28839a8193f2763c212ace86c84079e99a540f5e
[safe/jmp/linux-2.6] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include "dm-bio-list.h"
35 #include <linux/raid/raid1.h>
36 #include <linux/raid/bitmap.h>
37
38 #define DEBUG 0
39 #if DEBUG
40 #define PRINTK(x...) printk(x)
41 #else
42 #define PRINTK(x...)
43 #endif
44
45 /*
46  * Number of guaranteed r1bios in case of extreme VM load:
47  */
48 #define NR_RAID1_BIOS 256
49
50 static mdk_personality_t raid1_personality;
51
52 static void unplug_slaves(mddev_t *mddev);
53
54
55 static void * r1bio_pool_alloc(unsigned int __nocast gfp_flags, void *data)
56 {
57         struct pool_info *pi = data;
58         r1bio_t *r1_bio;
59         int size = offsetof(r1bio_t, bios[pi->raid_disks]);
60
61         /* allocate a r1bio with room for raid_disks entries in the bios array */
62         r1_bio = kmalloc(size, gfp_flags);
63         if (r1_bio)
64                 memset(r1_bio, 0, size);
65         else
66                 unplug_slaves(pi->mddev);
67
68         return r1_bio;
69 }
70
71 static void r1bio_pool_free(void *r1_bio, void *data)
72 {
73         kfree(r1_bio);
74 }
75
76 #define RESYNC_BLOCK_SIZE (64*1024)
77 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
78 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
79 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
80 #define RESYNC_WINDOW (2048*1024)
81
82 static void * r1buf_pool_alloc(unsigned int __nocast gfp_flags, void *data)
83 {
84         struct pool_info *pi = data;
85         struct page *page;
86         r1bio_t *r1_bio;
87         struct bio *bio;
88         int i, j;
89
90         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
91         if (!r1_bio) {
92                 unplug_slaves(pi->mddev);
93                 return NULL;
94         }
95
96         /*
97          * Allocate bios : 1 for reading, n-1 for writing
98          */
99         for (j = pi->raid_disks ; j-- ; ) {
100                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
101                 if (!bio)
102                         goto out_free_bio;
103                 r1_bio->bios[j] = bio;
104         }
105         /*
106          * Allocate RESYNC_PAGES data pages and attach them to
107          * the first bio;
108          */
109         bio = r1_bio->bios[0];
110         for (i = 0; i < RESYNC_PAGES; i++) {
111                 page = alloc_page(gfp_flags);
112                 if (unlikely(!page))
113                         goto out_free_pages;
114
115                 bio->bi_io_vec[i].bv_page = page;
116         }
117
118         r1_bio->master_bio = NULL;
119
120         return r1_bio;
121
122 out_free_pages:
123         for ( ; i > 0 ; i--)
124                 __free_page(bio->bi_io_vec[i-1].bv_page);
125 out_free_bio:
126         while ( ++j < pi->raid_disks )
127                 bio_put(r1_bio->bios[j]);
128         r1bio_pool_free(r1_bio, data);
129         return NULL;
130 }
131
132 static void r1buf_pool_free(void *__r1_bio, void *data)
133 {
134         struct pool_info *pi = data;
135         int i;
136         r1bio_t *r1bio = __r1_bio;
137         struct bio *bio = r1bio->bios[0];
138
139         for (i = 0; i < RESYNC_PAGES; i++) {
140                 __free_page(bio->bi_io_vec[i].bv_page);
141                 bio->bi_io_vec[i].bv_page = NULL;
142         }
143         for (i=0 ; i < pi->raid_disks; i++)
144                 bio_put(r1bio->bios[i]);
145
146         r1bio_pool_free(r1bio, data);
147 }
148
149 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
150 {
151         int i;
152
153         for (i = 0; i < conf->raid_disks; i++) {
154                 struct bio **bio = r1_bio->bios + i;
155                 if (*bio)
156                         bio_put(*bio);
157                 *bio = NULL;
158         }
159 }
160
161 static inline void free_r1bio(r1bio_t *r1_bio)
162 {
163         unsigned long flags;
164
165         conf_t *conf = mddev_to_conf(r1_bio->mddev);
166
167         /*
168          * Wake up any possible resync thread that waits for the device
169          * to go idle.
170          */
171         spin_lock_irqsave(&conf->resync_lock, flags);
172         if (!--conf->nr_pending) {
173                 wake_up(&conf->wait_idle);
174                 wake_up(&conf->wait_resume);
175         }
176         spin_unlock_irqrestore(&conf->resync_lock, flags);
177
178         put_all_bios(conf, r1_bio);
179         mempool_free(r1_bio, conf->r1bio_pool);
180 }
181
182 static inline void put_buf(r1bio_t *r1_bio)
183 {
184         conf_t *conf = mddev_to_conf(r1_bio->mddev);
185         unsigned long flags;
186
187         mempool_free(r1_bio, conf->r1buf_pool);
188
189         spin_lock_irqsave(&conf->resync_lock, flags);
190         if (!conf->barrier)
191                 BUG();
192         --conf->barrier;
193         wake_up(&conf->wait_resume);
194         wake_up(&conf->wait_idle);
195
196         if (!--conf->nr_pending) {
197                 wake_up(&conf->wait_idle);
198                 wake_up(&conf->wait_resume);
199         }
200         spin_unlock_irqrestore(&conf->resync_lock, flags);
201 }
202
203 static void reschedule_retry(r1bio_t *r1_bio)
204 {
205         unsigned long flags;
206         mddev_t *mddev = r1_bio->mddev;
207         conf_t *conf = mddev_to_conf(mddev);
208
209         spin_lock_irqsave(&conf->device_lock, flags);
210         list_add(&r1_bio->retry_list, &conf->retry_list);
211         spin_unlock_irqrestore(&conf->device_lock, flags);
212
213         md_wakeup_thread(mddev->thread);
214 }
215
216 /*
217  * raid_end_bio_io() is called when we have finished servicing a mirrored
218  * operation and are ready to return a success/failure code to the buffer
219  * cache layer.
220  */
221 static void raid_end_bio_io(r1bio_t *r1_bio)
222 {
223         struct bio *bio = r1_bio->master_bio;
224
225         bio_endio(bio, bio->bi_size,
226                 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
227         free_r1bio(r1_bio);
228 }
229
230 /*
231  * Update disk head position estimator based on IRQ completion info.
232  */
233 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
234 {
235         conf_t *conf = mddev_to_conf(r1_bio->mddev);
236
237         conf->mirrors[disk].head_position =
238                 r1_bio->sector + (r1_bio->sectors);
239 }
240
241 static int raid1_end_read_request(struct bio *bio, unsigned int bytes_done, int error)
242 {
243         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
244         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
245         int mirror;
246         conf_t *conf = mddev_to_conf(r1_bio->mddev);
247
248         if (bio->bi_size)
249                 return 1;
250         
251         mirror = r1_bio->read_disk;
252         /*
253          * this branch is our 'one mirror IO has finished' event handler:
254          */
255         if (!uptodate)
256                 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
257         else
258                 /*
259                  * Set R1BIO_Uptodate in our master bio, so that
260                  * we will return a good error code for to the higher
261                  * levels even if IO on some other mirrored buffer fails.
