[PATCH] md: call bitmap_daemon_work regularly
[safe/jmp/linux-2.6] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/linkage.h>
38 #include <linux/raid/md.h>
39 #include <linux/raid/bitmap.h>
40 #include <linux/sysctl.h>
41 #include <linux/devfs_fs_kernel.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/suspend.h>
44
45 #include <linux/init.h>
46
47 #include <linux/file.h>
48
49 #ifdef CONFIG_KMOD
50 #include <linux/kmod.h>
51 #endif
52
53 #include <asm/unaligned.h>
54
55 #define MAJOR_NR MD_MAJOR
56 #define MD_DRIVER
57
58 /* 63 partitions with the alternate major number (mdp) */
59 #define MdpMinorShift 6
60
61 #define DEBUG 0
62 #define dprintk(x...) ((void)(DEBUG && printk(x)))
63
64
65 #ifndef MODULE
66 static void autostart_arrays (int part);
67 #endif
68
69 static mdk_personality_t *pers[MAX_PERSONALITY];
70 static DEFINE_SPINLOCK(pers_lock);
71
72 /*
73  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
74  * is 1000 KB/sec, so the extra system load does not show up that much.
75  * Increase it if you want to have more _guaranteed_ speed. Note that
76  * the RAID driver will use the maximum available bandwith if the IO
77  * subsystem is idle. There is also an 'absolute maximum' reconstruction
78  * speed limit - in case reconstruction slows down your system despite
79  * idle IO detection.
80  *
81  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
82  */
83
84 static int sysctl_speed_limit_min = 1000;
85 static int sysctl_speed_limit_max = 200000;
86
87 static struct ctl_table_header *raid_table_header;
88
89 static ctl_table raid_table[] = {
90         {
91                 .ctl_name       = DEV_RAID_SPEED_LIMIT_MIN,
92                 .procname       = "speed_limit_min",
93                 .data           = &sysctl_speed_limit_min,
94                 .maxlen         = sizeof(int),
95                 .mode           = 0644,
96                 .proc_handler   = &proc_dointvec,
97         },
98         {
99                 .ctl_name       = DEV_RAID_SPEED_LIMIT_MAX,
100                 .procname       = "speed_limit_max",
101                 .data           = &sysctl_speed_limit_max,
102                 .maxlen         = sizeof(int),
103                 .mode           = 0644,
104                 .proc_handler   = &proc_dointvec,
105         },
106         { .ctl_name = 0 }
107 };
108
109 static ctl_table raid_dir_table[] = {
110         {
111                 .ctl_name       = DEV_RAID,
112                 .procname       = "raid",
113                 .maxlen         = 0,
114                 .mode           = 0555,
115                 .child          = raid_table,
116         },
117         { .ctl_name = 0 }
118 };
119
120 static ctl_table raid_root_table[] = {
121         {
122                 .ctl_name       = CTL_DEV,
123                 .procname       = "dev",
124                 .maxlen         = 0,
125                 .mode           = 0555,
126                 .child          = raid_dir_table,
127         },
128         { .ctl_name = 0 }
129 };
130
131 static struct block_device_operations md_fops;
132
133 /*
134  * Enables to iterate over all existing md arrays
135  * all_mddevs_lock protects this list.
136  */
137 static LIST_HEAD(all_mddevs);
138 static DEFINE_SPINLOCK(all_mddevs_lock);
139
140
141 /*
142  * iterates through all used mddevs in the system.
143  * We take care to grab the all_mddevs_lock whenever navigating
144  * the list, and to always hold a refcount when unlocked.
145  * Any code which breaks out of this loop while own
146  * a reference to the current mddev and must mddev_put it.
147  */
148 #define ITERATE_MDDEV(mddev,tmp)                                        \
149                                                                         \
150         for (({ spin_lock(&all_mddevs_lock);                            \
151                 tmp = all_mddevs.next;                                  \
152                 mddev = NULL;});                                        \
153              ({ if (tmp != &all_mddevs)                                 \
154                         mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
155                 spin_unlock(&all_mddevs_lock);                          \
156                 if (mddev) mddev_put(mddev);                            \
157                 mddev = list_entry(tmp, mddev_t, all_mddevs);           \
158                 tmp != &all_mddevs;});                                  \
159              ({ spin_lock(&all_mddevs_lock);                            \
160                 tmp = tmp->next;})                                      \
161                 )
162
163
164 static int md_fail_request (request_queue_t *q, struct bio *bio)
165 {
166         bio_io_error(bio, bio->bi_size);
167         return 0;
168 }
169
170 static inline mddev_t *mddev_get(mddev_t *mddev)
171 {
172         atomic_inc(&mddev->active);
173         return mddev;
174 }
175
176 static void mddev_put(mddev_t *mddev)
177 {
178         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
179                 return;
180         if (!mddev->raid_disks && list_empty(&mddev->disks)) {
181                 list_del(&mddev->all_mddevs);
182                 blk_put_queue(mddev->queue);
183                 kfree(mddev);
184         }
185         spin_unlock(&all_mddevs_lock);
186 }
187
188 static mddev_t * mddev_find(dev_t unit)
189 {
190         mddev_t *mddev, *new = NULL;
191
192  retry:
193         spin_lock(&all_mddevs_lock);
194         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
195                 if (mddev->unit == unit) {
196                         mddev_get(mddev);
197                         spin_unlock(&all_mddevs_lock);
198                         if (new)
199                                 kfree(new);
200                         return mddev;
201                 }
202
203         if (new) {
204                 list_add(&new->all_mddevs, &all_mddevs);
205                 spin_unlock(&all_mddevs_lock);
206                 return new;
207         }
208         spin_unlock(&all_mddevs_lock);
209
210         new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
211         if (!new)
212                 return NULL;
213
214         memset(new, 0, sizeof(*new));
215
216         new->unit = unit;
217         if (MAJOR(unit) == MD_MAJOR)
218                 new->md_minor = MINOR(unit);
219         else
220                 new->md_minor = MINOR(unit) >> MdpMinorShift;
221
222         init_MUTEX(&new->reconfig_sem);
223         INIT_LIST_HEAD(&new->disks);
224         INIT_LIST_HEAD(&new->all_mddevs);
225         init_timer(&new->safemode_timer);
226         atomic_set(&new->active, 1);
227         bio_list_init(&new->write_list);
228         spin_lock_init(&new->write_lock);
229
230         new->queue = blk_alloc_queue(GFP_KERNEL);
231         if (!new->queue) {
232                 kfree(new);
233                 return NULL;
234         }
235
236         blk_queue_make_request(new->queue, md_fail_request);
237
238         goto retry;
239 }
240
241 static inline int mddev_lock(mddev_t * mddev)
242 {
243         return down_interruptible(&mddev->reconfig_sem);
244 }
245
246 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
247 {
248         down(&mddev->reconfig_sem);
249 }
250
251 static inline int mddev_trylock(mddev_t * mddev)
252 {
253         return down_trylock(&mddev->reconfig_sem);
254 }
255
256 static inline void mddev_unlock(mddev_t * mddev)
257 {
258         up(&mddev->reconfig_sem);
259
260         if (mddev->thread)
261                 md_wakeup_thread(mddev->thread);
262 }
263
264 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
265 {
266         mdk_rdev_t * rdev;
267         struct list_head *tmp;
268
269         ITERATE_RDEV(mddev,rdev,tmp) {
270                 if (rdev->desc_nr == nr)
271                         return rdev;
272         }
273         return NULL;
274 }
275
276 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
277 {
278         struct list_head *tmp;
279         mdk_rdev_t *rdev;
280
281         ITERATE_RDEV(mddev,rdev,tmp) {
282                 if (rdev->bdev->bd_dev == dev)
283                         return rdev;
284         }
285         return NULL;
286 }
287
288 inline static sector_t calc_dev_sboffset(struct block_device *bdev)
289 {
290         sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
291         return MD_NEW_SIZE_BLOCKS(size);
292 }
293
294 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
295 {
296         sector_t size;
297
298         size = rdev->sb_offset;
299
300         if (chunk_size)
301                 size &= ~((sector_t)chunk_size/1024 - 1);
302         return size;
303 }
304
305 static int alloc_disk_sb(mdk_rdev_t * rdev)
306 {
307         if (rdev->sb_page)
308                 MD_BUG();
309
310         rdev->sb_page = alloc_page(GFP_KERNEL);
311         if (!rdev->sb_page) {
312                 printk(KERN_ALERT "md: out of memory.\n");
313                 return -EINVAL;
314         }
315
316         return 0;
317 }
318
319 static void free_disk_sb(mdk_rdev_t * rdev)
320 {
321         if (rdev->sb_page) {
322                 page_cache_release(rdev->sb_page);
323                 rdev->sb_loaded = 0;
324                 rdev->sb_page = NULL;
325                 rdev->sb_offset = 0;
326                 rdev->size = 0;
327         }
328 }
329
330
331 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
332 {
333         if (bio->bi_size)
334                 return 1;
335
336         complete((struct completion*)bio->bi_private);
337         return 0;
338 }
339
340 static int sync_page_io(struct block_device *bdev, sector_t sector, int size,
341                    struct page *page, int rw)
342 {
343         struct bio *bio = bio_alloc(GFP_NOIO, 1);
344         struct completion event;
345         int ret;
346
347         rw |= (1 << BIO_RW_SYNC);
348
349         bio->bi_bdev = bdev;
350         bio->bi_sector = sector;
351         bio_add_page(bio, page, size, 0);
352         init_completion(&event);
353         bio->bi_private = &event;
354         bio->bi_end_io = bi_complete;
355         submit_bio(rw, bio);
356         wait_for_completion(&event);
357
358         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
359         bio_put(bio);
360         return ret;
361 }
362
363 static int read_disk_sb(mdk_rdev_t * rdev)
364 {
365         char b[BDEVNAME_SIZE];
366         if (!rdev->sb_page) {
367                 MD_BUG();
368                 return -EINVAL;
369         }
370         if (rdev->sb_loaded)
371                 return 0;
372
373
374         if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ))
375                 goto fail;
376         rdev->sb_loaded = 1;
377         return 0;
378
379 fail:
380         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
381                 bdevname(rdev->bdev,b));
382         return -EINVAL;
383 }
384
385 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
386 {
387         if (    (sb1->set_uuid0 == sb2->set_uuid0) &&
388                 (sb1->set_uuid1 == sb2->set_uuid1) &&
389                 (sb1->set_uuid2 == sb2->set_uuid2) &&
390                 (sb1->set_uuid3 == sb2->set_uuid3))
391
392                 return 1;
393
394         return 0;
395 }
396
397
398 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
399 {
400         int ret;
401         mdp_super_t *tmp1, *tmp2;
402
403         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
404         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
405
406         if (!tmp1 || !tmp2) {
407                 ret = 0;
408                 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
409                 goto abort;
410         }
411
412         *tmp1 = *sb1;
413         *tmp2 = *sb2;
414
415         /*
416          * nr_disks is not constant
417          */
418         tmp1->nr_disks = 0;
419         tmp2->nr_disks = 0;
420
421         if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
422                 ret = 0;
423         else
424                 ret = 1;
425
426 abort:
427         if (tmp1)
428                 kfree(tmp1);
429         if (tmp2)
430                 kfree(tmp2);
431
432         return ret;
433 }
434
435 static unsigned int calc_sb_csum(mdp_super_t * sb)
436 {
437         unsigned int disk_csum, csum;
438
439         disk_csum = sb->sb_csum;
440         sb->sb_csum = 0;
441         csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
442         sb->sb_csum = disk_csum;
443         return csum;
444 }
445
446
447 /*
448  * Handle superblock details.
449  * We want to be able to handle multiple superblock formats
450  * so we have a common interface to them all, and an array of
451  * different handlers.
452  * We rely on user-space to write the initial superblock, and support
453  * reading and updating of superblocks.
454  * Interface methods are:
455  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
456  *      loads and validates a superblock on dev.
457  *      if refdev != NULL, compare superblocks on both devices
458  *    Return:
459  *      0 - dev has a superblock that is compatible with refdev
460  *      1 - dev has a superblock that is compatible and newer than refdev
461  *          so dev should be used as the refdev in future
462  *     -EINVAL superblock incompatible or invalid
463  *     -othererror e.g. -EIO
464  *
465  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
466  *      Verify that dev is acceptable into mddev.
467  *       The first time, mddev->raid_disks will be 0, and data from
468  *       dev should be merged in.  Subsequent calls check that dev
469  *       is new enough.  Return 0 or -EINVAL
470  *
471  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
472  *     Update the superblock for rdev with data in mddev
473  *     This does not write to disc.
474  *
475  */
476
477 struct super_type  {
478         char            *name;
479         struct module   *owner;
480         int             (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
481         int             (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
482         void            (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
483 };
484
485 /*
486  * load_super for 0.90.0 
487  */
488 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
489 {
490         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
491         mdp_super_t *sb;
492         int ret;
493         sector_t sb_offset;
494
495         /*
496          * Calculate the position of the superblock,
497          * it's at the end of the disk.
498          *
499          * It also happens to be a multiple of 4Kb.
500          */
501         sb_offset = calc_dev_sboffset(rdev->bdev);
502         rdev->sb_offset = sb_offset;
503
504         ret = read_disk_sb(rdev);
505         if (ret) return ret;
506
507         ret = -EINVAL;
508
509         bdevname(rdev->bdev, b);
510         sb = (mdp_super_t*)page_address(rdev->sb_page);
511
512         if (sb->md_magic != MD_SB_MAGIC) {
513                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
514                        b);
515                 goto abort;
516         }
517
518         if (sb->major_version != 0 ||
519             sb->minor_version != 90) {
520                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
521                         sb->major_version, sb->minor_version,
522                         b);
523                 goto abort;
524         }
525
526         if (sb->raid_disks <= 0)
527                 goto abort;
528
529         if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
530                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
531                         b);
532                 goto abort;
533         }
534
535         rdev->preferred_minor = sb->md_minor;
536         rdev->data_offset = 0;
537
538         if (sb->level == LEVEL_MULTIPATH)
539                 rdev->desc_nr = -1;
540         else
541                 rdev->desc_nr = sb->this_disk.number;
542
543         if (refdev == 0)
544                 ret = 1;
545         else {
546                 __u64 ev1, ev2;
547                 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
548                 if (!uuid_equal(refsb, sb)) {
549                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
550                                 b, bdevname(refdev->bdev,b2));
551                         goto abort;
552                 }
553                 if (!sb_equal(refsb, sb)) {
554                         printk(KERN_WARNING "md: %s has same UUID"
555                                " but different superblock to %s\n",
556                                b, bdevname(refdev->bdev, b2));
557                         goto abort;
558                 }
559                 ev1 = md_event(sb);
560                 ev2 = md_event(refsb);
561                 if (ev1 > ev2)
562                         ret = 1;
563                 else 
564                         ret = 0;
565         }
566         rdev->size = calc_dev_size(rdev, sb->chunk_size);
567
568  abort:
569         return ret;
570 }
571
572 /*
573  * validate_super for 0.90.0
574  */
575 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
576 {
577         mdp_disk_t *desc;
578         mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
579
580         if (mddev->raid_disks == 0) {
581                 mddev->major_version = 0;
582                 mddev->minor_version = sb->minor_version;
583                 mddev->patch_version = sb->patch_version;
584                 mddev->persistent = ! sb->not_persistent;
585                 mddev->chunk_size = sb->chunk_size;
586                 mddev->ctime = sb->ctime;
587                 mddev->utime = sb->utime;
588                 mddev->level = sb->level;
589                 mddev->layout = sb->layout;
590                 mddev->raid_disks = sb->raid_disks;
591                 mddev->size = sb->size;
592                 mddev->events = md_event(sb);
593
594                 if (sb->state & (1<<MD_SB_CLEAN))
595                         mddev->recovery_cp = MaxSector;
596                 else {
597                         if (sb->events_hi == sb->cp_events_hi && 
598                                 sb->events_lo == sb->cp_events_lo) {
599                                 mddev->recovery_cp = sb->recovery_cp;
600                         } else
601                                 mddev->recovery_cp = 0;
602                 }
603
604                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
605                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
606                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
607                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
608
609                 mddev->max_disks = MD_SB_DISKS;
610         } else {
611                 __u64 ev1;
612                 ev1 = md_event(sb);
613                 ++ev1;
614                 if (ev1 < mddev->events) 
615                         return -EINVAL;
616         }
617         if (mddev->level != LEVEL_MULTIPATH) {
618                 rdev->raid_disk = -1;
619                 rdev->in_sync = rdev->faulty = 0;
620                 desc = sb->disks + rdev->desc_nr;
621
622                 if (desc->state & (1<<MD_DISK_FAULTY))
623                         rdev->faulty = 1;
624                 else if (desc->state & (1<<MD_DISK_SYNC) &&
625                          desc->raid_disk < mddev->raid_disks) {
626                         rdev->in_sync = 1;
627                         rdev->raid_disk = desc->raid_disk;
628                 }
629         }
630         return 0;
631 }
632
633 /*
634  * sync_super for 0.90.0
635  */
636 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
637 {
638         mdp_super_t *sb;
639         struct list_head *tmp;
640         mdk_rdev_t *rdev2;
641         int next_spare = mddev->raid_disks;
642
643         /* make rdev->sb match mddev data..
