md: raid0: make hash_spacing and preshift sector-based.
[safe/jmp/linux-2.6] / drivers / md / raid0.c
1 /*
2    raid0.c : Multiple Devices driver for Linux
3              Copyright (C) 1994-96 Marc ZYNGIER
4              <zyngier@ufr-info-p7.ibp.fr> or
5              <maz@gloups.fdn.fr>
6              Copyright (C) 1999, 2000 Ingo Molnar, Red Hat
7
8
9    RAID-0 management functions.
10
11    This program is free software; you can redistribute it and/or modify
12    it under the terms of the GNU General Public License as published by
13    the Free Software Foundation; either version 2, or (at your option)
14    any later version.
15    
16    You should have received a copy of the GNU General Public License
17    (for example /usr/src/linux/COPYING); if not, write to the Free
18    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  
19 */
20
21 #include <linux/raid/raid0.h>
22
23 static void raid0_unplug(struct request_queue *q)
24 {
25         mddev_t *mddev = q->queuedata;
26         raid0_conf_t *conf = mddev_to_conf(mddev);
27         mdk_rdev_t **devlist = conf->strip_zone[0].dev;
28         int i;
29
30         for (i=0; i<mddev->raid_disks; i++) {
31                 struct request_queue *r_queue = bdev_get_queue(devlist[i]->bdev);
32
33                 blk_unplug(r_queue);
34         }
35 }
36
37 static int raid0_congested(void *data, int bits)
38 {
39         mddev_t *mddev = data;
40         raid0_conf_t *conf = mddev_to_conf(mddev);
41         mdk_rdev_t **devlist = conf->strip_zone[0].dev;
42         int i, ret = 0;
43
44         for (i = 0; i < mddev->raid_disks && !ret ; i++) {
45                 struct request_queue *q = bdev_get_queue(devlist[i]->bdev);
46
47                 ret |= bdi_congested(&q->backing_dev_info, bits);
48         }
49         return ret;
50 }
51
52
53 static int create_strip_zones (mddev_t *mddev)
54 {
55         int i, c, j;
56         sector_t current_start, curr_zone_start;
57         sector_t min_spacing;
58         raid0_conf_t *conf = mddev_to_conf(mddev);
59         mdk_rdev_t *smallest, *rdev1, *rdev2, *rdev;
60         struct list_head *tmp1, *tmp2;
61         struct strip_zone *zone;
62         int cnt;
63         char b[BDEVNAME_SIZE];
64  
65         /*
66          * The number of 'same size groups'
67          */
68         conf->nr_strip_zones = 0;
69  
70         rdev_for_each(rdev1, tmp1, mddev) {
71                 printk(KERN_INFO "raid0: looking at %s\n",
72                         bdevname(rdev1->bdev,b));
73                 c = 0;
74                 rdev_for_each(rdev2, tmp2, mddev) {
75                         printk(KERN_INFO "raid0:   comparing %s(%llu)",
76                                bdevname(rdev1->bdev,b),
77                                (unsigned long long)rdev1->size);
78                         printk(KERN_INFO " with %s(%llu)\n",
79                                bdevname(rdev2->bdev,b),
80                                (unsigned long long)rdev2->size);
81                         if (rdev2 == rdev1) {
82                                 printk(KERN_INFO "raid0:   END\n");
83                                 break;
84                         }
85                         if (rdev2->size == rdev1->size)
86                         {
87                                 /*
88                                  * Not unique, don't count it as a new
89                                  * group
90                                  */
91                                 printk(KERN_INFO "raid0:   EQUAL\n");
92                                 c = 1;
93                                 break;
94                         }
95                         printk(KERN_INFO "raid0:   NOT EQUAL\n");
96                 }
97                 if (!c) {
98                         printk(KERN_INFO "raid0:   ==> UNIQUE\n");
99                         conf->nr_strip_zones++;
100                         printk(KERN_INFO "raid0: %d zones\n",
101                                 conf->nr_strip_zones);
102                 }
103         }
104         printk(KERN_INFO "raid0: FINAL %d zones\n", conf->nr_strip_zones);
105
106         conf->strip_zone = kzalloc(sizeof(struct strip_zone)*
107                                 conf->nr_strip_zones, GFP_KERNEL);
108         if (!conf->strip_zone)
109                 return 1;
110         conf->devlist = kzalloc(sizeof(mdk_rdev_t*)*
111                                 conf->nr_strip_zones*mddev->raid_disks,