262                  *
263                  * The 'master' represents the composite IO operation to
264                  * user-side. So if something waits for IO, then it will
265                  * wait for the 'master' bio.
266                  */
267                 set_bit(R1BIO_Uptodate, &r1_bio->state);
268
269         update_head_pos(mirror, r1_bio);
270
271         /*
272          * we have only one bio on the read side
273          */
274         if (uptodate)
275                 raid_end_bio_io(r1_bio);
276         else {
277                 /*
278                  * oops, read error:
279                  */
280                 char b[BDEVNAME_SIZE];
281                 if (printk_ratelimit())
282                         printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
283                                bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
284                 reschedule_retry(r1_bio);
285         }
286
287         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
288         return 0;
289 }
290
291 static int raid1_end_write_request(struct bio *bio, unsigned int bytes_done, int error)
292 {
293         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
294         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
295         int mirror;
296         conf_t *conf = mddev_to_conf(r1_bio->mddev);
297
298         if (bio->bi_size)
299                 return 1;
300
301         for (mirror = 0; mirror < conf->raid_disks; mirror++)
302                 if (r1_bio->bios[mirror] == bio)
303                         break;
304
305         /*
306          * this branch is our 'one mirror IO has finished' event handler:
307          */
308         if (!uptodate) {
309                 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
310                 /* an I/O failed, we can't clear the bitmap */
311                 set_bit(R1BIO_Degraded, &r1_bio->state);
312         } else
313                 /*
314                  * Set R1BIO_Uptodate in our master bio, so that
315                  * we will return a good error code for to the higher
316                  * levels even if IO on some other mirrored buffer fails.
317                  *
318                  * The 'master' represents the composite IO operation to
319                  * user-side. So if something waits for IO, then it will
320                  * wait for the 'master' bio.
321                  */
322                 set_bit(R1BIO_Uptodate, &r1_bio->state);
323
324         update_head_pos(mirror, r1_bio);
325
326         /*
327          *
328          * Let's see if all mirrored write operations have finished
329          * already.
330          */
331         if (atomic_dec_and_test(&r1_bio->remaining)) {
332                 /* clear the bitmap if all writes complete successfully */
333                 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
334                                 r1_bio->sectors,
335                                 !test_bit(R1BIO_Degraded, &r1_bio->state));
336                 md_write_end(r1_bio->mddev);
337                 raid_end_bio_io(r1_bio);
338         }
339
340         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
341         return 0;
342 }
343
344
345 /*
346  * This routine returns the disk from which the requested read should
347  * be done. There is a per-array 'next expected sequential IO' sector
348  * number - if this matches on the next IO then we use the last disk.
349  * There is also a per-disk 'last know head position' sector that is
350  * maintained from IRQ contexts, both the normal and the resync IO
351  * completion handlers update this position correctly. If there is no
352  * perfect sequential match then we pick the disk whose head is closest.
353  *
354  * If there are 2 mirrors in the same 2 devices, performance degrades
355  * because position is mirror, not device based.
356  *
357  * The rdev for the device selected will have nr_pending incremented.
358  */
359 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
360 {
361         const unsigned long this_sector = r1_bio->sector;
362         int new_disk = conf->last_used, disk = new_disk;
363         int wonly_disk = -1;
364         const int sectors = r1_bio->sectors;
365         sector_t new_distance, current_distance;
366         mdk_rdev_t *rdev;
367
368         rcu_read_lock();
369         /*
370          * Check if we can balance. We can balance on the whole
371          * device if no resync is going on, or below the resync window.
372          * We take the first readable disk when above the resync window.
373          */
374  retry:
375         if (conf->mddev->recovery_cp < MaxSector &&
376             (this_sector + sectors >= conf->next_resync)) {
377                 /* Choose the first operation device, for consistancy */
378                 new_disk = 0;
379
380                 for (rdev = conf->mirrors[new_disk].rdev;
381                      !rdev || !rdev->in_sync
382                              || test_bit(WriteMostly, &rdev->flags);
383                      rdev = conf->mirrors[++new_disk].rdev) {
384
385                         if (rdev && rdev->in_sync)
386                                 wonly_disk = new_disk;
387
388                         if (new_disk == conf->raid_disks - 1) {
389                                 new_disk = wonly_disk;
390                                 break;
391                         }
392                 }
393                 goto rb_out;
394         }
395
396
397         /* make sure the disk is operational */
398         for (rdev = conf->mirrors[new_disk].rdev;
399              !rdev || !rdev->in_sync ||
400                      test_bit(WriteMostly, &rdev->flags);
401              rdev = conf->mirrors[new_disk].rdev) {
402
403                 if (rdev && rdev->in_sync)
404                         wonly_disk = new_disk;
405
406                 if (new_disk <= 0)
407                         new_disk = conf->raid_disks;
408                 new_disk--;
409                 if (new_disk == disk) {
410                         new_disk = wonly_disk;
411                         break;
412                 }
413         }
414
415         if (new_disk < 0)
416                 goto rb_out;
417
418         disk = new_disk;
419         /* now disk == new_disk == starting point for search */
420
421         /*
422          * Don't change to another disk for sequential reads:
423          */
424         if (conf->next_seq_sect == this_sector)
425                 goto rb_out;
426         if (this_sector == conf->mirrors[new_disk].head_position)
427                 goto rb_out;
428
429         current_distance = abs(this_sector - conf->mirrors[disk].head_position);