644          *
645          * 1/ zero out disks
646          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
647          * 3/ any empty disks < next_spare become removed
648          *
649          * disks[0] gets initialised to REMOVED because
650          * we cannot be sure from other fields if it has
651          * been initialised or not.
652          */
653         int i;
654         int active=0, working=0,failed=0,spare=0,nr_disks=0;
655
656         sb = (mdp_super_t*)page_address(rdev->sb_page);
657
658         memset(sb, 0, sizeof(*sb));
659
660         sb->md_magic = MD_SB_MAGIC;
661         sb->major_version = mddev->major_version;
662         sb->minor_version = mddev->minor_version;
663         sb->patch_version = mddev->patch_version;
664         sb->gvalid_words  = 0; /* ignored */
665         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
666         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
667         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
668         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
669
670         sb->ctime = mddev->ctime;
671         sb->level = mddev->level;
672         sb->size  = mddev->size;
673         sb->raid_disks = mddev->raid_disks;
674         sb->md_minor = mddev->md_minor;
675         sb->not_persistent = !mddev->persistent;
676         sb->utime = mddev->utime;
677         sb->state = 0;
678         sb->events_hi = (mddev->events>>32);
679         sb->events_lo = (u32)mddev->events;
680
681         if (mddev->in_sync)
682         {
683                 sb->recovery_cp = mddev->recovery_cp;
684                 sb->cp_events_hi = (mddev->events>>32);
685                 sb->cp_events_lo = (u32)mddev->events;
686                 if (mddev->recovery_cp == MaxSector)
687                         sb->state = (1<< MD_SB_CLEAN);
688         } else
689                 sb->recovery_cp = 0;
690
691         sb->layout = mddev->layout;
692         sb->chunk_size = mddev->chunk_size;
693
694         sb->disks[0].state = (1<<MD_DISK_REMOVED);
695         ITERATE_RDEV(mddev,rdev2,tmp) {
696                 mdp_disk_t *d;
697                 if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
698                         rdev2->desc_nr = rdev2->raid_disk;
699                 else
700                         rdev2->desc_nr = next_spare++;
701                 d = &sb->disks[rdev2->desc_nr];
702                 nr_disks++;
703                 d->number = rdev2->desc_nr;
704                 d->major = MAJOR(rdev2->bdev->bd_dev);
705                 d->minor = MINOR(rdev2->bdev->bd_dev);
706                 if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
707                         d->raid_disk = rdev2->raid_disk;
708                 else
709                         d->raid_disk = rdev2->desc_nr; /* compatibility */
710                 if (rdev2->faulty) {
711                         d->state = (1<<MD_DISK_FAULTY);
712                         failed++;
713                 } else if (rdev2->in_sync) {
714                         d->state = (1<<MD_DISK_ACTIVE);
715                         d->state |= (1<<MD_DISK_SYNC);
716                         active++;
717                         working++;
718                 } else {
719                         d->state = 0;
720                         spare++;
721                         working++;
722                 }
723         }
724         
725         /* now set the "removed" and "faulty" bits on any missing devices */
726         for (i=0 ; i < mddev->raid_disks ; i++) {
727                 mdp_disk_t *d = &sb->disks[i];
728                 if (d->state == 0 && d->number == 0) {
729                         d->number = i;
730                         d->raid_disk = i;
731                         d->state = (1<<MD_DISK_REMOVED);
732                         d->state |= (1<<MD_DISK_FAULTY);
733                         failed++;
734                 }
735         }
736         sb->nr_disks = nr_disks;
737         sb->active_disks = active;
738         sb->working_disks = working;
739         sb->failed_disks = failed;
740         sb->spare_disks = spare;
741
742         sb->this_disk = sb->disks[rdev->desc_nr];
743         sb->sb_csum = calc_sb_csum(sb);
744 }
745
746 /*
747  * version 1 superblock
748  */
749
750 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
751 {
752         unsigned int disk_csum, csum;
753         unsigned long long newcsum;
754         int size = 256 + le32_to_cpu(sb->max_dev)*2;
755         unsigned int *isuper = (unsigned int*)sb;
756         int i;
757
758         disk_csum = sb->sb_csum;
759         sb->sb_csum = 0;
760         newcsum = 0;
761         for (i=0; size>=4; size -= 4 )
762                 newcsum += le32_to_cpu(*isuper++);
763
764         if (size == 2)
765                 newcsum += le16_to_cpu(*(unsigned short*) isuper);
766
767         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
768         sb->sb_csum = disk_csum;
769         return cpu_to_le32(csum);
770 }
771
772 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
773 {
774         struct mdp_superblock_1 *sb;
775         int ret;
776         sector_t sb_offset;
777         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
778
779         /*
780          * Calculate the position of the superblock.
781          * It is always aligned to a 4K boundary and
782          * depeding on minor_version, it can be:
783          * 0: At least 8K, but less than 12K, from end of device
784          * 1: At start of device
785          * 2: 4K from start of device.
786          */
787         switch(minor_version) {
788         case 0:
789                 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
790                 sb_offset -= 8*2;
791                 sb_offset &= ~(4*2-1);
792                 /* convert from sectors to K */
793                 sb_offset /= 2;
794                 break;
795         case 1:
796                 sb_offset = 0;
797                 break;
798         case 2:
799                 sb_offset = 4;
800                 break;
801         default:
802                 return -EINVAL;
803         }
804         rdev->sb_offset = sb_offset;
805
806         ret = read_disk_sb(rdev);
807         if (ret) return ret;
808
809
810         sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
811
812         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
813             sb->major_version != cpu_to_le32(1) ||
814             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
815             le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
816             sb->feature_map != 0)
817                 return -EINVAL;
818
819         if (calc_sb_1_csum(sb) != sb->sb_csum) {
820                 printk("md: invalid superblock checksum on %s\n",
821                         bdevname(rdev->bdev,b));
822                 return -EINVAL;
823         }
824         if (le64_to_cpu(sb->data_size) < 10) {
825                 printk("md: data_size too small on %s\n",
826                        bdevname(rdev->bdev,b));
827                 return -EINVAL;
828         }
829         rdev->preferred_minor = 0xffff;
830         rdev->data_offset = le64_to_cpu(sb->data_offset);
831
832         if (refdev == 0)
833                 return 1;
834         else {
835                 __u64 ev1, ev2;
836                 struct mdp_superblock_1 *refsb = 
837                         (struct mdp_superblock_1*)page_address(refdev->sb_page);
838
839                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
840                     sb->level != refsb->level ||
841                     sb->layout != refsb->layout ||
842                     sb->chunksize != refsb->chunksize) {
843                         printk(KERN_WARNING "md: %s has strangely different"
844                                 " superblock to %s\n",
845                                 bdevname(rdev->bdev,b),
846                                 bdevname(refdev->bdev,b2));
847                         return -EINVAL;
848                 }
849                 ev1 = le64_to_cpu(sb->events);
850                 ev2 = le64_to_cpu(refsb->events);
851
852                 if (ev1 > ev2)
853                         return 1;
854         }
855         if (minor_version) 
856                 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
857         else
858                 rdev->size = rdev->sb_offset;
859         if (rdev->size < le64_to_cpu(sb->data_size)/2)
860                 return -EINVAL;
861         rdev->size = le64_to_cpu(sb->data_size)/2;
862         if (le32_to_cpu(sb->chunksize))
863                 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
864         return 0;
865 }
866
867 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
868 {
869         struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
870
871         if (mddev->raid_disks == 0) {
872                 mddev->major_version = 1;
873                 mddev->patch_version = 0;
874                 mddev->persistent = 1;
875                 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
876                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
877                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
878                 mddev->level = le32_to_cpu(sb->level);
879                 mddev->layout = le32_to_cpu(sb->layout);
880                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
881                 mddev->size = le64_to_cpu(sb->size)/2;
882                 mddev->events = le64_to_cpu(sb->events);
883                 
884                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
885                 memcpy(mddev->uuid, sb->set_uuid, 16);
886
887                 mddev->max_disks =  (4096-256)/2;
888         } else {
889                 __u64 ev1;
890                 ev1 = le64_to_cpu(sb->events);
891                 ++ev1;
892                 if (ev1 < mddev->events)
893                         return -EINVAL;
894         }
895
896         if (mddev->level != LEVEL_MULTIPATH) {
897                 int role;
898                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
899                 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
900                 switch(role) {
901                 case 0xffff: /* spare */
902                         rdev->in_sync = 0;
903                         rdev->faulty = 0;
904                         rdev->raid_disk = -1;
905                         break;
906                 case 0xfffe: /* faulty */
907                         rdev->in_sync = 0;
908                         rdev->faulty = 1;
909                         rdev->raid_disk = -1;
910                         break;
911                 default:
912                         rdev->in_sync = 1;
913                         rdev->faulty = 0;
914                         rdev->raid_disk = role;
915                         break;
916                 }
917         }
918         return 0;
919 }
920
921 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
922 {
923         struct mdp_superblock_1 *sb;
924         struct list_head *tmp;
925         mdk_rdev_t *rdev2;
926         int max_dev, i;
927         /* make rdev->sb match mddev and rdev data. */
928
929         sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
930
931         sb->feature_map = 0;
932         sb->pad0 = 0;
933         memset(sb->pad1, 0, sizeof(sb->pad1));
934         memset(sb->pad2, 0, sizeof(sb->pad2));
935         memset(sb->pad3, 0, sizeof(sb->pad3));
936
937         sb->utime = cpu_to_le64((__u64)mddev->utime);
938         sb->events = cpu_to_le64(mddev->events);
939         if (mddev->in_sync)
940                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
941         else
942                 sb->resync_offset = cpu_to_le64(0);
943
944         max_dev = 0;
945         ITERATE_RDEV(mddev,rdev2,tmp)
946                 if (rdev2->desc_nr+1 > max_dev)
947                         max_dev = rdev2->desc_nr+1;
948         
949         sb->max_dev = cpu_to_le32(max_dev);
950         for (i=0; i<max_dev;i++)
951                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
952         
953         ITERATE_RDEV(mddev,rdev2,tmp) {
954                 i = rdev2->desc_nr;
955                 if (rdev2->faulty)
956                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
957                 else if (rdev2->in_sync)
958                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
959                 else
960                         sb->dev_roles[i] = cpu_to_le16(0xffff);
961         }
962
963         sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
964         sb->sb_csum = calc_sb_1_csum(sb);
965 }
966
967
968 static struct super_type super_types[] = {
969         [0] = {
970                 .name   = "0.90.0",
971                 .owner  = THIS_MODULE,
972                 .load_super     = super_90_load,
973                 .validate_super = super_90_validate,
974                 .sync_super     = super_90_sync,
975         },
976         [1] = {
977                 .name   = "md-1",
978                 .owner  = THIS_MODULE,
979                 .load_super     = super_1_load,
980                 .validate_super = super_1_validate,
981                 .sync_super     = super_1_sync,
982         },
983 };
984         
985 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
986 {
987         struct list_head *tmp;
988         mdk_rdev_t *rdev;
989
990         ITERATE_RDEV(mddev,rdev,tmp)
991                 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
992                         return rdev;
993
994         return NULL;
995 }
996
997 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
998 {
999         struct list_head *tmp;
1000         mdk_rdev_t *rdev;
1001
1002         ITERATE_RDEV(mddev1,rdev,tmp)
1003                 if (match_dev_unit(mddev2, rdev))
1004                         return 1;
1005
1006         return 0;
1007 }
1008
1009 static LIST_HEAD(pending_raid_disks);
1010
1011 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1012 {
1013         mdk_rdev_t *same_pdev;
1014         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1015
1016         if (rdev->mddev) {
1017                 MD_BUG();
1018                 return -EINVAL;
1019         }
1020         same_pdev = match_dev_unit(mddev, rdev);
1021         if (same_pdev)
1022                 printk(KERN_WARNING
1023                         "%s: WARNING: %s appears to be on the same physical"
1024                         " disk as %s. True\n     protection against single-disk"
1025                         " failure might be compromised.\n",
1026                         mdname(mddev), bdevname(rdev->bdev,b),
1027                         bdevname(same_pdev->bdev,b2));
1028
1029         /* Verify rdev->desc_nr is unique.
1030          * If it is -1, assign a free number, else
1031          * check number is not in use
1032          */
1033         if (rdev->desc_nr < 0) {
1034                 int choice = 0;
1035                 if (mddev->pers) choice = mddev->raid_disks;
1036                 while (find_rdev_nr(mddev, choice))
1037                         choice++;
1038                 rdev->desc_nr = choice;
1039         } else {
1040                 if (find_rdev_nr(mddev, rdev->desc_nr))
1041                         return -EBUSY;
1042         }
1043                         
1044         list_add(&rdev->same_set, &mddev->disks);
1045         rdev->mddev = mddev;
1046         printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
1047         return 0;
1048 }
1049
1050 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1051 {
1052         char b[BDEVNAME_SIZE];
1053         if (!rdev->mddev) {
1054                 MD_BUG();
1055                 return;
1056         }
1057         list_del_init(&rdev->same_set);
1058         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1059         rdev->mddev = NULL;
1060 }
1061
1062 /*
1063  * prevent the device from being mounted, repartitioned or
1064  * otherwise reused by a RAID array (or any other kernel
1065  * subsystem), by bd_claiming the device.
