 'wait_barrier'.  When that returns there
648  *    is no backgroup IO happening,  It must arrange to call
649  *    allow_barrier when it has finished its IO.
650  * backgroup IO calls must call raise_barrier.  Once that returns
651  *    there is no normal IO happeing.  It must arrange to call
652  *    lower_barrier when the particular background IO completes.
653  */
654 #define RESYNC_DEPTH 32
655
656 static void raise_barrier(conf_t *conf)
657 {
658         spin_lock_irq(&conf->resync_lock);
659
660         /* Wait until no block IO is waiting */
661         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
662                             conf->resync_lock,
663                             raid1_unplug(conf->mddev->queue));
664
665         /* block any new IO from starting */
666         conf->barrier++;
667
668         /* No wait for all pending IO to complete */
669         wait_event_lock_irq(conf->wait_barrier,
670                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
671                             conf->resync_lock,
672                             raid1_unplug(conf->mddev->queue));
673
674         spin_unlock_irq(&conf->resync_lock);
675 }
676
677 static void lower_barrier(conf_t *conf)
678 {
679         unsigned long flags;
680         BUG_ON(conf->barrier <= 0);
681         spin_lock_irqsave(&conf->resync_lock, flags);
682         conf->barrier--;
683         spin_unlock_irqrestore(&conf->resync_lock, flags);
684         wake_up(&conf->wait_barrier);
685 }
686
687 static void wait_barrier(conf_t *conf)
688 {
689         spin_lock_irq(&conf->resync_lock);
690         if (conf->barrier) {
691                 conf->nr_waiting++;
692                 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
693                                     conf->resync_lock,
694                                     raid1_unplug(conf->mddev->queue));
695                 conf->nr_waiting--;
696         }
697         conf->nr_pending++;
698         spin_unlock_irq(&conf->resync_lock);
699 }
700
701 static void allow_barrier(conf_t *conf)
702 {
703         unsigned long flags;
704         spin_lock_irqsave(&conf->resync_lock, flags);
705         conf->nr_pending--;
706         spin_unlock_irqrestore(&conf->resync_lock, flags);
707         wake_up(&conf->wait_barrier);
708 }
709
710 static void freeze_array(conf_t *conf)
711 {
712         /* stop syncio and normal IO and wait for everything to
713          * go quite.
714          * We increment barrier and nr_waiting, and then
715          * wait until nr_pending match nr_queued+1
716          * This is called in the context of one normal IO request
717          * that has failed. Thus any sync request that might be pending
718          * will be blocked by nr_pending, and we need to wait for
719          * pending IO requests to complete or be queued for re-try.
720          * Thus the number queued (nr_queued) plus this request (1)
721          * must match the number of pending IOs (nr_pending) before
722          * we continue.
723          */
724         spin_lock_irq(&conf->resync_lock);
725         conf->barrier++;
726         conf->nr_waiting++;
727         wait_event_lock_irq(conf->wait_barrier,
728                             conf->nr_pending == conf->nr_queued+1,
729                             conf->resync_lock,
730                             ({ flush_pending_writes(conf);
731                                raid1_unplug(conf->mddev->queue); }));
732         spin_unlock_irq(&conf->resync_lock);
733 }
734 static void unfreeze_array(conf_t *conf)
735 {
736         /* reverse the effect of the freeze */
737         spin_lock_irq(&conf->resync_lock);
738         conf->barrier--;
739         conf->nr_waiting--;
740         wake_up(&conf->wait_barrier);
741         spin_unlock_irq(&conf->resync_lock);
742 }
743
744
745 /* duplicate the data pages for behind I/O */
746 static struct page **alloc_behind_pages(struct bio *bio)
747 {
748         int i;
749         struct bio_vec *bvec;
750         struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
751                                         GFP_NOIO);
752         if (unlikely(!pages))
753                 goto do_sync_io;
754
755         bio_for_each_segment(bvec, bio, i) {
756                 pages[i] = alloc_page(GFP_NOIO);
757                 if (unlikely(!pages[i]))
758                         goto do_sync_io;
759                 memcpy(kmap(pages[i]) + bvec->bv_offset,
760                         kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
761                 kunmap(pages[i]);
762                 kunmap(bvec->bv_page);
763         }
764
765         return pages;
766
767 do_sync_io:
768         if (pages)
769                 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
770                         put_page(pages[i]);
771         kfree(pages);
772         PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
773         return NULL;
774 }
775
776 static int make_request(struct request_queue *q, struct bio * bio)
777 {
778         mddev_t *mddev = q->queuedata;
779         conf_t *conf = mddev->private;
780         mirror_info_t *mirror;
781         r1bio_t *r1_bio;
782         struct bio *read_bio;
783         int i, targets = 0, disks;
784         struct bitmap *bitmap;
785         unsigned long flags;
786         struct bio_list bl;
787         struct page **behind_pages = NULL;
788         const int rw = bio_data_dir(bio);
789         const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
790         int cpu;
791         bool do_barriers;
792         mdk_rdev_t *blocked_rdev;
793
794         /*
795          * Register the new request and wait if the reconstruction
796          * thread has put up a bar for new requests.
797          * Continue immediately if no resync is active currently.
798          * We test barriers_work *after* md_write_start as md_write_start
799          * may cause the first superblock write, and that will check out
800          * if barriers work.
801          */
802
803         md_write_start(mddev, bio); /* wait on superblock update early */
804
805         if (bio_data_dir(bio) == WRITE &&
806             bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
807             bio->bi_sector < mddev->suspend_hi) {
808                 /* As the suspend_* range is controlled by
809                  * userspace, we want an interruptible
810                  * wait.
811                  */
812                 DEFINE_WAIT(w);
813                 for (;;) {
814                         flush_signals(current);
815                         prepare_to_wait(&conf->wait_barrier,
816                                         &w, TASK_INTERRUPTIBLE);
817                         if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
818                             bio->bi_sector >= mddev->suspend_hi)
819                                 break;
820                         schedule();
821                 }
822                 finish_wait(&conf->wait_barrier, &w);
823         }
824         if (unlikely(!mddev->barriers_work &&
825                      bio_rw_flagged(bio, BIO_RW_BARRIER))) {
826                 if (rw == WRITE)
827                         md_write_end(mddev);
828                 bio_endio(bio, -EOPNOTSUPP);
829                 return 0;
830         }
831
832         wait_barrier(conf);
833
834         bitmap = mddev->bitmap;
835
836         cpu = part_stat_lock();
837         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
838         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
839                       bio_sectors(bio));
840         part_stat_unlock();
841
842         /*
843          * make_request() can abort the operation when READA is being
844          * used and no empty request is available.