430
431         /* Find the disk whose head is closest */
432
433         do {
434                 if (disk <= 0)
435                         disk = conf->raid_disks;
436                 disk--;
437
438                 rdev = conf->mirrors[disk].rdev;
439
440                 if (!rdev ||
441                     !rdev->in_sync ||
442                     test_bit(WriteMostly, &rdev->flags))
443                         continue;
444
445                 if (!atomic_read(&rdev->nr_pending)) {
446                         new_disk = disk;
447                         break;
448                 }
449                 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
450                 if (new_distance < current_distance) {
451                         current_distance = new_distance;
452                         new_disk = disk;
453                 }
454         } while (disk != conf->last_used);
455
456  rb_out:
457
458
459         if (new_disk >= 0) {
460                 rdev = conf->mirrors[new_disk].rdev;
461                 if (!rdev)
462                         goto retry;
463                 atomic_inc(&rdev->nr_pending);
464                 if (!rdev->in_sync) {
465                         /* cannot risk returning a device that failed
466                          * before we inc'ed nr_pending
467                          */
468                         atomic_dec(&rdev->nr_pending);
469                         goto retry;
470                 }
471                 conf->next_seq_sect = this_sector + sectors;
472                 conf->last_used = new_disk;
473         }
474         rcu_read_unlock();
475
476         return new_disk;
477 }
478
479 static void unplug_slaves(mddev_t *mddev)
480 {
481         conf_t *conf = mddev_to_conf(mddev);
482         int i;
483
484         rcu_read_lock();
485         for (i=0; i<mddev->raid_disks; i++) {
486                 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
487                 if (rdev && !rdev->faulty && atomic_read(&rdev->nr_pending)) {
488                         request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
489
490                         atomic_inc(&rdev->nr_pending);
491                         rcu_read_unlock();
492
493                         if (r_queue->unplug_fn)
494                                 r_queue->unplug_fn(r_queue);
495
496                         rdev_dec_pending(rdev, mddev);
497                         rcu_read_lock();
498                 }
499         }
500         rcu_read_unlock();
501 }
502
503 static void raid1_unplug(request_queue_t *q)
504 {
505         mddev_t *mddev = q->queuedata;
506
507         unplug_slaves(mddev);
508         md_wakeup_thread(mddev->thread);
509 }
510
511 static int raid1_issue_flush(request_queue_t *q, struct gendisk *disk,
512                              sector_t *error_sector)
513 {
514         mddev_t *mddev = q->queuedata;
515         conf_t *conf = mddev_to_conf(mddev);
516         int i, ret = 0;
517
518         rcu_read_lock();
519         for (i=0; i<mddev->raid_disks && ret == 0; i++) {
520                 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
521                 if (rdev && !rdev->faulty) {
522                         struct block_device *bdev = rdev->bdev;
523                         request_queue_t *r_queue = bdev_get_queue(bdev);
524
525                         if (!r_queue->issue_flush_fn)
526                                 ret = -EOPNOTSUPP;
527                         else {
528                                 atomic_inc(&rdev->nr_pending);
529                                 rcu_read_unlock();
530                                 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
531                                                               error_sector);
532                                 rdev_dec_pending(rdev, mddev);
533                                 rcu_read_lock();
534                         }
535                 }
536         }
537         rcu_read_unlock();
538         return ret;
539 }
540
541 /*
542  * Throttle resync depth, so that we can both get proper overlapping of
543  * requests, but are still able to handle normal requests quickly.
544  */
545 #define RESYNC_DEPTH 32
546
547 static void device_barrier(conf_t *conf, sector_t sect)
548 {
549         spin_lock_irq(&conf->resync_lock);
550         wait_event_lock_irq(conf->wait_idle, !waitqueue_active(&conf->wait_resume),
551                             conf->resync_lock, raid1_unplug(conf->mddev->queue));
552         
553         if (!conf->barrier++) {
554                 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
555                                     conf->resync_lock, raid1_unplug(conf->mddev->queue));
556                 if (conf->nr_pending)
557                         BUG();
558         }
559         wait_event_lock_irq(conf->wait_resume, conf->barrier < RESYNC_DEPTH,
560                             conf->resync_lock, raid1_unplug(conf->mddev->queue));
561         conf->next_resync = sect;
562         spin_unlock_irq(&conf->resync_lock);
563 }
564
565 static int make_request(request_queue_t *q, struct bio * bio)
566 {
567         mddev_t *mddev = q->queuedata;
568         conf_t *conf = mddev_to_conf(mddev);
569         mirror_info_t *mirror;
570         r1bio_t *r1_bio;
571         struct bio *read_bio;
572         int i, targets = 0, disks;
573         mdk_rdev_t *rdev;
574         struct bitmap *bitmap = mddev->bitmap;
575         unsigned long flags;
576         struct bio_list bl;
577
578         if (unlikely(bio_barrier(bio))) {
579                 bio_endio(bio, bio->bi_size, -EOPNOTSUPP);
580                 return 0;
581         }
582
583         /*
584          * Register the new request and wait if the reconstruction
585          * thread has put up a bar for new requests.
586          * Continue immediately if no resync is active currently.
587          */
588         md_write_start(mddev, bio); /* wait on superblock update early */
589
590         spin_lock_irq(&conf->resync_lock);
591         wait_event_lock_irq(conf->wait_resume, !conf->barrier, conf->resync_lock, );
592         conf->nr_pending++;
593         spin_unlock_irq(&conf->resync_lock);
594
595         if (bio_data_dir(bio)==WRITE) {
596                 disk_stat_inc(mddev->gendisk, writes);
597                 disk_stat_add(mddev->gendisk, write_sectors, bio_sectors(bio));
598         } else {
599                 disk_stat_inc(mddev->gendisk, reads);
600                 disk_stat_add(mddev->gendisk, read_sectors, bio_sectors(bio));
601         }
602
603         /*
604          * make_request() can abort the operation when READA is being
605          * used and no empty request is available.
