[PATCH] md: allow md arrays to be started read-only (module parameter).
[safe/jmp/linux-2.6] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45
46 #include <linux/init.h>
47
48 #include <linux/file.h>
49
50 #ifdef CONFIG_KMOD
51 #include <linux/kmod.h>
52 #endif
53
54 #include <asm/unaligned.h>
55
56 #define MAJOR_NR MD_MAJOR
57 #define MD_DRIVER
58
59 /* 63 partitions with the alternate major number (mdp) */
60 #define MdpMinorShift 6
61
62 #define DEBUG 0
63 #define dprintk(x...) ((void)(DEBUG && printk(x)))
64
65
66 #ifndef MODULE
67 static void autostart_arrays (int part);
68 #endif
69
70 static mdk_personality_t *pers[MAX_PERSONALITY];
71 static DEFINE_SPINLOCK(pers_lock);
72
73 /*
74  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
75  * is 1000 KB/sec, so the extra system load does not show up that much.
76  * Increase it if you want to have more _guaranteed_ speed. Note that
77  * the RAID driver will use the maximum available bandwidth if the IO
78  * subsystem is idle. There is also an 'absolute maximum' reconstruction
79  * speed limit - in case reconstruction slows down your system despite
80  * idle IO detection.
81  *
82  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
83  */
84
85 static int sysctl_speed_limit_min = 1000;
86 static int sysctl_speed_limit_max = 200000;
87
88 static struct ctl_table_header *raid_table_header;
89
90 static ctl_table raid_table[] = {
91         {
92                 .ctl_name       = DEV_RAID_SPEED_LIMIT_MIN,
93                 .procname       = "speed_limit_min",
94                 .data           = &sysctl_speed_limit_min,
95                 .maxlen         = sizeof(int),
96                 .mode           = 0644,
97                 .proc_handler   = &proc_dointvec,
98         },
99         {
100                 .ctl_name       = DEV_RAID_SPEED_LIMIT_MAX,
101                 .procname       = "speed_limit_max",
102                 .data           = &sysctl_speed_limit_max,
103                 .maxlen         = sizeof(int),
104                 .mode           = 0644,
105                 .proc_handler   = &proc_dointvec,
106         },
107         { .ctl_name = 0 }
108 };
109
110 static ctl_table raid_dir_table[] = {
111         {
112                 .ctl_name       = DEV_RAID,
113                 .procname       = "raid",
114                 .maxlen         = 0,
115                 .mode           = 0555,
116                 .child          = raid_table,
117         },
118         { .ctl_name = 0 }
119 };
120
121 static ctl_table raid_root_table[] = {
122         {
123                 .ctl_name       = CTL_DEV,
124                 .procname       = "dev",
125                 .maxlen         = 0,
126                 .mode           = 0555,
127                 .child          = raid_dir_table,
128         },
129         { .ctl_name = 0 }
130 };
131
132 static struct block_device_operations md_fops;
133
134 static int start_readonly;
135
136 /*
137  * Enables to iterate over all existing md arrays
138  * all_mddevs_lock protects this list.
139  */
140 static LIST_HEAD(all_mddevs);
141 static DEFINE_SPINLOCK(all_mddevs_lock);
142
143
144 /*
145  * iterates through all used mddevs in the system.
146  * We take care to grab the all_mddevs_lock whenever navigating
147  * the list, and to always hold a refcount when unlocked.
148  * Any code which breaks out of this loop while own
149  * a reference to the current mddev and must mddev_put it.
150  */
151 #define ITERATE_MDDEV(mddev,tmp)                                        \
152                                                                         \
153         for (({ spin_lock(&all_mddevs_lock);                            \
154                 tmp = all_mddevs.next;                                  \
155                 mddev = NULL;});                                        \
156              ({ if (tmp != &all_mddevs)                                 \
157                         mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
158                 spin_unlock(&all_mddevs_lock);                          \
159                 if (mddev) mddev_put(mddev);                            \
160                 mddev = list_entry(tmp, mddev_t, all_mddevs);           \
161                 tmp != &all_mddevs;});                                  \
162              ({ spin_lock(&all_mddevs_lock);                            \
163                 tmp = tmp->next;})                                      \
164                 )
165
166
167 static int md_fail_request (request_queue_t *q, struct bio *bio)
168 {
169         bio_io_error(bio, bio->bi_size);
170         return 0;
171 }
172
173 static inline mddev_t *mddev_get(mddev_t *mddev)
174 {
175         atomic_inc(&mddev->active);
176         return mddev;
177 }
178
179 static void mddev_put(mddev_t *mddev)
180 {
181         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
182                 return;
183         if (!mddev->raid_disks && list_empty(&mddev->disks)) {
184                 list_del(&mddev->all_mddevs);
185                 blk_put_queue(mddev->queue);
186                 kobject_unregister(&mddev->kobj);
187         }
188         spin_unlock(&all_mddevs_lock);
189 }
190
191 static mddev_t * mddev_find(dev_t unit)
192 {
193         mddev_t *mddev, *new = NULL;
194
195  retry:
196         spin_lock(&all_mddevs_lock);
197         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
198                 if (mddev->unit == unit) {
199                         mddev_get(mddev);
200                         spin_unlock(&all_mddevs_lock);
201                         kfree(new);
202                         return mddev;
203                 }
204
205         if (new) {
206                 list_add(&new->all_mddevs, &all_mddevs);
207                 spin_unlock(&all_mddevs_lock);
208                 return new;
209         }
210         spin_unlock(&all_mddevs_lock);
211
212         new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
213         if (!new)
214                 return NULL;
215
216         memset(new, 0, sizeof(*new));
217
218         new->unit = unit;
219         if (MAJOR(unit) == MD_MAJOR)
220                 new->md_minor = MINOR(unit);
221         else
222                 new->md_minor = MINOR(unit) >> MdpMinorShift;
223
224         init_MUTEX(&new->reconfig_sem);
225         INIT_LIST_HEAD(&new->disks);
226         INIT_LIST_HEAD(&new->all_mddevs);
227         init_timer(&new->safemode_timer);
228         atomic_set(&new->active, 1);
229         spin_lock_init(&new->write_lock);
230         init_waitqueue_head(&new->sb_wait);
231
232         new->queue = blk_alloc_queue(GFP_KERNEL);
233         if (!new->queue) {
234                 kfree(new);
235                 return NULL;
236         }
237
238         blk_queue_make_request(new->queue, md_fail_request);
239
240         goto retry;
241 }
242
243 static inline int mddev_lock(mddev_t * mddev)
244 {
245         return down_interruptible(&mddev->reconfig_sem);
246 }
247
248 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
249 {
250         down(&mddev->reconfig_sem);
251 }
252
253 static inline int mddev_trylock(mddev_t * mddev)
254 {
255         return down_trylock(&mddev->reconfig_sem);
256 }
257
258 static inline void mddev_unlock(mddev_t * mddev)
259 {
260         up(&mddev->reconfig_sem);
261
262         md_wakeup_thread(mddev->thread);
263 }
264
265 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
266 {
267         mdk_rdev_t * rdev;
268         struct list_head *tmp;
269
270         ITERATE_RDEV(mddev,rdev,tmp) {
271                 if (rdev->desc_nr == nr)
272                         return rdev;
273         }
274         return NULL;
275 }
276
277 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
278 {
279         struct list_head *tmp;
280         mdk_rdev_t *rdev;
281
282         ITERATE_RDEV(mddev,rdev,tmp) {
283                 if (rdev->bdev->bd_dev == dev)
284                         return rdev;
285         }
286         return NULL;
287 }
288
289 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
290 {
291         sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
292         return MD_NEW_SIZE_BLOCKS(size);
293 }
294
295 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
296 {
297         sector_t size;
298
299         size = rdev->sb_offset;
300
301         if (chunk_size)
302                 size &= ~((sector_t)chunk_size/1024 - 1);
303         return size;
304 }
305
306 static int alloc_disk_sb(mdk_rdev_t * rdev)
307 {
308         if (rdev->sb_page)
309                 MD_BUG();
310
311         rdev->sb_page = alloc_page(GFP_KERNEL);
312         if (!rdev->sb_page) {
313                 printk(KERN_ALERT "md: out of memory.\n");
314                 return -EINVAL;
315         }
316
317         return 0;
318 }
319
320 static void free_disk_sb(mdk_rdev_t * rdev)
321 {
322         if (rdev->sb_page) {
323                 page_cache_release(rdev->sb_page);
324                 rdev->sb_loaded = 0;
325                 rdev->sb_page = NULL;
326                 rdev->sb_offset = 0;
327                 rdev->size = 0;
328         }
329 }
330
331
332 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
333 {
334         mdk_rdev_t *rdev = bio->bi_private;
335         mddev_t *mddev = rdev->mddev;
336         if (bio->bi_size)
337                 return 1;
338
339         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
340                 md_error(mddev, rdev);
341
342         if (atomic_dec_and_test(&mddev->pending_writes))
343                 wake_up(&mddev->sb_wait);
344         bio_put(bio);
345         return 0;
346 }
347
348 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
349 {
350         struct bio *bio2 = bio->bi_private;
351         mdk_rdev_t *rdev = bio2->bi_private;
352         mddev_t *mddev = rdev->mddev;
353         if (bio->bi_size)
354                 return 1;
355
356         if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
357             error == -EOPNOTSUPP) {
358                 unsigned long flags;
359                 /* barriers don't appear to be supported :-( */
360                 set_bit(BarriersNotsupp, &rdev->flags);
361                 mddev->barriers_work = 0;
362                 spin_lock_irqsave(&mddev->write_lock, flags);
363                 bio2->bi_next = mddev->biolist;
364                 mddev->biolist = bio2;
365                 spin_unlock_irqrestore(&mddev->write_lock, flags);
366                 wake_up(&mddev->sb_wait);
367                 bio_put(bio);
368                 return 0;
369         }
370         bio_put(bio2);
371         bio->bi_private = rdev;
372         return super_written(bio, bytes_done, error);
373 }
374
375 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
376                    sector_t sector, int size, struct page *page)
377 {
378         /* write first size bytes of page to sector of rdev
379          * Increment mddev->pending_writes before returning
380          * and decrement it on completion, waking up sb_wait
381          * if zero is reached.
382          * If an error occurred, call md_error
383          *
384          * As we might need to resubmit the request if BIO_RW_BARRIER
385          * causes ENOTSUPP, we allocate a spare bio...
386          */
387         struct bio *bio = bio_alloc(GFP_NOIO, 1);
388         int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
389
390         bio->bi_bdev = rdev->bdev;
391         bio->bi_sector = sector;
392         bio_add_page(bio, page, size, 0);
393         bio->bi_private = rdev;
394         bio->bi_end_io = super_written;
395         bio->bi_rw = rw;
396
397         atomic_inc(&mddev->pending_writes);
398         if (!test_bit(BarriersNotsupp, &rdev->flags)) {
399                 struct bio *rbio;
400                 rw |= (1<<BIO_RW_BARRIER);
401                 rbio = bio_clone(bio, GFP_NOIO);
402                 rbio->bi_private = bio;
403                 rbio->bi_end_io = super_written_barrier;
404                 submit_bio(rw, rbio);
405         } else
406                 submit_bio(rw, bio);
407 }
408
409 void md_super_wait(mddev_t *mddev)
410 {
411         /* wait for all superblock writes that were scheduled to complete.
412          * if any had to be retried (due to BARRIER problems), retry them
413          */
414         DEFINE_WAIT(wq);
415         for(;;) {
416                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
417                 if (atomic_read(&mddev->pending_writes)==0)
418                         break;
419                 while (mddev->biolist) {
420                         struct bio *bio;
421                         spin_lock_irq(&mddev->write_lock);
422                         bio = mddev->biolist;
423                         mddev->biolist = bio->bi_next ;
424                         bio->bi_next = NULL;
425                         spin_unlock_irq(&mddev->write_lock);
426                         submit_bio(bio->bi_rw, bio);
427                 }
428                 schedule();
429         }
430         finish_wait(&mddev->sb_wait, &wq);
431 }
432
433 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
434 {
435         if (bio->bi_size)
436                 return 1;
437
438         complete((struct completion*)bio->bi_private);
439         return 0;
440 }
441
442 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
443                    struct page *page, int rw)
444 {
445         struct bio *bio = bio_alloc(GFP_NOIO, 1);
446         struct completion event;
447         int ret;
448
449         rw |= (1 << BIO_RW_SYNC);
450
451         bio->bi_bdev = bdev;
452         bio->bi_sector = sector;
453         bio_add_page(bio, page, size, 0);
454         init_completion(&event);
455         bio->bi_private = &event;
456         bio->bi_end_io = bi_complete;
457         submit_bio(rw, bio);
458         wait_for_completion(&event);
459
460         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
461         bio_put(bio);
462         return ret;
463 }
464
465 static int read_disk_sb(mdk_rdev_t * rdev, int size)
466 {
467         char b[BDEVNAME_SIZE];
468         if (!rdev->sb_page) {
469                 MD_BUG();
470                 return -EINVAL;
471         }
472         if (rdev->sb_loaded)
473                 return 0;
474
475
476         if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
477                 goto fail;
478         rdev->sb_loaded = 1;
479         return 0;
480
481 fail:
482         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
483                 bdevname(rdev->bdev,b));
484         return -EINVAL;
485 }
486
487 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
488 {
489         if (    (sb1->set_uuid0 == sb2->set_uuid0) &&
490                 (sb1->set_uuid1 == sb2->set_uuid1) &&
491                 (sb1->set_uuid2 == sb2->set_uuid2) &&
492                 (sb1->set_uuid3 == sb2->set_uuid3))
493
494                 return 1;
495
496         return 0;
497 }
498
499
500 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
501 {
502         int ret;
503         mdp_super_t *tmp1, *tmp2;
504
505         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
506         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
507
508         if (!tmp1 || !tmp2) {
509                 ret = 0;
510                 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
511                 goto abort;
512         }
513
514         *tmp1 = *sb1;
515         *tmp2 = *sb2;
516
517         /*
518          * nr_disks is not constant
519          */
520         tmp1->nr_disks = 0;
521         tmp2->nr_disks = 0;
522
523         if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
524                 ret = 0;
525         else
526                 ret = 1;
527
528 abort:
529         kfree(tmp1);
530         kfree(tmp2);
531         return ret;
532 }
533
534 static unsigned int calc_sb_csum(mdp_super_t * sb)
535 {
536         unsigned int disk_csum, csum;
537
538         disk_csum = sb->sb_csum;
539         sb->sb_csum = 0;
540         csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
541         sb->sb_csum = disk_csum;
542         return csum;
543 }
544
545
546 /*
547  * Handle superblock details.
548  * We want to be able to handle multiple superblock formats
549  * so we have a common interface to them all, and an array of
550  * different handlers.
551  * We rely on user-space to write the initial superblock, and support
552  * reading and updating of superblocks.
553  * Interface methods are:
554  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
555  *      loads and validates a superblock on dev.
556  *      if refdev != NULL, compare superblocks on both devices
557  *    Return:
558  *      0 - dev has a superblock that is compatible with refdev
559  *      1 - dev has a superblock that is compatible and newer than refdev
560  *          so dev should be used as the refdev in future
561  *     -EINVAL superblock incompatible or invalid
562  *     -othererror e.g. -EIO
563  *
564  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
565  *      Verify that dev is acceptable into mddev.