845          *
846          */
847         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
848
849         r1_bio->master_bio = bio;
850         r1_bio->sectors = bio->bi_size >> 9;
851         r1_bio->state = 0;
852         r1_bio->mddev = mddev;
853         r1_bio->sector = bio->bi_sector;
854
855         if (rw == READ) {
856                 /*
857                  * read balancing logic:
858                  */
859                 int rdisk = read_balance(conf, r1_bio);
860
861                 if (rdisk < 0) {
862                         /* couldn't find anywhere to read from */
863                         raid_end_bio_io(r1_bio);
864                         return 0;
865                 }
866                 mirror = conf->mirrors + rdisk;
867
868                 r1_bio->read_disk = rdisk;
869
870                 read_bio = bio_clone(bio, GFP_NOIO);
871
872                 r1_bio->bios[rdisk] = read_bio;
873
874                 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
875                 read_bio->bi_bdev = mirror->rdev->bdev;
876                 read_bio->bi_end_io = raid1_end_read_request;
877                 read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
878                 read_bio->bi_private = r1_bio;
879
880                 generic_make_request(read_bio);
881                 return 0;
882         }
883
884         /*
885          * WRITE:
886          */
887         /* first select target devices under spinlock and
888          * inc refcount on their rdev.  Record them by setting
889          * bios[x] to bio
890          */
891         disks = conf->raid_disks;
892 #if 0
893         { static int first=1;
894         if (first) printk("First Write sector %llu disks %d\n",
895                           (unsigned long long)r1_bio->sector, disks);
896         first = 0;
897         }
898 #endif
899  retry_write:
900         blocked_rdev = NULL;
901         rcu_read_lock();
902         for (i = 0;  i < disks; i++) {
903                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
904                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
905                         atomic_inc(&rdev->nr_pending);
906                         blocked_rdev = rdev;
907                         break;
908                 }
909                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
910                         atomic_inc(&rdev->nr_pending);
911                         if (test_bit(Faulty, &rdev->flags)) {
912                                 rdev_dec_pending(rdev, mddev);
913                                 r1_bio->bios[i] = NULL;
914                         } else
915                                 r1_bio->bios[i] = bio;
916                         targets++;
917                 } else
918                         r1_bio->bios[i] = NULL;
919         }
920         rcu_read_unlock();
921
922         if (unlikely(blocked_rdev)) {
923                 /* Wait for this device to become unblocked */
924                 int j;
925
926                 for (j = 0; j < i; j++)
927                         if (r1_bio->bios[j])
928                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
929
930                 allow_barrier(conf);
931                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
932                 wait_barrier(conf);
933                 goto retry_write;
934         }
935
936         BUG_ON(targets == 0); /* we never fail the last device */
937
938         if (targets < conf->raid_disks) {
939                 /* array is degraded, we will not clear the bitmap
940                  * on I/O completion (see raid1_end_write_request) */
941                 set_bit(R1BIO_Degraded, &r1_bio->state);
942         }
943
944         /* do behind I/O ? */
945         if (bitmap &&
946             atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
947             (behind_pages = alloc_behind_pages(bio)) != NULL)
948                 set_bit(R1BIO_BehindIO, &r1_bio->state);
949
950         atomic_set(&r1_bio->remaining, 0);
951         atomic_set(&r1_bio->behind_remaining, 0);
952
953         do_barriers = bio_rw_flagged(bio, BIO_RW_BARRIER);
954         if (do_barriers)
955                 set_bit(R1BIO_Barrier, &r1_bio->state);
956
957         bio_list_init(&bl);
958         for (i = 0; i < disks; i++) {
959                 struct bio *mbio;
960                 if (!r1_bio->bios[i])
961                         continue;
962
963                 mbio = bio_clone(bio, GFP_NOIO);
964                 r1_bio->bios[i] = mbio;
965
966                 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
967                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
968                 mbio->bi_end_io = raid1_end_write_request;
969                 mbio->bi_rw = WRITE | (do_barriers << BIO_RW_BARRIER) |
970                         (do_sync << BIO_RW_SYNCIO);
971                 mbio->bi_private = r1_bio;
972
973                 if (behind_pages) {
974                         struct bio_vec *bvec;
975                         int j;
976
977                         /* Yes, I really want the '__' version so that
978                          * we clear any unused pointer in the io_vec, rather
979                          * than leave them unchanged.  This is important
980                          * because when we come to free the pages, we won't
981                          * know the originial bi_idx, so we just free
982                          * them all
983                          */
984                         __bio_for_each_segment(bvec, mbio, j, 0)
985                                 bvec->bv_page = behind_pages[j];
986                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
987                                 atomic_inc(&r1_bio->behind_remaining);
988                 }
989
990                 atomic_inc(&r1_bio->remaining);
991
992                 bio_list_add(&bl, mbio);
993         }
994         kfree(behind_pages); /* the behind pages are attached to the bios now */
995
996         bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
997                                 test_bit(R1BIO_BehindIO, &r1_bio->state));
998         spin_lock_irqsave(&conf->device_lock, flags);
999         bio_list_merge(&conf->pending_bio_list, &bl);
1000         bio_list_init(&bl);
1001
1002         blk_plug_device(mddev->queue);
1003         spin_unlock_irqrestore(&conf->device_lock, flags);
1004
1005         /* In case raid1d snuck into freeze_array */
1006         wake_up(&conf->wait_barrier);
1007
1008         if (do_sync)
1009                 md_wakeup_thread(mddev->thread);
1010 #if 0
1011         while ((bio = bio_list_pop(&bl)) != NULL)
1012                 generic_make_request(bio);
1013 #endif
1014
1015         return 0;
1016 }
1017
1018 static void status(struct seq_file *seq, mddev_t *mddev)
1019 {
1020         conf_t *conf = mddev->private;
1021         int i;
1022
1023         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1024                    conf->raid_disks - mddev->degraded);
1025         rcu_read_lock();
1026         for (i = 0; i < conf->raid_disks; i++) {
1027                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1028                 seq_printf(seq, "%s",
1029                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1030         }
1031         rcu_read_unlock();
1032         seq_printf(seq, "]");
1033 }
1034
1035
1036 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1037 {
1038         char b[BDEVNAME_SIZE];
1039         conf_t *conf = mddev->private;
1040
1041         /*
1042          * If it is not operational, then we have already marked it as dead
1043          * else if it is the last working disks, ignore the error, let the
1044          * next level up know.
1045          * else mark the drive as failed
1046          */
1047         if (test_bit(In_sync, &rdev->flags)
1048             && (conf->raid_disks - mddev->degraded) == 1) {
1049                 /*
1050                  * Don't fail the drive, act as though we were just a
1051                  * normal single drive.
1052                  * However don't try a recovery from this drive as
1053                  * it is very likely to fail.
1054                  */
1055                 mddev->recovery_disabled = 1;
1056                 return;
1057         }
1058         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1059                 unsigned long flags;
1060                 spin_lock_irqsave(&conf->device_lock, flags);
1061                 mddev->degraded++;
1062                 set_bit(Faulty, &rdev->flags);
1063                 spin_unlock_irqrestore(&conf->device_lock, flags);
1064                 /*
1065                  * if recovery is running, make sure it aborts.
1066                  */
1067                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1068         } else
1069                 set_bit(Faulty, &rdev->flags);
1070         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1071         printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n"
1072                 "raid1: Operation continuing on %d devices.\n",
1073                 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1074 }
1075
1076 static void print_conf(conf_t *conf)
1077 {
1078         int i;
1079
1080         printk("RAID1 conf printout:\n");
1081         if (!conf) {
1082                 printk("(!conf)\n");
1083                 return;
1084         }
1085         printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1086                 conf->raid_disks);
1087
1088         rcu_read_lock();
1089         for (i = 0; i < conf->raid_disks; i++) {
1090                 char b[BDEVNAME_SIZE];
1091                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1092                 if (rdev)
1093                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1094                                i, !test_bit(In_sync, &rdev->flags),
1095                                !test_bit(Faulty, &rdev->flags),
1096                                bdevname(rdev->bdev,b));
1097         }
1098         rcu_read_unlock();
1099 }
1100
1101 static void close_sync(conf_t *conf)
1102 {
1103         wait_barrier(conf);
1104         allow_barrier(conf);
1105
1106         mempool_destroy(conf->r1buf_pool);
1107         conf->r1buf_pool = NULL;
1108 }
1109
1110 static int raid1_spare_active(mddev_t *mddev)
1111 {
1112         int i;
1113         conf_t *conf = mddev->private;
1114
1115         /*
1116          * Find all failed disks within the RAID1 configuration 
1117          * and mark them readable.