606          *
607          */
608         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
609
610         r1_bio->master_bio = bio;
611         r1_bio->sectors = bio->bi_size >> 9;
612         r1_bio->state = 0;
613         r1_bio->mddev = mddev;
614         r1_bio->sector = bio->bi_sector;
615
616         r1_bio->state = 0;
617
618         if (bio_data_dir(bio) == READ) {
619                 /*
620                  * read balancing logic:
621                  */
622                 int rdisk = read_balance(conf, r1_bio);
623
624                 if (rdisk < 0) {
625                         /* couldn't find anywhere to read from */
626                         raid_end_bio_io(r1_bio);
627                         return 0;
628                 }
629                 mirror = conf->mirrors + rdisk;
630
631                 r1_bio->read_disk = rdisk;
632
633                 read_bio = bio_clone(bio, GFP_NOIO);
634
635                 r1_bio->bios[rdisk] = read_bio;
636
637                 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
638                 read_bio->bi_bdev = mirror->rdev->bdev;
639                 read_bio->bi_end_io = raid1_end_read_request;
640                 read_bio->bi_rw = READ;
641                 read_bio->bi_private = r1_bio;
642
643                 generic_make_request(read_bio);
644                 return 0;
645         }
646
647         /*
648          * WRITE:
649          */
650         /* first select target devices under spinlock and
651          * inc refcount on their rdev.  Record them by setting
652          * bios[x] to bio
653          */
654         disks = conf->raid_disks;
655 #if 0
656         { static int first=1;
657         if (first) printk("First Write sector %llu disks %d\n",
658                           (unsigned long long)r1_bio->sector, disks);
659         first = 0;
660         }
661 #endif
662         rcu_read_lock();
663         for (i = 0;  i < disks; i++) {
664                 if ((rdev=conf->mirrors[i].rdev) != NULL &&
665                     !rdev->faulty) {
666                         atomic_inc(&rdev->nr_pending);
667                         if (rdev->faulty) {
668                                 atomic_dec(&rdev->nr_pending);
669                                 r1_bio->bios[i] = NULL;
670                         } else
671                                 r1_bio->bios[i] = bio;
672                         targets++;
673                 } else
674                         r1_bio->bios[i] = NULL;
675         }
676         rcu_read_unlock();
677
678         if (targets < conf->raid_disks) {
679                 /* array is degraded, we will not clear the bitmap
680                  * on I/O completion (see raid1_end_write_request) */
681                 set_bit(R1BIO_Degraded, &r1_bio->state);
682         }
683
684         atomic_set(&r1_bio->remaining, 0);
685
686         bio_list_init(&bl);
687         for (i = 0; i < disks; i++) {
688                 struct bio *mbio;
689                 if (!r1_bio->bios[i])
690                         continue;
691
692                 mbio = bio_clone(bio, GFP_NOIO);
693                 r1_bio->bios[i] = mbio;
694
695                 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
696                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
697                 mbio->bi_end_io = raid1_end_write_request;
698                 mbio->bi_rw = WRITE;
699                 mbio->bi_private = r1_bio;
700
701                 atomic_inc(&r1_bio->remaining);
702
703                 bio_list_add(&bl, mbio);
704         }
705
706         bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors);
707         spin_lock_irqsave(&conf->device_lock, flags);
708         bio_list_merge(&conf->pending_bio_list, &bl);
709         bio_list_init(&bl);
710
711         blk_plug_device(mddev->queue);
712         spin_unlock_irqrestore(&conf->device_lock, flags);
713
714 #if 0
715         while ((bio = bio_list_pop(&bl)) != NULL)
716                 generic_make_request(bio);
717 #endif
718
719         return 0;
720 }
721
722 static void status(struct seq_file *seq, mddev_t *mddev)
723 {
724         conf_t *conf = mddev_to_conf(mddev);
725         int i;
726
727         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
728                                                 conf->working_disks);
729         for (i = 0; i < conf->raid_disks; i++)
730                 seq_printf(seq, "%s",
731                               conf->mirrors[i].rdev &&
732                               conf->mirrors[i].rdev->in_sync ? "U" : "_");
733         seq_printf(seq, "]");
734 }
735
736
737 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
738 {
739         char b[BDEVNAME_SIZE];
740         conf_t *conf = mddev_to_conf(mddev);
741
742         /*
743          * If it is not operational, then we have already marked it as dead
744          * else if it is the last working disks, ignore the error, let the
745          * next level up know.
746          * else mark the drive as failed
747          */
748         if (rdev->in_sync
749             && conf->working_disks == 1)
750                 /*
751                  * Don't fail the drive, act as though we were just a
752                  * normal single drive
753                  */
754                 return;
755         if (rdev->in_sync) {
756                 mddev->degraded++;
757                 conf->working_disks--;
758                 /*
759                  * if recovery is running, make sure it aborts.
760                  */
761                 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
762         }
763         rdev->in_sync = 0;
764         rdev->faulty = 1;
765         mddev->sb_dirty = 1;
766         printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
767                 "       Operation continuing on %d devices\n",
768                 bdevname(rdev->bdev,b), conf->working_disks);
769 }
770
771 static void print_conf(conf_t *conf)
772 {
773         int i;
774         mirror_info_t *tmp;
775
776         printk("RAID1 conf printout:\n");
777         if (!conf) {
778                 printk("(!conf)\n");
779                 return;
780         }
781         printk(" --- wd:%d rd:%d\n", conf->working_disks,
782                 conf->raid_disks);
783
784         for (i = 0; i < conf->raid_disks; i++) {
785                 char b[BDEVNAME_SIZE];
786                 tmp = conf->mirrors + i;
787                 if (tmp->rdev)
788                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
789                                 i, !tmp->rdev->in_sync, !tmp->rdev->faulty,
790                                 bdevname(tmp->rdev->bdev,b));
791         }
792 }
793
794 static void close_sync(conf_t *conf)
795 {
796         spin_lock_irq(&conf->resync_lock);
797         wait_event_lock_irq(conf->wait_resume, !conf->barrier,
798                             conf->resync_lock,  raid1_unplug(conf->mddev->queue));
799         spin_unlock_irq(&conf->resync_lock);
800
801         if (conf->barrier) BUG();
802         if (waitqueue_active(&conf->wait_idle)) BUG();
803
804         mempool_destroy(conf->r1buf_pool);
805         conf->r1buf_pool = NULL;
806 }
807
808 static int raid1_spare_active(mddev_t *mddev)
809 {
810         int i;
811         conf_t *conf = mddev->private;
812         mirror_info_t *tmp;
813
814         /*
815          * Find all failed disks within the RAID1 configuration 
816          * and mark them readable
817          */
818         for (i = 0; i < conf->raid_disks; i++) {
819                 tmp = conf->mirrors + i;
820                 if (tmp->rdev 
821                     && !tmp->rdev->faulty
822                     && !tmp->rdev->in_sync) {
823                         conf->working_disks++;
824                         mddev->degraded--;
825                         tmp->rdev->in_sync = 1;
826                 }
827         }
828
829         print_conf(conf);
830         return 0;
831 }
832
833
834 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
835 {
836         conf_t *conf = mddev->private;
837         int found = 0;
838         int mirror = 0;
839         mirror_info_t *p;
840
841         if (rdev->saved_raid_disk >= 0 &&
842             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
843                 mirror = rdev->saved_raid_disk;
844         for (mirror=0; mirror < mddev->raid_disks; mirror++)
845                 if ( !(p=conf->mirrors+mirror)->rdev) {
846
847                         blk_queue_stack_limits(mddev->queue,
848                                                rdev->bdev->bd_disk->queue);
849                         /* as we don't honour merge_bvec_fn, we must never risk
850                          * violating it, so limit ->max_sector to one PAGE, as
851                          * a one page request is never in violation.