566  *       The first time, mddev->raid_disks will be 0, and data from
567  *       dev should be merged in.  Subsequent calls check that dev
568  *       is new enough.  Return 0 or -EINVAL
569  *
570  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
571  *     Update the superblock for rdev with data in mddev
572  *     This does not write to disc.
573  *
574  */
575
576 struct super_type  {
577         char            *name;
578         struct module   *owner;
579         int             (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
580         int             (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
581         void            (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
582 };
583
584 /*
585  * load_super for 0.90.0 
586  */
587 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
588 {
589         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
590         mdp_super_t *sb;
591         int ret;
592         sector_t sb_offset;
593
594         /*
595          * Calculate the position of the superblock,
596          * it's at the end of the disk.
597          *
598          * It also happens to be a multiple of 4Kb.
599          */
600         sb_offset = calc_dev_sboffset(rdev->bdev);
601         rdev->sb_offset = sb_offset;
602
603         ret = read_disk_sb(rdev, MD_SB_BYTES);
604         if (ret) return ret;
605
606         ret = -EINVAL;
607
608         bdevname(rdev->bdev, b);
609         sb = (mdp_super_t*)page_address(rdev->sb_page);
610
611         if (sb->md_magic != MD_SB_MAGIC) {
612                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
613                        b);
614                 goto abort;
615         }
616
617         if (sb->major_version != 0 ||
618             sb->minor_version != 90) {
619                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
620                         sb->major_version, sb->minor_version,
621                         b);
622                 goto abort;
623         }
624
625         if (sb->raid_disks <= 0)
626                 goto abort;
627
628         if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
629                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
630                         b);
631                 goto abort;
632         }
633
634         rdev->preferred_minor = sb->md_minor;
635         rdev->data_offset = 0;
636         rdev->sb_size = MD_SB_BYTES;
637
638         if (sb->level == LEVEL_MULTIPATH)
639                 rdev->desc_nr = -1;
640         else
641                 rdev->desc_nr = sb->this_disk.number;
642
643         if (refdev == 0)
644                 ret = 1;
645         else {
646                 __u64 ev1, ev2;
647                 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
648                 if (!uuid_equal(refsb, sb)) {
649                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
650                                 b, bdevname(refdev->bdev,b2));
651                         goto abort;
652                 }
653                 if (!sb_equal(refsb, sb)) {
654                         printk(KERN_WARNING "md: %s has same UUID"
655                                " but different superblock to %s\n",
656                                b, bdevname(refdev->bdev, b2));
657                         goto abort;
658                 }
659                 ev1 = md_event(sb);
660                 ev2 = md_event(refsb);
661                 if (ev1 > ev2)
662                         ret = 1;
663                 else 
664                         ret = 0;
665         }
666         rdev->size = calc_dev_size(rdev, sb->chunk_size);
667
668  abort:
669         return ret;
670 }
671
672 /*
673  * validate_super for 0.90.0
674  */
675 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
676 {
677         mdp_disk_t *desc;
678         mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
679
680         rdev->raid_disk = -1;
681         rdev->flags = 0;
682         if (mddev->raid_disks == 0) {
683                 mddev->major_version = 0;
684                 mddev->minor_version = sb->minor_version;
685                 mddev->patch_version = sb->patch_version;
686                 mddev->persistent = ! sb->not_persistent;
687                 mddev->chunk_size = sb->chunk_size;
688                 mddev->ctime = sb->ctime;
689                 mddev->utime = sb->utime;
690                 mddev->level = sb->level;
691                 mddev->layout = sb->layout;
692                 mddev->raid_disks = sb->raid_disks;
693                 mddev->size = sb->size;
694                 mddev->events = md_event(sb);
695                 mddev->bitmap_offset = 0;
696                 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
697
698                 if (sb->state & (1<<MD_SB_CLEAN))
699                         mddev->recovery_cp = MaxSector;
700                 else {
701                         if (sb->events_hi == sb->cp_events_hi && 
702                                 sb->events_lo == sb->cp_events_lo) {
703                                 mddev->recovery_cp = sb->recovery_cp;
704                         } else
705                                 mddev->recovery_cp = 0;
706                 }
707
708                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
709                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
710                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
711                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
712
713                 mddev->max_disks = MD_SB_DISKS;
714
715                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
716                     mddev->bitmap_file == NULL) {
717                         if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6) {
718                                 /* FIXME use a better test */
719                                 printk(KERN_WARNING "md: bitmaps only support for raid1\n");
720                                 return -EINVAL;
721                         }
722                         mddev->bitmap_offset = mddev->default_bitmap_offset;
723                 }
724
725         } else if (mddev->pers == NULL) {
726                 /* Insist on good event counter while assembling */
727                 __u64 ev1 = md_event(sb);
728                 ++ev1;
729                 if (ev1 < mddev->events) 
730                         return -EINVAL;
731         } else if (mddev->bitmap) {
732                 /* if adding to array with a bitmap, then we can accept an
733                  * older device ... but not too old.
734                  */
735                 __u64 ev1 = md_event(sb);
736                 if (ev1 < mddev->bitmap->events_cleared)
737                         return 0;
738         } else /* just a hot-add of a new device, leave raid_disk at -1 */
739                 return 0;
740
741         if (mddev->level != LEVEL_MULTIPATH) {
742                 desc = sb->disks + rdev->desc_nr;
743
744                 if (desc->state & (1<<MD_DISK_FAULTY))
745                         set_bit(Faulty, &rdev->flags);
746                 else if (desc->state & (1<<MD_DISK_SYNC) &&
747                          desc->raid_disk < mddev->raid_disks) {
748                         set_bit(In_sync, &rdev->flags);
749                         rdev->raid_disk = desc->raid_disk;
750                 }
751                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
752                         set_bit(WriteMostly, &rdev->flags);
753         } else /* MULTIPATH are always insync */
754                 set_bit(In_sync, &rdev->flags);
755         return 0;
756 }
757
758 /*
759  * sync_super for 0.90.0
760  */
761 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
762 {
763         mdp_super_t *sb;
764         struct list_head *tmp;
765         mdk_rdev_t *rdev2;
766         int next_spare = mddev->raid_disks;
767
768
769         /* make rdev->sb match mddev data..
770          *
771          * 1/ zero out disks
772          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
773          * 3/ any empty disks < next_spare become removed
774          *
775          * disks[0] gets initialised to REMOVED because
776          * we cannot be sure from other fields if it has
777          * been initialised or not.
778          */
779         int i;
780         int active=0, working=0,failed=0,spare=0,nr_disks=0;
781
782         rdev->sb_size = MD_SB_BYTES;
783
784         sb = (mdp_super_t*)page_address(rdev->sb_page);
785
786         memset(sb, 0, sizeof(*sb));
787
788         sb->md_magic = MD_SB_MAGIC;
789         sb->major_version = mddev->major_version;
790         sb->minor_version = mddev->minor_version;
791         sb->patch_version = mddev->patch_version;
792         sb->gvalid_words  = 0; /* ignored */
793         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
794         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
795         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
796         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
797
798         sb->ctime = mddev->ctime;
799         sb->level = mddev->level;
800         sb->size  = mddev->size;
801         sb->raid_disks = mddev->raid_disks;
802         sb->md_minor = mddev->md_minor;
803         sb->not_persistent = !mddev->persistent;
804         sb->utime = mddev->utime;
805         sb->state = 0;
806         sb->events_hi = (mddev->events>>32);
807         sb->events_lo = (u32)mddev->events;
808
809         if (mddev->in_sync)
810         {
811                 sb->recovery_cp = mddev->recovery_cp;
812                 sb->cp_events_hi = (mddev->events>>32);
813                 sb->cp_events_lo = (u32)mddev->events;
814                 if (mddev->recovery_cp == MaxSector)
815                         sb->state = (1<< MD_SB_CLEAN);
816         } else
817                 sb->recovery_cp = 0;
818
819         sb->layout = mddev->layout;
820         sb->chunk_size = mddev->chunk_size;
821
822         if (mddev->bitmap && mddev->bitmap_file == NULL)
823                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
824
825         sb->disks[0].state = (1<<MD_DISK_REMOVED);
826         ITERATE_RDEV(mddev,rdev2,tmp) {
827                 mdp_disk_t *d;
828                 int desc_nr;
829                 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
830                     && !test_bit(Faulty, &rdev2->flags))
831                         desc_nr = rdev2->raid_disk;
832                 else
833                         desc_nr = next_spare++;
834                 rdev2->desc_nr = desc_nr;
835                 d = &sb->disks[rdev2->desc_nr];
836                 nr_disks++;
837                 d->number = rdev2->desc_nr;
838                 d->major = MAJOR(rdev2->bdev->bd_dev);
839                 d->minor = MINOR(rdev2->bdev->bd_dev);
840                 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
841                     && !test_bit(Faulty, &rdev2->flags))
842                         d->raid_disk = rdev2->raid_disk;
843                 else
844                         d->raid_disk = rdev2->desc_nr; /* compatibility */
845                 if (test_bit(Faulty, &rdev2->flags)) {
846                         d->state = (1<<MD_DISK_FAULTY);
847                         failed++;
848                 } else if (test_bit(In_sync, &rdev2->flags)) {
849                         d->state = (1<<MD_DISK_ACTIVE);
850                         d->state |= (1<<MD_DISK_SYNC);
851                         active++;
852                         working++;
853                 } else {
854                         d->state = 0;
855                         spare++;
856                         working++;
857                 }
858                 if (test_bit(WriteMostly, &rdev2->flags))
859                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
860         }
861         /* now set the "removed" and "faulty" bits on any missing devices */
862         for (i=0 ; i < mddev->raid_disks ; i++) {
863                 mdp_disk_t *d = &sb->disks[i];
864                 if (d->state == 0 && d->number == 0) {
865                         d->number = i;
866                         d->raid_disk = i;
867                         d->state = (1<<MD_DISK_REMOVED);
868                         d->state |= (1<<MD_DISK_FAULTY);
869                         failed++;
870                 }
871         }
872         sb->nr_disks = nr_disks;
873         sb->active_disks = active;
874         sb->working_disks = working;
875         sb->failed_disks = failed;
876         sb->spare_disks = spare;
877
878         sb->this_disk = sb->disks[rdev->desc_nr];
879         sb->sb_csum = calc_sb_csum(sb);
880 }
881
882 /*
883  * version 1 superblock
884  */
885
886 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
887 {
888         unsigned int disk_csum, csum;
889         unsigned long long newcsum;
890         int size = 256 + le32_to_cpu(sb->max_dev)*2;
891         unsigned int *isuper = (unsigned int*)sb;
892         int i;
893
894         disk_csum = sb->sb_csum;
895         sb->sb_csum = 0;
896         newcsum = 0;
897         for (i=0; size>=4; size -= 4 )
898                 newcsum += le32_to_cpu(*isuper++);
899
900         if (size == 2)
901                 newcsum += le16_to_cpu(*(unsigned short*) isuper);
902
903         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
904         sb->sb_csum = disk_csum;
905         return cpu_to_le32(csum);
906 }
907
908 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
909 {
910         struct mdp_superblock_1 *sb;
911         int ret;
912         sector_t sb_offset;
913         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
914         int bmask;
915
916         /*
917          * Calculate the position of the superblock.
918          * It is always aligned to a 4K boundary and
919          * depeding on minor_version, it can be:
920          * 0: At least 8K, but less than 12K, from end of device
921          * 1: At start of device
922          * 2: 4K from start of device.
923          */
924         switch(minor_version) {
925         case 0:
926                 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
927                 sb_offset -= 8*2;
928                 sb_offset &= ~(sector_t)(4*2-1);
929                 /* convert from sectors to K */
930                 sb_offset /= 2;
931                 break;
932         case 1:
933                 sb_offset = 0;
934                 break;
935         case 2:
936                 sb_offset = 4;
937                 break;
938         default:
939                 return -EINVAL;
940         }
941         rdev->sb_offset = sb_offset;
942
943         /* superblock is rarely larger than 1K, but it can be larger,
944          * and it is safe to read 4k, so we do that
945          */
946         ret = read_disk_sb(rdev, 4096);
947         if (ret) return ret;
948
949
950         sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
951
952         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
953             sb->major_version != cpu_to_le32(1) ||
954             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
955             le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
956             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
957                 return -EINVAL;
958
959         if (calc_sb_1_csum(sb) != sb->sb_csum) {
960                 printk("md: invalid superblock checksum on %s\n",
961                         bdevname(rdev->bdev,b));
962                 return -EINVAL;
963         }
964         if (le64_to_cpu(sb->data_size) < 10) {
965                 printk("md: data_size too small on %s\n",
966                        bdevname(rdev->bdev,b));
967                 return -EINVAL;
968         }
969         rdev->preferred_minor = 0xffff;
970         rdev->data_offset = le64_to_cpu(sb->data_offset);
971
972         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
973         bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
974         if (rdev->sb_size & bmask)
975                 rdev-> sb_size = (rdev->sb_size | bmask)+1;
976
977         if (refdev == 0)
978                 return 1;
979         else {
980                 __u64 ev1, ev2;
981                 struct mdp_superblock_1 *refsb = 
982                         (struct mdp_superblock_1*)page_address(refdev->sb_page);
983
984                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
985                     sb->level != refsb->level ||
986                     sb->layout != refsb->layout ||
987                     sb->chunksize != refsb->chunksize) {
988                         printk(KERN_WARNING "md: %s has strangely different"
989                                 " superblock to %s\n",
990                                 bdevname(rdev->bdev,b),
991                                 bdevname(refdev->bdev,b2));
992                         return -EINVAL;
993                 }
994                 ev1 = le64_to_cpu(sb->events);
995                 ev2 = le64_to_cpu(refsb->events);
996
997                 if (ev1 > ev2)
998                         return 1;
999         }
1000         if (minor_version) 
1001                 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1002         else
1003                 rdev->size = rdev->sb_offset;
1004         if (rdev->size < le64_to_cpu(sb->data_size)/2)
1005                 return -EINVAL;
1006         rdev->size = le64_to_cpu(sb->data_size)/2;
1007         if (le32_to_cpu(sb->chunksize))
1008                 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1009         return 0;
1010 }
1011
1012 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1013 {
1014         struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1015
1016         rdev->raid_disk = -1;
1017         rdev->flags = 0;
1018         if (mddev->raid_disks == 0) {
1019                 mddev->major_version = 1;
1020                 mddev->patch_version = 0;
1021                 mddev->persistent = 1;
1022                 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1023                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1024                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1025                 mddev->level = le32_to_cpu(sb->level);
1026                 mddev->layout = le32_to_cpu(sb->layout);
1027                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1028                 mddev->size = le64_to_cpu(sb->size)/2;
1029                 mddev->events = le64_to_cpu(sb->events);
1030                 mddev->bitmap_offset = 0;
1031                 mddev->default_bitmap_offset = 0;
1032                 mddev->default_bitmap_offset = 1024;
1033                 
1034                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1035                 memcpy(mddev->uuid, sb->set_uuid, 16);
1036
1037                 mddev->max_disks =  (4096-256)/2;
1038
1039                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1040                     mddev->bitmap_file == NULL ) {
1041                         if (mddev->level != 1) {
1042                                 printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
1043                                 return -EINVAL;
1044                         }
1045                         mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1046                 }
1047         } else if (mddev->pers == NULL) {
1048                 /* Insist of good event counter while assembling */
1049                 __u64 ev1 = le64_to_cpu(sb->events);
1050                 ++ev1;
1051                 if (ev1 < mddev->events)
1052                         return -EINVAL;
1053         } else if (mddev->bitmap) {
1054                 /* If adding to array with a bitmap, then we can accept an
1055                  * older device, but not too old.