1066  */
1067 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1068 {
1069         int err = 0;
1070         struct block_device *bdev;
1071         char b[BDEVNAME_SIZE];
1072
1073         bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1074         if (IS_ERR(bdev)) {
1075                 printk(KERN_ERR "md: could not open %s.\n",
1076                         __bdevname(dev, b));
1077                 return PTR_ERR(bdev);
1078         }
1079         err = bd_claim(bdev, rdev);
1080         if (err) {
1081                 printk(KERN_ERR "md: could not bd_claim %s.\n",
1082                         bdevname(bdev, b));
1083                 blkdev_put(bdev);
1084                 return err;
1085         }
1086         rdev->bdev = bdev;
1087         return err;
1088 }
1089
1090 static void unlock_rdev(mdk_rdev_t *rdev)
1091 {
1092         struct block_device *bdev = rdev->bdev;
1093         rdev->bdev = NULL;
1094         if (!bdev)
1095                 MD_BUG();
1096         bd_release(bdev);
1097         blkdev_put(bdev);
1098 }
1099
1100 void md_autodetect_dev(dev_t dev);
1101
1102 static void export_rdev(mdk_rdev_t * rdev)
1103 {
1104         char b[BDEVNAME_SIZE];
1105         printk(KERN_INFO "md: export_rdev(%s)\n",
1106                 bdevname(rdev->bdev,b));
1107         if (rdev->mddev)
1108                 MD_BUG();
1109         free_disk_sb(rdev);
1110         list_del_init(&rdev->same_set);
1111 #ifndef MODULE
1112         md_autodetect_dev(rdev->bdev->bd_dev);
1113 #endif
1114         unlock_rdev(rdev);
1115         kfree(rdev);
1116 }
1117
1118 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1119 {
1120         unbind_rdev_from_array(rdev);
1121         export_rdev(rdev);
1122 }
1123
1124 static void export_array(mddev_t *mddev)
1125 {
1126         struct list_head *tmp;
1127         mdk_rdev_t *rdev;
1128
1129         ITERATE_RDEV(mddev,rdev,tmp) {
1130                 if (!rdev->mddev) {
1131                         MD_BUG();
1132                         continue;
1133                 }
1134                 kick_rdev_from_array(rdev);
1135         }
1136         if (!list_empty(&mddev->disks))
1137                 MD_BUG();
1138         mddev->raid_disks = 0;
1139         mddev->major_version = 0;
1140 }
1141
1142 static void print_desc(mdp_disk_t *desc)
1143 {
1144         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1145                 desc->major,desc->minor,desc->raid_disk,desc->state);
1146 }
1147
1148 static void print_sb(mdp_super_t *sb)
1149 {
1150         int i;
1151
1152         printk(KERN_INFO 
1153                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1154                 sb->major_version, sb->minor_version, sb->patch_version,
1155                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1156                 sb->ctime);
1157         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1158                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1159                 sb->md_minor, sb->layout, sb->chunk_size);
1160         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1161                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1162                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1163                 sb->failed_disks, sb->spare_disks,
1164                 sb->sb_csum, (unsigned long)sb->events_lo);
1165
1166         printk(KERN_INFO);
1167         for (i = 0; i < MD_SB_DISKS; i++) {
1168                 mdp_disk_t *desc;
1169
1170                 desc = sb->disks + i;
1171                 if (desc->number || desc->major || desc->minor ||
1172                     desc->raid_disk || (desc->state && (desc->state != 4))) {
1173                         printk("     D %2d: ", i);
1174                         print_desc(desc);
1175                 }
1176         }
1177         printk(KERN_INFO "md:     THIS: ");
1178         print_desc(&sb->this_disk);
1179
1180 }
1181
1182 static void print_rdev(mdk_rdev_t *rdev)
1183 {
1184         char b[BDEVNAME_SIZE];
1185         printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1186                 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1187                 rdev->faulty, rdev->in_sync, rdev->desc_nr);
1188         if (rdev->sb_loaded) {
1189                 printk(KERN_INFO "md: rdev superblock:\n");
1190                 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1191         } else
1192                 printk(KERN_INFO "md: no rdev superblock!\n");
1193 }
1194
1195 void md_print_devices(void)
1196 {
1197         struct list_head *tmp, *tmp2;
1198         mdk_rdev_t *rdev;
1199         mddev_t *mddev;
1200         char b[BDEVNAME_SIZE];
1201
1202         printk("\n");
1203         printk("md:     **********************************\n");
1204         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
1205         printk("md:     **********************************\n");
1206         ITERATE_MDDEV(mddev,tmp) {
1207
1208                 if (mddev->bitmap)
1209                         bitmap_print_sb(mddev->bitmap);
1210                 else
1211                         printk("%s: ", mdname(mddev));
1212                 ITERATE_RDEV(mddev,rdev,tmp2)
1213                         printk("<%s>", bdevname(rdev->bdev,b));
1214                 printk("\n");
1215
1216                 ITERATE_RDEV(mddev,rdev,tmp2)
1217                         print_rdev(rdev);
1218         }
1219         printk("md:     **********************************\n");
1220         printk("\n");
1221 }
1222
1223
1224 static int write_disk_sb(mdk_rdev_t * rdev)
1225 {
1226         char b[BDEVNAME_SIZE];
1227         if (!rdev->sb_loaded) {
1228                 MD_BUG();
1229                 return 1;
1230         }
1231         if (rdev->faulty) {
1232                 MD_BUG();
1233                 return 1;
1234         }
1235
1236         dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1237                 bdevname(rdev->bdev,b),
1238                (unsigned long long)rdev->sb_offset);
1239   
1240         if (sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, WRITE))
1241                 return 0;
1242
1243         printk("md: write_disk_sb failed for device %s\n", 
1244                 bdevname(rdev->bdev,b));
1245         return 1;
1246 }
1247
1248 static void sync_sbs(mddev_t * mddev)
1249 {
1250         mdk_rdev_t *rdev;
1251         struct list_head *tmp;
1252
1253         ITERATE_RDEV(mddev,rdev,tmp) {
1254                 super_types[mddev->major_version].
1255                         sync_super(mddev, rdev);
1256                 rdev->sb_loaded = 1;
1257         }
1258 }
1259
1260 static void md_update_sb(mddev_t * mddev)
1261 {
1262         int err, count = 100;
1263         struct list_head *tmp;
1264         mdk_rdev_t *rdev;
1265         int sync_req;
1266
1267 repeat:
1268         spin_lock(&mddev->write_lock);
1269         sync_req = mddev->in_sync;
1270         mddev->utime = get_seconds();
1271         mddev->events ++;
1272
1273         if (!mddev->events) {
1274                 /*
1275                  * oops, this 64-bit counter should never wrap.
1276                  * Either we are in around ~1 trillion A.C., assuming
1277                  * 1 reboot per second, or we have a bug:
1278                  */
1279                 MD_BUG();
1280                 mddev->events --;
1281         }
1282         sync_sbs(mddev);
1283
1284         /*
1285          * do not write anything to disk if using
1286          * nonpersistent superblocks
1287          */
1288         if (!mddev->persistent) {
1289                 mddev->sb_dirty = 0;
1290                 spin_unlock(&mddev->write_lock);
1291                 return;
1292         }
1293         spin_unlock(&mddev->write_lock);
1294
1295         dprintk(KERN_INFO 
1296                 "md: updating %s RAID superblock on device (in sync %d)\n",
1297                 mdname(mddev),mddev->in_sync);
1298
1299         err = bitmap_update_sb(mddev->bitmap);
1300         ITERATE_RDEV(mddev,rdev,tmp) {
1301                 char b[BDEVNAME_SIZE];
1302                 dprintk(KERN_INFO "md: ");
1303                 if (rdev->faulty)
1304                         dprintk("(skipping faulty ");
1305
1306                 dprintk("%s ", bdevname(rdev->bdev,b));
1307                 if (!rdev->faulty) {
1308                         err += write_disk_sb(rdev);
1309                 } else
1310                         dprintk(")\n");
1311                 if (!err && mddev->level == LEVEL_MULTIPATH)
1312                         /* only need to write one superblock... */
1313                         break;
1314         }
1315         if (err) {
1316                 if (--count) {
1317                         printk(KERN_ERR "md: errors occurred during superblock"
1318                                 " update, repeating\n");
1319                         goto repeat;
1320                 }
1321                 printk(KERN_ERR \
1322                         "md: excessive errors occurred during superblock update, exiting\n");
1323         }
1324         spin_lock(&mddev->write_lock);
1325         if (mddev->in_sync != sync_req) {
1326                 /* have to write it out again */
1327                 spin_unlock(&mddev->write_lock);
1328                 goto repeat;
1329         }
1330         mddev->sb_dirty = 0;
1331         spin_unlock(&mddev->write_lock);
1332
1333 }
1334
1335 /*
1336  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1337  *
1338  * mark the device faulty if:
1339  *
1340  *   - the device is nonexistent (zero size)
1341  *   - the device has no valid superblock
1342  *
1343  * a faulty rdev _never_ has rdev->sb set.
1344  */
1345 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1346 {
1347         char b[BDEVNAME_SIZE];
1348         int err;
1349         mdk_rdev_t *rdev;
1350         sector_t size;
1351
1352         rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1353         if (!rdev) {
1354                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1355                 return ERR_PTR(-ENOMEM);
1356         }
1357         memset(rdev, 0, sizeof(*rdev));
1358
1359         if ((err = alloc_disk_sb(rdev)))
1360                 goto abort_free;
1361
1362         err = lock_rdev(rdev, newdev);
1363         if (err)
1364                 goto abort_free;
1365
1366         rdev->desc_nr = -1;
1367         rdev->faulty = 0;
1368         rdev->in_sync = 0;
1369         rdev->data_offset = 0;
1370         atomic_set(&rdev->nr_pending, 0);
1371
1372         size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1373         if (!size) {
1374                 printk(KERN_WARNING 
1375                         "md: %s has zero or unknown size, marking faulty!\n",
1376                         bdevname(rdev->bdev,b));
1377                 err = -EINVAL;
1378                 goto abort_free;
1379         }
1380
1381         if (super_format >= 0) {
1382                 err = super_types[super_format].
1383                         load_super(rdev, NULL, super_minor);
1384                 if (err == -EINVAL) {
1385                         printk(KERN_WARNING 
1386                                 "md: %s has invalid sb, not importing!\n",
1387                                 bdevname(rdev->bdev,b));
1388                         goto abort_free;
1389                 }
1390                 if (err < 0) {
1391                         printk(KERN_WARNING 
1392                                 "md: could not read %s's sb, not importing!\n",
1393                                 bdevname(rdev->bdev,b));
1394                         goto abort_free;
1395                 }
1396         }
1397         INIT_LIST_HEAD(&rdev->same_set);
1398
1399         return rdev;
1400
1401 abort_free:
1402         if (rdev->sb_page) {
1403                 if (rdev->bdev)
1404                         unlock_rdev(rdev);
1405                 free_disk_sb(rdev);
1406         }
1407         kfree(rdev);
1408         return ERR_PTR(err);
1409 }
1410
1411 /*
1412  * Check a full RAID array for plausibility
1413  */
1414
1415
1416 static void analyze_sbs(mddev_t * mddev)
1417 {
1418         int i;
1419         struct list_head *tmp;
1420         mdk_rdev_t *rdev, *freshest;
1421         char b[BDEVNAME_SIZE];
1422
1423         freshest = NULL;
1424         ITERATE_RDEV(mddev,rdev,tmp)
1425                 switch (super_types[mddev->major_version].
1426                         load_super(rdev, freshest, mddev->minor_version)) {
1427                 case 1:
1428                         freshest = rdev;
1429                         break;
1430                 case 0:
1431                         break;
1432                 default:
1433                         printk( KERN_ERR \
1434                                 "md: fatal superblock inconsistency in %s"
1435                                 " -- removing from array\n", 
1436                                 bdevname(rdev->bdev,b));
1437                         kick_rdev_from_array(rdev);
1438                 }
1439
1440
1441         super_types[mddev->major_version].
1442                 validate_super(mddev, freshest);
1443
1444         i = 0;
1445         ITERATE_RDEV(mddev,rdev,tmp) {
1446                 if (rdev != freshest)
1447                         if (super_types[mddev->major_version].
1448                             validate_super(mddev, rdev)) {
1449                                 printk(KERN_WARNING "md: kicking non-fresh %s"
1450                                         " from array!\n",
1451                                         bdevname(rdev->bdev,b));
1452                                 kick_rdev_from_array(rdev);
1453                                 continue;
1454                         }
1455                 if (mddev->level == LEVEL_MULTIPATH) {
1456                         rdev->desc_nr = i++;
1457                         rdev->raid_disk = rdev->desc_nr;
1458                         rdev->in_sync = 1;
1459                 }
1460         }
1461
1462
1463
1464         if (mddev->recovery_cp != MaxSector &&
1465             mddev->level >= 1)
1466                 printk(KERN_ERR "md: %s: raid array is not clean"
1467                        " -- starting background reconstruction\n",
1468                        mdname(mddev));
1469
1470 }
1471
1472 int mdp_major = 0;
1473
1474 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1475 {
1476         static DECLARE_MUTEX(disks_sem);
1477         mddev_t *mddev = mddev_find(dev);
1478         struct gendisk *disk;
1479         int partitioned = (MAJOR(dev) != MD_MAJOR);
1480         int shift = partitioned ? MdpMinorShift : 0;
1481         int unit = MINOR(dev) >> shift;
1482
1483         if (!mddev)
1484                 return NULL;
1485
1486         down(&disks_sem);
1487         if (mddev->gendisk) {
1488                 up(&disks_sem);
1489                 mddev_put(mddev);
1490                 return NULL;
1491         }
1492         disk = alloc_disk(1 << shift);
1493         if (!disk) {
1494                 up(&disks_sem);
1495                 mddev_put(mddev);
1496                 return NULL;
1497         }
1498         disk->major = MAJOR(dev);
1499         disk->first_minor = unit << shift;
1500         if (partitioned) {
1501                 sprintf(disk->disk_name, "md_d%d", unit);
1502                 sprintf(disk->devfs_name, "md/d%d", unit);
1503         } else {
1504                 sprintf(disk->disk_name, "md%d", unit);
1505                 sprintf(disk->devfs_name, "md/%d", unit);
1506         }
1507         disk->fops = &md_fops;
1508         disk->private_data = mddev;
1509         disk->queue = mddev->queue;
1510         add_disk(disk);
1511         mddev->gendisk = disk;
1512         up(&disks_sem);
1513         return NULL;
1514 }
1515
1516 void md_wakeup_thread(mdk_thread_t *thread);
1517
1518 static void md_safemode_timeout(unsigned long data)
1519 {
1520         mddev_t *mddev = (mddev_t *) data;
1521
1522         mddev->safemode = 1;
1523         md_wakeup_thread(mddev->thread);
1524 }
1525
1526
1527 static int do_md_run(mddev_t * mddev)
1528 {
1529         int pnum, err;
1530         int chunk_size;
1531         struct list_head *tmp;
1532         mdk_rdev_t *rdev;
1533         struct gendisk *disk;
1534         char b[BDEVNAME_SIZE];
1535
1536         if (list_empty(&mddev->disks))
1537                 /* cannot run an array with no devices.. */
1538                 return -EINVAL;
1539
1540         if (mddev->pers)
1541                 return -EBUSY;
1542
1543         /*
1544          * Analyze all RAID superblock(s)
1545          */
1546         if (!mddev->raid_disks)
1547                 analyze_sbs(mddev);
1548
1549         chunk_size = mddev->chunk_size;
1550         pnum = level_to_pers(mddev->level);
1551
1552         if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1553                 if (!chunk_size) {
1554                         /*
1555                          * 'default chunksize' in the old md code used to
1556                          * be PAGE_SIZE, baaad.
1557                          * we abort here to be on the safe side. We don't
1558                          * want to continue the bad practice.