852                          */
853                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
854                             mddev->queue->max_sectors > (PAGE_SIZE>>9))
855                                 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
856
857                         p->head_position = 0;
858                         rdev->raid_disk = mirror;
859                         found = 1;
860                         if (rdev->saved_raid_disk != mirror)
861                                 conf->fullsync = 1;
862                         p->rdev = rdev;
863                         break;
864                 }
865
866         print_conf(conf);
867         return found;
868 }
869
870 static int raid1_remove_disk(mddev_t *mddev, int number)
871 {
872         conf_t *conf = mddev->private;
873         int err = 0;
874         mdk_rdev_t *rdev;
875         mirror_info_t *p = conf->mirrors+ number;
876
877         print_conf(conf);
878         rdev = p->rdev;
879         if (rdev) {
880                 if (rdev->in_sync ||
881                     atomic_read(&rdev->nr_pending)) {
882                         err = -EBUSY;
883                         goto abort;
884                 }
885                 p->rdev = NULL;
886                 synchronize_rcu();
887                 if (atomic_read(&rdev->nr_pending)) {
888                         /* lost the race, try later */
889                         err = -EBUSY;
890                         p->rdev = rdev;
891                 }
892         }
893 abort:
894
895         print_conf(conf);
896         return err;
897 }
898
899
900 static int end_sync_read(struct bio *bio, unsigned int bytes_done, int error)
901 {
902         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
903         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
904         conf_t *conf = mddev_to_conf(r1_bio->mddev);
905
906         if (bio->bi_size)
907                 return 1;
908
909         if (r1_bio->bios[r1_bio->read_disk] != bio)
910                 BUG();
911         update_head_pos(r1_bio->read_disk, r1_bio);
912         /*
913          * we have read a block, now it needs to be re-written,
914          * or re-read if the read failed.
915          * We don't do much here, just schedule handling by raid1d
916          */
917         if (!uptodate) {
918                 md_error(r1_bio->mddev,
919                          conf->mirrors[r1_bio->read_disk].rdev);
920         } else
921                 set_bit(R1BIO_Uptodate, &r1_bio->state);
922         rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
923         reschedule_retry(r1_bio);
924         return 0;
925 }
926
927 static int end_sync_write(struct bio *bio, unsigned int bytes_done, int error)
928 {
929         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
930         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
931         mddev_t *mddev = r1_bio->mddev;
932         conf_t *conf = mddev_to_conf(mddev);
933         int i;
934         int mirror=0;
935
936         if (bio->bi_size)
937                 return 1;
938
939         for (i = 0; i < conf->raid_disks; i++)
940                 if (r1_bio->bios[i] == bio) {
941                         mirror = i;
942                         break;
943                 }
944         if (!uptodate)
945                 md_error(mddev, conf->mirrors[mirror].rdev);
946
947         update_head_pos(mirror, r1_bio);
948
949         if (atomic_dec_and_test(&r1_bio->remaining)) {
950                 md_done_sync(mddev, r1_bio->sectors, uptodate);
951                 put_buf(r1_bio);
952         }
953         rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
954         return 0;
955 }
956
957 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
958 {
959         conf_t *conf = mddev_to_conf(mddev);
960         int i;
961         int disks = conf->raid_disks;
962         struct bio *bio, *wbio;
963
964         bio = r1_bio->bios[r1_bio->read_disk];
965
966 /*
967         if (r1_bio->sector == 0) printk("First sync write startss\n");
968 */
969         /*
970          * schedule writes
971          */
972         if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
973                 /*
974                  * There is no point trying a read-for-reconstruct as
975                  * reconstruct is about to be aborted
976                  */
977                 char b[BDEVNAME_SIZE];
978                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
979                         " for block %llu\n",
980                         bdevname(bio->bi_bdev,b), 
981                         (unsigned long long)r1_bio->sector);
982                 md_done_sync(mddev, r1_bio->sectors, 0);
983                 put_buf(r1_bio);
984                 return;
985         }
986
987         atomic_set(&r1_bio->remaining, 1);
988         for (i = 0; i < disks ; i++) {
989                 wbio = r1_bio->bios[i];
990                 if (wbio->bi_end_io != end_sync_write)
991                         continue;
992
993                 atomic_inc(&conf->mirrors[i].rdev->nr_pending);
994                 atomic_inc(&r1_bio->remaining);
995                 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
996
997                 generic_make_request(wbio);
998         }
999
1000         if (atomic_dec_and_test(&r1_bio->remaining)) {
1001                 /* if we're here, all write(s) have completed, so clean up */
1002                 md_done_sync(mddev, r1_bio->sectors, 1);
1003                 put_buf(r1_bio);
1004         }
1005 }
1006
1007 /*
1008  * This is a kernel thread which:
1009  *
1010  *      1.      Retries failed read operations on working mirrors.
1011  *      2.      Updates the raid superblock when problems encounter.
1012  *      3.      Performs writes following reads for array syncronising.
1013  */
1014
1015 static void raid1d(mddev_t *mddev)
1016 {
1017         r1bio_t *r1_bio;
1018         struct bio *bio;
1019         unsigned long flags;
1020         conf_t *conf = mddev_to_conf(mddev);
1021         struct list_head *head = &conf->retry_list;
1022         int unplug=0;
1023         mdk_rdev_t *rdev;
1024
1025         md_check_recovery(mddev);
1026         
1027         for (;;) {
1028                 char b[BDEVNAME_SIZE];
1029                 spin_lock_irqsave(&conf->device_lock, flags);
1030
1031                 if (conf->pending_bio_list.head) {
1032                         bio = bio_list_get(&conf->pending_bio_list);
1033                         blk_remove_plug(mddev->queue);
1034                         spin_unlock_irqrestore(&conf->device_lock, flags);
1035                         /* flush any pending bitmap writes to disk before proceeding w/ I/O */
1036                         if (bitmap_unplug(mddev->bitmap) != 0)
1037                                 printk("%s: bitmap file write failed!\n", mdname(mddev));
1038
1039                         while (bio) { /* submit pending writes */
1040                                 struct bio *next = bio->bi_next;
1041                                 bio->bi_next = NULL;
1042                                 generic_make_request(bio);
1043                                 bio = next;
1044                         }
1045                         unplug = 1;
1046
1047                         continue;
1048                 }
1049
1050                 if (list_empty(head))
1051                         break;
1052                 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1053                 list_del(head->prev);
1054                 spin_unlock_irqrestore(&conf->device_lock, flags);
1055
1056                 mddev = r1_bio->mddev;
1057                 conf = mddev_to_conf(mddev);
1058                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1059                         sync_request_write(mddev, r1_bio);
1060                         unplug = 1;
1061                 } else {
1062                         int disk;
1063                         bio = r1_bio->bios[r1_bio->read_disk];
1064                         if ((disk=read_balance(conf, r1_bio)) == -1) {
1065                                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1066                                        " read error for block %llu\n",
1067                                        bdevname(bio->bi_bdev,b),
1068                                        (unsigned long long)r1_bio->sector);
1069                                 raid_end_bio_io(r1_bio);
1070                         } else {
1071                                 r1_bio->bios[r1_bio->read_disk] = NULL;
1072                                 r1_bio->read_disk = disk;
1073                                 bio_put(bio);
1074                                 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1075                                 r1_bio->bios[r1_bio->read_disk] = bio;
1076                                 rdev = conf->mirrors[disk].rdev;
1077                                 if (printk_ratelimit())
1078                                         printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1079                                                " another mirror\n",
1080                                                bdevname(rdev->bdev,b),
1081                                                (unsigned long long)r1_bio->sector);
1082                                 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1083                                 bio->bi_bdev = rdev->bdev;
1084                                 bio->bi_end_io = raid1_end_read_request;
1085                                 bio->bi_rw = READ;
1086                                 bio->bi_private = r1_bio;
1087                                 unplug = 1;
1088                                 generic_make_request(bio);
1089                         }
1090                 }
1091         }
1092         spin_unlock_irqrestore(&conf->device_lock, flags);
1093         if (unplug)
1094                 unplug_slaves(mddev);
1095 }
1096
1097
1098 static int init_resync(conf_t *conf)
1099 {
1100         int buffs;
1101
1102         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1103         if (conf->r1buf_pool)
1104                 BUG();
1105         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1106                                           conf->poolinfo);
1107         if (!conf->r1buf_pool)
1108                 return -ENOMEM;
1109         conf->next_resync = 0;
1110         return 0;
1111 }
1112
1113 /*
1114  * perform a "sync" on one "block"
1115  *
1116  * We need to make sure that no normal I/O request - particularly write
1117  * requests - conflict with active sync requests.