1056                  */
1057                 __u64 ev1 = le64_to_cpu(sb->events);
1058                 if (ev1 < mddev->bitmap->events_cleared)
1059                         return 0;
1060         } else /* just a hot-add of a new device, leave raid_disk at -1 */
1061                 return 0;
1062
1063         if (mddev->level != LEVEL_MULTIPATH) {
1064                 int role;
1065                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1066                 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1067                 switch(role) {
1068                 case 0xffff: /* spare */
1069                         break;
1070                 case 0xfffe: /* faulty */
1071                         set_bit(Faulty, &rdev->flags);
1072                         break;
1073                 default:
1074                         set_bit(In_sync, &rdev->flags);
1075                         rdev->raid_disk = role;
1076                         break;
1077                 }
1078                 if (sb->devflags & WriteMostly1)
1079                         set_bit(WriteMostly, &rdev->flags);
1080         } else /* MULTIPATH are always insync */
1081                 set_bit(In_sync, &rdev->flags);
1082
1083         return 0;
1084 }
1085
1086 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1087 {
1088         struct mdp_superblock_1 *sb;
1089         struct list_head *tmp;
1090         mdk_rdev_t *rdev2;
1091         int max_dev, i;
1092         /* make rdev->sb match mddev and rdev data. */
1093
1094         sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1095
1096         sb->feature_map = 0;
1097         sb->pad0 = 0;
1098         memset(sb->pad1, 0, sizeof(sb->pad1));
1099         memset(sb->pad2, 0, sizeof(sb->pad2));
1100         memset(sb->pad3, 0, sizeof(sb->pad3));
1101
1102         sb->utime = cpu_to_le64((__u64)mddev->utime);
1103         sb->events = cpu_to_le64(mddev->events);
1104         if (mddev->in_sync)
1105                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1106         else
1107                 sb->resync_offset = cpu_to_le64(0);
1108
1109         if (mddev->bitmap && mddev->bitmap_file == NULL) {
1110                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1111                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1112         }
1113
1114         max_dev = 0;
1115         ITERATE_RDEV(mddev,rdev2,tmp)
1116                 if (rdev2->desc_nr+1 > max_dev)
1117                         max_dev = rdev2->desc_nr+1;
1118         
1119         sb->max_dev = cpu_to_le32(max_dev);
1120         for (i=0; i<max_dev;i++)
1121                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1122         
1123         ITERATE_RDEV(mddev,rdev2,tmp) {
1124                 i = rdev2->desc_nr;
1125                 if (test_bit(Faulty, &rdev2->flags))
1126                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1127                 else if (test_bit(In_sync, &rdev2->flags))
1128                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1129                 else
1130                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1131         }
1132
1133         sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1134         sb->sb_csum = calc_sb_1_csum(sb);
1135 }
1136
1137
1138 static struct super_type super_types[] = {
1139         [0] = {
1140                 .name   = "0.90.0",
1141                 .owner  = THIS_MODULE,
1142                 .load_super     = super_90_load,
1143                 .validate_super = super_90_validate,
1144                 .sync_super     = super_90_sync,
1145         },
1146         [1] = {
1147                 .name   = "md-1",
1148                 .owner  = THIS_MODULE,
1149                 .load_super     = super_1_load,
1150                 .validate_super = super_1_validate,
1151                 .sync_super     = super_1_sync,
1152         },
1153 };
1154         
1155 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1156 {
1157         struct list_head *tmp;
1158         mdk_rdev_t *rdev;
1159
1160         ITERATE_RDEV(mddev,rdev,tmp)
1161                 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1162                         return rdev;
1163
1164         return NULL;
1165 }
1166
1167 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1168 {
1169         struct list_head *tmp;
1170         mdk_rdev_t *rdev;
1171
1172         ITERATE_RDEV(mddev1,rdev,tmp)
1173                 if (match_dev_unit(mddev2, rdev))
1174                         return 1;
1175
1176         return 0;
1177 }
1178
1179 static LIST_HEAD(pending_raid_disks);
1180
1181 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1182 {
1183         mdk_rdev_t *same_pdev;
1184         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1185
1186         if (rdev->mddev) {
1187                 MD_BUG();
1188                 return -EINVAL;
1189         }
1190         same_pdev = match_dev_unit(mddev, rdev);
1191         if (same_pdev)
1192                 printk(KERN_WARNING
1193                         "%s: WARNING: %s appears to be on the same physical"
1194                         " disk as %s. True\n     protection against single-disk"
1195                         " failure might be compromised.\n",
1196                         mdname(mddev), bdevname(rdev->bdev,b),
1197                         bdevname(same_pdev->bdev,b2));
1198
1199         /* Verify rdev->desc_nr is unique.
1200          * If it is -1, assign a free number, else
1201          * check number is not in use
1202          */
1203         if (rdev->desc_nr < 0) {
1204                 int choice = 0;
1205                 if (mddev->pers) choice = mddev->raid_disks;
1206                 while (find_rdev_nr(mddev, choice))
1207                         choice++;
1208                 rdev->desc_nr = choice;
1209         } else {
1210                 if (find_rdev_nr(mddev, rdev->desc_nr))
1211                         return -EBUSY;
1212         }
1213         bdevname(rdev->bdev,b);
1214         if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1215                 return -ENOMEM;
1216                         
1217         list_add(&rdev->same_set, &mddev->disks);
1218         rdev->mddev = mddev;
1219         printk(KERN_INFO "md: bind<%s>\n", b);
1220
1221         rdev->kobj.parent = &mddev->kobj;
1222         kobject_add(&rdev->kobj);
1223
1224         sysfs_create_link(&rdev->kobj, &rdev->bdev->bd_disk->kobj, "block");
1225         return 0;
1226 }
1227
1228 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1229 {
1230         char b[BDEVNAME_SIZE];
1231         if (!rdev->mddev) {
1232                 MD_BUG();
1233                 return;
1234         }
1235         list_del_init(&rdev->same_set);
1236         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1237         rdev->mddev = NULL;
1238         sysfs_remove_link(&rdev->kobj, "block");
1239         kobject_del(&rdev->kobj);
1240 }
1241
1242 /*
1243  * prevent the device from being mounted, repartitioned or
1244  * otherwise reused by a RAID array (or any other kernel
1245  * subsystem), by bd_claiming the device.
1246  */
1247 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1248 {
1249         int err = 0;
1250         struct block_device *bdev;
1251         char b[BDEVNAME_SIZE];
1252
1253         bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1254         if (IS_ERR(bdev)) {
1255                 printk(KERN_ERR "md: could not open %s.\n",
1256                         __bdevname(dev, b));
1257                 return PTR_ERR(bdev);
1258         }
1259         err = bd_claim(bdev, rdev);
1260         if (err) {
1261                 printk(KERN_ERR "md: could not bd_claim %s.\n",
1262                         bdevname(bdev, b));
1263                 blkdev_put(bdev);
1264                 return err;
1265         }
1266         rdev->bdev = bdev;
1267         return err;
1268 }
1269
1270 static void unlock_rdev(mdk_rdev_t *rdev)
1271 {
1272         struct block_device *bdev = rdev->bdev;
1273         rdev->bdev = NULL;
1274         if (!bdev)
1275                 MD_BUG();
1276         bd_release(bdev);
1277         blkdev_put(bdev);
1278 }
1279
1280 void md_autodetect_dev(dev_t dev);
1281
1282 static void export_rdev(mdk_rdev_t * rdev)
1283 {
1284         char b[BDEVNAME_SIZE];
1285         printk(KERN_INFO "md: export_rdev(%s)\n",
1286                 bdevname(rdev->bdev,b));
1287         if (rdev->mddev)
1288                 MD_BUG();
1289         free_disk_sb(rdev);
1290         list_del_init(&rdev->same_set);
1291 #ifndef MODULE
1292         md_autodetect_dev(rdev->bdev->bd_dev);
1293 #endif
1294         unlock_rdev(rdev);
1295         kobject_put(&rdev->kobj);
1296 }
1297
1298 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1299 {
1300         unbind_rdev_from_array(rdev);
1301         export_rdev(rdev);
1302 }
1303
1304 static void export_array(mddev_t *mddev)
1305 {
1306         struct list_head *tmp;
1307         mdk_rdev_t *rdev;
1308
1309         ITERATE_RDEV(mddev,rdev,tmp) {
1310                 if (!rdev->mddev) {
1311                         MD_BUG();
1312                         continue;
1313                 }
1314                 kick_rdev_from_array(rdev);
1315         }
1316         if (!list_empty(&mddev->disks))
1317                 MD_BUG();
1318         mddev->raid_disks = 0;
1319         mddev->major_version = 0;
1320 }
1321
1322 static void print_desc(mdp_disk_t *desc)
1323 {
1324         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1325                 desc->major,desc->minor,desc->raid_disk,desc->state);
1326 }
1327
1328 static void print_sb(mdp_super_t *sb)
1329 {
1330         int i;
1331
1332         printk(KERN_INFO 
1333                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1334                 sb->major_version, sb->minor_version, sb->patch_version,
1335                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1336                 sb->ctime);
1337         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1338                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1339                 sb->md_minor, sb->layout, sb->chunk_size);
1340         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1341                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1342                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1343                 sb->failed_disks, sb->spare_disks,
1344                 sb->sb_csum, (unsigned long)sb->events_lo);
1345
1346         printk(KERN_INFO);
1347         for (i = 0; i < MD_SB_DISKS; i++) {
1348                 mdp_disk_t *desc;
1349
1350                 desc = sb->disks + i;
1351                 if (desc->number || desc->major || desc->minor ||
1352                     desc->raid_disk || (desc->state && (desc->state != 4))) {
1353                         printk("     D %2d: ", i);
1354                         print_desc(desc);
1355                 }
1356         }
1357         printk(KERN_INFO "md:     THIS: ");
1358         print_desc(&sb->this_disk);
1359
1360 }
1361
1362 static void print_rdev(mdk_rdev_t *rdev)
1363 {
1364         char b[BDEVNAME_SIZE];
1365         printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1366                 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1367                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1368                 rdev->desc_nr);
1369         if (rdev->sb_loaded) {
1370                 printk(KERN_INFO "md: rdev superblock:\n");
1371                 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1372         } else
1373                 printk(KERN_INFO "md: no rdev superblock!\n");
1374 }
1375
1376 void md_print_devices(void)
1377 {
1378         struct list_head *tmp, *tmp2;
1379         mdk_rdev_t *rdev;
1380         mddev_t *mddev;
1381         char b[BDEVNAME_SIZE];
1382
1383         printk("\n");
1384         printk("md:     **********************************\n");
1385         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
1386         printk("md:     **********************************\n");
1387         ITERATE_MDDEV(mddev,tmp) {
1388
1389                 if (mddev->bitmap)
1390                         bitmap_print_sb(mddev->bitmap);
1391                 else
1392                         printk("%s: ", mdname(mddev));
1393                 ITERATE_RDEV(mddev,rdev,tmp2)
1394                         printk("<%s>", bdevname(rdev->bdev,b));
1395                 printk("\n");
1396
1397                 ITERATE_RDEV(mddev,rdev,tmp2)
1398                         print_rdev(rdev);
1399         }
1400         printk("md:     **********************************\n");
1401         printk("\n");
1402 }
1403
1404
1405 static void sync_sbs(mddev_t * mddev)
1406 {
1407         mdk_rdev_t *rdev;
1408         struct list_head *tmp;
1409
1410         ITERATE_RDEV(mddev,rdev,tmp) {
1411                 super_types[mddev->major_version].
1412                         sync_super(mddev, rdev);
1413                 rdev->sb_loaded = 1;
1414         }
1415 }
1416
1417 static void md_update_sb(mddev_t * mddev)
1418 {
1419         int err;
1420         struct list_head *tmp;
1421         mdk_rdev_t *rdev;
1422         int sync_req;
1423
1424 repeat:
1425         spin_lock_irq(&mddev->write_lock);
1426         sync_req = mddev->in_sync;
1427         mddev->utime = get_seconds();
1428         mddev->events ++;
1429
1430         if (!mddev->events) {
1431                 /*
1432                  * oops, this 64-bit counter should never wrap.
1433                  * Either we are in around ~1 trillion A.C., assuming
1434                  * 1 reboot per second, or we have a bug:
1435                  */
1436                 MD_BUG();
1437                 mddev->events --;
1438         }
1439         mddev->sb_dirty = 2;
1440         sync_sbs(mddev);
1441
1442         /*
1443          * do not write anything to disk if using
1444          * nonpersistent superblocks
1445          */
1446         if (!mddev->persistent) {
1447                 mddev->sb_dirty = 0;
1448                 spin_unlock_irq(&mddev->write_lock);
1449                 wake_up(&mddev->sb_wait);
1450                 return;
1451         }
1452         spin_unlock_irq(&mddev->write_lock);
1453
1454         dprintk(KERN_INFO 
1455                 "md: updating %s RAID superblock on device (in sync %d)\n",
1456                 mdname(mddev),mddev->in_sync);
1457
1458         err = bitmap_update_sb(mddev->bitmap);
1459         ITERATE_RDEV(mddev,rdev,tmp) {
1460                 char b[BDEVNAME_SIZE];
1461                 dprintk(KERN_INFO "md: ");
1462                 if (test_bit(Faulty, &rdev->flags))
1463                         dprintk("(skipping faulty ");
1464
1465                 dprintk("%s ", bdevname(rdev->bdev,b));
1466                 if (!test_bit(Faulty, &rdev->flags)) {
1467                         md_super_write(mddev,rdev,
1468                                        rdev->sb_offset<<1, rdev->sb_size,
1469                                        rdev->sb_page);
1470                         dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1471                                 bdevname(rdev->bdev,b),
1472                                 (unsigned long long)rdev->sb_offset);
1473
1474                 } else
1475                         dprintk(")\n");
1476                 if (mddev->level == LEVEL_MULTIPATH)
1477                         /* only need to write one superblock... */
1478                         break;
1479         }
1480         md_super_wait(mddev);
1481         /* if there was a failure, sb_dirty was set to 1, and we re-write super */
1482
1483         spin_lock_irq(&mddev->write_lock);
1484         if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1485                 /* have to write it out again */
1486                 spin_unlock_irq(&mddev->write_lock);
1487                 goto repeat;
1488         }
1489         mddev->sb_dirty = 0;
1490         spin_unlock_irq(&mddev->write_lock);
1491         wake_up(&mddev->sb_wait);
1492
1493 }
1494
1495 struct rdev_sysfs_entry {
1496         struct attribute attr;
1497         ssize_t (*show)(mdk_rdev_t *, char *);
1498         ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1499 };
1500
1501 static ssize_t
1502 rdev_show_state(mdk_rdev_t *rdev, char *page)
1503 {
1504         char *sep = "";
1505         int len=0;
1506
1507         if (test_bit(Faulty, &rdev->flags)) {
1508                 len+= sprintf(page+len, "%sfaulty",sep);
1509                 sep = ",";
1510         }
1511         if (test_bit(In_sync, &rdev->flags)) {
1512                 len += sprintf(page+len, "%sin_sync",sep);
1513                 sep = ",";
1514         }
1515         if (!test_bit(Faulty, &rdev->flags) &&
1516             !test_bit(In_sync, &rdev->flags)) {
1517                 len += sprintf(page+len, "%sspare", sep);
1518                 sep = ",";
1519         }
1520         return len+sprintf(page+len, "\n");
1521 }
1522
1523 static struct rdev_sysfs_entry rdev_state = {
1524         .attr = {.name = "state", .mode = S_IRUGO },
1525         .show = rdev_show_state,
1526 };
1527
1528 static ssize_t
1529 rdev_show_super(mdk_rdev_t *rdev, char *page)
1530 {
1531         if (rdev->sb_loaded && rdev->sb_size) {
1532                 memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1533                 return rdev->sb_size;
1534         } else
1535                 return 0;
1536 }
1537 static struct rdev_sysfs_entry rdev_super = {
1538         .attr = {.name = "super", .mode = S_IRUGO },
1539         .show = rdev_show_super,
1540 };
1541 static struct attribute *rdev_default_attrs[] = {
1542         &rdev_state.attr,
1543         &rdev_super.attr,
1544         NULL,
1545 };
1546 static ssize_t
1547 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1548 {
1549         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1550         mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1551
1552         if (!entry->show)
1553                 return -EIO;
1554         return entry->show(rdev, page);
1555 }
1556
1557 static ssize_t
1558 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1559               const char *page, size_t length)
1560 {
1561         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1562         mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1563
1564         if (!entry->store)
1565                 return -EIO;
1566         return entry->store(rdev, page, length);
1567 }
1568
1569 static void rdev_free(struct kobject *ko)
1570 {
1571         mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1572         kfree(rdev);
1573 }
1574 static struct sysfs_ops rdev_sysfs_ops = {
1575         .show           = rdev_attr_show,
1576         .store          = rdev_attr_store,
1577 };
1578 static struct kobj_type rdev_ktype = {
1579         .release        = rdev_free,
1580         .sysfs_ops      = &rdev_sysfs_ops,
1581         .default_attrs  = rdev_default_attrs,
1582 };
1583
1584 /*
1585  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1586  *
1587  * mark the device faulty if:
1588  *
1589  *   - the device is nonexistent (zero size)
1590  *   - the device has no valid superblock
1591  *
1592  * a faulty rdev _never_ has rdev->sb set.