112                                 GFP_KERNEL);
113         if (!conf->devlist)
114                 return 1;
115
116         /* The first zone must contain all devices, so here we check that
117          * there is a proper alignment of slots to devices and find them all
118          */
119         zone = &conf->strip_zone[0];
120         cnt = 0;
121         smallest = NULL;
122         zone->dev = conf->devlist;
123         rdev_for_each(rdev1, tmp1, mddev) {
124                 int j = rdev1->raid_disk;
125
126                 if (j < 0 || j >= mddev->raid_disks) {
127                         printk(KERN_ERR "raid0: bad disk number %d - "
128                                 "aborting!\n", j);
129                         goto abort;
130                 }
131                 if (zone->dev[j]) {
132                         printk(KERN_ERR "raid0: multiple devices for %d - "
133                                 "aborting!\n", j);
134                         goto abort;
135                 }
136                 zone->dev[j] = rdev1;
137
138                 blk_queue_stack_limits(mddev->queue,
139                                        rdev1->bdev->bd_disk->queue);
140                 /* as we don't honour merge_bvec_fn, we must never risk
141                  * violating it, so limit ->max_sector to one PAGE, as
142                  * a one page request is never in violation.
143                  */
144
145                 if (rdev1->bdev->bd_disk->queue->merge_bvec_fn &&
146                     mddev->queue->max_sectors > (PAGE_SIZE>>9))
147                         blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
148
149                 if (!smallest || (rdev1->size <smallest->size))
150                         smallest = rdev1;
151                 cnt++;
152         }
153         if (cnt != mddev->raid_disks) {
154                 printk(KERN_ERR "raid0: too few disks (%d of %d) - "
155                         "aborting!\n", cnt, mddev->raid_disks);
156                 goto abort;
157         }
158         zone->nb_dev = cnt;
159         zone->sectors = smallest->size * cnt * 2;
160         zone->zone_start = 0;
161
162         current_start = smallest->size * 2;
163         curr_zone_start = zone->sectors;
164
165         /* now do the other zones */
166         for (i = 1; i < conf->nr_strip_zones; i++)
167         {
168                 zone = conf->strip_zone + i;
169                 zone->dev = conf->strip_zone[i-1].dev + mddev->raid_disks;
170
171                 printk(KERN_INFO "raid0: zone %d\n", i);
172                 zone->dev_start = current_start;
173                 smallest = NULL;
174                 c = 0;
175
176                 for (j=0; j<cnt; j++) {
177                         char b[BDEVNAME_SIZE];
178                         rdev = conf->strip_zone[0].dev[j];
179                         printk(KERN_INFO "raid0: checking %s ...",
180                                 bdevname(rdev->bdev, b));
181                         if (rdev->size > current_start / 2) {
182                                 printk(KERN_INFO " contained as device %d\n",
183                                         c);
184                                 zone->dev[c] = rdev;
185                                 c++;
186                                 if (!smallest || (rdev->size <smallest->size)) {
187                                         smallest = rdev;
188                                         printk(KERN_INFO "  (%llu) is smallest!.\n",
189                                                 (unsigned long long)rdev->size);
190                                 }
191                         } else
192                                 printk(KERN_INFO " nope.\n");
193                 }
194
195                 zone->nb_dev = c;
196                 zone->sectors = (smallest->size * 2 - current_start) * c;
197                 printk(KERN_INFO "raid0: zone->nb_dev: %d, sectors: %llu\n",
198                         zone->nb_dev, (unsigned long long)zone->sectors);
199
200                 zone->zone_start = curr_zone_start;
201                 curr_zone_start += zone->sectors;
202
203                 current_start = smallest->size * 2;
204                 printk(KERN_INFO "raid0: current zone start: %llu\n",
205                         (unsigned long long)current_start);
206         }
207
208         /* Now find appropriate hash spacing.