1118          * Called under mddev lock, so rcu protection not needed.
1119          */
1120         for (i = 0; i < conf->raid_disks; i++) {
1121                 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1122                 if (rdev
1123                     && !test_bit(Faulty, &rdev->flags)
1124                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1125                         unsigned long flags;
1126                         spin_lock_irqsave(&conf->device_lock, flags);
1127                         mddev->degraded--;
1128                         spin_unlock_irqrestore(&conf->device_lock, flags);
1129                 }
1130         }
1131
1132         print_conf(conf);
1133         return 0;
1134 }
1135
1136
1137 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1138 {
1139         conf_t *conf = mddev->private;
1140         int err = -EEXIST;
1141         int mirror = 0;
1142         mirror_info_t *p;
1143         int first = 0;
1144         int last = mddev->raid_disks - 1;
1145
1146         if (rdev->raid_disk >= 0)
1147                 first = last = rdev->raid_disk;
1148
1149         for (mirror = first; mirror <= last; mirror++)
1150                 if ( !(p=conf->mirrors+mirror)->rdev) {
1151
1152                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1153                                           rdev->data_offset << 9);
1154                         /* as we don't honour merge_bvec_fn, we must never risk
1155                          * violating it, so limit ->max_sector to one PAGE, as
1156                          * a one page request is never in violation.
1157                          */
1158                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1159                             queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
1160                                 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1161
1162                         p->head_position = 0;
1163                         rdev->raid_disk = mirror;
1164                         err = 0;
1165                         /* As all devices are equivalent, we don't need a full recovery
1166                          * if this was recently any drive of the array
1167                          */
1168                         if (rdev->saved_raid_disk < 0)
1169                                 conf->fullsync = 1;
1170                         rcu_assign_pointer(p->rdev, rdev);
1171                         break;
1172                 }
1173         md_integrity_add_rdev(rdev, mddev);
1174         print_conf(conf);
1175         return err;
1176 }
1177
1178 static int raid1_remove_disk(mddev_t *mddev, int number)
1179 {
1180         conf_t *conf = mddev->private;
1181         int err = 0;
1182         mdk_rdev_t *rdev;
1183         mirror_info_t *p = conf->mirrors+ number;
1184
1185         print_conf(conf);
1186         rdev = p->rdev;
1187         if (rdev) {
1188                 if (test_bit(In_sync, &rdev->flags) ||
1189                     atomic_read(&rdev->nr_pending)) {
1190                         err = -EBUSY;
1191                         goto abort;
1192                 }
1193                 /* Only remove non-faulty devices is recovery
1194                  * is not possible.
1195                  */
1196                 if (!test_bit(Faulty, &rdev->flags) &&
1197                     mddev->degraded < conf->raid_disks) {
1198                         err = -EBUSY;
1199                         goto abort;
1200                 }
1201                 p->rdev = NULL;
1202                 synchronize_rcu();
1203                 if (atomic_read(&rdev->nr_pending)) {
1204                         /* lost the race, try later */
1205                         err = -EBUSY;
1206                         p->rdev = rdev;
1207                         goto abort;
1208                 }
1209                 md_integrity_register(mddev);
1210         }
1211 abort:
1212
1213         print_conf(conf);
1214         return err;
1215 }
1216
1217
1218 static void end_sync_read(struct bio *bio, int error)
1219 {
1220         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1221         int i;
1222
1223         for (i=r1_bio->mddev->raid_disks; i--; )
1224                 if (r1_bio->bios[i] == bio)
1225                         break;
1226         BUG_ON(i < 0);
1227         update_head_pos(i, r1_bio);
1228         /*
1229          * we have read a block, now it needs to be re-written,
1230          * or re-read if the read failed.
1231          * We don't do much here, just schedule handling by raid1d
1232          */
1233         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1234                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1235
1236         if (atomic_dec_and_test(&r1_bio->remaining))
1237                 reschedule_retry(r1_bio);
1238 }
1239
1240 static void end_sync_write(struct bio *bio, int error)
1241 {
1242         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1243         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1244         mddev_t *mddev = r1_bio->mddev;
1245         conf_t *conf = mddev->private;
1246         int i;
1247         int mirror=0;
1248
1249         for (i = 0; i < conf->raid_disks; i++)
1250                 if (r1_bio->bios[i] == bio) {
1251                         mirror = i;
1252                         break;
1253                 }
1254         if (!uptodate) {
1255                 int sync_blocks = 0;
1256                 sector_t s = r1_bio->sector;
1257                 long sectors_to_go = r1_bio->sectors;
1258                 /* make sure these bits doesn't get cleared. */
1259                 do {
1260                         bitmap_end_sync(mddev->bitmap, s,
1261                                         &sync_blocks, 1);
1262                         s += sync_blocks;
1263                         sectors_to_go -= sync_blocks;
1264                 } while (sectors_to_go > 0);
1265                 md_error(mddev, conf->mirrors[mirror].rdev);
1266         }
1267
1268         update_head_pos(mirror, r1_bio);
1269
1270         if (atomic_dec_and_test(&r1_bio->remaining)) {
1271                 sector_t s = r1_bio->sectors;
1272                 put_buf(r1_bio);
1273                 md_done_sync(mddev, s, uptodate);
1274         }
1275 }
1276
1277 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1278 {
1279         conf_t *conf = mddev->private;
1280         int i;
1281         int disks = conf->raid_disks;
1282         struct bio *bio, *wbio;
1283
1284         bio = r1_bio->bios[r1_bio->read_disk];
1285
1286
1287         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1288                 /* We have read all readable devices.  If we haven't
1289                  * got the block, then there is no hope left.
1290                  * If we have, then we want to do a comparison
1291                  * and skip the write if everything is the same.