1593  */
1594 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1595 {
1596         char b[BDEVNAME_SIZE];
1597         int err;
1598         mdk_rdev_t *rdev;
1599         sector_t size;
1600
1601         rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
1602         if (!rdev) {
1603                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1604                 return ERR_PTR(-ENOMEM);
1605         }
1606         memset(rdev, 0, sizeof(*rdev));
1607
1608         if ((err = alloc_disk_sb(rdev)))
1609                 goto abort_free;
1610
1611         err = lock_rdev(rdev, newdev);
1612         if (err)
1613                 goto abort_free;
1614
1615         rdev->kobj.parent = NULL;
1616         rdev->kobj.ktype = &rdev_ktype;
1617         kobject_init(&rdev->kobj);
1618
1619         rdev->desc_nr = -1;
1620         rdev->flags = 0;
1621         rdev->data_offset = 0;
1622         atomic_set(&rdev->nr_pending, 0);
1623         atomic_set(&rdev->read_errors, 0);
1624
1625         size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1626         if (!size) {
1627                 printk(KERN_WARNING 
1628                         "md: %s has zero or unknown size, marking faulty!\n",
1629                         bdevname(rdev->bdev,b));
1630                 err = -EINVAL;
1631                 goto abort_free;
1632         }
1633
1634         if (super_format >= 0) {
1635                 err = super_types[super_format].
1636                         load_super(rdev, NULL, super_minor);
1637                 if (err == -EINVAL) {
1638                         printk(KERN_WARNING 
1639                                 "md: %s has invalid sb, not importing!\n",
1640                                 bdevname(rdev->bdev,b));
1641                         goto abort_free;
1642                 }
1643                 if (err < 0) {
1644                         printk(KERN_WARNING 
1645                                 "md: could not read %s's sb, not importing!\n",
1646                                 bdevname(rdev->bdev,b));
1647                         goto abort_free;
1648                 }
1649         }
1650         INIT_LIST_HEAD(&rdev->same_set);
1651
1652         return rdev;
1653
1654 abort_free:
1655         if (rdev->sb_page) {
1656                 if (rdev->bdev)
1657                         unlock_rdev(rdev);
1658                 free_disk_sb(rdev);
1659         }
1660         kfree(rdev);
1661         return ERR_PTR(err);
1662 }
1663
1664 /*
1665  * Check a full RAID array for plausibility
1666  */
1667
1668
1669 static void analyze_sbs(mddev_t * mddev)
1670 {
1671         int i;
1672         struct list_head *tmp;
1673         mdk_rdev_t *rdev, *freshest;
1674         char b[BDEVNAME_SIZE];
1675
1676         freshest = NULL;
1677         ITERATE_RDEV(mddev,rdev,tmp)
1678                 switch (super_types[mddev->major_version].
1679                         load_super(rdev, freshest, mddev->minor_version)) {
1680                 case 1:
1681                         freshest = rdev;
1682                         break;
1683                 case 0:
1684                         break;
1685                 default:
1686                         printk( KERN_ERR \
1687                                 "md: fatal superblock inconsistency in %s"
1688                                 " -- removing from array\n", 
1689                                 bdevname(rdev->bdev,b));
1690                         kick_rdev_from_array(rdev);
1691                 }
1692
1693
1694         super_types[mddev->major_version].
1695                 validate_super(mddev, freshest);
1696
1697         i = 0;
1698         ITERATE_RDEV(mddev,rdev,tmp) {
1699                 if (rdev != freshest)
1700                         if (super_types[mddev->major_version].
1701                             validate_super(mddev, rdev)) {
1702                                 printk(KERN_WARNING "md: kicking non-fresh %s"
1703                                         " from array!\n",
1704                                         bdevname(rdev->bdev,b));
1705                                 kick_rdev_from_array(rdev);
1706                                 continue;
1707                         }
1708                 if (mddev->level == LEVEL_MULTIPATH) {
1709                         rdev->desc_nr = i++;
1710                         rdev->raid_disk = rdev->desc_nr;
1711                         set_bit(In_sync, &rdev->flags);
1712                 }
1713         }
1714
1715
1716
1717         if (mddev->recovery_cp != MaxSector &&
1718             mddev->level >= 1)
1719                 printk(KERN_ERR "md: %s: raid array is not clean"
1720                        " -- starting background reconstruction\n",
1721                        mdname(mddev));
1722
1723 }
1724
1725 static ssize_t
1726 md_show_level(mddev_t *mddev, char *page)
1727 {
1728         mdk_personality_t *p = mddev->pers;
1729         if (p == NULL)
1730                 return 0;
1731         if (mddev->level >= 0)
1732                 return sprintf(page, "RAID-%d\n", mddev->level);
1733         else
1734                 return sprintf(page, "%s\n", p->name);
1735 }
1736
1737 static struct md_sysfs_entry md_level = {
1738         .attr = {.name = "level", .mode = S_IRUGO },
1739         .show = md_show_level,
1740 };
1741
1742 static ssize_t
1743 md_show_rdisks(mddev_t *mddev, char *page)
1744 {
1745         return sprintf(page, "%d\n", mddev->raid_disks);
1746 }
1747
1748 static struct md_sysfs_entry md_raid_disks = {
1749         .attr = {.name = "raid_disks", .mode = S_IRUGO },
1750         .show = md_show_rdisks,
1751 };
1752
1753 static ssize_t
1754 md_show_scan(mddev_t *mddev, char *page)
1755 {
1756         char *type = "none";
1757         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1758             test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
1759                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1760                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1761                                 type = "resync";
1762                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1763                                 type = "check";
1764                         else
1765                                 type = "repair";
1766                 } else
1767                         type = "recover";
1768         }
1769         return sprintf(page, "%s\n", type);
1770 }
1771
1772 static ssize_t
1773 md_store_scan(mddev_t *mddev, const char *page, size_t len)
1774 {
1775         int canscan=0;
1776
1777         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1778             test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
1779                 return -EBUSY;
1780         down(&mddev->reconfig_sem);
1781         if (mddev->pers && mddev->pers->sync_request)
1782                 canscan=1;
1783         up(&mddev->reconfig_sem);
1784         if (!canscan)
1785                 return -EINVAL;
1786
1787         if (strcmp(page, "check")==0 || strcmp(page, "check\n")==0)
1788                 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
1789         else if (strcmp(page, "repair")!=0 && strcmp(page, "repair\n")!=0)
1790                 return -EINVAL;
1791         set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
1792         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
1793         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1794         md_wakeup_thread(mddev->thread);
1795         return len;
1796 }
1797
1798 static ssize_t
1799 md_show_mismatch(mddev_t *mddev, char *page)
1800 {
1801         return sprintf(page, "%llu\n",
1802                        (unsigned long long) mddev->resync_mismatches);
1803 }
1804
1805 static struct md_sysfs_entry md_scan_mode = {
1806         .attr = {.name = "scan_mode", .mode = S_IRUGO|S_IWUSR },
1807         .show = md_show_scan,
1808         .store = md_store_scan,
1809 };
1810
1811 static struct md_sysfs_entry md_mismatches = {
1812         .attr = {.name = "mismatch_cnt", .mode = S_IRUGO },
1813         .show = md_show_mismatch,
1814 };
1815
1816 static struct attribute *md_default_attrs[] = {
1817         &md_level.attr,
1818         &md_raid_disks.attr,
1819         &md_scan_mode.attr,
1820         &md_mismatches.attr,
1821         NULL,
1822 };
1823
1824 static ssize_t
1825 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1826 {
1827         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1828         mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1829
1830         if (!entry->show)
1831                 return -EIO;
1832         return entry->show(mddev, page);
1833 }
1834
1835 static ssize_t
1836 md_attr_store(struct kobject *kobj, struct attribute *attr,
1837               const char *page, size_t length)
1838 {
1839         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1840         mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1841
1842         if (!entry->store)
1843                 return -EIO;
1844         return entry->store(mddev, page, length);
1845 }
1846
1847 static void md_free(struct kobject *ko)
1848 {
1849         mddev_t *mddev = container_of(ko, mddev_t, kobj);
1850         kfree(mddev);
1851 }
1852
1853 static struct sysfs_ops md_sysfs_ops = {
1854         .show   = md_attr_show,
1855         .store  = md_attr_store,
1856 };
1857 static struct kobj_type md_ktype = {
1858         .release        = md_free,
1859         .sysfs_ops      = &md_sysfs_ops,
1860         .default_attrs  = md_default_attrs,
1861 };
1862
1863 int mdp_major = 0;
1864
1865 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1866 {
1867         static DECLARE_MUTEX(disks_sem);
1868         mddev_t *mddev = mddev_find(dev);
1869         struct gendisk *disk;
1870         int partitioned = (MAJOR(dev) != MD_MAJOR);
1871         int shift = partitioned ? MdpMinorShift : 0;
1872         int unit = MINOR(dev) >> shift;
1873
1874         if (!mddev)
1875                 return NULL;
1876
1877         down(&disks_sem);
1878         if (mddev->gendisk) {
1879                 up(&disks_sem);
1880                 mddev_put(mddev);
1881                 return NULL;
1882         }
1883         disk = alloc_disk(1 << shift);
1884         if (!disk) {
1885                 up(&disks_sem);
1886                 mddev_put(mddev);
1887                 return NULL;
1888         }
1889         disk->major = MAJOR(dev);
1890         disk->first_minor = unit << shift;
1891         if (partitioned) {
1892                 sprintf(disk->disk_name, "md_d%d", unit);
1893                 sprintf(disk->devfs_name, "md/d%d", unit);
1894         } else {
1895                 sprintf(disk->disk_name, "md%d", unit);
1896                 sprintf(disk->devfs_name, "md/%d", unit);
1897         }
1898         disk->fops = &md_fops;
1899         disk->private_data = mddev;
1900         disk->queue = mddev->queue;
1901         add_disk(disk);
1902         mddev->gendisk = disk;
1903         up(&disks_sem);
1904         mddev->kobj.parent = &disk->kobj;
1905         mddev->kobj.k_name = NULL;
1906         snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
1907         mddev->kobj.ktype = &md_ktype;
1908         kobject_register(&mddev->kobj);
1909         return NULL;
1910 }
1911
1912 void md_wakeup_thread(mdk_thread_t *thread);
1913
1914 static void md_safemode_timeout(unsigned long data)
1915 {
1916         mddev_t *mddev = (mddev_t *) data;
1917
1918         mddev->safemode = 1;
1919         md_wakeup_thread(mddev->thread);
1920 }
1921
1922
1923 static int do_md_run(mddev_t * mddev)
1924 {
1925         int pnum, err;
1926         int chunk_size;
1927         struct list_head *tmp;
1928         mdk_rdev_t *rdev;
1929         struct gendisk *disk;
1930         char b[BDEVNAME_SIZE];
1931
1932         if (list_empty(&mddev->disks))
1933                 /* cannot run an array with no devices.. */
1934                 return -EINVAL;
1935
1936         if (mddev->pers)
1937                 return -EBUSY;
1938
1939         /*
1940          * Analyze all RAID superblock(s)
1941          */
1942         if (!mddev->raid_disks)
1943                 analyze_sbs(mddev);
1944
1945         chunk_size = mddev->chunk_size;
1946         pnum = level_to_pers(mddev->level);
1947
1948         if ((pnum != MULTIPATH) && (pnum != RAID1)) {
1949                 if (!chunk_size) {
1950                         /*
1951                          * 'default chunksize' in the old md code used to
1952                          * be PAGE_SIZE, baaad.
1953                          * we abort here to be on the safe side. We don't
1954                          * want to continue the bad practice.
1955                          */
1956                         printk(KERN_ERR 
1957                                 "no chunksize specified, see 'man raidtab'\n");
1958                         return -EINVAL;
1959                 }
1960                 if (chunk_size > MAX_CHUNK_SIZE) {
1961                         printk(KERN_ERR "too big chunk_size: %d > %d\n",
1962                                 chunk_size, MAX_CHUNK_SIZE);
1963                         return -EINVAL;
1964                 }
1965                 /*
1966                  * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
1967                  */
1968                 if ( (1 << ffz(~chunk_size)) != chunk_size) {
1969                         printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
1970                         return -EINVAL;
1971                 }
1972                 if (chunk_size < PAGE_SIZE) {
1973                         printk(KERN_ERR "too small chunk_size: %d < %ld\n",
1974                                 chunk_size, PAGE_SIZE);
1975                         return -EINVAL;
1976                 }
1977
1978                 /* devices must have minimum size of one chunk */
1979                 ITERATE_RDEV(mddev,rdev,tmp) {
1980                         if (test_bit(Faulty, &rdev->flags))
1981                                 continue;
1982                         if (rdev->size < chunk_size / 1024) {
1983                                 printk(KERN_WARNING
1984                                         "md: Dev %s smaller than chunk_size:"
1985                                         " %lluk < %dk\n",
1986                                         bdevname(rdev->bdev,b),
1987                                         (unsigned long long)rdev->size,
1988                                         chunk_size / 1024);
1989                                 return -EINVAL;
1990                         }
1991                 }
1992         }
1993
1994 #ifdef CONFIG_KMOD
1995         if (!pers[pnum])
1996         {
1997                 request_module("md-personality-%d", pnum);
1998         }
1999 #endif
2000
2001         /*
2002          * Drop all container device buffers, from now on
2003          * the only valid external interface is through the md
2004          * device.