209          * We want a number which causes most hash entries to cover
210          * at most two strips, but the hash table must be at most
211          * 1 PAGE.  We choose the smallest strip, or contiguous collection
212          * of strips, that has big enough size.  We never consider the last
213          * strip though as it's size has no bearing on the efficacy of the hash
214          * table.
215          */
216         conf->spacing = curr_zone_start;
217         min_spacing = curr_zone_start;
218         sector_div(min_spacing, PAGE_SIZE/sizeof(struct strip_zone*));
219         for (i=0; i < conf->nr_strip_zones-1; i++) {
220                 sector_t s = 0;
221                 for (j = i; j < conf->nr_strip_zones - 1 &&
222                                 s < min_spacing; j++)
223                         s += conf->strip_zone[j].sectors;
224                 if (s >= min_spacing && s < conf->spacing)
225                         conf->spacing = s;
226         }
227
228         mddev->queue->unplug_fn = raid0_unplug;
229
230         mddev->queue->backing_dev_info.congested_fn = raid0_congested;
231         mddev->queue->backing_dev_info.congested_data = mddev;
232
233         printk(KERN_INFO "raid0: done.\n");
234         return 0;
235  abort:
236         return 1;
237 }
238
239 /**
240  *      raid0_mergeable_bvec -- tell bio layer if a two requests can be merged
241  *      @q: request queue
242  *      @bvm: properties of new bio
243  *      @biovec: the request that could be merged to it.
244  *
245  *      Return amount of bytes we can accept at this offset
246  */
247 static int raid0_mergeable_bvec(struct request_queue *q,
248                                 struct bvec_merge_data *bvm,
249                                 struct bio_vec *biovec)
250 {
251         mddev_t *mddev = q->queuedata;
252         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
253         int max;
254         unsigned int chunk_sectors = mddev->chunk_size >> 9;
255         unsigned int bio_sectors = bvm->bi_size >> 9;
256
257         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
258         if (max < 0) max = 0; /* bio_add cannot handle a negative return */
259         if (max <= biovec->bv_len && bio_sectors == 0)
260                 return biovec->bv_len;
261         else 
262                 return max;
263 }
264
265 static int raid0_run (mddev_t *mddev)
266 {
267         unsigned  cur=0, i=0, nb_zone;
268         s64 sectors;
269         raid0_conf_t *conf;
270         mdk_rdev_t *rdev;
271         struct list_head *tmp;
272
273         if (mddev->chunk_size == 0) {
274                 printk(KERN_ERR "md/raid0: non-zero chunk size required.\n");
275                 return -EINVAL;
276         }
277         printk(KERN_INFO "%s: setting max_sectors to %d, segment boundary to %d\n",
278                mdname(mddev),
279                mddev->chunk_size >> 9,
280                (mddev->chunk_size>>1)-1);
281         blk_queue_max_sectors(mddev->queue, mddev->chunk_size >> 9);
282         blk_queue_segment_boundary(mddev->queue, (mddev->chunk_size>>1) - 1);
283         mddev->queue->queue_lock = &mddev->queue->__queue_lock;
284
285         conf = kmalloc(sizeof (raid0_conf_t), GFP_KERNEL);
286         if (!conf)
287                 goto out;
288         mddev->private = (void *)conf;
289  
290         conf->strip_zone = NULL;
291         conf->devlist = NULL;
292         if (create_strip_zones (mddev)) 
293                 goto out_free_conf;
294
295         /* calculate array device size */
296         mddev->array_sectors = 0;
297         rdev_for_each(rdev, tmp, mddev)
298                 mddev->array_sectors += rdev->size * 2;
299
300         printk(KERN_INFO "raid0 : md_size is %llu sectors.\n",
301                 (unsigned long long)mddev->array_sectors);
302         printk(KERN_INFO "raid0 : conf->spacing is %llu sectors.\n",
303                 (unsigned long long)conf->spacing);
304         {
305                 sector_t s = mddev->array_sectors;
306                 sector_t space = conf->spacing;
307                 int round;
308                 conf->sector_shift = 0;
309                 if (sizeof(sector_t) > sizeof(u32)) {
310                         /*shift down space and s so that sector_div will work */
311                         while (space > (sector_t) (~(u32)0)) {
312                                 s >>= 1;
313                                 space >>= 1;