1292                  * If any blocks failed to read, then we need to
1293                  * attempt an over-write
1294                  */
1295                 int primary;
1296                 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1297                         for (i=0; i<mddev->raid_disks; i++)
1298                                 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1299                                         md_error(mddev, conf->mirrors[i].rdev);
1300
1301                         md_done_sync(mddev, r1_bio->sectors, 1);
1302                         put_buf(r1_bio);
1303                         return;
1304                 }
1305                 for (primary=0; primary<mddev->raid_disks; primary++)
1306                         if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1307                             test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1308                                 r1_bio->bios[primary]->bi_end_io = NULL;
1309                                 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1310                                 break;
1311                         }
1312                 r1_bio->read_disk = primary;
1313                 for (i=0; i<mddev->raid_disks; i++)
1314                         if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1315                                 int j;
1316                                 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1317                                 struct bio *pbio = r1_bio->bios[primary];
1318                                 struct bio *sbio = r1_bio->bios[i];
1319
1320                                 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1321                                         for (j = vcnt; j-- ; ) {
1322                                                 struct page *p, *s;
1323                                                 p = pbio->bi_io_vec[j].bv_page;
1324                                                 s = sbio->bi_io_vec[j].bv_page;
1325                                                 if (memcmp(page_address(p),
1326                                                            page_address(s),
1327                                                            PAGE_SIZE))
1328                                                         break;
1329                                         }
1330                                 } else
1331                                         j = 0;
1332                                 if (j >= 0)
1333                                         mddev->resync_mismatches += r1_bio->sectors;
1334                                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1335                                               && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1336                                         sbio->bi_end_io = NULL;
1337                                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1338                                 } else {
1339                                         /* fixup the bio for reuse */
1340                                         int size;
1341                                         sbio->bi_vcnt = vcnt;
1342                                         sbio->bi_size = r1_bio->sectors << 9;
1343                                         sbio->bi_idx = 0;
1344                                         sbio->bi_phys_segments = 0;
1345                                         sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1346                                         sbio->bi_flags |= 1 << BIO_UPTODATE;
1347                                         sbio->bi_next = NULL;
1348                                         sbio->bi_sector = r1_bio->sector +
1349                                                 conf->mirrors[i].rdev->data_offset;
1350                                         sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1351                                         size = sbio->bi_size;
1352                                         for (j = 0; j < vcnt ; j++) {
1353                                                 struct bio_vec *bi;
1354                                                 bi = &sbio->bi_io_vec[j];
1355                                                 bi->bv_offset = 0;
1356                                                 if (size > PAGE_SIZE)
1357                                                         bi->bv_len = PAGE_SIZE;
1358                                                 else
1359                                                         bi->bv_len = size;
1360                                                 size -= PAGE_SIZE;
1361                                                 memcpy(page_address(bi->bv_page),
1362                                                        page_address(pbio->bi_io_vec[j].bv_page),
1363                                                        PAGE_SIZE);
1364                                         }
1365
1366                                 }
1367                         }
1368         }
1369         if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1370                 /* ouch - failed to read all of that.
1371                  * Try some synchronous reads of other devices to get
1372                  * good data, much like with normal read errors.  Only
1373                  * read into the pages we already have so we don't
1374                  * need to re-issue the read request.
1375                  * We don't need to freeze the array, because being in an
1376                  * active sync request, there is no normal IO, and
1377                  * no overlapping syncs.
1378                  */
1379                 sector_t sect = r1_bio->sector;
1380                 int sectors = r1_bio->sectors;
1381                 int idx = 0;
1382
1383                 while(sectors) {
1384                         int s = sectors;
1385                         int d = r1_bio->read_disk;
1386                         int success = 0;
1387                         mdk_rdev_t *rdev;
1388
1389                         if (s > (PAGE_SIZE>>9))
1390                                 s = PAGE_SIZE >> 9;
1391                         do {
1392                                 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1393                                         /* No rcu protection needed here devices
1394                                          * can only be removed when no resync is
1395                                          * active, and resync is currently active
1396                                          */
1397                                         rdev = conf->mirrors[d].rdev;
1398                                         if (sync_page_io(rdev->bdev,
1399                                                          sect + rdev->data_offset,
1400                                                          s<<9,
1401                                                          bio->bi_io_vec[idx].bv_page,
1402                                                          READ)) {
1403                                                 success = 1;
1404                                                 break;
1405                                         }
1406                                 }
1407                                 d++;
1408                                 if (d == conf->raid_disks)
1409                                         d = 0;
1410                         } while (!success && d != r1_bio->read_disk);
1411
1412                         if (success) {
1413                                 int start = d;
1414                                 /* write it back and re-read */
1415                                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1416                                 while (d != r1_bio->read_disk) {
1417                                         if (d == 0)
1418                                                 d = conf->raid_disks;
1419                                         d--;
1420                                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1421                                                 continue;
1422                                         rdev = conf->mirrors[d].rdev;
1423                                         atomic_add(s, &rdev->corrected_errors);
1424                                         if (sync_page_io(rdev->bdev,
1425                                                          sect + rdev->data_offset,
1426                                                          s<<9,
1427                                                          bio->bi_io_vec[idx].bv_page,
1428                                                          WRITE) == 0)
1429                                                 md_error(mddev, rdev);
1430                                 }
1431                                 d = start;
1432                                 while (d != r1_bio->read_disk) {
1433                                         if (d == 0)
1434                                                 d = conf->raid_disks;
1435                                         d--;
1436                                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1437                                                 continue;
1438                                         rdev = conf->mirrors[d].rdev;
1439                                         if (sync_page_io(rdev->bdev,
1440                                                          sect + rdev->data_offset,
1441                                                          s<<9,
1442                                                          bio->bi_io_vec[idx].bv_page,
1443                                                          READ) == 0)
1444                                                 md_error(mddev, rdev);
1445                                 }
1446                         } else {
1447                                 char b[BDEVNAME_SIZE];
1448                                 /* Cannot read from anywhere, array is toast */
1449                                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1450                                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1451                                        " for block %llu\n",
1452                                        bdevname(bio->bi_bdev,b),
1453                                        (unsigned long long)r1_bio->sector);
1454                                 md_done_sync(mddev, r1_bio->sectors, 0);
1455                                 put_buf(r1_bio);
1456                                 return;
1457                         }
1458                         sectors -= s;
1459                         sect += s;
1460                         idx ++;
1461                 }
1462         }
1463
1464         /*
1465          * schedule writes
1466          */
1467         atomic_set(&r1_bio->remaining, 1);
1468         for (i = 0; i < disks ; i++) {
1469                 wbio = r1_bio->bios[i];
1470                 if (wbio->bi_end_io == NULL ||
1471                     (wbio->bi_end_io == end_sync_read &&
1472                      (i == r1_bio->read_disk ||
1473                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1474                         continue;
1475
1476                 wbio->bi_rw = WRITE;
1477                 wbio->bi_end_io = end_sync_write;
1478                 atomic_inc(&r1_bio->remaining);
1479                 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1480
1481                 generic_make_request(wbio);
1482         }
1483
1484         if (atomic_dec_and_test(&r1_bio->remaining)) {
1485                 /* if we're here, all write(s) have completed, so clean up */
1486                 md_done_sync(mddev, r1_bio->sectors, 1);
1487                 put_buf(r1_bio);
1488         }
1489 }
1490
1491 /*
1492  * This is a kernel thread which:
1493  *
1494  *      1.      Retries failed read operations on working mirrors.
1495  *      2.      Updates the raid superblock when problems encounter.
1496  *      3.      Performs writes following reads for array syncronising.
1497  */
1498
1499 static void fix_read_error(conf_t *conf, int read_disk,
1500                            sector_t sect, int sectors)
1501 {
1502         mddev_t *mddev = conf->mddev;
1503         while(sectors) {
1504                 int s = sectors;
1505                 int d = read_disk;
1506                 int success = 0;
1507                 int start;
1508                 mdk_rdev_t *rdev;
1509
1510                 if (s > (PAGE_SIZE>>9))
1511                         s = PAGE_SIZE >> 9;
1512
1513                 do {
1514                         /* Note: no rcu protection needed here
1515                          * as this is synchronous in the raid1d thread
1516                          * which is the thread that might remove
1517                          * a device.  If raid1d ever becomes multi-threaded....