2005          * Also find largest hardsector size
2006          */
2007         ITERATE_RDEV(mddev,rdev,tmp) {
2008                 if (test_bit(Faulty, &rdev->flags))
2009                         continue;
2010                 sync_blockdev(rdev->bdev);
2011                 invalidate_bdev(rdev->bdev, 0);
2012         }
2013
2014         md_probe(mddev->unit, NULL, NULL);
2015         disk = mddev->gendisk;
2016         if (!disk)
2017                 return -ENOMEM;
2018
2019         spin_lock(&pers_lock);
2020         if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
2021                 spin_unlock(&pers_lock);
2022                 printk(KERN_WARNING "md: personality %d is not loaded!\n",
2023                        pnum);
2024                 return -EINVAL;
2025         }
2026
2027         mddev->pers = pers[pnum];
2028         spin_unlock(&pers_lock);
2029
2030         mddev->recovery = 0;
2031         mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
2032         mddev->barriers_work = 1;
2033
2034         if (start_readonly)
2035                 mddev->ro = 2; /* read-only, but switch on first write */
2036
2037         /* before we start the array running, initialise the bitmap */
2038         err = bitmap_create(mddev);
2039         if (err)
2040                 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
2041                         mdname(mddev), err);
2042         else
2043                 err = mddev->pers->run(mddev);
2044         if (err) {
2045                 printk(KERN_ERR "md: pers->run() failed ...\n");
2046                 module_put(mddev->pers->owner);
2047                 mddev->pers = NULL;
2048                 bitmap_destroy(mddev);
2049                 return err;
2050         }
2051         atomic_set(&mddev->writes_pending,0);
2052         mddev->safemode = 0;
2053         mddev->safemode_timer.function = md_safemode_timeout;
2054         mddev->safemode_timer.data = (unsigned long) mddev;
2055         mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
2056         mddev->in_sync = 1;
2057
2058         ITERATE_RDEV(mddev,rdev,tmp)
2059                 if (rdev->raid_disk >= 0) {
2060                         char nm[20];
2061                         sprintf(nm, "rd%d", rdev->raid_disk);
2062                         sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2063                 }
2064         
2065         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2066         md_wakeup_thread(mddev->thread);
2067         
2068         if (mddev->sb_dirty)
2069                 md_update_sb(mddev);
2070
2071         set_capacity(disk, mddev->array_size<<1);
2072
2073         /* If we call blk_queue_make_request here, it will
2074          * re-initialise max_sectors etc which may have been
2075          * refined inside -> run.  So just set the bits we need to set.
2076          * Most initialisation happended when we called
2077          * blk_queue_make_request(..., md_fail_request)
2078          * earlier.
2079          */
2080         mddev->queue->queuedata = mddev;
2081         mddev->queue->make_request_fn = mddev->pers->make_request;
2082
2083         mddev->changed = 1;
2084         return 0;
2085 }
2086
2087 static int restart_array(mddev_t *mddev)
2088 {
2089         struct gendisk *disk = mddev->gendisk;
2090         int err;
2091
2092         /*
2093          * Complain if it has no devices
2094          */
2095         err = -ENXIO;
2096         if (list_empty(&mddev->disks))
2097                 goto out;
2098
2099         if (mddev->pers) {
2100                 err = -EBUSY;
2101                 if (!mddev->ro)
2102                         goto out;
2103
2104                 mddev->safemode = 0;
2105                 mddev->ro = 0;
2106                 set_disk_ro(disk, 0);
2107
2108                 printk(KERN_INFO "md: %s switched to read-write mode.\n",
2109                         mdname(mddev));
2110                 /*
2111                  * Kick recovery or resync if necessary
2112                  */
2113                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2114                 md_wakeup_thread(mddev->thread);
2115                 err = 0;
2116         } else {
2117                 printk(KERN_ERR "md: %s has no personality assigned.\n",
2118                         mdname(mddev));
2119                 err = -EINVAL;
2120         }
2121
2122 out:
2123         return err;
2124 }
2125
2126 static int do_md_stop(mddev_t * mddev, int ro)
2127 {
2128         int err = 0;
2129         struct gendisk *disk = mddev->gendisk;
2130
2131         if (mddev->pers) {
2132                 if (atomic_read(&mddev->active)>2) {
2133                         printk("md: %s still in use.\n",mdname(mddev));
2134                         return -EBUSY;
2135                 }
2136
2137                 if (mddev->sync_thread) {
2138                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2139                         md_unregister_thread(mddev->sync_thread);
2140                         mddev->sync_thread = NULL;
2141                 }
2142
2143                 del_timer_sync(&mddev->safemode_timer);
2144
2145                 invalidate_partition(disk, 0);
2146
2147                 if (ro) {
2148                         err  = -ENXIO;
2149                         if (mddev->ro==1)
2150                                 goto out;
2151                         mddev->ro = 1;
2152                 } else {
2153                         bitmap_flush(mddev);
2154                         md_super_wait(mddev);
2155                         if (mddev->ro)
2156                                 set_disk_ro(disk, 0);
2157                         blk_queue_make_request(mddev->queue, md_fail_request);
2158                         mddev->pers->stop(mddev);
2159                         module_put(mddev->pers->owner);
2160                         mddev->pers = NULL;
2161                         if (mddev->ro)
2162                                 mddev->ro = 0;
2163                 }
2164                 if (!mddev->in_sync) {
2165                         /* mark array as shutdown cleanly */
2166                         mddev->in_sync = 1;
2167                         md_update_sb(mddev);
2168                 }
2169                 if (ro)
2170                         set_disk_ro(disk, 1);
2171         }
2172
2173         bitmap_destroy(mddev);
2174         if (mddev->bitmap_file) {
2175                 atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2176                 fput(mddev->bitmap_file);
2177                 mddev->bitmap_file = NULL;
2178         }
2179         mddev->bitmap_offset = 0;
2180
2181         /*
2182          * Free resources if final stop
2183          */
2184         if (!ro) {
2185                 mdk_rdev_t *rdev;
2186                 struct list_head *tmp;
2187                 struct gendisk *disk;
2188                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2189
2190                 ITERATE_RDEV(mddev,rdev,tmp)
2191                         if (rdev->raid_disk >= 0) {
2192                                 char nm[20];
2193                                 sprintf(nm, "rd%d", rdev->raid_disk);
2194                                 sysfs_remove_link(&mddev->kobj, nm);
2195                         }
2196
2197                 export_array(mddev);
2198
2199                 mddev->array_size = 0;
2200                 disk = mddev->gendisk;
2201                 if (disk)
2202                         set_capacity(disk, 0);
2203                 mddev->changed = 1;
2204         } else
2205                 printk(KERN_INFO "md: %s switched to read-only mode.\n",
2206                         mdname(mddev));
2207         err = 0;
2208 out:
2209         return err;
2210 }
2211
2212 static void autorun_array(mddev_t *mddev)
2213 {
2214         mdk_rdev_t *rdev;
2215         struct list_head *tmp;
2216         int err;
2217
2218         if (list_empty(&mddev->disks))
2219                 return;
2220
2221         printk(KERN_INFO "md: running: ");
2222
2223         ITERATE_RDEV(mddev,rdev,tmp) {
2224                 char b[BDEVNAME_SIZE];
2225                 printk("<%s>", bdevname(rdev->bdev,b));
2226         }
2227         printk("\n");
2228
2229         err = do_md_run (mddev);
2230         if (err) {
2231                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2232                 do_md_stop (mddev, 0);
2233         }
2234 }
2235
2236 /*
2237  * lets try to run arrays based on all disks that have arrived
2238  * until now. (those are in pending_raid_disks)
2239  *
2240  * the method: pick the first pending disk, collect all disks with
2241  * the same UUID, remove all from the pending list and put them into
2242  * the 'same_array' list. Then order this list based on superblock
2243  * update time (freshest comes first), kick out 'old' disks and
2244  * compare superblocks. If everything's fine then run it.
2245  *
2246  * If "unit" is allocated, then bump its reference count
2247  */
2248 static void autorun_devices(int part)
2249 {
2250         struct list_head candidates;
2251         struct list_head *tmp;
2252         mdk_rdev_t *rdev0, *rdev;
2253         mddev_t *mddev;
2254         char b[BDEVNAME_SIZE];
2255
2256         printk(KERN_INFO "md: autorun ...\n");
2257         while (!list_empty(&pending_raid_disks)) {
2258                 dev_t dev;
2259                 rdev0 = list_entry(pending_raid_disks.next,
2260                                          mdk_rdev_t, same_set);
2261
2262                 printk(KERN_INFO "md: considering %s ...\n",
2263                         bdevname(rdev0->bdev,b));
2264                 INIT_LIST_HEAD(&candidates);
2265                 ITERATE_RDEV_PENDING(rdev,tmp)
2266                         if (super_90_load(rdev, rdev0, 0) >= 0) {
2267                                 printk(KERN_INFO "md:  adding %s ...\n",
2268                                         bdevname(rdev->bdev,b));
2269                                 list_move(&rdev->same_set, &candidates);
2270                         }
2271                 /*
2272                  * now we have a set of devices, with all of them having
2273                  * mostly sane superblocks. It's time to allocate the
2274                  * mddev.
2275                  */
2276                 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2277                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2278                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2279                         break;
2280                 }
2281                 if (part)
2282                         dev = MKDEV(mdp_major,
2283                                     rdev0->preferred_minor << MdpMinorShift);
2284                 else
2285                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2286
2287                 md_probe(dev, NULL, NULL);
2288                 mddev = mddev_find(dev);
2289                 if (!mddev) {
2290                         printk(KERN_ERR 
2291                                 "md: cannot allocate memory for md drive.\n");
2292                         break;
2293                 }
2294                 if (mddev_lock(mddev)) 
2295                         printk(KERN_WARNING "md: %s locked, cannot run\n",
2296                                mdname(mddev));
2297                 else if (mddev->raid_disks || mddev->major_version
2298                          || !list_empty(&mddev->disks)) {
2299                         printk(KERN_WARNING 
2300                                 "md: %s already running, cannot run %s\n",
2301                                 mdname(mddev), bdevname(rdev0->bdev,b));
2302                         mddev_unlock(mddev);
2303                 } else {
2304                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
2305                         ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
2306                                 list_del_init(&rdev->same_set);
2307                                 if (bind_rdev_to_array(rdev, mddev))
2308                                         export_rdev(rdev);
2309                         }
2310                         autorun_array(mddev);
2311                         mddev_unlock(mddev);
2312                 }
2313                 /* on success, candidates will be empty, on error
2314                  * it won't...
2315                  */
2316                 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
2317                         export_rdev(rdev);
2318                 mddev_put(mddev);
2319         }
2320         printk(KERN_INFO "md: ... autorun DONE.\n");
2321 }
2322
2323 /*
2324  * import RAID devices based on one partition
2325  * if possible, the array gets run as well.