1118  *
1119  * This is achieved by tracking pending requests and a 'barrier' concept
1120  * that can be installed to exclude normal IO requests.
1121  */
1122
1123 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1124 {
1125         conf_t *conf = mddev_to_conf(mddev);
1126         mirror_info_t *mirror;
1127         r1bio_t *r1_bio;
1128         struct bio *bio;
1129         sector_t max_sector, nr_sectors;
1130         int disk;
1131         int i;
1132         int wonly;
1133         int write_targets = 0;
1134         int sync_blocks;
1135         int still_degraded = 0;
1136
1137         if (!conf->r1buf_pool)
1138         {
1139 /*
1140                 printk("sync start - bitmap %p\n", mddev->bitmap);
1141 */
1142                 if (init_resync(conf))
1143                         return 0;
1144         }
1145
1146         max_sector = mddev->size << 1;
1147         if (sector_nr >= max_sector) {
1148                 /* If we aborted, we need to abort the
1149                  * sync on the 'current' bitmap chunk (there will
1150                  * only be one in raid1 resync.
1151                  * We can find the current addess in mddev->curr_resync
1152                  */
1153                 if (mddev->curr_resync < max_sector) /* aborted */
1154                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1155                                                 &sync_blocks, 1);
1156                 else /* completed sync */
1157                         conf->fullsync = 0;
1158
1159                 bitmap_close_sync(mddev->bitmap);
1160                 close_sync(conf);
1161                 return 0;
1162         }
1163
1164         /* before building a request, check if we can skip these blocks..
1165          * This call the bitmap_start_sync doesn't actually record anything
1166          */
1167         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1168             !conf->fullsync) {
1169                 /* We can skip this block, and probably several more */
1170                 *skipped = 1;
1171                 return sync_blocks;
1172         }
1173         /*
1174          * If there is non-resync activity waiting for us then
1175          * put in a delay to throttle resync.
1176          */
1177         if (!go_faster && waitqueue_active(&conf->wait_resume))
1178                 msleep_interruptible(1000);
1179         device_barrier(conf, sector_nr + RESYNC_SECTORS);
1180
1181         /*
1182          * If reconstructing, and >1 working disc,
1183          * could dedicate one to rebuild and others to
1184          * service read requests ..
1185          */
1186         disk = conf->last_used;
1187         /* make sure disk is operational */
1188         wonly = disk;
1189         while (conf->mirrors[disk].rdev == NULL ||
1190                !conf->mirrors[disk].rdev->in_sync ||
1191                test_bit(WriteMostly, &conf->mirrors[disk].rdev->flags)
1192                 ) {
1193                 if (conf->mirrors[disk].rdev  &&
1194                     conf->mirrors[disk].rdev->in_sync)
1195                         wonly = disk;
1196                 if (disk <= 0)
1197                         disk = conf->raid_disks;
1198                 disk--;
1199                 if (disk == conf->last_used) {
1200                         disk = wonly;
1201                         break;
1202                 }
1203         }
1204         conf->last_used = disk;
1205         atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
1206
1207
1208         mirror = conf->mirrors + disk;
1209
1210         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1211
1212         spin_lock_irq(&conf->resync_lock);
1213         conf->nr_pending++;
1214         spin_unlock_irq(&conf->resync_lock);
1215
1216         r1_bio->mddev = mddev;
1217         r1_bio->sector = sector_nr;
1218         r1_bio->state = 0;
1219         set_bit(R1BIO_IsSync, &r1_bio->state);
1220         r1_bio->read_disk = disk;
1221
1222         for (i=0; i < conf->raid_disks; i++) {
1223                 bio = r1_bio->bios[i];
1224
1225                 /* take from bio_init */
1226                 bio->bi_next = NULL;
1227                 bio->bi_flags |= 1 << BIO_UPTODATE;
1228                 bio->bi_rw = 0;
1229                 bio->bi_vcnt = 0;
1230                 bio->bi_idx = 0;
1231                 bio->bi_phys_segments = 0;
1232                 bio->bi_hw_segments = 0;
1233                 bio->bi_size = 0;
1234                 bio->bi_end_io = NULL;
1235                 bio->bi_private = NULL;
1236
1237                 if (i == disk) {
1238                         bio->bi_rw = READ;
1239                         bio->bi_end_io = end_sync_read;
1240                 } else if (conf->mirrors[i].rdev == NULL ||
1241                            conf->mirrors[i].rdev->faulty) {
1242                         still_degraded = 1;
1243                         continue;
1244                 } else if (!conf->mirrors[i].rdev->in_sync ||
1245                            sector_nr + RESYNC_SECTORS > mddev->recovery_cp) {
1246                         bio->bi_rw = WRITE;
1247                         bio->bi_end_io = end_sync_write;
1248                         write_targets ++;
1249                 } else
1250                         /* no need to read or write here */
1251                         continue;
1252                 bio->bi_sector = sector_nr + conf->mirrors[i].rdev->data_offset;
1253                 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1254                 bio->bi_private = r1_bio;
1255         }
1256
1257         if (write_targets == 0) {
1258                 /* There is nowhere to write, so all non-sync
1259                  * drives must be failed - so we are finished
1260                  */
1261                 sector_t rv = max_sector - sector_nr;
1262                 *skipped = 1;
1263                 put_buf(r1_bio);
1264                 rdev_dec_pending(conf->mirrors[disk].rdev, mddev);
1265                 return rv;
1266         }
1267
1268         nr_sectors = 0;
1269         sync_blocks = 0;
1270         do {
1271                 struct page *page;
1272                 int len = PAGE_SIZE;
1273                 if (sector_nr + (len>>9) > max_sector)
1274                         len = (max_sector - sector_nr) << 9;
1275                 if (len == 0)
1276                         break;
1277                 if (sync_blocks == 0) {
1278                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1279                                         &sync_blocks, still_degraded) &&
1280                                         !conf->fullsync)
1281                                 break;
1282                         if (sync_blocks < (PAGE_SIZE>>9))
1283                                 BUG();
1284                         if (len > (sync_blocks<<9))
1285                                 len = sync_blocks<<9;
1286                 }
1287
1288                 for (i=0 ; i < conf->raid_disks; i++) {
1289                         bio = r1_bio->bios[i];
1290                         if (bio->bi_end_io) {
1291                                 page = r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page;
1292                                 if (bio_add_page(bio, page, len, 0) == 0) {
1293                                         /* stop here */
1294                                         r1_bio->bios[0]->bi_io_vec[bio->bi_vcnt].bv_page = page;
1295                                         while (i > 0) {
1296                                                 i--;