1559                          */
1560                         printk(KERN_ERR 
1561                                 "no chunksize specified, see 'man raidtab'\n");
1562                         return -EINVAL;
1563                 }
1564                 if (chunk_size > MAX_CHUNK_SIZE) {
1565                         printk(KERN_ERR "too big chunk_size: %d > %d\n",
1566                                 chunk_size, MAX_CHUNK_SIZE);
1567                         return -EINVAL;
1568                 }
1569                 /*
1570                  * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1571                  */
1572                 if ( (1 << ffz(~chunk_size)) != chunk_size) {
1573                         printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1574                         return -EINVAL;
1575                 }
1576                 if (chunk_size < PAGE_SIZE) {
1577                         printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1578                                 chunk_size, PAGE_SIZE);
1579                         return -EINVAL;
1580                 }
1581
1582                 /* devices must have minimum size of one chunk */
1583                 ITERATE_RDEV(mddev,rdev,tmp) {
1584                         if (rdev->faulty)
1585                                 continue;
1586                         if (rdev->size < chunk_size / 1024) {
1587                                 printk(KERN_WARNING
1588                                         "md: Dev %s smaller than chunk_size:"
1589                                         " %lluk < %dk\n",
1590                                         bdevname(rdev->bdev,b),
1591                                         (unsigned long long)rdev->size,
1592                                         chunk_size / 1024);
1593                                 return -EINVAL;
1594                         }
1595                 }
1596         }
1597
1598 #ifdef CONFIG_KMOD
1599         if (!pers[pnum])
1600         {
1601                 request_module("md-personality-%d", pnum);
1602         }
1603 #endif
1604
1605         /*
1606          * Drop all container device buffers, from now on
1607          * the only valid external interface is through the md
1608          * device.
1609          * Also find largest hardsector size
1610          */
1611         ITERATE_RDEV(mddev,rdev,tmp) {
1612                 if (rdev->faulty)
1613                         continue;
1614                 sync_blockdev(rdev->bdev);
1615                 invalidate_bdev(rdev->bdev, 0);
1616         }
1617
1618         md_probe(mddev->unit, NULL, NULL);
1619         disk = mddev->gendisk;
1620         if (!disk)
1621                 return -ENOMEM;
1622
1623         spin_lock(&pers_lock);
1624         if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
1625                 spin_unlock(&pers_lock);
1626                 printk(KERN_WARNING "md: personality %d is not loaded!\n",
1627                        pnum);
1628                 return -EINVAL;
1629         }
1630
1631         mddev->pers = pers[pnum];
1632         spin_unlock(&pers_lock);
1633
1634         mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
1635
1636         /* before we start the array running, initialise the bitmap */
1637         err = bitmap_create(mddev);
1638         if (err)
1639                 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
1640                         mdname(mddev), err);
1641         else
1642                 err = mddev->pers->run(mddev);
1643         if (err) {
1644                 printk(KERN_ERR "md: pers->run() failed ...\n");
1645                 module_put(mddev->pers->owner);
1646                 mddev->pers = NULL;
1647                 bitmap_destroy(mddev);
1648                 return err;
1649         }
1650         atomic_set(&mddev->writes_pending,0);
1651         mddev->safemode = 0;
1652         mddev->safemode_timer.function = md_safemode_timeout;
1653         mddev->safemode_timer.data = (unsigned long) mddev;
1654         mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
1655         mddev->in_sync = 1;
1656         
1657         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1658         
1659         if (mddev->sb_dirty)
1660                 md_update_sb(mddev);
1661
1662         set_capacity(disk, mddev->array_size<<1);
1663
1664         /* If we call blk_queue_make_request here, it will
1665          * re-initialise max_sectors etc which may have been
1666          * refined inside -> run.  So just set the bits we need to set.
1667          * Most initialisation happended when we called
1668          * blk_queue_make_request(..., md_fail_request)
1669          * earlier.
1670          */
1671         mddev->queue->queuedata = mddev;
1672         mddev->queue->make_request_fn = mddev->pers->make_request;
1673
1674         mddev->changed = 1;
1675         return 0;
1676 }
1677
1678 static int restart_array(mddev_t *mddev)
1679 {
1680         struct gendisk *disk = mddev->gendisk;
1681         int err;
1682
1683         /*
1684          * Complain if it has no devices
1685          */
1686         err = -ENXIO;
1687         if (list_empty(&mddev->disks))
1688                 goto out;
1689
1690         if (mddev->pers) {
1691                 err = -EBUSY;
1692                 if (!mddev->ro)
1693                         goto out;
1694
1695                 mddev->safemode = 0;
1696                 mddev->ro = 0;
1697                 set_disk_ro(disk, 0);
1698
1699                 printk(KERN_INFO "md: %s switched to read-write mode.\n",
1700                         mdname(mddev));
1701                 /*
1702                  * Kick recovery or resync if necessary
1703                  */
1704                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1705                 md_wakeup_thread(mddev->thread);
1706                 err = 0;
1707         } else {
1708                 printk(KERN_ERR "md: %s has no personality assigned.\n",
1709                         mdname(mddev));
1710                 err = -EINVAL;
1711         }
1712
1713 out:
1714         return err;
1715 }
1716
1717 static int do_md_stop(mddev_t * mddev, int ro)
1718 {
1719         int err = 0;
1720         struct gendisk *disk = mddev->gendisk;
1721
1722         if (mddev->pers) {
1723                 if (atomic_read(&mddev->active)>2) {
1724                         printk("md: %s still in use.\n",mdname(mddev));
1725                         return -EBUSY;
1726                 }
1727
1728                 if (mddev->sync_thread) {
1729                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1730                         md_unregister_thread(mddev->sync_thread);
1731                         mddev->sync_thread = NULL;
1732                 }
1733
1734                 del_timer_sync(&mddev->safemode_timer);
1735
1736                 invalidate_partition(disk, 0);
1737
1738                 if (ro) {
1739                         err  = -ENXIO;
1740                         if (mddev->ro)
1741                                 goto out;
1742                         mddev->ro = 1;
1743                 } else {
1744                         if (mddev->ro)
1745                                 set_disk_ro(disk, 0);
1746                         blk_queue_make_request(mddev->queue, md_fail_request);
1747                         mddev->pers->stop(mddev);
1748                         module_put(mddev->pers->owner);
1749                         mddev->pers = NULL;
1750                         if (mddev->ro)
1751                                 mddev->ro = 0;
1752                 }
1753                 if (!mddev->in_sync) {
1754                         /* mark array as shutdown cleanly */
1755                         mddev->in_sync = 1;
1756                         md_update_sb(mddev);
1757                 }
1758                 if (ro)
1759                         set_disk_ro(disk, 1);
1760         }
1761
1762         bitmap_destroy(mddev);
1763         if (mddev->bitmap_file) {
1764                 atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
1765                 fput(mddev->bitmap_file);
1766                 mddev->bitmap_file = NULL;
1767         }
1768
1769         /*
1770          * Free resources if final stop
1771          */
1772         if (!ro) {
1773                 struct gendisk *disk;
1774                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
1775
1776                 export_array(mddev);
1777
1778                 mddev->array_size = 0;
1779                 disk = mddev->gendisk;
1780                 if (disk)
1781                         set_capacity(disk, 0);
1782                 mddev->changed = 1;
1783         } else
1784                 printk(KERN_INFO "md: %s switched to read-only mode.\n",
1785                         mdname(mddev));
1786         err = 0;
1787 out:
1788         return err;
1789 }
1790
1791 static void autorun_array(mddev_t *mddev)
1792 {
1793         mdk_rdev_t *rdev;
1794         struct list_head *tmp;
1795         int err;
1796
1797         if (list_empty(&mddev->disks))
1798                 return;
1799
1800         printk(KERN_INFO "md: running: ");
1801
1802         ITERATE_RDEV(mddev,rdev,tmp) {
1803                 char b[BDEVNAME_SIZE];
1804                 printk("<%s>", bdevname(rdev->bdev,b));
1805         }
1806         printk("\n");
1807
1808         err = do_md_run (mddev);
1809         if (err) {
1810                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
1811                 do_md_stop (mddev, 0);
1812         }
1813 }
1814
1815 /*
1816  * lets try to run arrays based on all disks that have arrived
1817  * until now. (those are in pending_raid_disks)
1818  *
1819  * the method: pick the first pending disk, collect all disks with
1820  * the same UUID, remove all from the pending list and put them into
1821  * the 'same_array' list. Then order this list based on superblock
1822  * update time (freshest comes first), kick out 'old' disks and
1823  * compare superblocks. If everything's fine then run it.
1824  *
1825  * If "unit" is allocated, then bump its reference count
1826  */
1827 static void autorun_devices(int part)
1828 {
1829         struct list_head candidates;
1830         struct list_head *tmp;
1831         mdk_rdev_t *rdev0, *rdev;
1832         mddev_t *mddev;
1833         char b[BDEVNAME_SIZE];
1834
1835         printk(KERN_INFO "md: autorun ...\n");
1836         while (!list_empty(&pending_raid_disks)) {
1837                 dev_t dev;
1838                 rdev0 = list_entry(pending_raid_disks.next,
1839                                          mdk_rdev_t, same_set);
1840
1841                 printk(KERN_INFO "md: considering %s ...\n",
1842                         bdevname(rdev0->bdev,b));
1843                 INIT_LIST_HEAD(&candidates);
1844                 ITERATE_RDEV_PENDING(rdev,tmp)
1845                         if (super_90_load(rdev, rdev0, 0) >= 0) {
1846                                 printk(KERN_INFO "md:  adding %s ...\n",
1847                                         bdevname(rdev->bdev,b));
1848                                 list_move(&rdev->same_set, &candidates);
1849                         }
1850                 /*
1851                  * now we have a set of devices, with all of them having
1852                  * mostly sane superblocks. It's time to allocate the
1853                  * mddev.
1854                  */
1855                 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
1856                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
1857                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
1858                         break;
1859                 }
1860                 if (part)
1861                         dev = MKDEV(mdp_major,
1862                                     rdev0->preferred_minor << MdpMinorShift);
1863                 else
1864                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
1865
1866                 md_probe(dev, NULL, NULL);
1867                 mddev = mddev_find(dev);
1868                 if (!mddev) {
1869                         printk(KERN_ERR 
1870                                 "md: cannot allocate memory for md drive.\n");
1871                         break;
1872                 }
1873                 if (mddev_lock(mddev)) 
1874                         printk(KERN_WARNING "md: %s locked, cannot run\n",
1875                                mdname(mddev));
1876                 else if (mddev->raid_disks || mddev->major_version
1877                          || !list_empty(&mddev->disks)) {
1878                         printk(KERN_WARNING 
1879                                 "md: %s already running, cannot run %s\n",
1880                                 mdname(mddev), bdevname(rdev0->bdev,b));
1881                         mddev_unlock(mddev);
1882                 } else {
1883                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
1884                         ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
1885                                 list_del_init(&rdev->same_set);
1886                                 if (bind_rdev_to_array(rdev, mddev))
1887                                         export_rdev(rdev);
1888                         }
1889                         autorun_array(mddev);
1890                         mddev_unlock(mddev);
1891                 }
1892                 /* on success, candidates will be empty, on error
1893                  * it won't...
1894                  */
1895                 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
1896                         export_rdev(rdev);
1897                 mddev_put(mddev);
1898         }
1899         printk(KERN_INFO "md: ... autorun DONE.\n");
1900 }
1901
1902 /*
1903  * import RAID devices based on one partition
1904  * if possible, the array gets run as well.