2326  */
2327
2328 static int autostart_array(dev_t startdev)
2329 {
2330         char b[BDEVNAME_SIZE];
2331         int err = -EINVAL, i;
2332         mdp_super_t *sb = NULL;
2333         mdk_rdev_t *start_rdev = NULL, *rdev;
2334
2335         start_rdev = md_import_device(startdev, 0, 0);
2336         if (IS_ERR(start_rdev))
2337                 return err;
2338
2339
2340         /* NOTE: this can only work for 0.90.0 superblocks */
2341         sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2342         if (sb->major_version != 0 ||
2343             sb->minor_version != 90 ) {
2344                 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2345                 export_rdev(start_rdev);
2346                 return err;
2347         }
2348
2349         if (test_bit(Faulty, &start_rdev->flags)) {
2350                 printk(KERN_WARNING 
2351                         "md: can not autostart based on faulty %s!\n",
2352                         bdevname(start_rdev->bdev,b));
2353                 export_rdev(start_rdev);
2354                 return err;
2355         }
2356         list_add(&start_rdev->same_set, &pending_raid_disks);
2357
2358         for (i = 0; i < MD_SB_DISKS; i++) {
2359                 mdp_disk_t *desc = sb->disks + i;
2360                 dev_t dev = MKDEV(desc->major, desc->minor);
2361
2362                 if (!dev)
2363                         continue;
2364                 if (dev == startdev)
2365                         continue;
2366                 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2367                         continue;
2368                 rdev = md_import_device(dev, 0, 0);
2369                 if (IS_ERR(rdev))
2370                         continue;
2371
2372                 list_add(&rdev->same_set, &pending_raid_disks);
2373         }
2374
2375         /*
2376          * possibly return codes
2377          */
2378         autorun_devices(0);
2379         return 0;
2380
2381 }
2382
2383
2384 static int get_version(void __user * arg)
2385 {
2386         mdu_version_t ver;
2387
2388         ver.major = MD_MAJOR_VERSION;
2389         ver.minor = MD_MINOR_VERSION;
2390         ver.patchlevel = MD_PATCHLEVEL_VERSION;
2391
2392         if (copy_to_user(arg, &ver, sizeof(ver)))
2393                 return -EFAULT;
2394
2395         return 0;
2396 }
2397
2398 static int get_array_info(mddev_t * mddev, void __user * arg)
2399 {
2400         mdu_array_info_t info;
2401         int nr,working,active,failed,spare;
2402         mdk_rdev_t *rdev;
2403         struct list_head *tmp;
2404
2405         nr=working=active=failed=spare=0;
2406         ITERATE_RDEV(mddev,rdev,tmp) {
2407                 nr++;
2408                 if (test_bit(Faulty, &rdev->flags))
2409                         failed++;
2410                 else {
2411                         working++;
2412                         if (test_bit(In_sync, &rdev->flags))
2413                                 active++;       
2414                         else
2415                                 spare++;
2416                 }
2417         }
2418
2419         info.major_version = mddev->major_version;
2420         info.minor_version = mddev->minor_version;
2421         info.patch_version = MD_PATCHLEVEL_VERSION;
2422         info.ctime         = mddev->ctime;
2423         info.level         = mddev->level;
2424         info.size          = mddev->size;
2425         info.nr_disks      = nr;
2426         info.raid_disks    = mddev->raid_disks;
2427         info.md_minor      = mddev->md_minor;
2428         info.not_persistent= !mddev->persistent;
2429
2430         info.utime         = mddev->utime;
2431         info.state         = 0;
2432         if (mddev->in_sync)
2433                 info.state = (1<<MD_SB_CLEAN);
2434         if (mddev->bitmap && mddev->bitmap_offset)
2435                 info.state = (1<<MD_SB_BITMAP_PRESENT);
2436         info.active_disks  = active;
2437         info.working_disks = working;
2438         info.failed_disks  = failed;
2439         info.spare_disks   = spare;
2440
2441         info.layout        = mddev->layout;
2442         info.chunk_size    = mddev->chunk_size;
2443
2444         if (copy_to_user(arg, &info, sizeof(info)))
2445                 return -EFAULT;
2446
2447         return 0;
2448 }
2449
2450 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
2451 {
2452         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2453         char *ptr, *buf = NULL;
2454         int err = -ENOMEM;
2455
2456         file = kmalloc(sizeof(*file), GFP_KERNEL);
2457         if (!file)
2458                 goto out;
2459
2460         /* bitmap disabled, zero the first byte and copy out */
2461         if (!mddev->bitmap || !mddev->bitmap->file) {
2462                 file->pathname[0] = '\0';
2463                 goto copy_out;
2464         }
2465
2466         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2467         if (!buf)
2468                 goto out;
2469
2470         ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2471         if (!ptr)
2472                 goto out;
2473
2474         strcpy(file->pathname, ptr);
2475
2476 copy_out:
2477         err = 0;
2478         if (copy_to_user(arg, file, sizeof(*file)))
2479                 err = -EFAULT;
2480 out:
2481         kfree(buf);
2482         kfree(file);
2483         return err;
2484 }
2485
2486 static int get_disk_info(mddev_t * mddev, void __user * arg)
2487 {
2488         mdu_disk_info_t info;
2489         unsigned int nr;
2490         mdk_rdev_t *rdev;
2491
2492         if (copy_from_user(&info, arg, sizeof(info)))
2493                 return -EFAULT;
2494
2495         nr = info.number;
2496
2497         rdev = find_rdev_nr(mddev, nr);
2498         if (rdev) {
2499                 info.major = MAJOR(rdev->bdev->bd_dev);
2500                 info.minor = MINOR(rdev->bdev->bd_dev);
2501                 info.raid_disk = rdev->raid_disk;
2502                 info.state = 0;
2503                 if (test_bit(Faulty, &rdev->flags))
2504                         info.state |= (1<<MD_DISK_FAULTY);
2505                 else if (test_bit(In_sync, &rdev->flags)) {
2506                         info.state |= (1<<MD_DISK_ACTIVE);
2507                         info.state |= (1<<MD_DISK_SYNC);
2508                 }
2509                 if (test_bit(WriteMostly, &rdev->flags))
2510                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
2511         } else {
2512                 info.major = info.minor = 0;
2513                 info.raid_disk = -1;
2514                 info.state = (1<<MD_DISK_REMOVED);
2515         }
2516
2517         if (copy_to_user(arg, &info, sizeof(info)))
2518                 return -EFAULT;
2519
2520         return 0;
2521 }
2522
2523 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2524 {
2525         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2526         mdk_rdev_t *rdev;
2527         dev_t dev = MKDEV(info->major,info->minor);
2528
2529         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2530                 return -EOVERFLOW;
2531
2532         if (!mddev->raid_disks) {
2533                 int err;
2534                 /* expecting a device which has a superblock */
2535                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2536                 if (IS_ERR(rdev)) {
2537                         printk(KERN_WARNING 
2538                                 "md: md_import_device returned %ld\n",
2539                                 PTR_ERR(rdev));
2540                         return PTR_ERR(rdev);
2541                 }
2542                 if (!list_empty(&mddev->disks)) {
2543                         mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2544                                                         mdk_rdev_t, same_set);
2545                         int err = super_types[mddev->major_version]
2546                                 .load_super(rdev, rdev0, mddev->minor_version);
2547                         if (err < 0) {
2548                                 printk(KERN_WARNING 
2549                                         "md: %s has different UUID to %s\n",
2550                                         bdevname(rdev->bdev,b), 
2551                                         bdevname(rdev0->bdev,b2));
2552                                 export_rdev(rdev);
2553                                 return -EINVAL;
2554                         }
2555                 }
2556                 err = bind_rdev_to_array(rdev, mddev);
2557                 if (err)
2558                         export_rdev(rdev);
2559                 return err;
2560         }
2561
2562         /*
2563          * add_new_disk can be used once the array is assembled
2564          * to add "hot spares".  They must already have a superblock
2565          * written
2566          */
2567         if (mddev->pers) {
2568                 int err;
2569                 if (!mddev->pers->hot_add_disk) {
2570                         printk(KERN_WARNING 
2571                                 "%s: personality does not support diskops!\n",
2572                                mdname(mddev));
2573                         return -EINVAL;
2574                 }
2575                 if (mddev->persistent)
2576                         rdev = md_import_device(dev, mddev->major_version,
2577                                                 mddev->minor_version);
2578                 else
2579                         rdev = md_import_device(dev, -1, -1);
2580                 if (IS_ERR(rdev)) {
2581                         printk(KERN_WARNING 
2582                                 "md: md_import_device returned %ld\n",
2583                                 PTR_ERR(rdev));
2584                         return PTR_ERR(rdev);
2585                 }
2586                 /* set save_raid_disk if appropriate */
2587                 if (!mddev->persistent) {
2588                         if (info->state & (1<<MD_DISK_SYNC)  &&
2589                             info->raid_disk < mddev->raid_disks)
2590                                 rdev->raid_disk = info->raid_disk;
2591                         else
2592                                 rdev->raid_disk = -1;
2593                 } else
2594                         super_types[mddev->major_version].
2595                                 validate_super(mddev, rdev);
2596                 rdev->saved_raid_disk = rdev->raid_disk;
2597
2598                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
2599                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2600                         set_bit(WriteMostly, &rdev->flags);
2601
2602                 rdev->raid_disk = -1;
2603                 err = bind_rdev_to_array(rdev, mddev);
2604                 if (err)
2605                         export_rdev(rdev);
2606
2607                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2608                 md_wakeup_thread(mddev->thread);
2609                 return err;
2610         }
2611
2612         /* otherwise, add_new_disk is only allowed
2613          * for major_version==0 superblocks
2614          */
2615         if (mddev->major_version != 0) {
2616                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2617                        mdname(mddev));
2618                 return -EINVAL;
2619         }
2620
2621         if (!(info->state & (1<<MD_DISK_FAULTY))) {
2622                 int err;
2623                 rdev = md_import_device (dev, -1, 0);
2624                 if (IS_ERR(rdev)) {
2625                         printk(KERN_WARNING 
2626                                 "md: error, md_import_device() returned %ld\n",
2627                                 PTR_ERR(rdev));
2628                         return PTR_ERR(rdev);
2629                 }
2630                 rdev->desc_nr = info->number;
2631                 if (info->raid_disk < mddev->raid_disks)
2632                         rdev->raid_disk = info->raid_disk;
2633                 else
2634                         rdev->raid_disk = -1;
2635
2636                 rdev->flags = 0;
2637
2638                 if (rdev->raid_disk < mddev->raid_disks)
2639                         if (info->state & (1<<MD_DISK_SYNC))
2640                                 set_bit(In_sync, &rdev->flags);
2641
2642                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2643                         set_bit(WriteMostly, &rdev->flags);
2644
2645                 err = bind_rdev_to_array(rdev, mddev);
2646                 if (err) {
2647                         export_rdev(rdev);
2648                         return err;
2649                 }
2650
2651                 if (!mddev->persistent) {
2652                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
2653                         rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2654                 } else 
2655                         rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2656                 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2657
2658                 if (!mddev->size || (mddev->size > rdev->size))
2659                         mddev->size = rdev->size;
2660         }
2661
2662         return 0;
2663 }
2664
2665 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2666 {
2667         char b[BDEVNAME_SIZE];
2668         mdk_rdev_t *rdev;
2669
2670         if (!mddev->pers)
2671                 return -ENODEV;
2672
2673         rdev = find_rdev(mddev, dev);
2674         if (!rdev)
2675                 return -ENXIO;
2676
2677         if (rdev->raid_disk >= 0)
2678                 goto busy;
2679
2680         kick_rdev_from_array(rdev);
2681         md_update_sb(mddev);
2682
2683         return 0;
2684 busy:
2685         printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2686                 bdevname(rdev->bdev,b), mdname(mddev));
2687         return -EBUSY;
2688 }
2689
2690 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2691 {
2692         char b[BDEVNAME_SIZE];
2693         int err;
2694         unsigned int size;
2695         mdk_rdev_t *rdev;
2696
2697         if (!mddev->pers)
2698                 return -ENODEV;
2699
2700         if (mddev->major_version != 0) {
2701                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2702                         " version-0 superblocks.\n",
2703                         mdname(mddev));
2704                 return -EINVAL;
2705         }
2706         if (!mddev->pers->hot_add_disk) {
2707                 printk(KERN_WARNING 
2708                         "%s: personality does not support diskops!\n",
2709                         mdname(mddev));
2710                 return -EINVAL;
2711         }
2712
2713         rdev = md_import_device (dev, -1, 0);
2714         if (IS_ERR(rdev)) {
2715                 printk(KERN_WARNING 
2716                         "md: error, md_import_device() returned %ld\n",
2717                         PTR_ERR(rdev));
2718                 return -EINVAL;
2719         }
2720
2721         if (mddev->persistent)
2722                 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2723         else
2724                 rdev->sb_offset =
2725                         rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2726
2727         size = calc_dev_size(rdev, mddev->chunk_size);
2728         rdev->size = size;
2729
2730         if (size < mddev->size) {
2731                 printk(KERN_WARNING 
2732                         "%s: disk size %llu blocks < array size %llu\n",
2733                         mdname(mddev), (unsigned long long)size,
2734                         (unsigned long long)mddev->size);
2735                 err = -ENOSPC;
2736                 goto abort_export;
2737         }
2738
2739         if (test_bit(Faulty, &rdev->flags)) {
2740                 printk(KERN_WARNING 
2741                         "md: can not hot-add faulty %s disk to %s!\n",
2742                         bdevname(rdev->bdev,b), mdname(mddev));
2743                 err = -EINVAL;
2744                 goto abort_export;
2745         }
2746         clear_bit(In_sync, &rdev->flags);
2747         rdev->desc_nr = -1;
2748         bind_rdev_to_array(rdev, mddev);
2749
2750         /*
2751          * The rest should better be atomic, we can have disk failures
2752          * noticed in interrupt contexts ...
2753          */
2754
2755         if (rdev->desc_nr == mddev->max_disks) {
2756                 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2757                         mdname(mddev));
2758                 err = -EBUSY;
2759                 goto abort_unbind_export;
2760         }
2761
2762         rdev->raid_disk = -1;
2763
2764         md_update_sb(mddev);
2765
2766         /*
2767          * Kick recovery, maybe this spare has to be added to the
2768          * array immediately.
2769          */
2770         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2771         md_wakeup_thread(mddev->thread);
2772
2773         return 0;
2774
2775 abort_unbind_export:
2776         unbind_rdev_from_array(rdev);
2777
2778 abort_export:
2779         export_rdev(rdev);
2780         return err;
2781 }
2782
2783 /* similar to deny_write_access, but accounts for our holding a reference
2784  * to the file ourselves */
2785 static int deny_bitmap_write_access(struct file * file)
2786 {
2787         struct inode *inode = file->f_mapping->host;
2788
2789         spin_lock(&inode->i_lock);
2790         if (atomic_read(&inode->i_writecount) > 1) {
2791                 spin_unlock(&inode->i_lock);
2792                 return -ETXTBSY;
2793         }
2794         atomic_set(&inode->i_writecount, -1);
2795         spin_unlock(&inode->i_lock);
2796
2797         return 0;
2798 }
2799
2800 static int set_bitmap_file(mddev_t *mddev, int fd)
2801 {
2802         int err;
2803
2804         if (mddev->pers) {
2805                 if (!mddev->pers->quiesce)
2806                         return -EBUSY;
2807                 if (mddev->recovery || mddev->sync_thread)
2808                         return -EBUSY;
2809                 /* we should be able to change the bitmap.. */
2810         }
2811
2812
2813         if (fd >= 0) {
2814                 if (mddev->bitmap)
2815                         return -EEXIST; /* cannot add when bitmap is present */
2816                 mddev->bitmap_file = fget(fd);
2817
2818                 if (mddev->bitmap_file == NULL) {
2819                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2820                                mdname(mddev));
2821                         return -EBADF;
2822                 }
2823
2824                 err = deny_bitmap_write_access(mddev->bitmap_file);
2825                 if (err) {
2826                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2827                                mdname(mddev));
2828                         fput(mddev->bitmap_file);
2829                         mddev->bitmap_file = NULL;
2830                         return err;
2831                 }
2832                 mddev->bitmap_offset = 0; /* file overrides offset */
2833         } else if (mddev->bitmap == NULL)
2834                 return -ENOENT; /* cannot remove what isn't there */
2835         err = 0;
2836         if (mddev->pers) {
2837                 mddev->pers->quiesce(mddev, 1);
2838                 if (fd >= 0)
2839                         err = bitmap_create(mddev);
2840                 if (fd < 0 || err)
2841                         bitmap_destroy(mddev);
2842                 mddev->pers->quiesce(mddev, 0);
2843         } else if (fd < 0) {
2844                 if (mddev->bitmap_file)
2845                         fput(mddev->bitmap_file);
2846                 mddev->bitmap_file = NULL;
2847         }
2848
2849         return err;
2850 }
2851
2852 /*
2853  * set_array_info is used two different ways
2854  * The original usage is when creating a new array.
2855  * In this usage, raid_disks is > 0 and it together with
2856  *  level, size, not_persistent,layout,chunksize determine the
2857  *  shape of the array.
2858  *  This will always create an array with a type-0.90.0 superblock.
2859  * The newer usage is when assembling an array.
2860  *  In this case raid_disks will be 0, and the major_version field is
2861  *  use to determine which style super-blocks are to be found on the devices.
2862  *  The minor and patch _version numbers are also kept incase the
2863  *  super_block handler wishes to interpret them.
2864  */
2865 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2866 {
2867
2868         if (info->raid_disks == 0) {
2869                 /* just setting version number for superblock loading */
2870                 if (info->major_version < 0 ||
2871                     info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2872                     super_types[info->major_version].name == NULL) {
2873                         /* maybe try to auto-load a module? */
2874                         printk(KERN_INFO 
2875                                 "md: superblock version %d not known\n",
2876                                 info->major_version);
2877                         return -EINVAL;
2878                 }
2879                 mddev->major_version = info->major_version;
2880                 mddev->minor_version = info->minor_version;
2881                 mddev->patch_version = info->patch_version;
2882                 return 0;
2883         }
2884         mddev->major_version = MD_MAJOR_VERSION;
2885         mddev->minor_version = MD_MINOR_VERSION;
2886         mddev->patch_version = MD_PATCHLEVEL_VERSION;
2887         mddev->ctime         = get_seconds();
2888
2889         mddev->level         = info->level;
2890         mddev->size          = info->size;
2891         mddev->raid_disks    = info->raid_disks;
2892         /* don't set md_minor, it is determined by which /dev/md* was
2893          * openned
2894          */
2895         if (info->state & (1<<MD_SB_CLEAN))
2896                 mddev->recovery_cp = MaxSector;
2897         else
2898                 mddev->recovery_cp = 0;
2899         mddev->persistent    = ! info->not_persistent;
2900
2901         mddev->layout        = info->layout;
2902         mddev->chunk_size    = info->chunk_size;
2903
2904         mddev->max_disks     = MD_SB_DISKS;
2905
2906         mddev->sb_dirty      = 1;
2907
2908         /*
2909          * Generate a 128 bit UUID
2910          */
2911         get_random_bytes(mddev->uuid, 16);
2912
2913         return 0;
2914 }
2915
2916 /*
2917  * update_array_info is used to change the configuration of an
2918  * on-line array.