1518                          */
1519                         rdev = conf->mirrors[d].rdev;
1520                         if (rdev &&
1521                             test_bit(In_sync, &rdev->flags) &&
1522                             sync_page_io(rdev->bdev,
1523                                          sect + rdev->data_offset,
1524                                          s<<9,
1525                                          conf->tmppage, READ))
1526                                 success = 1;
1527                         else {
1528                                 d++;
1529                                 if (d == conf->raid_disks)
1530                                         d = 0;
1531                         }
1532                 } while (!success && d != read_disk);
1533
1534                 if (!success) {
1535                         /* Cannot read from anywhere -- bye bye array */
1536                         md_error(mddev, conf->mirrors[read_disk].rdev);
1537                         break;
1538                 }
1539                 /* write it back and re-read */
1540                 start = d;
1541                 while (d != read_disk) {
1542                         if (d==0)
1543                                 d = conf->raid_disks;
1544                         d--;
1545                         rdev = conf->mirrors[d].rdev;
1546                         if (rdev &&
1547                             test_bit(In_sync, &rdev->flags)) {
1548                                 if (sync_page_io(rdev->bdev,
1549                                                  sect + rdev->data_offset,
1550                                                  s<<9, conf->tmppage, WRITE)
1551                                     == 0)
1552                                         /* Well, this device is dead */
1553                                         md_error(mddev, rdev);
1554                         }
1555                 }
1556                 d = start;
1557                 while (d != read_disk) {
1558                         char b[BDEVNAME_SIZE];
1559                         if (d==0)
1560                                 d = conf->raid_disks;
1561                         d--;
1562                         rdev = conf->mirrors[d].rdev;
1563                         if (rdev &&
1564                             test_bit(In_sync, &rdev->flags)) {
1565                                 if (sync_page_io(rdev->bdev,
1566                                                  sect + rdev->data_offset,
1567                                                  s<<9, conf->tmppage, READ)
1568                                     == 0)
1569                                         /* Well, this device is dead */
1570                                         md_error(mddev, rdev);
1571                                 else {
1572                                         atomic_add(s, &rdev->corrected_errors);
1573                                         printk(KERN_INFO
1574                                                "raid1:%s: read error corrected "
1575                                                "(%d sectors at %llu on %s)\n",
1576                                                mdname(mddev), s,
1577                                                (unsigned long long)(sect +
1578                                                    rdev->data_offset),
1579                                                bdevname(rdev->bdev, b));
1580                                 }
1581                         }
1582                 }
1583                 sectors -= s;
1584                 sect += s;
1585         }
1586 }
1587
1588 static void raid1d(mddev_t *mddev)
1589 {
1590         r1bio_t *r1_bio;
1591         struct bio *bio;
1592         unsigned long flags;
1593         conf_t *conf = mddev->private;
1594         struct list_head *head = &conf->retry_list;
1595         int unplug=0;
1596         mdk_rdev_t *rdev;
1597
1598         md_check_recovery(mddev);
1599         
1600         for (;;) {
1601                 char b[BDEVNAME_SIZE];
1602
1603                 unplug += flush_pending_writes(conf);
1604
1605                 spin_lock_irqsave(&conf->device_lock, flags);
1606                 if (list_empty(head)) {
1607                         spin_unlock_irqrestore(&conf->device_lock, flags);
1608                         break;
1609                 }
1610                 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1611                 list_del(head->prev);
1612                 conf->nr_queued--;
1613                 spin_unlock_irqrestore(&conf->device_lock, flags);
1614
1615                 mddev = r1_bio->mddev;
1616                 conf = mddev->private;
1617                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1618                         sync_request_write(mddev, r1_bio);
1619                         unplug = 1;
1620                 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1621                         /* some requests in the r1bio were BIO_RW_BARRIER
1622                          * requests which failed with -EOPNOTSUPP.  Hohumm..
1623                          * Better resubmit without the barrier.
1624                          * We know which devices to resubmit for, because
1625                          * all others have had their bios[] entry cleared.
1626                          * We already have a nr_pending reference on these rdevs.
1627                          */
1628                         int i;
1629                         const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
1630                         clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1631                         clear_bit(R1BIO_Barrier, &r1_bio->state);
1632                         for (i=0; i < conf->raid_disks; i++)
1633                                 if (r1_bio->bios[i])
1634                                         atomic_inc(&r1_bio->remaining);
1635                         for (i=0; i < conf->raid_disks; i++)
1636                                 if (r1_bio->bios[i]) {
1637                                         struct bio_vec *bvec;
1638                                         int j;
1639
1640                                         bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1641                                         /* copy pages from the failed bio, as
1642                                          * this might be a write-behind device */
1643                                         __bio_for_each_segment(bvec, bio, j, 0)
1644                                                 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1645                                         bio_put(r1_bio->bios[i]);
1646                                         bio->bi_sector = r1_bio->sector +
1647                                                 conf->mirrors[i].rdev->data_offset;
1648                                         bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1649                                         bio->bi_end_io = raid1_end_write_request;
1650                                         bio->bi_rw = WRITE |
1651                                                 (do_sync << BIO_RW_SYNCIO);
1652                                         bio->bi_private = r1_bio;
1653                                         r1_bio->bios[i] = bio;
1654                                         generic_make_request(bio);
1655                                 }
1656                 } else {
1657                         int disk;
1658
1659                         /* we got a read error. Maybe the drive is bad.  Maybe just
1660                          * the block and we can fix it.
1661                          * We freeze all other IO, and try reading the block from
1662                          * other devices.  When we find one, we re-write
1663                          * and check it that fixes the read error.
1664                          * This is all done synchronously while the array is
1665                          * frozen
1666                          */
1667                         if (mddev->ro == 0) {
1668                                 freeze_array(conf);
1669                                 fix_read_error(conf, r1_bio->read_disk,
1670                                                r1_bio->sector,
1671                                                r1_bio->sectors);
1672                                 unfreeze_array(conf);
1673                         } else
1674                                 md_error(mddev,
1675                                          conf->mirrors[r1_bio->read_disk].rdev);
1676
1677                         bio = r1_bio->bios[r1_bio->read_disk];
1678                         if ((disk=read_balance(conf, r1_bio)) == -1) {
1679                                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1680                                        " read error for block %llu\n",
1681                                        bdevname(bio->bi_bdev,b),
1682                                        (unsigned long long)r1_bio->sector);
1683                                 raid_end_bio_io(r1_bio);
1684                         } else {
1685                                 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
1686                                 r1_bio->bios[r1_bio->read_disk] =
1687                                         mddev->ro ? IO_BLOCKED : NULL;
1688                                 r1_bio->read_disk = disk;
1689                                 bio_put(bio);
1690                                 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1691                                 r1_bio->bios[r1_bio->read_disk] = bio;
1692                                 rdev = conf->mirrors[disk].rdev;
1693                                 if (printk_ratelimit())
1694                                         printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1695                                                " another mirror\n",
1696                                                bdevname(rdev->bdev,b),
1697                                                (unsigned long long)r1_bio->sector);
1698                                 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1699                                 bio->bi_bdev = rdev->bdev;
1700                                 bio->bi_end_io = raid1_end_read_request;
1701                                 bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
1702                                 bio->bi_private = r1_bio;
1703                                 unplug = 1;
1704                                 generic_make_request(bio);
1705                         }
1706                 }
1707                 cond_resched();
1708         }
1709         if (unplug)
1710                 unplug_slaves(mddev);
1711 }
1712
1713
1714 static int init_resync(conf_t *conf)
1715 {
1716         int buffs;
1717
1718         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1719         BUG_ON(conf->r1buf_pool);
1720         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1721                                           conf->poolinfo);
1722         if (!conf->r1buf_pool)
1723                 return -ENOMEM;
1724         conf->next_resync = 0;
1725         return 0;
1726 }
1727
1728 /*
1729  * perform a "sync" on one "block"
1730  *
1731  * We need to make sure that no normal I/O request - particularly write
1732  * requests - conflict with active sync requests.