1905  */
1906
1907 static int autostart_array(dev_t startdev)
1908 {
1909         char b[BDEVNAME_SIZE];
1910         int err = -EINVAL, i;
1911         mdp_super_t *sb = NULL;
1912         mdk_rdev_t *start_rdev = NULL, *rdev;
1913
1914         start_rdev = md_import_device(startdev, 0, 0);
1915         if (IS_ERR(start_rdev))
1916                 return err;
1917
1918
1919         /* NOTE: this can only work for 0.90.0 superblocks */
1920         sb = (mdp_super_t*)page_address(start_rdev->sb_page);
1921         if (sb->major_version != 0 ||
1922             sb->minor_version != 90 ) {
1923                 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
1924                 export_rdev(start_rdev);
1925                 return err;
1926         }
1927
1928         if (start_rdev->faulty) {
1929                 printk(KERN_WARNING 
1930                         "md: can not autostart based on faulty %s!\n",
1931                         bdevname(start_rdev->bdev,b));
1932                 export_rdev(start_rdev);
1933                 return err;
1934         }
1935         list_add(&start_rdev->same_set, &pending_raid_disks);
1936
1937         for (i = 0; i < MD_SB_DISKS; i++) {
1938                 mdp_disk_t *desc = sb->disks + i;
1939                 dev_t dev = MKDEV(desc->major, desc->minor);
1940
1941                 if (!dev)
1942                         continue;
1943                 if (dev == startdev)
1944                         continue;
1945                 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
1946                         continue;
1947                 rdev = md_import_device(dev, 0, 0);
1948                 if (IS_ERR(rdev))
1949                         continue;
1950
1951                 list_add(&rdev->same_set, &pending_raid_disks);
1952         }
1953
1954         /*
1955          * possibly return codes
1956          */
1957         autorun_devices(0);
1958         return 0;
1959
1960 }
1961
1962
1963 static int get_version(void __user * arg)
1964 {
1965         mdu_version_t ver;
1966
1967         ver.major = MD_MAJOR_VERSION;
1968         ver.minor = MD_MINOR_VERSION;
1969         ver.patchlevel = MD_PATCHLEVEL_VERSION;
1970
1971         if (copy_to_user(arg, &ver, sizeof(ver)))
1972                 return -EFAULT;
1973
1974         return 0;
1975 }
1976
1977 static int get_array_info(mddev_t * mddev, void __user * arg)
1978 {
1979         mdu_array_info_t info;
1980         int nr,working,active,failed,spare;
1981         mdk_rdev_t *rdev;
1982         struct list_head *tmp;
1983
1984         nr=working=active=failed=spare=0;
1985         ITERATE_RDEV(mddev,rdev,tmp) {
1986                 nr++;
1987                 if (rdev->faulty)
1988                         failed++;
1989                 else {
1990                         working++;
1991                         if (rdev->in_sync)
1992                                 active++;       
1993                         else
1994                                 spare++;
1995                 }
1996         }
1997
1998         info.major_version = mddev->major_version;
1999         info.minor_version = mddev->minor_version;
2000         info.patch_version = MD_PATCHLEVEL_VERSION;
2001         info.ctime         = mddev->ctime;
2002         info.level         = mddev->level;
2003         info.size          = mddev->size;
2004         info.nr_disks      = nr;
2005         info.raid_disks    = mddev->raid_disks;
2006         info.md_minor      = mddev->md_minor;
2007         info.not_persistent= !mddev->persistent;
2008
2009         info.utime         = mddev->utime;
2010         info.state         = 0;
2011         if (mddev->in_sync)
2012                 info.state = (1<<MD_SB_CLEAN);
2013         info.active_disks  = active;
2014         info.working_disks = working;
2015         info.failed_disks  = failed;
2016         info.spare_disks   = spare;
2017
2018         info.layout        = mddev->layout;
2019         info.chunk_size    = mddev->chunk_size;
2020
2021         if (copy_to_user(arg, &info, sizeof(info)))
2022                 return -EFAULT;
2023
2024         return 0;
2025 }
2026
2027 static int get_bitmap_file(mddev_t * mddev, void * arg)
2028 {
2029         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2030         char *ptr, *buf = NULL;
2031         int err = -ENOMEM;
2032
2033         file = kmalloc(sizeof(*file), GFP_KERNEL);
2034         if (!file)
2035                 goto out;
2036
2037         /* bitmap disabled, zero the first byte and copy out */
2038         if (!mddev->bitmap || !mddev->bitmap->file) {
2039                 file->pathname[0] = '\0';
2040                 goto copy_out;
2041         }
2042
2043         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2044         if (!buf)
2045                 goto out;
2046
2047         ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2048         if (!ptr)
2049                 goto out;
2050
2051         strcpy(file->pathname, ptr);
2052
2053 copy_out:
2054         err = 0;
2055         if (copy_to_user(arg, file, sizeof(*file)))
2056                 err = -EFAULT;
2057 out:
2058         kfree(buf);
2059         kfree(file);
2060         return err;
2061 }
2062
2063 static int get_disk_info(mddev_t * mddev, void __user * arg)
2064 {
2065         mdu_disk_info_t info;
2066         unsigned int nr;
2067         mdk_rdev_t *rdev;
2068
2069         if (copy_from_user(&info, arg, sizeof(info)))
2070                 return -EFAULT;
2071
2072         nr = info.number;
2073
2074         rdev = find_rdev_nr(mddev, nr);
2075         if (rdev) {
2076                 info.major = MAJOR(rdev->bdev->bd_dev);
2077                 info.minor = MINOR(rdev->bdev->bd_dev);
2078                 info.raid_disk = rdev->raid_disk;
2079                 info.state = 0;
2080                 if (rdev->faulty)
2081                         info.state |= (1<<MD_DISK_FAULTY);
2082                 else if (rdev->in_sync) {
2083                         info.state |= (1<<MD_DISK_ACTIVE);
2084                         info.state |= (1<<MD_DISK_SYNC);
2085                 }
2086         } else {
2087                 info.major = info.minor = 0;
2088                 info.raid_disk = -1;
2089                 info.state = (1<<MD_DISK_REMOVED);
2090         }
2091
2092         if (copy_to_user(arg, &info, sizeof(info)))
2093                 return -EFAULT;
2094
2095         return 0;
2096 }
2097
2098 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2099 {
2100         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2101         mdk_rdev_t *rdev;
2102         dev_t dev = MKDEV(info->major,info->minor);
2103
2104         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2105                 return -EOVERFLOW;
2106
2107         if (!mddev->raid_disks) {
2108                 int err;
2109                 /* expecting a device which has a superblock */
2110                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2111                 if (IS_ERR(rdev)) {
2112                         printk(KERN_WARNING 
2113                                 "md: md_import_device returned %ld\n",
2114                                 PTR_ERR(rdev));
2115                         return PTR_ERR(rdev);
2116                 }
2117                 if (!list_empty(&mddev->disks)) {
2118                         mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2119                                                         mdk_rdev_t, same_set);
2120                         int err = super_types[mddev->major_version]
2121                                 .load_super(rdev, rdev0, mddev->minor_version);
2122                         if (err < 0) {
2123                                 printk(KERN_WARNING 
2124                                         "md: %s has different UUID to %s\n",
2125                                         bdevname(rdev->bdev,b), 
2126                                         bdevname(rdev0->bdev,b2));
2127                                 export_rdev(rdev);
2128                                 return -EINVAL;
2129                         }
2130                 }
2131                 err = bind_rdev_to_array(rdev, mddev);
2132                 if (err)
2133                         export_rdev(rdev);
2134                 return err;
2135         }
2136
2137         /*
2138          * add_new_disk can be used once the array is assembled
2139          * to add "hot spares".  They must already have a superblock
2140          * written
2141          */
2142         if (mddev->pers) {
2143                 int err;
2144                 if (!mddev->pers->hot_add_disk) {
2145                         printk(KERN_WARNING 
2146                                 "%s: personality does not support diskops!\n",
2147                                mdname(mddev));
2148                         return -EINVAL;
2149                 }
2150                 rdev = md_import_device(dev, mddev->major_version,
2151                                         mddev->minor_version);
2152                 if (IS_ERR(rdev)) {
2153                         printk(KERN_WARNING 
2154                                 "md: md_import_device returned %ld\n",
2155                                 PTR_ERR(rdev));
2156                         return PTR_ERR(rdev);
2157                 }
2158                 rdev->in_sync = 0; /* just to be sure */
2159                 rdev->raid_disk = -1;
2160                 err = bind_rdev_to_array(rdev, mddev);
2161                 if (err)
2162                         export_rdev(rdev);
2163
2164                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2165                 if (mddev->thread)
2166                         md_wakeup_thread(mddev->thread);
2167                 return err;
2168         }
2169
2170         /* otherwise, add_new_disk is only allowed
2171          * for major_version==0 superblocks
2172          */
2173         if (mddev->major_version != 0) {
2174                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2175                        mdname(mddev));
2176                 return -EINVAL;
2177         }
2178
2179         if (!(info->state & (1<<MD_DISK_FAULTY))) {
2180                 int err;
2181                 rdev = md_import_device (dev, -1, 0);
2182                 if (IS_ERR(rdev)) {
2183                         printk(KERN_WARNING 
2184                                 "md: error, md_import_device() returned %ld\n",
2185                                 PTR_ERR(rdev));
2186                         return PTR_ERR(rdev);
2187                 }
2188                 rdev->desc_nr = info->number;
2189                 if (info->raid_disk < mddev->raid_disks)
2190                         rdev->raid_disk = info->raid_disk;
2191                 else
2192                         rdev->raid_disk = -1;
2193
2194                 rdev->faulty = 0;
2195                 if (rdev->raid_disk < mddev->raid_disks)
2196                         rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
2197                 else
2198                         rdev->in_sync = 0;
2199
2200                 err = bind_rdev_to_array(rdev, mddev);
2201                 if (err) {
2202                         export_rdev(rdev);
2203                         return err;
2204                 }
2205
2206                 if (!mddev->persistent) {
2207                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
2208                         rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2209                 } else 
2210                         rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2211                 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2212
2213                 if (!mddev->size || (mddev->size > rdev->size))
2214                         mddev->size = rdev->size;
2215         }
2216
2217         return 0;
2218 }
2219
2220 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2221 {
2222         char b[BDEVNAME_SIZE];
2223         mdk_rdev_t *rdev;
2224
2225         if (!mddev->pers)
2226                 return -ENODEV;
2227
2228         rdev = find_rdev(mddev, dev);
2229         if (!rdev)
2230                 return -ENXIO;
2231
2232         if (rdev->raid_disk >= 0)
2233                 goto busy;
2234
2235         kick_rdev_from_array(rdev);
2236         md_update_sb(mddev);
2237
2238         return 0;
2239 busy:
2240         printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2241                 bdevname(rdev->bdev,b), mdname(mddev));
2242         return -EBUSY;
2243 }
2244
2245 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2246 {
2247         char b[BDEVNAME_SIZE];
2248         int err;
2249         unsigned int size;
2250         mdk_rdev_t *rdev;
2251
2252         if (!mddev->pers)
2253                 return -ENODEV;
2254
2255         if (mddev->major_version != 0) {
2256                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2257                         " version-0 superblocks.\n",
2258                         mdname(mddev));
2259                 return -EINVAL;
2260         }
2261         if (!mddev->pers->hot_add_disk) {
2262                 printk(KERN_WARNING 
2263                         "%s: personality does not support diskops!\n",
2264                         mdname(mddev));
2265                 return -EINVAL;
2266         }
2267
2268         rdev = md_import_device (dev, -1, 0);
2269         if (IS_ERR(rdev)) {
2270                 printk(KERN_WARNING 
2271                         "md: error, md_import_device() returned %ld\n",
2272                         PTR_ERR(rdev));
2273                 return -EINVAL;
2274         }
2275
2276         if (mddev->persistent)
2277                 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2278         else
2279                 rdev->sb_offset =
2280                         rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2281
2282         size = calc_dev_size(rdev, mddev->chunk_size);
2283         rdev->size = size;
2284
2285         if (size < mddev->size) {
2286                 printk(KERN_WARNING 
2287                         "%s: disk size %llu blocks < array size %llu\n",
2288                         mdname(mddev), (unsigned long long)size,
2289                         (unsigned long long)mddev->size);
2290                 err = -ENOSPC;
2291                 goto abort_export;
2292         }
2293
2294         if (rdev->faulty) {
2295                 printk(KERN_WARNING 
2296                         "md: can not hot-add faulty %s disk to %s!\n",
2297                         bdevname(rdev->bdev,b), mdname(mddev));
2298                 err = -EINVAL;
2299                 goto abort_export;
2300         }
2301         rdev->in_sync = 0;
2302         rdev->desc_nr = -1;
2303         bind_rdev_to_array(rdev, mddev);
2304
2305         /*
2306          * The rest should better be atomic, we can have disk failures
2307          * noticed in interrupt contexts ...
2308          */
2309
2310         if (rdev->desc_nr == mddev->max_disks) {
2311                 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2312                         mdname(mddev));
2313                 err = -EBUSY;
2314                 goto abort_unbind_export;
2315         }
2316
2317         rdev->raid_disk = -1;
2318
2319         md_update_sb(mddev);
2320
2321         /*
2322          * Kick recovery, maybe this spare has to be added to the
2323          * array immediately.
2324          */
2325         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2326         md_wakeup_thread(mddev->thread);
2327
2328         return 0;
2329
2330 abort_unbind_export:
2331         unbind_rdev_from_array(rdev);
2332
2333 abort_export:
2334         export_rdev(rdev);
2335         return err;
2336 }
2337
2338 /* similar to deny_write_access, but accounts for our holding a reference
2339  * to the file ourselves */
2340 static int deny_bitmap_write_access(struct file * file)
2341 {
2342         struct inode *inode = file->f_mapping->host;
2343
2344         spin_lock(&inode->i_lock);
2345         if (atomic_read(&inode->i_writecount) > 1) {
2346                 spin_unlock(&inode->i_lock);
2347                 return -ETXTBSY;
2348         }
2349         atomic_set(&inode->i_writecount, -1);
2350         spin_unlock(&inode->i_lock);
2351
2352         return 0;
2353 }
2354
2355 static int set_bitmap_file(mddev_t *mddev, int fd)
2356 {
2357         int err;
2358
2359         if (mddev->pers)
2360                 return -EBUSY;
2361
2362         mddev->bitmap_file = fget(fd);
2363
2364         if (mddev->bitmap_file == NULL) {
2365                 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2366                         mdname(mddev));
2367                 return -EBADF;
2368         }
2369
2370         err = deny_bitmap_write_access(mddev->bitmap_file);
2371         if (err) {
2372                 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2373                         mdname(mddev));
2374                 fput(mddev->bitmap_file);
2375                 mddev->bitmap_file = NULL;
2376         }
2377         return err;
2378 }
2379
2380 /*
2381  * set_array_info is used two different ways
2382  * The original usage is when creating a new array.
2383  * In this usage, raid_disks is > 0 and it together with
2384  *  level, size, not_persistent,layout,chunksize determine the
2385  *  shape of the array.
2386  *  This will always create an array with a type-0.90.0 superblock.
2387  * The newer usage is when assembling an array.
2388  *  In this case raid_disks will be 0, and the major_version field is
2389  *  use to determine which style super-blocks are to be found on the devices.
2390  *  The minor and patch _version numbers are also kept incase the
2391  *  super_block handler wishes to interpret them.
2392  */
2393 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2394 {
2395
2396         if (info->raid_disks == 0) {
2397                 /* just setting version number for superblock loading */
2398                 if (info->major_version < 0 ||
2399                     info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2400                     super_types[info->major_version].name == NULL) {
2401                         /* maybe try to auto-load a module? */
2402                         printk(KERN_INFO 
2403                                 "md: superblock version %d not known\n",
2404                                 info->major_version);
2405                         return -EINVAL;
2406                 }
2407                 mddev->major_version = info->major_version;
2408                 mddev->minor_version = info->minor_version;
2409                 mddev->patch_version = info->patch_version;
2410                 return 0;
2411         }
2412         mddev->major_version = MD_MAJOR_VERSION;
2413         mddev->minor_version = MD_MINOR_VERSION;
2414         mddev->patch_version = MD_PATCHLEVEL_VERSION;
2415         mddev->ctime         = get_seconds();
2416
2417         mddev->level         = info->level;
2418         mddev->size          = info->size;
2419         mddev->raid_disks    = info->raid_disks;
2420         /* don't set md_minor, it is determined by which /dev/md* was
2421          * openned
2422          */
2423         if (info->state & (1<<MD_SB_CLEAN))
2424                 mddev->recovery_cp = MaxSector;
2425         else
2426                 mddev->recovery_cp = 0;
2427         mddev->persistent    = ! info->not_persistent;
2428
2429         mddev->layout        = info->layout;
2430         mddev->chunk_size    = info->chunk_size;
2431
2432         mddev->max_disks     = MD_SB_DISKS;
2433
2434         mddev->sb_dirty      = 1;
2435
2436         /*
2437          * Generate a 128 bit UUID
2438          */
2439         get_random_bytes(mddev->uuid, 16);
2440
2441         return 0;
2442 }
2443
2444 /*
2445  * update_array_info is used to change the configuration of an
2446  * on-line array.
2447  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2448  * fields in the info are checked against the array.
2449  * Any differences that cannot be handled will cause an error.
2450  * Normally, only one change can be managed at a time.
2451  */
2452 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2453 {
2454         int rv = 0;
2455         int cnt = 0;
2456
2457         if (mddev->major_version != info->major_version ||
2458             mddev->minor_version != info->minor_version ||
2459 /*          mddev->patch_version != info->patch_version || */
2460             mddev->ctime         != info->ctime         ||
2461             mddev->level         != info->level         ||
2462 /*          mddev->layout        != info->layout        || */
2463             !mddev->persistent   != info->not_persistent||
2464             mddev->chunk_size    != info->chunk_size    )
2465                 return -EINVAL;
2466         /* Check there is only one change */
2467         if (mddev->size != info->size) cnt++;
2468         if (mddev->raid_disks != info->raid_disks) cnt++;
2469         if (mddev->layout != info->layout) cnt++;
2470         if (cnt == 0) return 0;
2471         if (cnt > 1) return -EINVAL;
2472
2473         if (mddev->layout != info->layout) {
2474                 /* Change layout
2475                  * we don't need to do anything at the md level, the
2476                  * personality will take care of it all.
2477                  */
2478                 if (mddev->pers->reconfig == NULL)
2479                         return -EINVAL;
2480                 else
2481                         return mddev->pers->reconfig(mddev, info->layout, -1);
2482         }
2483         if (mddev->size != info->size) {
2484                 mdk_rdev_t * rdev;
2485                 struct list_head *tmp;
2486                 if (mddev->pers->resize == NULL)
2487                         return -EINVAL;
2488                 /* The "size" is the amount of each device that is used.
2489                  * This can only make sense for arrays with redundancy.
2490                  * linear and raid0 always use whatever space is available
2491                  * We can only consider changing the size if no resync
2492                  * or reconstruction is happening, and if the new size
2493                  * is acceptable. It must fit before the sb_offset or,
2494                  * if that is <data_offset, it must fit before the
2495                  * size of each device.
2496                  * If size is zero, we find the largest size that fits.