2919  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2920  * fields in the info are checked against the array.
2921  * Any differences that cannot be handled will cause an error.
2922  * Normally, only one change can be managed at a time.
2923  */
2924 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2925 {
2926         int rv = 0;
2927         int cnt = 0;
2928         int state = 0;
2929
2930         /* calculate expected state,ignoring low bits */
2931         if (mddev->bitmap && mddev->bitmap_offset)
2932                 state |= (1 << MD_SB_BITMAP_PRESENT);
2933
2934         if (mddev->major_version != info->major_version ||
2935             mddev->minor_version != info->minor_version ||
2936 /*          mddev->patch_version != info->patch_version || */
2937             mddev->ctime         != info->ctime         ||
2938             mddev->level         != info->level         ||
2939 /*          mddev->layout        != info->layout        || */
2940             !mddev->persistent   != info->not_persistent||
2941             mddev->chunk_size    != info->chunk_size    ||
2942             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
2943             ((state^info->state) & 0xfffffe00)
2944                 )
2945                 return -EINVAL;
2946         /* Check there is only one change */
2947         if (mddev->size != info->size) cnt++;
2948         if (mddev->raid_disks != info->raid_disks) cnt++;
2949         if (mddev->layout != info->layout) cnt++;
2950         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
2951         if (cnt == 0) return 0;
2952         if (cnt > 1) return -EINVAL;
2953
2954         if (mddev->layout != info->layout) {
2955                 /* Change layout
2956                  * we don't need to do anything at the md level, the
2957                  * personality will take care of it all.
2958                  */
2959                 if (mddev->pers->reconfig == NULL)
2960                         return -EINVAL;
2961                 else
2962                         return mddev->pers->reconfig(mddev, info->layout, -1);
2963         }
2964         if (mddev->size != info->size) {
2965                 mdk_rdev_t * rdev;
2966                 struct list_head *tmp;
2967                 if (mddev->pers->resize == NULL)
2968                         return -EINVAL;
2969                 /* The "size" is the amount of each device that is used.
2970                  * This can only make sense for arrays with redundancy.
2971                  * linear and raid0 always use whatever space is available
2972                  * We can only consider changing the size if no resync
2973                  * or reconstruction is happening, and if the new size
2974                  * is acceptable. It must fit before the sb_offset or,
2975                  * if that is <data_offset, it must fit before the
2976                  * size of each device.
2977                  * If size is zero, we find the largest size that fits.
2978                  */
2979                 if (mddev->sync_thread)
2980                         return -EBUSY;
2981                 ITERATE_RDEV(mddev,rdev,tmp) {
2982                         sector_t avail;
2983                         int fit = (info->size == 0);
2984                         if (rdev->sb_offset > rdev->data_offset)
2985                                 avail = (rdev->sb_offset*2) - rdev->data_offset;
2986                         else
2987                                 avail = get_capacity(rdev->bdev->bd_disk)
2988                                         - rdev->data_offset;
2989                         if (fit && (info->size == 0 || info->size > avail/2))
2990                                 info->size = avail/2;
2991                         if (avail < ((sector_t)info->size << 1))
2992                                 return -ENOSPC;
2993                 }
2994                 rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
2995                 if (!rv) {
2996                         struct block_device *bdev;
2997
2998                         bdev = bdget_disk(mddev->gendisk, 0);
2999                         if (bdev) {
3000                                 down(&bdev->bd_inode->i_sem);
3001                                 i_size_write(bdev->bd_inode, mddev->array_size << 10);
3002                                 up(&bdev->bd_inode->i_sem);
3003                                 bdput(bdev);
3004                         }
3005                 }
3006         }
3007         if (mddev->raid_disks    != info->raid_disks) {
3008                 /* change the number of raid disks */
3009                 if (mddev->pers->reshape == NULL)
3010                         return -EINVAL;
3011                 if (info->raid_disks <= 0 ||
3012                     info->raid_disks >= mddev->max_disks)
3013                         return -EINVAL;
3014                 if (mddev->sync_thread)
3015                         return -EBUSY;
3016                 rv = mddev->pers->reshape(mddev, info->raid_disks);
3017                 if (!rv) {
3018                         struct block_device *bdev;
3019
3020                         bdev = bdget_disk(mddev->gendisk, 0);
3021                         if (bdev) {
3022                                 down(&bdev->bd_inode->i_sem);
3023                                 i_size_write(bdev->bd_inode, mddev->array_size << 10);
3024                                 up(&bdev->bd_inode->i_sem);
3025                                 bdput(bdev);
3026                         }
3027                 }
3028         }
3029         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
3030                 if (mddev->pers->quiesce == NULL)
3031                         return -EINVAL;
3032                 if (mddev->recovery || mddev->sync_thread)
3033                         return -EBUSY;
3034                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
3035                         /* add the bitmap */
3036                         if (mddev->bitmap)
3037                                 return -EEXIST;
3038                         if (mddev->default_bitmap_offset == 0)
3039                                 return -EINVAL;
3040                         mddev->bitmap_offset = mddev->default_bitmap_offset;
3041                         mddev->pers->quiesce(mddev, 1);
3042                         rv = bitmap_create(mddev);
3043                         if (rv)
3044                                 bitmap_destroy(mddev);
3045                         mddev->pers->quiesce(mddev, 0);
3046                 } else {
3047                         /* remove the bitmap */
3048                         if (!mddev->bitmap)
3049                                 return -ENOENT;
3050                         if (mddev->bitmap->file)
3051                                 return -EINVAL;
3052                         mddev->pers->quiesce(mddev, 1);
3053                         bitmap_destroy(mddev);
3054                         mddev->pers->quiesce(mddev, 0);
3055                         mddev->bitmap_offset = 0;
3056                 }
3057         }
3058         md_update_sb(mddev);
3059         return rv;
3060 }
3061
3062 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
3063 {
3064         mdk_rdev_t *rdev;
3065
3066         if (mddev->pers == NULL)
3067                 return -ENODEV;
3068
3069         rdev = find_rdev(mddev, dev);
3070         if (!rdev)
3071                 return -ENODEV;
3072
3073         md_error(mddev, rdev);
3074         return 0;
3075 }
3076
3077 static int md_ioctl(struct inode *inode, struct file *file,
3078                         unsigned int cmd, unsigned long arg)
3079 {
3080         int err = 0;
3081         void __user *argp = (void __user *)arg;
3082         struct hd_geometry __user *loc = argp;
3083         mddev_t *mddev = NULL;
3084
3085         if (!capable(CAP_SYS_ADMIN))
3086                 return -EACCES;
3087
3088         /*
3089          * Commands dealing with the RAID driver but not any
3090          * particular array:
3091          */
3092         switch (cmd)
3093         {
3094                 case RAID_VERSION:
3095                         err = get_version(argp);
3096                         goto done;
3097
3098                 case PRINT_RAID_DEBUG:
3099                         err = 0;
3100                         md_print_devices();
3101                         goto done;
3102
3103 #ifndef MODULE
3104                 case RAID_AUTORUN:
3105                         err = 0;
3106                         autostart_arrays(arg);
3107                         goto done;
3108 #endif
3109                 default:;
3110         }
3111
3112         /*
3113          * Commands creating/starting a new array:
3114          */
3115
3116         mddev = inode->i_bdev->bd_disk->private_data;
3117
3118         if (!mddev) {
3119                 BUG();
3120                 goto abort;
3121         }
3122
3123
3124         if (cmd == START_ARRAY) {
3125                 /* START_ARRAY doesn't need to lock the array as autostart_array
3126                  * does the locking, and it could even be a different array
3127                  */
3128                 static int cnt = 3;
3129                 if (cnt > 0 ) {
3130                         printk(KERN_WARNING
3131                                "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3132                                "This will not be supported beyond 2.6\n",
3133                                current->comm, current->pid);
3134                         cnt--;
3135                 }
3136                 err = autostart_array(new_decode_dev(arg));
3137                 if (err) {
3138                         printk(KERN_WARNING "md: autostart failed!\n");
3139                         goto abort;
3140                 }
3141                 goto done;
3142         }
3143
3144         err = mddev_lock(mddev);
3145         if (err) {
3146                 printk(KERN_INFO 
3147                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
3148                         err, cmd);
3149                 goto abort;
3150         }
3151
3152         switch (cmd)
3153         {
3154                 case SET_ARRAY_INFO:
3155                         {
3156                                 mdu_array_info_t info;
3157                                 if (!arg)
3158                                         memset(&info, 0, sizeof(info));
3159                                 else if (copy_from_user(&info, argp, sizeof(info))) {
3160                                         err = -EFAULT;
3161                                         goto abort_unlock;
3162                                 }
3163                                 if (mddev->pers) {
3164                                         err = update_array_info(mddev, &info);
3165                                         if (err) {
3166                                                 printk(KERN_WARNING "md: couldn't update"
3167                                                        " array info. %d\n", err);
3168                                                 goto abort_unlock;
3169                                         }
3170                                         goto done_unlock;
3171                                 }
3172                                 if (!list_empty(&mddev->disks)) {
3173                                         printk(KERN_WARNING
3174                                                "md: array %s already has disks!\n",
3175                                                mdname(mddev));
3176                                         err = -EBUSY;
3177                                         goto abort_unlock;
3178                                 }
3179                                 if (mddev->raid_disks) {
3180                                         printk(KERN_WARNING
3181                                                "md: array %s already initialised!\n",
3182                                                mdname(mddev));
3183                                         err = -EBUSY;
3184                                         goto abort_unlock;
3185                                 }
3186                                 err = set_array_info(mddev, &info);
3187                                 if (err) {
3188                                         printk(KERN_WARNING "md: couldn't set"
3189                                                " array info. %d\n", err);
3190                                         goto abort_unlock;
3191                                 }
3192                         }
3193                         goto done_unlock;
3194
3195                 default:;
3196         }
3197
3198         /*
3199          * Commands querying/configuring an existing array:
3200          */
3201         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3202          * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3203         if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3204                         && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
3205                 err = -ENODEV;
3206                 goto abort_unlock;
3207         }
3208
3209         /*
3210          * Commands even a read-only array can execute:
3211          */
3212         switch (cmd)
3213         {
3214                 case GET_ARRAY_INFO:
3215                         err = get_array_info(mddev, argp);
3216                         goto done_unlock;
3217
3218                 case GET_BITMAP_FILE:
3219                         err = get_bitmap_file(mddev, argp);
3220                         goto done_unlock;
3221
3222                 case GET_DISK_INFO:
3223                         err = get_disk_info(mddev, argp);
3224                         goto done_unlock;
3225
3226                 case RESTART_ARRAY_RW:
3227                         err = restart_array(mddev);
3228                         goto done_unlock;
3229
3230                 case STOP_ARRAY:
3231                         err = do_md_stop (mddev, 0);
3232                         goto done_unlock;
3233
3234                 case STOP_ARRAY_RO:
3235                         err = do_md_stop (mddev, 1);
3236                         goto done_unlock;
3237
3238         /*
3239          * We have a problem here : there is no easy way to give a CHS
3240          * virtual geometry. We currently pretend that we have a 2 heads
3241          * 4 sectors (with a BIG number of cylinders...). This drives
3242          * dosfs just mad... ;-)
3243          */
3244                 case HDIO_GETGEO:
3245                         if (!loc) {
3246                                 err = -EINVAL;
3247                                 goto abort_unlock;
3248                         }
3249                         err = put_user (2, (char __user *) &loc->heads);
3250                         if (err)
3251                                 goto abort_unlock;
3252                         err = put_user (4, (char __user *) &loc->sectors);
3253                         if (err)
3254                                 goto abort_unlock;
3255                         err = put_user(get_capacity(mddev->gendisk)/8,
3256                                         (short __user *) &loc->cylinders);
3257                         if (err)
3258                                 goto abort_unlock;
3259                         err = put_user (get_start_sect(inode->i_bdev),
3260                                                 (long __user *) &loc->start);
3261                         goto done_unlock;
3262         }
3263
3264         /*
3265          * The remaining ioctls are changing the state of the
3266          * superblock, so we do not allow them on read-only arrays.
3267          * However non-MD ioctls (e.g. get-size) will still come through
3268          * here and hit the 'default' below, so only disallow
3269          * 'md' ioctls, and switch to rw mode if started auto-readonly.
3270          */
3271         if (_IOC_TYPE(cmd) == MD_MAJOR &&
3272             mddev->ro && mddev->pers) {
3273                 if (mddev->ro == 2) {
3274                         mddev->ro = 0;
3275                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3276                 md_wakeup_thread(mddev->thread);
3277
3278                 } else {
3279                         err = -EROFS;
3280                         goto abort_unlock;
3281                 }
3282         }
3283
3284         switch (cmd)
3285         {
3286                 case ADD_NEW_DISK:
3287                 {
3288                         mdu_disk_info_t info;
3289                         if (copy_from_user(&info, argp, sizeof(info)))
3290                                 err = -EFAULT;
3291                         else
3292                                 err = add_new_disk(mddev, &info);
3293                         goto done_unlock;
3294                 }
3295
3296                 case HOT_REMOVE_DISK:
3297                         err = hot_remove_disk(mddev, new_decode_dev(arg));
3298                         goto done_unlock;
3299
3300                 case HOT_ADD_DISK:
3301                         err = hot_add_disk(mddev, new_decode_dev(arg));
3302                         goto done_unlock;
3303
3304                 case SET_DISK_FAULTY:
3305                         err = set_disk_faulty(mddev, new_decode_dev(arg));
3306                         goto done_unlock;
3307
3308                 case RUN_ARRAY:
3309                         err = do_md_run (mddev);
3310                         goto done_unlock;
3311
3312                 case SET_BITMAP_FILE:
3313                         err = set_bitmap_file(mddev, (int)arg);
3314                         goto done_unlock;
3315
3316                 default:
3317                         if (_IOC_TYPE(cmd) == MD_MAJOR)
3318                                 printk(KERN_WARNING "md: %s(pid %d) used"
3319                                         " obsolete MD ioctl, upgrade your"
3320                                         " software to use new ictls.\n",
3321                                         current->comm, current->pid);
3322                         err = -EINVAL;
3323                         goto abort_unlock;
3324         }
3325
3326 done_unlock:
3327 abort_unlock:
3328         mddev_unlock(mddev);
3329
3330         return err;
3331 done:
3332         if (err)
3333                 MD_BUG();
3334 abort:
3335         return err;
3336 }
3337
3338 static int md_open(struct inode *inode, struct file *file)
3339 {
3340         /*
3341          * Succeed if we can lock the mddev, which confirms that
3342          * it isn't being stopped right now.