314                                 s += 1; /* force round-up */
315                                 conf->sector_shift++;
316                         }
317                 }
318                 round = sector_div(s, (u32)space) ? 1 : 0;
319                 nb_zone = s + round;
320         }
321         printk(KERN_INFO "raid0 : nb_zone is %d.\n", nb_zone);
322
323         printk(KERN_INFO "raid0 : Allocating %zu bytes for hash.\n",
324                                 nb_zone*sizeof(struct strip_zone*));
325         conf->hash_table = kmalloc (sizeof (struct strip_zone *)*nb_zone, GFP_KERNEL);
326         if (!conf->hash_table)
327                 goto out_free_conf;
328         sectors = conf->strip_zone[cur].sectors;
329
330         conf->hash_table[0] = conf->strip_zone + cur;
331         for (i=1; i< nb_zone; i++) {
332                 while (sectors <= conf->spacing) {
333                         cur++;
334                         sectors += conf->strip_zone[cur].sectors;
335                 }
336                 sectors -= conf->spacing;
337                 conf->hash_table[i] = conf->strip_zone + cur;
338         }
339         if (conf->sector_shift) {
340                 conf->spacing >>= conf->sector_shift;
341                 /* round spacing up so when we divide by it, we
342                  * err on the side of too-low, which is safest
343                  */
344                 conf->spacing++;
345         }
346
347         /* calculate the max read-ahead size.
348          * For read-ahead of large files to be effective, we need to
349          * readahead at least twice a whole stripe. i.e. number of devices
350          * multiplied by chunk size times 2.
351          * If an individual device has an ra_pages greater than the
352          * chunk size, then we will not drive that device as hard as it
353          * wants.  We consider this a configuration error: a larger
354          * chunksize should be used in that case.
355          */
356         {
357                 int stripe = mddev->raid_disks * mddev->chunk_size / PAGE_SIZE;
358                 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
359                         mddev->queue->backing_dev_info.ra_pages = 2* stripe;
360         }
361
362
363         blk_queue_merge_bvec(mddev->queue, raid0_mergeable_bvec);
364         return 0;
365
366 out_free_conf:
367         kfree(conf->strip_zone);
368         kfree(conf->devlist);
369         kfree(conf);
370         mddev->private = NULL;
371 out:
372         return -ENOMEM;
373 }
374
375 static int raid0_stop (mddev_t *mddev)
376 {
377         raid0_conf_t *conf = mddev_to_conf(mddev);
378
379         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
380         kfree(conf->hash_table);
381         conf->hash_table = NULL;
382         kfree(conf->strip_zone);
383         conf->strip_zone = NULL;
384         kfree(conf);
385         mddev->private = NULL;
386
387         return 0;
388 }
389
390 static int raid0_make_request (struct request_queue *q, struct bio *bio)
391 {
392         mddev_t *mddev = q->queuedata;
393         unsigned int sect_in_chunk, chunksect_bits, chunk_sects;
394         raid0_conf_t *conf = mddev_to_conf(mddev);
395         struct strip_zone *zone;
396         mdk_rdev_t *tmp_dev;
397         sector_t chunk;
398         sector_t sector, rsect;
399         const int rw = bio_data_dir(bio);
400         int cpu;
401
402         if (unlikely(bio_barrier(bio))) {
403                 bio_endio(bio, -EOPNOTSUPP);
404                 return 0;
405         }
406
407         cpu = part_stat_lock();
408         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
409         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
410                       bio_sectors(bio));
411         part_stat_unlock();
412
413         chunk_sects = mddev->chunk_size >> 9;
414         chunksect_bits = ffz(~chunk_sects);
415         sector = bio->bi_sector;
416
417         if (unlikely(chunk_sects < (bio->bi_sector & (chunk_sects - 1)) + (bio->bi_size >> 9))) {
418                 struct bio_pair *bp;
419                 /* Sanity check -- queue functions should prevent this happening */
420                 if (bio->bi_vcnt != 1 ||
421                     bio->bi_idx != 0)
422                         goto bad_map;
423                 /* This is a one page bio that upper layers
424                  * refuse to split for us, so we need to split it.