1733  *
1734  * This is achieved by tracking pending requests and a 'barrier' concept
1735  * that can be installed to exclude normal IO requests.
1736  */
1737
1738 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1739 {
1740         conf_t *conf = mddev->private;
1741         r1bio_t *r1_bio;
1742         struct bio *bio;
1743         sector_t max_sector, nr_sectors;
1744         int disk = -1;
1745         int i;
1746         int wonly = -1;
1747         int write_targets = 0, read_targets = 0;
1748         int sync_blocks;
1749         int still_degraded = 0;
1750
1751         if (!conf->r1buf_pool)
1752         {
1753 /*
1754                 printk("sync start - bitmap %p\n", mddev->bitmap);
1755 */
1756                 if (init_resync(conf))
1757                         return 0;
1758         }
1759
1760         max_sector = mddev->dev_sectors;
1761         if (sector_nr >= max_sector) {
1762                 /* If we aborted, we need to abort the
1763                  * sync on the 'current' bitmap chunk (there will
1764                  * only be one in raid1 resync.
1765                  * We can find the current addess in mddev->curr_resync
1766                  */
1767                 if (mddev->curr_resync < max_sector) /* aborted */
1768                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1769                                                 &sync_blocks, 1);
1770                 else /* completed sync */
1771                         conf->fullsync = 0;
1772
1773                 bitmap_close_sync(mddev->bitmap);
1774                 close_sync(conf);
1775                 return 0;
1776         }
1777
1778         if (mddev->bitmap == NULL &&
1779             mddev->recovery_cp == MaxSector &&
1780             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1781             conf->fullsync == 0) {
1782                 *skipped = 1;
1783                 return max_sector - sector_nr;
1784         }
1785         /* before building a request, check if we can skip these blocks..
1786          * This call the bitmap_start_sync doesn't actually record anything
1787          */
1788         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1789             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1790                 /* We can skip this block, and probably several more */
1791                 *skipped = 1;
1792                 return sync_blocks;
1793         }
1794         /*
1795          * If there is non-resync activity waiting for a turn,
1796          * and resync is going fast enough,
1797          * then let it though before starting on this new sync request.
1798          */
1799         if (!go_faster && conf->nr_waiting)
1800                 msleep_interruptible(1000);
1801
1802         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1803         raise_barrier(conf);
1804
1805         conf->next_resync = sector_nr;
1806
1807         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1808         rcu_read_lock();
1809         /*
1810          * If we get a correctably read error during resync or recovery,
1811          * we might want to read from a different device.  So we
1812          * flag all drives that could conceivably be read from for READ,
1813          * and any others (which will be non-In_sync devices) for WRITE.
1814          * If a read fails, we try reading from something else for which READ
1815          * is OK.
1816          */
1817
1818         r1_bio->mddev = mddev;
1819         r1_bio->sector = sector_nr;
1820         r1_bio->state = 0;
1821         set_bit(R1BIO_IsSync, &r1_bio->state);
1822
1823         for (i=0; i < conf->raid_disks; i++) {
1824                 mdk_rdev_t *rdev;
1825                 bio = r1_bio->bios[i];
1826
1827                 /* take from bio_init */
1828                 bio->bi_next = NULL;
1829                 bio->bi_flags |= 1 << BIO_UPTODATE;
1830                 bio->bi_rw = READ;
1831                 bio->bi_vcnt = 0;
1832                 bio->bi_idx = 0;
1833                 bio->bi_phys_segments = 0;
1834                 bio->bi_size = 0;
1835                 bio->bi_end_io = NULL;
1836                 bio->bi_private = NULL;
1837
1838                 rdev = rcu_dereference(conf->mirrors[i].rdev);
1839                 if (rdev == NULL ||
1840                            test_bit(Faulty, &rdev->flags)) {
1841                         still_degraded = 1;
1842                         continue;
1843                 } else if (!test_bit(In_sync, &rdev->flags)) {
1844                         bio->bi_rw = WRITE;
1845                         bio->bi_end_io = end_sync_write;
1846                         write_targets ++;
1847                 } else {
1848                         /* may need to read from here */
1849                         bio->bi_rw = READ;
1850                         bio->bi_end_io = end_sync_read;
1851                         if (test_bit(WriteMostly, &rdev->flags)) {
1852                                 if (wonly < 0)
1853                                         wonly = i;
1854                         } else {
1855                                 if (disk < 0)
1856                                         disk = i;
1857                         }
1858                         read_targets++;
1859                 }
1860                 atomic_inc(&rdev->nr_pending);
1861                 bio->bi_sector = sector_nr + rdev->data_offset;
1862                 bio->bi_bdev = rdev->bdev;
1863                 bio->bi_private = r1_bio;
1864         }
1865         rcu_read_unlock();
1866         if (disk < 0)
1867                 disk = wonly;
1868         r1_bio->read_disk = disk;
1869
1870         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1871                 /* extra read targets are also write targets */
1872                 write_targets += read_targets-1;
1873
1874         if (write_targets == 0 || read_targets == 0) {
1875                 /* There is nowhere to write, so all non-sync
1876                  * drives must be failed - so we are finished
1877                  */
1878                 sector_t rv = max_sector - sector_nr;
1879                 *skipped = 1;
1880                 put_buf(r1_bio);
1881                 return rv;
1882         }
1883
1884         if (max_sector > mddev->resync_max)
1885                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1886         nr_sectors = 0;
1887         sync_blocks = 0;
1888         do {
1889                 struct page *page;
1890                 int len = PAGE_SIZE;
1891                 if (sector_nr + (len>>9) > max_sector)
1892                         len = (max_sector - sector_nr) << 9;
1893                 if (len == 0)
1894                         break;
1895                 if (sync_blocks == 0) {
1896                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1897                                                &sync_blocks, still_degraded) &&
1898                             !conf->fullsync &&
1899                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1900                                 break;
1901                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1902                         if (len > (sync_blocks<<9))
1903                                 len = sync_blocks<<9;
1904                 }
1905
1906                 for (i=0 ; i < conf->raid_disks; i++) {
1907                         bio = r1_bio->bios[i];
1908                         if (bio->bi_end_io) {
1909                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1910                                 if (bio_add_page(bio, page, len, 0) == 0) {
1911                                         /* stop here */
1912                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1913                                         while (i > 0) {
1914                                                 i--;
1915                                                 bio = r1_bio->bios[i];
1916                                                 if (bio->bi_end_io==NULL)
1917                                                         continue;
1918                                                 /* remove last page from this bio */
1919                                                 bio->bi_vcnt--;
1920                                                 bio->bi_size -= len;
1921                                                 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1922                                         }
1923                                         goto bio_full;
1924                                 }
1925                         }
1926                 }
1927                 nr_sectors += len>>9;
1928                 sector_nr += len>>9;
1929                 sync_blocks -= (len>>9);
1930         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1931  bio_full:
1932         r1_bio->sectors = nr_sectors;
1933
1934         /* For a user-requested sync, we read all readable devices and do a
1935          * compare
1936          */
1937         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1938                 atomic_set(&r1_bio->remaining, read_targets);