1297                                                 bio = r1_bio->bios[i];
1298                                                 if (bio->bi_end_io==NULL)
1299                                                         continue;
1300                                                 /* remove last page from this bio */
1301                                                 bio->bi_vcnt--;
1302                                                 bio->bi_size -= len;
1303                                                 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1304                                         }
1305                                         goto bio_full;
1306                                 }
1307                         }
1308                 }
1309                 nr_sectors += len>>9;
1310                 sector_nr += len>>9;
1311                 sync_blocks -= (len>>9);
1312         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1313  bio_full:
1314         bio = r1_bio->bios[disk];
1315         r1_bio->sectors = nr_sectors;
1316
1317         md_sync_acct(mirror->rdev->bdev, nr_sectors);
1318
1319         generic_make_request(bio);
1320
1321         return nr_sectors;
1322 }
1323
1324 static int run(mddev_t *mddev)
1325 {
1326         conf_t *conf;
1327         int i, j, disk_idx;
1328         mirror_info_t *disk;
1329         mdk_rdev_t *rdev;
1330         struct list_head *tmp;
1331
1332         if (mddev->level != 1) {
1333                 printk("raid1: %s: raid level not set to mirroring (%d)\n",
1334                        mdname(mddev), mddev->level);
1335                 goto out;
1336         }
1337         /*
1338          * copy the already verified devices into our private RAID1
1339          * bookkeeping area. [whatever we allocate in run(),
1340          * should be freed in stop()]
1341          */
1342         conf = kmalloc(sizeof(conf_t), GFP_KERNEL);
1343         mddev->private = conf;
1344         if (!conf)
1345                 goto out_no_mem;
1346
1347         memset(conf, 0, sizeof(*conf));
1348         conf->mirrors = kmalloc(sizeof(struct mirror_info)*mddev->raid_disks, 
1349                                  GFP_KERNEL);
1350         if (!conf->mirrors)
1351                 goto out_no_mem;
1352
1353         memset(conf->mirrors, 0, sizeof(struct mirror_info)*mddev->raid_disks);
1354
1355         conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1356         if (!conf->poolinfo)
1357                 goto out_no_mem;
1358         conf->poolinfo->mddev = mddev;
1359         conf->poolinfo->raid_disks = mddev->raid_disks;
1360         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1361                                           r1bio_pool_free,
1362                                           conf->poolinfo);
1363         if (!conf->r1bio_pool)
1364                 goto out_no_mem;
1365
1366         ITERATE_RDEV(mddev, rdev, tmp) {
1367                 disk_idx = rdev->raid_disk;
1368                 if (disk_idx >= mddev->raid_disks
1369                     || disk_idx < 0)
1370                         continue;
1371                 disk = conf->mirrors + disk_idx;
1372
1373                 disk->rdev = rdev;
1374
1375                 blk_queue_stack_limits(mddev->queue,
1376                                        rdev->bdev->bd_disk->queue);
1377                 /* as we don't honour merge_bvec_fn, we must never risk
1378                  * violating it, so limit ->max_sector to one PAGE, as
1379                  * a one page request is never in violation.
1380                  */
1381                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1382                     mddev->queue->max_sectors > (PAGE_SIZE>>9))
1383                         blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1384
1385                 disk->head_position = 0;
1386                 if (!rdev->faulty && rdev->in_sync)
1387                         conf->working_disks++;
1388         }
1389         conf->raid_disks = mddev->raid_disks;
1390         conf->mddev = mddev;
1391         spin_lock_init(&conf->device_lock);
1392         INIT_LIST_HEAD(&conf->retry_list);
1393         if (conf->working_disks == 1)
1394                 mddev->recovery_cp = MaxSector;
1395
1396         spin_lock_init(&conf->resync_lock);
1397         init_waitqueue_head(&conf->wait_idle);
1398         init_waitqueue_head(&conf->wait_resume);
1399
1400         bio_list_init(&conf->pending_bio_list);
1401         bio_list_init(&conf->flushing_bio_list);
1402
1403         if (!conf->working_disks) {
1404                 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
1405                         mdname(mddev));
1406                 goto out_free_conf;
1407         }
1408
1409         mddev->degraded = 0;
1410         for (i = 0; i < conf->raid_disks; i++) {
1411
1412                 disk = conf->mirrors + i;
1413
1414                 if (!disk->rdev) {
1415                         disk->head_position = 0;
1416                         mddev->degraded++;
1417                 }
1418         }
1419
1420         /*
1421          * find the first working one and use it as a starting point
1422          * to read balancing.
1423          */
1424         for (j = 0; j < conf->raid_disks &&
1425                      (!conf->mirrors[j].rdev ||
1426                       !conf->mirrors[j].rdev->in_sync) ; j++)
1427                 /* nothing */;
1428         conf->last_used = j;
1429
1430
1431         mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
1432         if (!mddev->thread) {
1433                 printk(KERN_ERR
1434                        "raid1: couldn't allocate thread for %s\n",
1435                        mdname(mddev));
1436                 goto out_free_conf;
1437         }
1438         if (mddev->bitmap) mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
1439
1440         printk(KERN_INFO 
1441                 "raid1: raid set %s active with %d out of %d mirrors\n",
1442                 mdname(mddev), mddev->raid_disks - mddev->degraded, 
1443                 mddev->raid_disks);
1444         /*
1445          * Ok, everything is just fine now
1446          */
1447         mddev->array_size = mddev->size;
1448
1449         mddev->queue->unplug_fn = raid1_unplug;
1450         mddev->queue->issue_flush_fn = raid1_issue_flush;
1451
1452         return 0;
1453
1454 out_no_mem:
1455         printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
1456                mdname(mddev));
1457
1458 out_free_conf:
1459         if (conf) {
1460                 if (conf->r1bio_pool)
1461                         mempool_destroy(conf->r1bio_pool);
1462                 kfree(conf->mirrors);
1463                 kfree(conf->poolinfo);
1464                 kfree(conf);
1465                 mddev->private = NULL;
1466         }
1467 out:
1468         return -EIO;
1469 }
1470
1471 static int stop(mddev_t *mddev)
1472 {
1473         conf_t *conf = mddev_to_conf(mddev);
1474
1475         md_unregister_thread(mddev->thread);
1476         mddev->thread = NULL;
1477         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
1478         if (conf->r1bio_pool)
1479                 mempool_destroy(conf->r1bio_pool);
1480         kfree(conf->mirrors);
1481         kfree(conf->poolinfo);
1482         kfree(conf);
1483         mddev->private = NULL;
1484         return 0;
1485 }
1486
1487 static int raid1_resize(mddev_t *mddev, sector_t sectors)
1488 {
1489         /* no resync is happening, and there is enough space
1490          * on all devices, so we can resize.