2497                  */
2498                 if (mddev->sync_thread)
2499                         return -EBUSY;
2500                 ITERATE_RDEV(mddev,rdev,tmp) {
2501                         sector_t avail;
2502                         int fit = (info->size == 0);
2503                         if (rdev->sb_offset > rdev->data_offset)
2504                                 avail = (rdev->sb_offset*2) - rdev->data_offset;
2505                         else
2506                                 avail = get_capacity(rdev->bdev->bd_disk)
2507                                         - rdev->data_offset;
2508                         if (fit && (info->size == 0 || info->size > avail/2))
2509                                 info->size = avail/2;
2510                         if (avail < ((sector_t)info->size << 1))
2511                                 return -ENOSPC;
2512                 }
2513                 rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
2514                 if (!rv) {
2515                         struct block_device *bdev;
2516
2517                         bdev = bdget_disk(mddev->gendisk, 0);
2518                         if (bdev) {
2519                                 down(&bdev->bd_inode->i_sem);
2520                                 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2521                                 up(&bdev->bd_inode->i_sem);
2522                                 bdput(bdev);
2523                         }
2524                 }
2525         }
2526         if (mddev->raid_disks    != info->raid_disks) {
2527                 /* change the number of raid disks */
2528                 if (mddev->pers->reshape == NULL)
2529                         return -EINVAL;
2530                 if (info->raid_disks <= 0 ||
2531                     info->raid_disks >= mddev->max_disks)
2532                         return -EINVAL;
2533                 if (mddev->sync_thread)
2534                         return -EBUSY;
2535                 rv = mddev->pers->reshape(mddev, info->raid_disks);
2536                 if (!rv) {
2537                         struct block_device *bdev;
2538
2539                         bdev = bdget_disk(mddev->gendisk, 0);
2540                         if (bdev) {
2541                                 down(&bdev->bd_inode->i_sem);
2542                                 i_size_write(bdev->bd_inode, mddev->array_size << 10);
2543                                 up(&bdev->bd_inode->i_sem);
2544                                 bdput(bdev);
2545                         }
2546                 }
2547         }
2548         md_update_sb(mddev);
2549         return rv;
2550 }
2551
2552 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
2553 {
2554         mdk_rdev_t *rdev;
2555
2556         if (mddev->pers == NULL)
2557                 return -ENODEV;
2558
2559         rdev = find_rdev(mddev, dev);
2560         if (!rdev)
2561                 return -ENODEV;
2562
2563         md_error(mddev, rdev);
2564         return 0;
2565 }
2566
2567 static int md_ioctl(struct inode *inode, struct file *file,
2568                         unsigned int cmd, unsigned long arg)
2569 {
2570         int err = 0;
2571         void __user *argp = (void __user *)arg;
2572         struct hd_geometry __user *loc = argp;
2573         mddev_t *mddev = NULL;
2574
2575         if (!capable(CAP_SYS_ADMIN))
2576                 return -EACCES;
2577
2578         /*
2579          * Commands dealing with the RAID driver but not any
2580          * particular array:
2581          */
2582         switch (cmd)
2583         {
2584                 case RAID_VERSION:
2585                         err = get_version(argp);
2586                         goto done;
2587
2588                 case PRINT_RAID_DEBUG:
2589                         err = 0;
2590                         md_print_devices();
2591                         goto done;
2592
2593 #ifndef MODULE
2594                 case RAID_AUTORUN:
2595                         err = 0;
2596                         autostart_arrays(arg);
2597                         goto done;
2598 #endif
2599                 default:;
2600         }
2601
2602         /*
2603          * Commands creating/starting a new array:
2604          */
2605
2606         mddev = inode->i_bdev->bd_disk->private_data;
2607
2608         if (!mddev) {
2609                 BUG();
2610                 goto abort;
2611         }
2612
2613
2614         if (cmd == START_ARRAY) {
2615                 /* START_ARRAY doesn't need to lock the array as autostart_array
2616                  * does the locking, and it could even be a different array
2617                  */
2618                 static int cnt = 3;
2619                 if (cnt > 0 ) {
2620                         printk(KERN_WARNING
2621                                "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
2622                                "This will not be supported beyond 2.6\n",
2623                                current->comm, current->pid);
2624                         cnt--;
2625                 }
2626                 err = autostart_array(new_decode_dev(arg));
2627                 if (err) {
2628                         printk(KERN_WARNING "md: autostart failed!\n");
2629                         goto abort;
2630                 }
2631                 goto done;
2632         }
2633
2634         err = mddev_lock(mddev);
2635         if (err) {
2636                 printk(KERN_INFO 
2637                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
2638                         err, cmd);
2639                 goto abort;
2640         }
2641
2642         switch (cmd)
2643         {
2644                 case SET_ARRAY_INFO:
2645                         {
2646                                 mdu_array_info_t info;
2647                                 if (!arg)
2648                                         memset(&info, 0, sizeof(info));
2649                                 else if (copy_from_user(&info, argp, sizeof(info))) {
2650                                         err = -EFAULT;
2651                                         goto abort_unlock;
2652                                 }
2653                                 if (mddev->pers) {
2654                                         err = update_array_info(mddev, &info);
2655                                         if (err) {
2656                                                 printk(KERN_WARNING "md: couldn't update"
2657                                                        " array info. %d\n", err);
2658                                                 goto abort_unlock;
2659                                         }
2660                                         goto done_unlock;
2661                                 }
2662                                 if (!list_empty(&mddev->disks)) {
2663                                         printk(KERN_WARNING
2664                                                "md: array %s already has disks!\n",
2665                                                mdname(mddev));
2666                                         err = -EBUSY;
2667                                         goto abort_unlock;
2668                                 }
2669                                 if (mddev->raid_disks) {
2670                                         printk(KERN_WARNING
2671                                                "md: array %s already initialised!\n",
2672                                                mdname(mddev));
2673                                         err = -EBUSY;
2674                                         goto abort_unlock;
2675                                 }
2676                                 err = set_array_info(mddev, &info);
2677                                 if (err) {
2678                                         printk(KERN_WARNING "md: couldn't set"
2679                                                " array info. %d\n", err);
2680                                         goto abort_unlock;
2681                                 }
2682                         }
2683                         goto done_unlock;
2684
2685                 default:;
2686         }
2687
2688         /*
2689          * Commands querying/configuring an existing array:
2690          */
2691         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
2692          * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
2693         if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
2694                         && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
2695                 err = -ENODEV;
2696                 goto abort_unlock;
2697         }
2698
2699         /*
2700          * Commands even a read-only array can execute:
2701          */
2702         switch (cmd)
2703         {
2704                 case GET_ARRAY_INFO:
2705                         err = get_array_info(mddev, argp);
2706                         goto done_unlock;
2707
2708                 case GET_BITMAP_FILE:
2709                         err = get_bitmap_file(mddev, (void *)arg);
2710                         goto done_unlock;
2711
2712                 case GET_DISK_INFO:
2713                         err = get_disk_info(mddev, argp);
2714                         goto done_unlock;
2715
2716                 case RESTART_ARRAY_RW:
2717                         err = restart_array(mddev);
2718                         goto done_unlock;
2719
2720                 case STOP_ARRAY:
2721                         err = do_md_stop (mddev, 0);
2722                         goto done_unlock;
2723
2724                 case STOP_ARRAY_RO:
2725                         err = do_md_stop (mddev, 1);
2726                         goto done_unlock;
2727
2728         /*
2729          * We have a problem here : there is no easy way to give a CHS
2730          * virtual geometry. We currently pretend that we have a 2 heads
2731          * 4 sectors (with a BIG number of cylinders...). This drives
2732          * dosfs just mad... ;-)
2733          */
2734                 case HDIO_GETGEO:
2735                         if (!loc) {
2736                                 err = -EINVAL;
2737                                 goto abort_unlock;
2738                         }
2739                         err = put_user (2, (char __user *) &loc->heads);
2740                         if (err)
2741                                 goto abort_unlock;
2742                         err = put_user (4, (char __user *) &loc->sectors);
2743                         if (err)
2744                                 goto abort_unlock;
2745                         err = put_user(get_capacity(mddev->gendisk)/8,
2746                                         (short __user *) &loc->cylinders);
2747                         if (err)
2748                                 goto abort_unlock;
2749                         err = put_user (get_start_sect(inode->i_bdev),
2750                                                 (long __user *) &loc->start);
2751                         goto done_unlock;
2752         }
2753
2754         /*
2755          * The remaining ioctls are changing the state of the
2756          * superblock, so we do not allow read-only arrays
2757          * here:
2758          */
2759         if (mddev->ro) {
2760                 err = -EROFS;
2761                 goto abort_unlock;
2762         }
2763
2764         switch (cmd)
2765         {
2766                 case ADD_NEW_DISK:
2767                 {
2768                         mdu_disk_info_t info;
2769                         if (copy_from_user(&info, argp, sizeof(info)))
2770                                 err = -EFAULT;
2771                         else
2772                                 err = add_new_disk(mddev, &info);
2773                         goto done_unlock;
2774                 }
2775
2776                 case HOT_REMOVE_DISK:
2777                         err = hot_remove_disk(mddev, new_decode_dev(arg));
2778                         goto done_unlock;
2779
2780                 case HOT_ADD_DISK:
2781                         err = hot_add_disk(mddev, new_decode_dev(arg));
2782                         goto done_unlock;
2783
2784                 case SET_DISK_FAULTY:
2785                         err = set_disk_faulty(mddev, new_decode_dev(arg));
2786                         goto done_unlock;
2787
2788                 case RUN_ARRAY:
2789                         err = do_md_run (mddev);
2790                         goto done_unlock;
2791
2792                 case SET_BITMAP_FILE:
2793                         err = set_bitmap_file(mddev, (int)arg);
2794                         goto done_unlock;
2795
2796                 default:
2797                         if (_IOC_TYPE(cmd) == MD_MAJOR)
2798                                 printk(KERN_WARNING "md: %s(pid %d) used"
2799                                         " obsolete MD ioctl, upgrade your"
2800                                         " software to use new ictls.\n",
2801                                         current->comm, current->pid);
2802                         err = -EINVAL;
2803                         goto abort_unlock;
2804         }
2805
2806 done_unlock:
2807 abort_unlock:
2808         mddev_unlock(mddev);
2809
2810         return err;
2811 done:
2812         if (err)
2813                 MD_BUG();
2814 abort:
2815         return err;
2816 }
2817
2818 static int md_open(struct inode *inode, struct file *file)
2819 {
2820         /*
2821          * Succeed if we can lock the mddev, which confirms that
2822          * it isn't being stopped right now.
2823          */
2824         mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2825         int err;
2826
2827         if ((err = mddev_lock(mddev)))
2828                 goto out;
2829
2830         err = 0;
2831         mddev_get(mddev);
2832         mddev_unlock(mddev);
2833
2834         check_disk_change(inode->i_bdev);
2835  out:
2836         return err;
2837 }
2838
2839 static int md_release(struct inode *inode, struct file * file)
2840 {
2841         mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
2842
2843         if (!mddev)
2844                 BUG();
2845         mddev_put(mddev);
2846
2847         return 0;
2848 }
2849
2850 static int md_media_changed(struct gendisk *disk)
2851 {
2852         mddev_t *mddev = disk->private_data;
2853
2854         return mddev->changed;
2855 }
2856
2857 static int md_revalidate(struct gendisk *disk)
2858 {
2859         mddev_t *mddev = disk->private_data;
2860
2861         mddev->changed = 0;
2862         return 0;
2863 }
2864 static struct block_device_operations md_fops =
2865 {
2866         .owner          = THIS_MODULE,
2867         .open           = md_open,
2868         .release        = md_release,
2869         .ioctl          = md_ioctl,
2870         .media_changed  = md_media_changed,
2871         .revalidate_disk= md_revalidate,
2872 };
2873
2874 static int md_thread(void * arg)
2875 {
2876         mdk_thread_t *thread = arg;
2877
2878         lock_kernel();
2879
2880         /*
2881          * Detach thread
2882          */
2883
2884         daemonize(thread->name, mdname(thread->mddev));
2885
2886         current->exit_signal = SIGCHLD;
2887         allow_signal(SIGKILL);
2888         thread->tsk = current;
2889
2890         /*
2891          * md_thread is a 'system-thread', it's priority should be very
2892          * high. We avoid resource deadlocks individually in each
2893          * raid personality. (RAID5 does preallocation) We also use RR and
2894          * the very same RT priority as kswapd, thus we will never get
2895          * into a priority inversion deadlock.
2896          *
2897          * we definitely have to have equal or higher priority than
2898          * bdflush, otherwise bdflush will deadlock if there are too
2899          * many dirty RAID5 blocks.
2900          */
2901         unlock_kernel();
2902
2903         complete(thread->event);
2904         while (thread->run) {
2905                 void (*run)(mddev_t *);
2906
2907                 wait_event_interruptible_timeout(thread->wqueue,
2908                                                  test_bit(THREAD_WAKEUP, &thread->flags),
2909                                                  thread->timeout);
2910                 if (current->flags & PF_FREEZE)
2911                         refrigerator(PF_FREEZE);
2912
2913                 clear_bit(THREAD_WAKEUP, &thread->flags);
2914
2915                 run = thread->run;
2916                 if (run)
2917                         run(thread->mddev);
2918
2919                 if (signal_pending(current))
2920                         flush_signals(current);
2921         }
2922         complete(thread->event);
2923         return 0;
2924 }
2925
2926 void md_wakeup_thread(mdk_thread_t *thread)
2927 {
2928         if (thread) {
2929                 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
2930                 set_bit(THREAD_WAKEUP, &thread->flags);
2931                 wake_up(&thread->wqueue);
2932         }
2933 }
2934
2935 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
2936                                  const char *name)
2937 {
2938         mdk_thread_t *thread;
2939         int ret;
2940         struct completion event;
2941
2942         thread = (mdk_thread_t *) kmalloc
2943                                 (sizeof(mdk_thread_t), GFP_KERNEL);
2944         if (!thread)
2945                 return NULL;
2946
2947         memset(thread, 0, sizeof(mdk_thread_t));
2948         init_waitqueue_head(&thread->wqueue);
2949
2950         init_completion(&event);
2951         thread->event = &event;
2952         thread->run = run;
2953         thread->mddev = mddev;
2954         thread->name = name;
2955         thread->timeout = MAX_SCHEDULE_TIMEOUT;
2956         ret = kernel_thread(md_thread, thread, 0);
2957         if (ret < 0) {
2958                 kfree(thread);
2959                 return NULL;
2960         }
2961         wait_for_completion(&event);
2962         return thread;
2963 }
2964
2965 void md_unregister_thread(mdk_thread_t *thread)
2966 {
2967         struct completion event;
2968
2969         init_completion(&event);
2970
2971         thread->event = &event;
2972
2973         /* As soon as ->run is set to NULL, the task could disappear,
2974          * so we need to hold tasklist_lock until we have sent the signal
2975          */
2976         dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
2977         read_lock(&tasklist_lock);
2978         thread->run = NULL;
2979         send_sig(SIGKILL, thread->tsk, 1);
2980         read_unlock(&tasklist_lock);
2981         wait_for_completion(&event);
2982         kfree(thread);
2983 }
2984
2985 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
2986 {
2987         if (!mddev) {
2988                 MD_BUG();
2989                 return;
2990         }
2991
2992         if (!rdev || rdev->faulty)
2993                 return;
2994 /*
2995         dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
2996                 mdname(mddev),
2997                 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
2998                 __builtin_return_address(0),__builtin_return_address(1),
2999                 __builtin_return_address(2),__builtin_return_address(3));
3000 */
3001         if (!mddev->pers->error_handler)
3002                 return;
3003         mddev->pers->error_handler(mddev,rdev);
3004         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3005         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3006         md_wakeup_thread(mddev->thread);
3007 }
3008
3009 /* seq_file implementation /proc/mdstat */
3010
3011 static void status_unused(struct seq_file *seq)
3012 {
3013         int i = 0;
3014         mdk_rdev_t *rdev;
3015         struct list_head *tmp;
3016
3017         seq_printf(seq, "unused devices: ");
3018
3019         ITERATE_RDEV_PENDING(rdev,tmp) {
3020                 char b[BDEVNAME_SIZE];
3021                 i++;
3022                 seq_printf(seq, "%s ",
3023                               bdevname(rdev->bdev,b));
3024         }
3025         if (!i)
3026                 seq_printf(seq, "<none>");
3027
3028         seq_printf(seq, "\n");
3029 }
3030
3031
3032 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3033 {
3034         unsigned long max_blocks, resync, res, dt, db, rt;
3035
3036         resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3037
3038         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3039                 max_blocks = mddev->resync_max_sectors >> 1;
3040         else
3041                 max_blocks = mddev->size;
3042
3043         /*
3044          * Should not happen.