425                  */
426                 bp = bio_split(bio, chunk_sects - (bio->bi_sector & (chunk_sects - 1)));
427                 if (raid0_make_request(q, &bp->bio1))
428                         generic_make_request(&bp->bio1);
429                 if (raid0_make_request(q, &bp->bio2))
430                         generic_make_request(&bp->bio2);
431
432                 bio_pair_release(bp);
433                 return 0;
434         }
435  
436
437         {
438                 sector_t x = sector >> conf->sector_shift;
439                 sector_div(x, (u32)conf->spacing);
440                 zone = conf->hash_table[x];
441         }
442
443         while (sector >= zone->zone_start + zone->sectors)
444                 zone++;
445
446         sect_in_chunk = bio->bi_sector & (chunk_sects - 1);
447
448
449         {
450                 sector_t x = (sector - zone->zone_start) >> chunksect_bits;
451
452                 sector_div(x, zone->nb_dev);
453                 chunk = x;
454
455                 x = sector >> chunksect_bits;
456                 tmp_dev = zone->dev[sector_div(x, zone->nb_dev)];
457         }
458         rsect = (chunk << chunksect_bits) + zone->dev_start + sect_in_chunk;
459  
460         bio->bi_bdev = tmp_dev->bdev;
461         bio->bi_sector = rsect + tmp_dev->data_offset;
462
463         /*
464          * Let the main block layer submit the IO and resolve recursion:
465          */
466         return 1;
467
468 bad_map:
469         printk("raid0_make_request bug: can't convert block across chunks"
470                 " or bigger than %dk %llu %d\n", chunk_sects / 2,
471                 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
472
473         bio_io_error(bio);
474         return 0;
475 }
476
477 static void raid0_status (struct seq_file *seq, mddev_t *mddev)
478 {
479 #undef MD_DEBUG
480 #ifdef MD_DEBUG
481         int j, k, h;
482         char b[BDEVNAME_SIZE];
483         raid0_conf_t *conf = mddev_to_conf(mddev);
484
485         h = 0;
486         for (j = 0; j < conf->nr_strip_zones; j++) {
487                 seq_printf(seq, "      z%d", j);
488                 if (conf->hash_table[h] == conf->strip_zone+j)
489                         seq_printf(seq, "(h%d)", h++);
490                 seq_printf(seq, "=[");
491                 for (k = 0; k < conf->strip_zone[j].nb_dev; k++)
492                         seq_printf(seq, "%s/", bdevname(
493                                 conf->strip_zone[j].dev[k]->bdev,b));
494
495                 seq_printf(seq, "] zs=%d ds=%d s=%d\n",
496                                 conf->strip_zone[j].zone_start,
497                                 conf->strip_zone[j].dev_start,
498                                 conf->strip_zone[j].sectors);
499         }
500 #endif
501         seq_printf(seq, " %dk chunks", mddev->chunk_size/1024);
502         return;
503 }
504
505 static struct mdk_personality raid0_personality=
506 {
507         .name           = "raid0",
508         .level          = 0,
509         .owner          = THIS_MODULE,
510         .make_request   = raid0_make_request,
511         .run            = raid0_run,
512         .stop           = raid0_stop,
513         .status         = raid0_status,
514 };
515
516 static int __init raid0_init (void)
517 {
518         return register_md_personality (&raid0_personality);
519 }
520
521 static void raid0_exit (void)
522 {
523         unregister_md_personality (&raid0_personality);
524 }
525
526 module_init(raid0_init);
527 module_exit(raid0_exit);
528 MODULE_LICENSE("GPL");
529 MODULE_ALIAS("md-personality-2"); /* RAID0 */
530 MODULE_ALIAS("md-raid0");
531 MODULE_ALIAS("md-level-0");