1939                 for (i=0; i<conf->raid_disks; i++) {
1940                         bio = r1_bio->bios[i];
1941                         if (bio->bi_end_io == end_sync_read) {
1942                                 md_sync_acct(bio->bi_bdev, nr_sectors);
1943                                 generic_make_request(bio);
1944                         }
1945                 }
1946         } else {
1947                 atomic_set(&r1_bio->remaining, 1);
1948                 bio = r1_bio->bios[r1_bio->read_disk];
1949                 md_sync_acct(bio->bi_bdev, nr_sectors);
1950                 generic_make_request(bio);
1951
1952         }
1953         return nr_sectors;
1954 }
1955
1956 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1957 {
1958         if (sectors)
1959                 return sectors;
1960
1961         return mddev->dev_sectors;
1962 }
1963
1964 static conf_t *setup_conf(mddev_t *mddev)
1965 {
1966         conf_t *conf;
1967         int i;
1968         mirror_info_t *disk;
1969         mdk_rdev_t *rdev;
1970         int err = -ENOMEM;
1971
1972         conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1973         if (!conf)
1974                 goto abort;
1975
1976         conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1977                                  GFP_KERNEL);
1978         if (!conf->mirrors)
1979                 goto abort;
1980
1981         conf->tmppage = alloc_page(GFP_KERNEL);
1982         if (!conf->tmppage)
1983                 goto abort;
1984
1985         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1986         if (!conf->poolinfo)
1987                 goto abort;
1988         conf->poolinfo->raid_disks = mddev->raid_disks;
1989         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1990                                           r1bio_pool_free,
1991                                           conf->poolinfo);
1992         if (!conf->r1bio_pool)
1993                 goto abort;
1994
1995         conf->poolinfo->mddev = mddev;
1996
1997         spin_lock_init(&conf->device_lock);
1998         list_for_each_entry(rdev, &mddev->disks, same_set) {
1999                 int disk_idx = rdev->raid_disk;
2000                 if (disk_idx >= mddev->raid_disks
2001                     || disk_idx < 0)
2002                         continue;
2003                 disk = conf->mirrors + disk_idx;
2004
2005                 disk->rdev = rdev;
2006
2007                 disk->head_position = 0;
2008         }
2009         conf->raid_disks = mddev->raid_disks;
2010         conf->mddev = mddev;
2011         INIT_LIST_HEAD(&conf->retry_list);
2012
2013         spin_lock_init(&conf->resync_lock);
2014         init_waitqueue_head(&conf->wait_barrier);
2015
2016         bio_list_init(&conf->pending_bio_list);
2017         bio_list_init(&conf->flushing_bio_list);
2018
2019         conf->last_used = -1;
2020         for (i = 0; i < conf->raid_disks; i++) {
2021
2022                 disk = conf->mirrors + i;
2023
2024                 if (!disk->rdev ||
2025                     !test_bit(In_sync, &disk->rdev->flags)) {
2026                         disk->head_position = 0;
2027                         if (disk->rdev)
2028                                 conf->fullsync = 1;
2029                 } else if (conf->last_used < 0)
2030                         /*
2031                          * The first working device is used as a
2032                          * starting point to read balancing.
2033                          */
2034                         conf->last_used = i;
2035         }
2036
2037         err = -EIO;
2038         if (conf->last_used < 0) {
2039                 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
2040                        mdname(mddev));
2041                 goto abort;
2042         }
2043         err = -ENOMEM;
2044         conf->thread = md_register_thread(raid1d, mddev, NULL);
2045         if (!conf->thread) {
2046                 printk(KERN_ERR
2047                        "raid1: couldn't allocate thread for %s\n",
2048                        mdname(mddev));
2049                 goto abort;
2050         }
2051
2052         return conf;
2053
2054  abort:
2055         if (conf) {
2056                 if (conf->r1bio_pool)
2057                         mempool_destroy(conf->r1bio_pool);
2058                 kfree(conf->mirrors);
2059                 safe_put_page(conf->tmppage);
2060                 kfree(conf->poolinfo);
2061                 kfree(conf);
2062         }
2063         return ERR_PTR(err);
2064 }
2065
2066 static int run(mddev_t *mddev)
2067 {
2068         conf_t *conf;
2069         int i;
2070         mdk_rdev_t *rdev;
2071
2072         if (mddev->level != 1) {
2073                 printk("raid1: %s: raid level not set to mirroring (%d)\n",
2074                        mdname(mddev), mddev->level);
2075                 return -EIO;
2076         }
2077         if (mddev->reshape_position != MaxSector) {
2078                 printk("raid1: %s: reshape_position set but not supported\n",
2079                        mdname(mddev));
2080                 return -EIO;
2081         }
2082         /*
2083          * copy the already verified devices into our private RAID1
2084          * bookkeeping area. [whatever we allocate in run(),
2085          * should be freed in stop()]
2086          */
2087         if (mddev->private == NULL)
2088                 conf = setup_conf(mddev);
2089         else
2090                 conf = mddev->private;
2091
2092         if (IS_ERR(conf))
2093                 return PTR_ERR(conf);
2094
2095         mddev->queue->queue_lock = &conf->device_lock;
2096         list_for_each_entry(rdev, &mddev->disks, same_set) {
2097                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2098                                   rdev->data_offset << 9);
2099                 /* as we don't honour merge_bvec_fn, we must never risk
2100                  * violating it, so limit ->max_sector to one PAGE, as
2101                  * a one page request is never in violation.
2102                  */
2103                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2104                     queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
2105                         blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
2106         }
2107
2108         mddev->degraded = 0;
2109         for (i=0; i < conf->raid_disks; i++)
2110                 if (conf->mirrors[i].rdev == NULL ||
2111                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2112                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2113                         mddev->degraded++;
2114
2115         if (conf->raid_disks - mddev->degraded == 1)
2116                 mddev->recovery_cp = MaxSector;
2117
2118         if (mddev->recovery_cp != MaxSector)
2119                 printk(KERN_NOTICE "raid1: %s is not clean"
2120                        " -- starting background reconstruction\n",
2121                        mdname(mddev));
2122         printk(KERN_INFO 
2123                 "raid1: raid set %s active with %d out of %d mirrors\n",
2124                 mdname(mddev), mddev->raid_disks - mddev->degraded, 
2125                 mddev->raid_disks);
2126
2127         /*
2128          * Ok, everything is just fine now
2129          */
2130         mddev->thread = conf->thread;
2131         conf->thread = NULL;
2132         mddev->private = conf;
2133
2134         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2135
2136         mddev->queue->unplug_fn = raid1_unplug;
2137         mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2138         mddev->queue->backing_dev_info.congested_data = mddev;
2139         md_integrity_register(mddev);
2140         return 0;
2141 }
2142
2143 static int stop(mddev_t *mddev)
2144 {
2145         conf_t *conf = mddev->private;
2146         struct bitmap *bitmap = mddev->bitmap;
2147         int behind_wait = 0;
2148
2149         /* wait for behind writes to complete */
2150         while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2151                 behind_wait++;
2152                 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2153                 set_current_state(TASK_UNINTERRUPTIBLE);
2154                 schedule_timeout(HZ); /* wait a second */
2155                 /* need to kick something here to make sure I/O goes? */
2156         }
2157
2158         raise_barrier(conf);
2159         lower_barrier(conf);
2160
2161         md_unregister_thread(mddev->thread);
2162         mddev->thread = NULL;
2163         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2164         if (conf->r1bio_pool)
2165                 mempool_destroy(conf->r1bio_pool);
2166         kfree(conf->mirrors);
2167         kfree(conf->poolinfo);
2168         kfree(conf);
2169         mddev->private = NULL;
2170         return 0;
2171 }
2172
2173 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2174 {
2175         /* no resync is happening, and there is enough space
2176          * on all devices, so we can resize.