3045          */
3046         if (!max_blocks) {
3047                 MD_BUG();
3048                 return;
3049         }
3050         res = (resync/1024)*1000/(max_blocks/1024 + 1);
3051         {
3052                 int i, x = res/50, y = 20-x;
3053                 seq_printf(seq, "[");
3054                 for (i = 0; i < x; i++)
3055                         seq_printf(seq, "=");
3056                 seq_printf(seq, ">");
3057                 for (i = 0; i < y; i++)
3058                         seq_printf(seq, ".");
3059                 seq_printf(seq, "] ");
3060         }
3061         seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3062                       (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3063                        "resync" : "recovery"),
3064                       res/10, res % 10, resync, max_blocks);
3065
3066         /*
3067          * We do not want to overflow, so the order of operands and
3068          * the * 100 / 100 trick are important. We do a +1 to be
3069          * safe against division by zero. We only estimate anyway.
3070          *
3071          * dt: time from mark until now
3072          * db: blocks written from mark until now
3073          * rt: remaining time
3074          */
3075         dt = ((jiffies - mddev->resync_mark) / HZ);
3076         if (!dt) dt++;
3077         db = resync - (mddev->resync_mark_cnt/2);
3078         rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3079
3080         seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3081
3082         seq_printf(seq, " speed=%ldK/sec", db/dt);
3083 }
3084
3085 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3086 {
3087         struct list_head *tmp;
3088         loff_t l = *pos;
3089         mddev_t *mddev;
3090
3091         if (l >= 0x10000)
3092                 return NULL;
3093         if (!l--)
3094                 /* header */
3095                 return (void*)1;
3096
3097         spin_lock(&all_mddevs_lock);
3098         list_for_each(tmp,&all_mddevs)
3099                 if (!l--) {
3100                         mddev = list_entry(tmp, mddev_t, all_mddevs);
3101                         mddev_get(mddev);
3102                         spin_unlock(&all_mddevs_lock);
3103                         return mddev;
3104                 }
3105         spin_unlock(&all_mddevs_lock);
3106         if (!l--)
3107                 return (void*)2;/* tail */
3108         return NULL;
3109 }
3110
3111 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3112 {
3113         struct list_head *tmp;
3114         mddev_t *next_mddev, *mddev = v;
3115         
3116         ++*pos;
3117         if (v == (void*)2)
3118                 return NULL;
3119
3120         spin_lock(&all_mddevs_lock);
3121         if (v == (void*)1)
3122                 tmp = all_mddevs.next;
3123         else
3124                 tmp = mddev->all_mddevs.next;
3125         if (tmp != &all_mddevs)
3126                 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3127         else {
3128                 next_mddev = (void*)2;
3129                 *pos = 0x10000;
3130         }               
3131         spin_unlock(&all_mddevs_lock);
3132
3133         if (v != (void*)1)
3134                 mddev_put(mddev);
3135         return next_mddev;
3136
3137 }
3138
3139 static void md_seq_stop(struct seq_file *seq, void *v)
3140 {
3141         mddev_t *mddev = v;
3142
3143         if (mddev && v != (void*)1 && v != (void*)2)
3144                 mddev_put(mddev);
3145 }
3146
3147 static int md_seq_show(struct seq_file *seq, void *v)
3148 {
3149         mddev_t *mddev = v;
3150         sector_t size;
3151         struct list_head *tmp2;
3152         mdk_rdev_t *rdev;
3153         int i;
3154         struct bitmap *bitmap;
3155
3156         if (v == (void*)1) {
3157                 seq_printf(seq, "Personalities : ");
3158                 spin_lock(&pers_lock);
3159                 for (i = 0; i < MAX_PERSONALITY; i++)
3160                         if (pers[i])
3161                                 seq_printf(seq, "[%s] ", pers[i]->name);
3162
3163                 spin_unlock(&pers_lock);
3164                 seq_printf(seq, "\n");
3165                 return 0;
3166         }
3167         if (v == (void*)2) {
3168                 status_unused(seq);
3169                 return 0;
3170         }
3171
3172         if (mddev_lock(mddev)!=0) 
3173                 return -EINTR;
3174         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3175                 seq_printf(seq, "%s : %sactive", mdname(mddev),
3176                                                 mddev->pers ? "" : "in");
3177                 if (mddev->pers) {
3178                         if (mddev->ro)
3179                                 seq_printf(seq, " (read-only)");
3180                         seq_printf(seq, " %s", mddev->pers->name);
3181                 }
3182
3183                 size = 0;
3184                 ITERATE_RDEV(mddev,rdev,tmp2) {
3185                         char b[BDEVNAME_SIZE];
3186                         seq_printf(seq, " %s[%d]",
3187                                 bdevname(rdev->bdev,b), rdev->desc_nr);
3188                         if (rdev->faulty) {
3189                                 seq_printf(seq, "(F)");
3190                                 continue;
3191                         }
3192                         size += rdev->size;
3193                 }
3194
3195                 if (!list_empty(&mddev->disks)) {
3196                         if (mddev->pers)
3197                                 seq_printf(seq, "\n      %llu blocks",
3198                                         (unsigned long long)mddev->array_size);
3199                         else
3200                                 seq_printf(seq, "\n      %llu blocks",
3201                                         (unsigned long long)size);
3202                 }
3203
3204                 if (mddev->pers) {
3205                         mddev->pers->status (seq, mddev);
3206                         seq_printf(seq, "\n      ");
3207                         if (mddev->curr_resync > 2) {
3208                                 status_resync (seq, mddev);
3209                                 seq_printf(seq, "\n      ");
3210                         } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3211                                 seq_printf(seq, "       resync=DELAYED\n      ");
3212                 } else
3213                         seq_printf(seq, "\n       ");
3214
3215                 if ((bitmap = mddev->bitmap)) {
3216                         unsigned long chunk_kb;
3217                         unsigned long flags;
3218                         spin_lock_irqsave(&bitmap->lock, flags);
3219                         chunk_kb = bitmap->chunksize >> 10;
3220                         seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3221                                 "%lu%s chunk",
3222                                 bitmap->pages - bitmap->missing_pages,
3223                                 bitmap->pages,
3224                                 (bitmap->pages - bitmap->missing_pages)
3225                                         << (PAGE_SHIFT - 10),
3226                                 chunk_kb ? chunk_kb : bitmap->chunksize,
3227                                 chunk_kb ? "KB" : "B");
3228                         if (bitmap->file) {
3229                                 seq_printf(seq, ", file: ");
3230                                 seq_path(seq, bitmap->file->f_vfsmnt,
3231                                          bitmap->file->f_dentry," \t\n");
3232                         }
3233
3234                         seq_printf(seq, "\n");
3235                         spin_unlock_irqrestore(&bitmap->lock, flags);
3236                 }
3237
3238                 seq_printf(seq, "\n");
3239         }
3240         mddev_unlock(mddev);
3241         
3242         return 0;
3243 }
3244
3245 static struct seq_operations md_seq_ops = {
3246         .start  = md_seq_start,
3247         .next   = md_seq_next,
3248         .stop   = md_seq_stop,
3249         .show   = md_seq_show,
3250 };
3251
3252 static int md_seq_open(struct inode *inode, struct file *file)
3253 {
3254         int error;
3255
3256         error = seq_open(file, &md_seq_ops);
3257         return error;
3258 }
3259
3260 static struct file_operations md_seq_fops = {
3261         .open           = md_seq_open,
3262         .read           = seq_read,
3263         .llseek         = seq_lseek,
3264         .release        = seq_release,
3265 };
3266
3267 int register_md_personality(int pnum, mdk_personality_t *p)
3268 {
3269         if (pnum >= MAX_PERSONALITY) {
3270                 printk(KERN_ERR
3271                        "md: tried to install personality %s as nr %d, but max is %lu\n",
3272                        p->name, pnum, MAX_PERSONALITY-1);
3273                 return -EINVAL;
3274         }
3275
3276         spin_lock(&pers_lock);
3277         if (pers[pnum]) {
3278                 spin_unlock(&pers_lock);
3279                 return -EBUSY;
3280         }
3281
3282         pers[pnum] = p;
3283         printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3284         spin_unlock(&pers_lock);
3285         return 0;
3286 }
3287
3288 int unregister_md_personality(int pnum)
3289 {
3290         if (pnum >= MAX_PERSONALITY)
3291                 return -EINVAL;
3292
3293         printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3294         spin_lock(&pers_lock);
3295         pers[pnum] = NULL;
3296         spin_unlock(&pers_lock);
3297         return 0;
3298 }
3299
3300 static int is_mddev_idle(mddev_t *mddev)
3301 {
3302         mdk_rdev_t * rdev;
3303         struct list_head *tmp;
3304         int idle;
3305         unsigned long curr_events;
3306
3307         idle = 1;
3308         ITERATE_RDEV(mddev,rdev,tmp) {
3309                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3310                 curr_events = disk_stat_read(disk, read_sectors) + 
3311                                 disk_stat_read(disk, write_sectors) - 
3312                                 atomic_read(&disk->sync_io);
3313                 /* Allow some slack between valud of curr_events and last_events,
3314                  * as there are some uninteresting races.
3315                  * Note: the following is an unsigned comparison.
3316                  */
3317                 if ((curr_events - rdev->last_events + 32) > 64) {
3318                         rdev->last_events = curr_events;
3319                         idle = 0;
3320                 }
3321         }
3322         return idle;
3323 }
3324
3325 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3326 {
3327         /* another "blocks" (512byte) blocks have been synced */
3328         atomic_sub(blocks, &mddev->recovery_active);
3329         wake_up(&mddev->recovery_wait);
3330         if (!ok) {
3331                 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3332                 md_wakeup_thread(mddev->thread);
3333                 // stop recovery, signal do_sync ....
3334         }
3335 }
3336
3337
3338 /* md_write_start(mddev, bi)
3339  * If we need to update some array metadata (e.g. 'active' flag
3340  * in superblock) before writing, queue bi for later writing
3341  * and return 0, else return 1 and it will be written now
3342  */
3343 int md_write_start(mddev_t *mddev, struct bio *bi)
3344 {
3345         if (bio_data_dir(bi) != WRITE)
3346                 return 1;
3347
3348         atomic_inc(&mddev->writes_pending);
3349         spin_lock(&mddev->write_lock);
3350         if (mddev->in_sync == 0 && mddev->sb_dirty == 0) {
3351                 spin_unlock(&mddev->write_lock);
3352                 return 1;
3353         }
3354         bio_list_add(&mddev->write_list, bi);
3355
3356         if (mddev->in_sync) {
3357                 mddev->in_sync = 0;
3358                 mddev->sb_dirty = 1;
3359         }
3360         spin_unlock(&mddev->write_lock);
3361         md_wakeup_thread(mddev->thread);
3362         return 0;
3363 }
3364
3365 void md_write_end(mddev_t *mddev)
3366 {
3367         if (atomic_dec_and_test(&mddev->writes_pending)) {
3368                 if (mddev->safemode == 2)
3369                         md_wakeup_thread(mddev->thread);
3370                 else
3371                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3372         }
3373 }
3374
3375 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3376
3377 #define SYNC_MARKS      10
3378 #define SYNC_MARK_STEP  (3*HZ)
3379 static void md_do_sync(mddev_t *mddev)
3380 {
3381         mddev_t *mddev2;
3382         unsigned int currspeed = 0,
3383                  window;
3384         sector_t max_sectors,j, io_sectors;
3385         unsigned long mark[SYNC_MARKS];
3386         sector_t mark_cnt[SYNC_MARKS];
3387         int last_mark,m;
3388         struct list_head *tmp;
3389         sector_t last_check;
3390         int skipped = 0;
3391
3392         /* just incase thread restarts... */
3393         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3394                 return;
3395
3396         /* we overload curr_resync somewhat here.
3397          * 0 == not engaged in resync at all
3398          * 2 == checking that there is no conflict with another sync
3399          * 1 == like 2, but have yielded to allow conflicting resync to
3400          *              commense
3401          * other == active in resync - this many blocks
3402          *
3403          * Before starting a resync we must have set curr_resync to
3404          * 2, and then checked that every "conflicting" array has curr_resync
3405          * less than ours.  When we find one that is the same or higher
3406          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
3407          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3408          * This will mean we have to start checking from the beginning again.