1491          * We need to make sure resync covers any new space.
1492          * If the array is shrinking we should possibly wait until
1493          * any io in the removed space completes, but it hardly seems
1494          * worth it.
1495          */
1496         mddev->array_size = sectors>>1;
1497         set_capacity(mddev->gendisk, mddev->array_size << 1);
1498         mddev->changed = 1;
1499         if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
1500                 mddev->recovery_cp = mddev->size << 1;
1501                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1502         }
1503         mddev->size = mddev->array_size;
1504         mddev->resync_max_sectors = sectors;
1505         return 0;
1506 }
1507
1508 static int raid1_reshape(mddev_t *mddev, int raid_disks)
1509 {
1510         /* We need to:
1511          * 1/ resize the r1bio_pool
1512          * 2/ resize conf->mirrors
1513          *
1514          * We allocate a new r1bio_pool if we can.
1515          * Then raise a device barrier and wait until all IO stops.
1516          * Then resize conf->mirrors and swap in the new r1bio pool.
1517          *
1518          * At the same time, we "pack" the devices so that all the missing
1519          * devices have the higher raid_disk numbers.
1520          */
1521         mempool_t *newpool, *oldpool;
1522         struct pool_info *newpoolinfo;
1523         mirror_info_t *newmirrors;
1524         conf_t *conf = mddev_to_conf(mddev);
1525         int cnt;
1526
1527         int d, d2;
1528
1529         if (raid_disks < conf->raid_disks) {
1530                 cnt=0;
1531                 for (d= 0; d < conf->raid_disks; d++)
1532                         if (conf->mirrors[d].rdev)
1533                                 cnt++;
1534                 if (cnt > raid_disks)
1535                         return -EBUSY;
1536         }
1537
1538         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
1539         if (!newpoolinfo)
1540                 return -ENOMEM;
1541         newpoolinfo->mddev = mddev;
1542         newpoolinfo->raid_disks = raid_disks;
1543
1544         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1545                                  r1bio_pool_free, newpoolinfo);
1546         if (!newpool) {
1547                 kfree(newpoolinfo);
1548                 return -ENOMEM;
1549         }
1550         newmirrors = kmalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
1551         if (!newmirrors) {
1552                 kfree(newpoolinfo);
1553                 mempool_destroy(newpool);
1554                 return -ENOMEM;
1555         }
1556         memset(newmirrors, 0, sizeof(struct mirror_info)*raid_disks);
1557
1558         spin_lock_irq(&conf->resync_lock);
1559         conf->barrier++;
1560         wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
1561                             conf->resync_lock, raid1_unplug(mddev->queue));
1562         spin_unlock_irq(&conf->resync_lock);
1563
1564         /* ok, everything is stopped */
1565         oldpool = conf->r1bio_pool;
1566         conf->r1bio_pool = newpool;
1567
1568         for (d=d2=0; d < conf->raid_disks; d++)
1569                 if (conf->mirrors[d].rdev) {
1570                         conf->mirrors[d].rdev->raid_disk = d2;
1571                         newmirrors[d2++].rdev = conf->mirrors[d].rdev;
1572                 }
1573         kfree(conf->mirrors);
1574         conf->mirrors = newmirrors;
1575         kfree(conf->poolinfo);
1576         conf->poolinfo = newpoolinfo;
1577
1578         mddev->degraded += (raid_disks - conf->raid_disks);
1579         conf->raid_disks = mddev->raid_disks = raid_disks;
1580
1581         conf->last_used = 0; /* just make sure it is in-range */
1582         spin_lock_irq(&conf->resync_lock);
1583         conf->barrier--;
1584         spin_unlock_irq(&conf->resync_lock);
1585         wake_up(&conf->wait_resume);
1586         wake_up(&conf->wait_idle);
1587
1588
1589         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1590         md_wakeup_thread(mddev->thread);
1591
1592         mempool_destroy(oldpool);
1593         return 0;
1594 }
1595
1596 void raid1_quiesce(mddev_t *mddev, int state)
1597 {
1598         conf_t *conf = mddev_to_conf(mddev);
1599
1600         switch(state) {
1601         case 0:
1602                 spin_lock_irq(&conf->resync_lock);
1603                 conf->barrier++;
1604                 wait_event_lock_irq(conf->wait_idle, !conf->nr_pending,
1605                                     conf->resync_lock, raid1_unplug(mddev->queue));
1606                 spin_unlock_irq(&conf->resync_lock);
1607                 break;
1608         case 1:
1609                 spin_lock_irq(&conf->resync_lock);
1610                 conf->barrier--;
1611                 spin_unlock_irq(&conf->resync_lock);
1612                 wake_up(&conf->wait_resume);
1613                 wake_up(&conf->wait_idle);
1614                 break;
1615         }
1616         if (mddev->thread) {
1617                 if (mddev->bitmap)
1618                         mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
1619                 else
1620                         mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
1621                 md_wakeup_thread(mddev->thread);
1622         }
1623 }
1624
1625
1626 static mdk_personality_t raid1_personality =
1627 {
1628         .name           = "raid1",
1629         .owner          = THIS_MODULE,
1630         .make_request   = make_request,
1631         .run            = run,
1632         .stop           = stop,
1633         .status         = status,
1634         .error_handler  = error,
1635         .hot_add_disk   = raid1_add_disk,
1636         .hot_remove_disk= raid1_remove_disk,
1637         .spare_active   = raid1_spare_active,
1638         .sync_request   = sync_request,
1639         .resize         = raid1_resize,
1640         .reshape        = raid1_reshape,
1641         .quiesce        = raid1_quiesce,
1642 };
1643
1644 static int __init raid_init(void)
1645 {
1646         return register_md_personality(RAID1, &raid1_personality);
1647 }
1648
1649 static void raid_exit(void)
1650 {
1651         unregister_md_personality(RAID1);
1652 }
1653
1654 module_init(raid_init);
1655 module_exit(raid_exit);
1656 MODULE_LICENSE("GPL");
1657 MODULE_ALIAS("md-personality-3"); /* RAID1 */