2177          * We need to make sure resync covers any new space.
2178          * If the array is shrinking we should possibly wait until
2179          * any io in the removed space completes, but it hardly seems
2180          * worth it.
2181          */
2182         md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2183         if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2184                 return -EINVAL;
2185         set_capacity(mddev->gendisk, mddev->array_sectors);
2186         mddev->changed = 1;
2187         revalidate_disk(mddev->gendisk);
2188         if (sectors > mddev->dev_sectors &&
2189             mddev->recovery_cp == MaxSector) {
2190                 mddev->recovery_cp = mddev->dev_sectors;
2191                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2192         }
2193         mddev->dev_sectors = sectors;
2194         mddev->resync_max_sectors = sectors;
2195         return 0;
2196 }
2197
2198 static int raid1_reshape(mddev_t *mddev)
2199 {
2200         /* We need to:
2201          * 1/ resize the r1bio_pool
2202          * 2/ resize conf->mirrors
2203          *
2204          * We allocate a new r1bio_pool if we can.
2205          * Then raise a device barrier and wait until all IO stops.
2206          * Then resize conf->mirrors and swap in the new r1bio pool.
2207          *
2208          * At the same time, we "pack" the devices so that all the missing
2209          * devices have the higher raid_disk numbers.
2210          */
2211         mempool_t *newpool, *oldpool;
2212         struct pool_info *newpoolinfo;
2213         mirror_info_t *newmirrors;
2214         conf_t *conf = mddev->private;
2215         int cnt, raid_disks;
2216         unsigned long flags;
2217         int d, d2, err;
2218
2219         /* Cannot change chunk_size, layout, or level */
2220         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2221             mddev->layout != mddev->new_layout ||
2222             mddev->level != mddev->new_level) {
2223                 mddev->new_chunk_sectors = mddev->chunk_sectors;
2224                 mddev->new_layout = mddev->layout;
2225                 mddev->new_level = mddev->level;
2226                 return -EINVAL;
2227         }
2228
2229         err = md_allow_write(mddev);
2230         if (err)
2231                 return err;
2232
2233         raid_disks = mddev->raid_disks + mddev->delta_disks;
2234
2235         if (raid_disks < conf->raid_disks) {
2236                 cnt=0;
2237                 for (d= 0; d < conf->raid_disks; d++)
2238                         if (conf->mirrors[d].rdev)
2239                                 cnt++;
2240                 if (cnt > raid_disks)
2241                         return -EBUSY;
2242         }
2243
2244         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2245         if (!newpoolinfo)
2246                 return -ENOMEM;
2247         newpoolinfo->mddev = mddev;
2248         newpoolinfo->raid_disks = raid_disks;
2249
2250         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2251                                  r1bio_pool_free, newpoolinfo);
2252         if (!newpool) {
2253                 kfree(newpoolinfo);
2254                 return -ENOMEM;
2255         }
2256         newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2257         if (!newmirrors) {
2258                 kfree(newpoolinfo);
2259                 mempool_destroy(newpool);
2260                 return -ENOMEM;
2261         }
2262
2263         raise_barrier(conf);
2264
2265         /* ok, everything is stopped */
2266         oldpool = conf->r1bio_pool;
2267         conf->r1bio_pool = newpool;
2268
2269         for (d = d2 = 0; d < conf->raid_disks; d++) {
2270                 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2271                 if (rdev && rdev->raid_disk != d2) {
2272                         char nm[20];
2273                         sprintf(nm, "rd%d", rdev->raid_disk);
2274                         sysfs_remove_link(&mddev->kobj, nm);
2275                         rdev->raid_disk = d2;
2276                         sprintf(nm, "rd%d", rdev->raid_disk);
2277                         sysfs_remove_link(&mddev->kobj, nm);
2278                         if (sysfs_create_link(&mddev->kobj,
2279                                               &rdev->kobj, nm))
2280                                 printk(KERN_WARNING
2281                                        "md/raid1: cannot register "
2282                                        "%s for %s\n",
2283                                        nm, mdname(mddev));
2284                 }
2285                 if (rdev)
2286                         newmirrors[d2++].rdev = rdev;
2287         }
2288         kfree(conf->mirrors);
2289         conf->mirrors = newmirrors;
2290         kfree(conf->poolinfo);
2291         conf->poolinfo = newpoolinfo;
2292
2293         spin_lock_irqsave(&conf->device_lock, flags);
2294         mddev->degraded += (raid_disks - conf->raid_disks);
2295         spin_unlock_irqrestore(&conf->device_lock, flags);
2296         conf->raid_disks = mddev->raid_disks = raid_disks;
2297         mddev->delta_disks = 0;
2298
2299         conf->last_used = 0; /* just make sure it is in-range */
2300         lower_barrier(conf);
2301
2302         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2303         md_wakeup_thread(mddev->thread);
2304
2305         mempool_destroy(oldpool);
2306         return 0;
2307 }
2308
2309 static void raid1_quiesce(mddev_t *mddev, int state)
2310 {
2311         conf_t *conf = mddev->private;
2312
2313         switch(state) {
2314         case 2: /* wake for suspend */
2315                 wake_up(&conf->wait_barrier);
2316                 break;
2317         case 1:
2318                 raise_barrier(conf);
2319                 break;
2320         case 0:
2321                 lower_barrier(conf);
2322                 break;
2323         }
2324 }
2325
2326 static void *raid1_takeover(mddev_t *mddev)
2327 {
2328         /* raid1 can take over:
2329          *  raid5 with 2 devices, any layout or chunk size
2330          */
2331         if (mddev->level == 5 && mddev->raid_disks == 2) {
2332                 conf_t *conf;
2333                 mddev->new_level = 1;
2334                 mddev->new_layout = 0;
2335                 mddev->new_chunk_sectors = 0;
2336                 conf = setup_conf(mddev);
2337                 if (!IS_ERR(conf))
2338                         conf->barrier = 1;
2339                 return conf;
2340         }
2341         return ERR_PTR(-EINVAL);
2342 }
2343
2344 static struct mdk_personality raid1_personality =
2345 {
2346         .name           = "raid1",
2347         .level          = 1,
2348         .owner          = THIS_MODULE,
2349         .make_request   = make_request,
2350         .run            = run,
2351         .stop           = stop,
2352         .status         = status,
2353         .error_handler  = error,
2354         .hot_add_disk   = raid1_add_disk,
2355         .hot_remove_disk= raid1_remove_disk,
2356         .spare_active   = raid1_spare_active,
2357         .sync_request   = sync_request,
2358         .resize         = raid1_resize,
2359         .size           = raid1_size,
2360         .check_reshape  = raid1_reshape,
2361         .quiesce        = raid1_quiesce,
2362         .takeover       = raid1_takeover,
2363 };
2364
2365 static int __init raid_init(void)
2366 {
2367         return register_md_personality(&raid1_personality);
2368 }
2369
2370 static void raid_exit(void)
2371 {
2372         unregister_md_personality(&raid1_personality);
2373 }
2374
2375 module_init(raid_init);
2376 module_exit(raid_exit);
2377 MODULE_LICENSE("GPL");
2378 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2379 MODULE_ALIAS("md-raid1");
2380 MODULE_ALIAS("md-level-1");