3409          *
3410          */
3411
3412         do {
3413                 mddev->curr_resync = 2;
3414
3415         try_again:
3416                 if (signal_pending(current)) {
3417                         flush_signals(current);
3418                         goto skip;
3419                 }
3420                 ITERATE_MDDEV(mddev2,tmp) {
3421                         printk(".");
3422                         if (mddev2 == mddev)
3423                                 continue;
3424                         if (mddev2->curr_resync && 
3425                             match_mddev_units(mddev,mddev2)) {
3426                                 DEFINE_WAIT(wq);
3427                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
3428                                         /* arbitrarily yield */
3429                                         mddev->curr_resync = 1;
3430                                         wake_up(&resync_wait);
3431                                 }
3432                                 if (mddev > mddev2 && mddev->curr_resync == 1)
3433                                         /* no need to wait here, we can wait the next
3434                                          * time 'round when curr_resync == 2
3435                                          */
3436                                         continue;
3437                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
3438                                 if (!signal_pending(current)
3439                                     && mddev2->curr_resync >= mddev->curr_resync) {
3440                                         printk(KERN_INFO "md: delaying resync of %s"
3441                                                " until %s has finished resync (they"
3442                                                " share one or more physical units)\n",
3443                                                mdname(mddev), mdname(mddev2));
3444                                         mddev_put(mddev2);
3445                                         schedule();
3446                                         finish_wait(&resync_wait, &wq);
3447                                         goto try_again;
3448                                 }
3449                                 finish_wait(&resync_wait, &wq);
3450                         }
3451                 }
3452         } while (mddev->curr_resync < 2);
3453
3454         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3455                 /* resync follows the size requested by the personality,
3456                  * which defaults to physical size, but can be virtual size
3457                  */
3458                 max_sectors = mddev->resync_max_sectors;
3459         else
3460                 /* recovery follows the physical size of devices */
3461                 max_sectors = mddev->size << 1;
3462
3463         printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3464         printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3465                 " %d KB/sec/disc.\n", sysctl_speed_limit_min);
3466         printk(KERN_INFO "md: using maximum available idle IO bandwith "
3467                "(but not more than %d KB/sec) for reconstruction.\n",
3468                sysctl_speed_limit_max);
3469
3470         is_mddev_idle(mddev); /* this also initializes IO event counters */
3471         /* we don't use the checkpoint if there's a bitmap */
3472         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap)
3473                 j = mddev->recovery_cp;
3474         else
3475                 j = 0;
3476         io_sectors = 0;
3477         for (m = 0; m < SYNC_MARKS; m++) {
3478                 mark[m] = jiffies;
3479                 mark_cnt[m] = io_sectors;
3480         }
3481         last_mark = 0;
3482         mddev->resync_mark = mark[last_mark];
3483         mddev->resync_mark_cnt = mark_cnt[last_mark];
3484
3485         /*
3486          * Tune reconstruction:
3487          */
3488         window = 32*(PAGE_SIZE/512);
3489         printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
3490                 window/2,(unsigned long long) max_sectors/2);
3491
3492         atomic_set(&mddev->recovery_active, 0);
3493         init_waitqueue_head(&mddev->recovery_wait);
3494         last_check = 0;
3495
3496         if (j>2) {
3497                 printk(KERN_INFO 
3498                         "md: resuming recovery of %s from checkpoint.\n",
3499                         mdname(mddev));
3500                 mddev->curr_resync = j;
3501         }
3502
3503         while (j < max_sectors) {
3504                 sector_t sectors;
3505
3506                 skipped = 0;
3507                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
3508                                             currspeed < sysctl_speed_limit_min);
3509                 if (sectors == 0) {
3510                         set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3511                         goto out;
3512                 }
3513
3514                 if (!skipped) { /* actual IO requested */
3515                         io_sectors += sectors;
3516                         atomic_add(sectors, &mddev->recovery_active);
3517                 }
3518
3519                 j += sectors;
3520                 if (j>1) mddev->curr_resync = j;
3521
3522
3523                 if (last_check + window > io_sectors || j == max_sectors)
3524                         continue;
3525
3526                 last_check = io_sectors;
3527
3528                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
3529                     test_bit(MD_RECOVERY_ERR, &mddev->recovery))
3530                         break;
3531
3532         repeat:
3533                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
3534                         /* step marks */
3535                         int next = (last_mark+1) % SYNC_MARKS;
3536
3537                         mddev->resync_mark = mark[next];
3538                         mddev->resync_mark_cnt = mark_cnt[next];
3539                         mark[next] = jiffies;
3540                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
3541                         last_mark = next;
3542                 }
3543
3544
3545                 if (signal_pending(current)) {
3546                         /*
3547                          * got a signal, exit.
3548                          */
3549                         printk(KERN_INFO 
3550                                 "md: md_do_sync() got signal ... exiting\n");
3551                         flush_signals(current);
3552                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3553                         goto out;
3554                 }
3555
3556                 /*
3557                  * this loop exits only if either when we are slower than
3558                  * the 'hard' speed limit, or the system was IO-idle for
3559                  * a jiffy.
3560                  * the system might be non-idle CPU-wise, but we only care
3561                  * about not overloading the IO subsystem. (things like an
3562                  * e2fsck being done on the RAID array should execute fast)
3563                  */
3564                 mddev->queue->unplug_fn(mddev->queue);
3565                 cond_resched();
3566
3567                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
3568                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
3569
3570                 if (currspeed > sysctl_speed_limit_min) {
3571                         if ((currspeed > sysctl_speed_limit_max) ||
3572                                         !is_mddev_idle(mddev)) {
3573                                 msleep_interruptible(250);
3574                                 goto repeat;
3575                         }
3576                 }
3577         }
3578         printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
3579         /*
3580          * this also signals 'finished resyncing' to md_stop
3581          */
3582  out:
3583         mddev->queue->unplug_fn(mddev->queue);
3584
3585         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
3586
3587         /* tell personality that we are finished */
3588         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
3589
3590         if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3591             mddev->curr_resync > 2 &&
3592             mddev->curr_resync >= mddev->recovery_cp) {
3593                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3594                         printk(KERN_INFO 
3595                                 "md: checkpointing recovery of %s.\n",
3596                                 mdname(mddev));
3597                         mddev->recovery_cp = mddev->curr_resync;
3598                 } else
3599                         mddev->recovery_cp = MaxSector;
3600         }
3601
3602  skip:
3603         mddev->curr_resync = 0;
3604         wake_up(&resync_wait);
3605         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
3606         md_wakeup_thread(mddev->thread);
3607 }
3608
3609
3610 /*
3611  * This routine is regularly called by all per-raid-array threads to
3612  * deal with generic issues like resync and super-block update.
3613  * Raid personalities that don't have a thread (linear/raid0) do not
3614  * need this as they never do any recovery or update the superblock.
3615  *
3616  * It does not do any resync itself, but rather "forks" off other threads
3617  * to do that as needed.
3618  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
3619  * "->recovery" and create a thread at ->sync_thread.
3620  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
3621  * and wakeups up this thread which will reap the thread and finish up.
3622  * This thread also removes any faulty devices (with nr_pending == 0).
3623  *
3624  * The overall approach is:
3625  *  1/ if the superblock needs updating, update it.
3626  *  2/ If a recovery thread is running, don't do anything else.
3627  *  3/ If recovery has finished, clean up, possibly marking spares active.
3628  *  4/ If there are any faulty devices, remove them.
3629  *  5/ If array is degraded, try to add spares devices
3630  *  6/ If array has spares or is not in-sync, start a resync thread.
3631  */
3632 void md_check_recovery(mddev_t *mddev)
3633 {
3634         mdk_rdev_t *rdev;
3635         struct list_head *rtmp;
3636
3637
3638         if (mddev->bitmap)
3639                 bitmap_daemon_work(mddev->bitmap);
3640
3641         if (mddev->ro)
3642                 return;
3643
3644         if (signal_pending(current)) {
3645                 if (mddev->pers->sync_request) {
3646                         printk(KERN_INFO "md: %s in immediate safe mode\n",
3647                                mdname(mddev));
3648                         mddev->safemode = 2;
3649                 }
3650                 flush_signals(current);
3651         }
3652
3653         if ( ! (
3654                 mddev->sb_dirty ||
3655                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
3656                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
3657                 mddev->write_list.head ||
3658                 (mddev->safemode == 1) ||
3659                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
3660                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
3661                 ))
3662                 return;
3663
3664         if (mddev_trylock(mddev)==0) {
3665                 int spares =0;
3666                 struct bio *blist;
3667
3668                 spin_lock(&mddev->write_lock);
3669                 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
3670                     !mddev->in_sync && mddev->recovery_cp == MaxSector) {
3671                         mddev->in_sync = 1;
3672                         mddev->sb_dirty = 1;
3673                 }
3674                 if (mddev->safemode == 1)
3675                         mddev->safemode = 0;
3676                 blist = bio_list_get(&mddev->write_list);
3677                 spin_unlock(&mddev->write_lock);
3678
3679                 if (mddev->sb_dirty)
3680                         md_update_sb(mddev);
3681
3682                 while (blist) {
3683                         struct bio *b = blist;
3684                         blist = blist->bi_next;
3685                         b->bi_next = NULL;
3686                         generic_make_request(b);
3687                         /* we already counted this, so need to un-count */
3688                         md_write_end(mddev);
3689                 }
3690
3691
3692                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
3693                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
3694                         /* resync/recovery still happening */
3695                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3696                         goto unlock;
3697                 }
3698                 if (mddev->sync_thread) {
3699                         /* resync has finished, collect result */
3700                         md_unregister_thread(mddev->sync_thread);
3701                         mddev->sync_thread = NULL;
3702                         if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
3703                             !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
3704                                 /* success...*/
3705                                 /* activate any spares */
3706                                 mddev->pers->spare_active(mddev);
3707                         }
3708                         md_update_sb(mddev);
3709                         mddev->recovery = 0;
3710                         /* flag recovery needed just to double check */
3711                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3712                         goto unlock;
3713                 }
3714                 if (mddev->recovery)
3715                         /* probably just the RECOVERY_NEEDED flag */
3716                         mddev->recovery = 0;
3717
3718                 /* no recovery is running.
3719                  * remove any failed drives, then
3720                  * add spares if possible.
3721                  * Spare are also removed and re-added, to allow
3722                  * the personality to fail the re-add.
3723                  */
3724                 ITERATE_RDEV(mddev,rdev,rtmp)
3725                         if (rdev->raid_disk >= 0 &&
3726                             (rdev->faulty || ! rdev->in_sync) &&
3727                             atomic_read(&rdev->nr_pending)==0) {
3728                                 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
3729                                         rdev->raid_disk = -1;
3730                         }
3731
3732                 if (mddev->degraded) {
3733                         ITERATE_RDEV(mddev,rdev,rtmp)
3734                                 if (rdev->raid_disk < 0
3735                                     && !rdev->faulty) {
3736                                         if (mddev->pers->hot_add_disk(mddev,rdev))
3737                                                 spares++;
3738                                         else
3739                                                 break;
3740                                 }
3741                 }
3742
3743                 if (!spares && (mddev->recovery_cp == MaxSector )) {
3744                         /* nothing we can do ... */
3745                         goto unlock;
3746                 }
3747                 if (mddev->pers->sync_request) {
3748                         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3749                         if (!spares)
3750                                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3751                         mddev->sync_thread = md_register_thread(md_do_sync,
3752                                                                 mddev,
3753                                                                 "%s_resync");
3754                         if (!mddev->sync_thread) {
3755                                 printk(KERN_ERR "%s: could not start resync"
3756                                         " thread...\n", 
3757                                         mdname(mddev));
3758                                 /* leave the spares where they are, it shouldn't hurt */
3759                                 mddev->recovery = 0;
3760                         } else {
3761                                 md_wakeup_thread(mddev->sync_thread);
3762                         }
3763                 }
3764         unlock:
3765                 mddev_unlock(mddev);
3766         }
3767 }
3768
3769 static int md_notify_reboot(struct notifier_block *this,
3770                             unsigned long code, void *x)
3771 {
3772         struct list_head *tmp;
3773         mddev_t *mddev;
3774
3775         if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
3776
3777                 printk(KERN_INFO "md: stopping all md devices.\n");
3778
3779                 ITERATE_MDDEV(mddev,tmp)
3780                         if (mddev_trylock(mddev)==0)
3781                                 do_md_stop (mddev, 1);
3782                 /*
3783                  * certain more exotic SCSI devices are known to be
3784                  * volatile wrt too early system reboots. While the
3785                  * right place to handle this issue is the given
3786                  * driver, we do want to have a safe RAID driver ...
3787                  */
3788                 mdelay(1000*1);
3789         }
3790         return NOTIFY_DONE;
3791 }
3792
3793 static struct notifier_block md_notifier = {
3794         .notifier_call  = md_notify_reboot,
3795         .next           = NULL,
3796         .priority       = INT_MAX, /* before any real devices */
3797 };
3798
3799 static void md_geninit(void)
3800 {
3801         struct proc_dir_entry *p;
3802
3803         dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
3804
3805         p = create_proc_entry("mdstat", S_IRUGO, NULL);
3806         if (p)
3807                 p->proc_fops = &md_seq_fops;
3808 }
3809
3810 static int __init md_init(void)
3811 {
3812         int minor;
3813
3814         printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
3815                         " MD_SB_DISKS=%d\n",
3816                         MD_MAJOR_VERSION, MD_MINOR_VERSION,
3817                         MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
3818         printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
3819                         BITMAP_MINOR);
3820
3821         if (register_blkdev(MAJOR_NR, "md"))
3822                 return -1;
3823         if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
3824                 unregister_blkdev(MAJOR_NR, "md");
3825                 return -1;
3826         }
3827         devfs_mk_dir("md");
3828         blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
3829                                 md_probe, NULL, NULL);
3830         blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
3831                             md_probe, NULL, NULL);
3832
3833         for (minor=0; minor < MAX_MD_DEVS; ++minor)
3834                 devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
3835                                 S_IFBLK|S_IRUSR|S_IWUSR,
3836                                 "md/%d", minor);
3837
3838         for (minor=0; minor < MAX_MD_DEVS; ++minor)
3839                 devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
3840                               S_IFBLK|S_IRUSR|S_IWUSR,
3841                               "md/mdp%d", minor);
3842
3843
3844         register_reboot_notifier(&md_notifier);
3845         raid_table_header = register_sysctl_table(raid_root_table, 1);
3846
3847         md_geninit();
3848         return (0);
3849 }
3850
3851
3852 #ifndef MODULE
3853
3854 /*
3855  * Searches all registered partitions for autorun RAID arrays
3856  * at boot time.
3857  */
3858 static dev_t detected_devices[128];
3859 static int dev_cnt;
3860
3861 void md_autodetect_dev(dev_t dev)
3862 {
3863         if (dev_cnt >= 0 && dev_cnt < 127)
3864                 detected_devices[dev_cnt++] = dev;
3865 }
3866
3867
3868 static void autostart_arrays(int part)
3869 {
3870         mdk_rdev_t *rdev;
3871         int i;
3872
3873         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
3874
3875         for (i = 0; i < dev_cnt; i++) {
3876                 dev_t dev = detected_devices[i];
3877
3878                 rdev = md_import_device(dev,0, 0);
3879                 if (IS_ERR(rdev))
3880                         continue;
3881
3882                 if (rdev->faulty) {
3883                         MD_BUG();
3884                         continue;
3885                 }
3886                 list_add(&rdev->same_set, &pending_raid_disks);
3887         }
3888         dev_cnt = 0;
3889
3890         autorun_devices(part);
3891 }
3892
3893 #endif
3894
3895 static __exit void md_exit(void)
3896 {
3897         mddev_t *mddev;
3898         struct list_head *tmp;
3899         int i;
3900         blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
3901         blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
3902         for (i=0; i < MAX_MD_DEVS; i++)
3903                 devfs_remove("md/%d", i);
3904         for (i=0; i < MAX_MD_DEVS; i++)
3905                 devfs_remove("md/d%d", i);
3906
3907         devfs_remove("md");
3908
3909         unregister_blkdev(MAJOR_NR,"md");
3910         unregister_blkdev(mdp_major, "mdp");
3911         unregister_reboot_notifier(&md_notifier);
3912         unregister_sysctl_table(raid_table_header);
3913         remove_proc_entry("mdstat", NULL);
3914         ITERATE_MDDEV(mddev,tmp) {
3915                 struct gendisk *disk = mddev->gendisk;
3916                 if (!disk)
3917                         continue;
3918                 export_array(mddev);
3919                 del_gendisk(disk);
3920                 put_disk(disk);
3921                 mddev->gendisk = NULL;
3922                 mddev_put(mddev);
3923         }
3924 }
3925
3926 module_init(md_init)
3927 module_exit(md_exit)
3928
3929 EXPORT_SYMBOL(register_md_personality);
3930 EXPORT_SYMBOL(unregister_md_personality);
3931 EXPORT_SYMBOL(md_error);
3932 EXPORT_SYMBOL(md_done_sync);
3933 EXPORT_SYMBOL(md_write_start);
3934 EXPORT_SYMBOL(md_write_end);
3935 EXPORT_SYMBOL(md_register_thread);
3936 EXPORT_SYMBOL(md_unregister_thread);
3937 EXPORT_SYMBOL(md_wakeup_thread);
3938 EXPORT_SYMBOL(md_print_devices);
3939 EXPORT_SYMBOL(md_check_recovery);
3940 MODULE_LICENSE("GPL");