3343          */
3344         mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3345         int err;
3346
3347         if ((err = mddev_lock(mddev)))
3348                 goto out;
3349
3350         err = 0;
3351         mddev_get(mddev);
3352         mddev_unlock(mddev);
3353
3354         check_disk_change(inode->i_bdev);
3355  out:
3356         return err;
3357 }
3358
3359 static int md_release(struct inode *inode, struct file * file)
3360 {
3361         mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3362
3363         if (!mddev)
3364                 BUG();
3365         mddev_put(mddev);
3366
3367         return 0;
3368 }
3369
3370 static int md_media_changed(struct gendisk *disk)
3371 {
3372         mddev_t *mddev = disk->private_data;
3373
3374         return mddev->changed;
3375 }
3376
3377 static int md_revalidate(struct gendisk *disk)
3378 {
3379         mddev_t *mddev = disk->private_data;
3380
3381         mddev->changed = 0;
3382         return 0;
3383 }
3384 static struct block_device_operations md_fops =
3385 {
3386         .owner          = THIS_MODULE,
3387         .open           = md_open,
3388         .release        = md_release,
3389         .ioctl          = md_ioctl,
3390         .media_changed  = md_media_changed,
3391         .revalidate_disk= md_revalidate,
3392 };
3393
3394 static int md_thread(void * arg)
3395 {
3396         mdk_thread_t *thread = arg;
3397
3398         /*
3399          * md_thread is a 'system-thread', it's priority should be very
3400          * high. We avoid resource deadlocks individually in each
3401          * raid personality. (RAID5 does preallocation) We also use RR and
3402          * the very same RT priority as kswapd, thus we will never get
3403          * into a priority inversion deadlock.
3404          *
3405          * we definitely have to have equal or higher priority than
3406          * bdflush, otherwise bdflush will deadlock if there are too
3407          * many dirty RAID5 blocks.
3408          */
3409
3410         allow_signal(SIGKILL);
3411         complete(thread->event);
3412         while (!kthread_should_stop()) {
3413                 void (*run)(mddev_t *);
3414
3415                 wait_event_interruptible_timeout(thread->wqueue,
3416                                                  test_bit(THREAD_WAKEUP, &thread->flags)
3417                                                  || kthread_should_stop(),
3418                                                  thread->timeout);
3419                 try_to_freeze();
3420
3421                 clear_bit(THREAD_WAKEUP, &thread->flags);
3422
3423                 run = thread->run;
3424                 if (run)
3425                         run(thread->mddev);
3426         }
3427
3428         return 0;
3429 }
3430
3431 void md_wakeup_thread(mdk_thread_t *thread)
3432 {
3433         if (thread) {
3434                 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3435                 set_bit(THREAD_WAKEUP, &thread->flags);
3436                 wake_up(&thread->wqueue);
3437         }
3438 }
3439
3440 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3441                                  const char *name)
3442 {
3443         mdk_thread_t *thread;
3444         struct completion event;
3445
3446         thread = kmalloc(sizeof(mdk_thread_t), GFP_KERNEL);
3447         if (!thread)
3448                 return NULL;
3449
3450         memset(thread, 0, sizeof(mdk_thread_t));
3451         init_waitqueue_head(&thread->wqueue);
3452
3453         init_completion(&event);
3454         thread->event = &event;
3455         thread->run = run;
3456         thread->mddev = mddev;
3457         thread->name = name;
3458         thread->timeout = MAX_SCHEDULE_TIMEOUT;
3459         thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
3460         if (IS_ERR(thread->tsk)) {
3461                 kfree(thread);
3462                 return NULL;
3463         }
3464         wait_for_completion(&event);
3465         return thread;
3466 }
3467
3468 void md_unregister_thread(mdk_thread_t *thread)
3469 {
3470         dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3471
3472         kthread_stop(thread->tsk);
3473         kfree(thread);
3474 }
3475
3476 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3477 {
3478         if (!mddev) {
3479                 MD_BUG();
3480                 return;
3481         }
3482
3483         if (!rdev || test_bit(Faulty, &rdev->flags))
3484                 return;
3485 /*
3486         dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3487                 mdname(mddev),
3488                 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3489                 __builtin_return_address(0),__builtin_return_address(1),
3490                 __builtin_return_address(2),__builtin_return_address(3));
3491 */
3492         if (!mddev->pers->error_handler)
3493                 return;
3494         mddev->pers->error_handler(mddev,rdev);
3495         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3496         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3497         md_wakeup_thread(mddev->thread);
3498 }
3499
3500 /* seq_file implementation /proc/mdstat */
3501
3502 static void status_unused(struct seq_file *seq)
3503 {
3504         int i = 0;
3505         mdk_rdev_t *rdev;
3506         struct list_head *tmp;
3507
3508         seq_printf(seq, "unused devices: ");
3509
3510         ITERATE_RDEV_PENDING(rdev,tmp) {
3511                 char b[BDEVNAME_SIZE];
3512                 i++;
3513                 seq_printf(seq, "%s ",
3514                               bdevname(rdev->bdev,b));
3515         }
3516         if (!i)
3517                 seq_printf(seq, "<none>");
3518
3519         seq_printf(seq, "\n");
3520 }
3521
3522
3523 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3524 {
3525         unsigned long max_blocks, resync, res, dt, db, rt;
3526
3527         resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3528
3529         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3530                 max_blocks = mddev->resync_max_sectors >> 1;
3531         else
3532                 max_blocks = mddev->size;
3533
3534         /*
3535          * Should not happen.
3536          */
3537         if (!max_blocks) {
3538                 MD_BUG();
3539                 return;
3540         }
3541         res = (resync/1024)*1000/(max_blocks/1024 + 1);
3542         {
3543                 int i, x = res/50, y = 20-x;
3544                 seq_printf(seq, "[");
3545                 for (i = 0; i < x; i++)
3546                         seq_printf(seq, "=");
3547                 seq_printf(seq, ">");
3548                 for (i = 0; i < y; i++)
3549                         seq_printf(seq, ".");
3550                 seq_printf(seq, "] ");
3551         }
3552         seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3553                       (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3554                        "resync" : "recovery"),
3555                       res/10, res % 10, resync, max_blocks);
3556
3557         /*
3558          * We do not want to overflow, so the order of operands and
3559          * the * 100 / 100 trick are important. We do a +1 to be
3560          * safe against division by zero. We only estimate anyway.
3561          *
3562          * dt: time from mark until now
3563          * db: blocks written from mark until now
3564          * rt: remaining time
3565          */
3566         dt = ((jiffies - mddev->resync_mark) / HZ);
3567         if (!dt) dt++;
3568         db = resync - (mddev->resync_mark_cnt/2);
3569         rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3570
3571         seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3572
3573         seq_printf(seq, " speed=%ldK/sec", db/dt);
3574 }
3575
3576 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3577 {
3578         struct list_head *tmp;
3579         loff_t l = *pos;
3580         mddev_t *mddev;
3581
3582         if (l >= 0x10000)
3583                 return NULL;
3584         if (!l--)
3585                 /* header */
3586                 return (void*)1;
3587
3588         spin_lock(&all_mddevs_lock);
3589         list_for_each(tmp,&all_mddevs)
3590                 if (!l--) {
3591                         mddev = list_entry(tmp, mddev_t, all_mddevs);
3592                         mddev_get(mddev);
3593                         spin_unlock(&all_mddevs_lock);
3594                         return mddev;
3595                 }
3596         spin_unlock(&all_mddevs_lock);
3597         if (!l--)
3598                 return (void*)2;/* tail */
3599         return NULL;
3600 }
3601
3602 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3603 {
3604         struct list_head *tmp;
3605         mddev_t *next_mddev, *mddev = v;
3606         
3607         ++*pos;
3608         if (v == (void*)2)
3609                 return NULL;
3610
3611         spin_lock(&all_mddevs_lock);
3612         if (v == (void*)1)
3613                 tmp = all_mddevs.next;
3614         else
3615                 tmp = mddev->all_mddevs.next;
3616         if (tmp != &all_mddevs)
3617                 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3618         else {
3619                 next_mddev = (void*)2;
3620                 *pos = 0x10000;
3621         }               
3622         spin_unlock(&all_mddevs_lock);
3623
3624         if (v != (void*)1)
3625                 mddev_put(mddev);
3626         return next_mddev;
3627
3628 }
3629
3630 static void md_seq_stop(struct seq_file *seq, void *v)
3631 {
3632         mddev_t *mddev = v;
3633
3634         if (mddev && v != (void*)1 && v != (void*)2)
3635                 mddev_put(mddev);
3636 }
3637
3638 static int md_seq_show(struct seq_file *seq, void *v)
3639 {
3640         mddev_t *mddev = v;
3641         sector_t size;
3642         struct list_head *tmp2;
3643         mdk_rdev_t *rdev;
3644         int i;
3645         struct bitmap *bitmap;
3646
3647         if (v == (void*)1) {
3648                 seq_printf(seq, "Personalities : ");
3649                 spin_lock(&pers_lock);
3650                 for (i = 0; i < MAX_PERSONALITY; i++)
3651                         if (pers[i])
3652                                 seq_printf(seq, "[%s] ", pers[i]->name);
3653
3654                 spin_unlock(&pers_lock);
3655                 seq_printf(seq, "\n");
3656                 return 0;
3657         }
3658         if (v == (void*)2) {
3659                 status_unused(seq);
3660                 return 0;
3661         }
3662
3663         if (mddev_lock(mddev)!=0) 
3664                 return -EINTR;
3665         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3666                 seq_printf(seq, "%s : %sactive", mdname(mddev),
3667                                                 mddev->pers ? "" : "in");
3668                 if (mddev->pers) {
3669                         if (mddev->ro==1)
3670                                 seq_printf(seq, " (read-only)");
3671                         if (mddev->ro==2)
3672                                 seq_printf(seq, "(auto-read-only)");
3673                         seq_printf(seq, " %s", mddev->pers->name);
3674                 }
3675
3676                 size = 0;
3677                 ITERATE_RDEV(mddev,rdev,tmp2) {
3678                         char b[BDEVNAME_SIZE];
3679                         seq_printf(seq, " %s[%d]",
3680                                 bdevname(rdev->bdev,b), rdev->desc_nr);
3681                         if (test_bit(WriteMostly, &rdev->flags))
3682                                 seq_printf(seq, "(W)");
3683                         if (test_bit(Faulty, &rdev->flags)) {
3684                                 seq_printf(seq, "(F)");
3685                                 continue;
3686                         } else if (rdev->raid_disk < 0)
3687                                 seq_printf(seq, "(S)"); /* spare */
3688                         size += rdev->size;
3689                 }
3690
3691                 if (!list_empty(&mddev->disks)) {
3692                         if (mddev->pers)
3693                                 seq_printf(seq, "\n      %llu blocks",
3694                                         (unsigned long long)mddev->array_size);
3695                         else
3696                                 seq_printf(seq, "\n      %llu blocks",
3697                                         (unsigned long long)size);
3698                 }
3699                 if (mddev->persistent) {
3700                         if (mddev->major_version != 0 ||
3701                             mddev->minor_version != 90) {
3702                                 seq_printf(seq," super %d.%d",
3703                                            mddev->major_version,
3704                                            mddev->minor_version);
3705                         }
3706                 } else
3707                         seq_printf(seq, " super non-persistent");
3708
3709                 if (mddev->pers) {
3710                         mddev->pers->status (seq, mddev);
3711                         seq_printf(seq, "\n      ");
3712                         if (mddev->curr_resync > 2) {
3713                                 status_resync (seq, mddev);
3714                                 seq_printf(seq, "\n      ");
3715                         } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3716                                 seq_printf(seq, "\tresync=DELAYED\n      ");
3717                         else if (mddev->recovery_cp < MaxSector)
3718                                 seq_printf(seq, "\tresync=PENDING\n      ");
3719                 } else
3720                         seq_printf(seq, "\n       ");
3721
3722                 if ((bitmap = mddev->bitmap)) {
3723                         unsigned long chunk_kb;
3724                         unsigned long flags;
3725                         spin_lock_irqsave(&bitmap->lock, flags);
3726                         chunk_kb = bitmap->chunksize >> 10;
3727                         seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3728                                 "%lu%s chunk",
3729                                 bitmap->pages - bitmap->missing_pages,
3730                                 bitmap->pages,
3731                                 (bitmap->pages - bitmap->missing_pages)
3732                                         << (PAGE_SHIFT - 10),
3733                                 chunk_kb ? chunk_kb : bitmap->chunksize,
3734                                 chunk_kb ? "KB" : "B");
3735                         if (bitmap->file) {
3736                                 seq_printf(seq, ", file: ");
3737                                 seq_path(seq, bitmap->file->f_vfsmnt,
3738                                          bitmap->file->f_dentry," \t\n");
3739                         }
3740
3741                         seq_printf(seq, "\n");
3742                         spin_unlock_irqrestore(&bitmap->lock, flags);
3743                 }
3744
3745                 seq_printf(seq, "\n");
3746         }
3747         mddev_unlock(mddev);
3748         
3749         return 0;
3750 }
3751
3752 static struct seq_operations md_seq_ops = {
3753         .start  = md_seq_start,
3754         .next   = md_seq_next,
3755         .stop   = md_seq_stop,
3756         .show   = md_seq_show,
3757 };
3758
3759 static int md_seq_open(struct inode *inode, struct file *file)
3760 {
3761         int error;
3762
3763         error = seq_open(file, &md_seq_ops);
3764         return error;
3765 }
3766
3767 static struct file_operations md_seq_fops = {
3768         .open           = md_seq_open,
3769         .read           = seq_read,
3770         .llseek         = seq_lseek,
3771         .release        = seq_release,
3772 };
3773
3774 int register_md_personality(int pnum, mdk_personality_t *p)
3775 {
3776         if (pnum >= MAX_PERSONALITY) {
3777                 printk(KERN_ERR
3778                        "md: tried to install personality %s as nr %d, but max is %lu\n",
3779                        p->name, pnum, MAX_PERSONALITY-1);
3780                 return -EINVAL;
3781         }
3782
3783         spin_lock(&pers_lock);
3784         if (pers[pnum]) {
3785                 spin_unlock(&pers_lock);
3786                 return -EBUSY;
3787         }
3788
3789         pers[pnum] = p;
3790         printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
3791         spin_unlock(&pers_lock);
3792         return 0;
3793 }
3794
3795 int unregister_md_personality(int pnum)
3796 {
3797         if (pnum >= MAX_PERSONALITY)
3798                 return -EINVAL;
3799
3800         printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
3801         spin_lock(&pers_lock);
3802         pers[pnum] = NULL;
3803         spin_unlock(&pers_lock);
3804         return 0;
3805 }
3806
3807 static int is_mddev_idle(mddev_t *mddev)
3808 {
3809         mdk_rdev_t * rdev;
3810         struct list_head *tmp;
3811         int idle;
3812         unsigned long curr_events;
3813
3814         idle = 1;
3815         ITERATE_RDEV(mddev,rdev,tmp) {
3816                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3817                 curr_events = disk_stat_read(disk, sectors[0]) + 
3818                                 disk_stat_read(disk, sectors[1]) - 
3819                                 atomic_read(&disk->sync_io);
3820                 /* Allow some slack between valud of curr_events and last_events,
3821                  * as there are some uninteresting races.
3822                  * Note: the following is an unsigned comparison.
3823                  */
3824                 if ((curr_events - rdev->last_events + 32) > 64) {
3825                         rdev->last_events = curr_events;
3826                         idle = 0;
3827                 }
3828         }
3829         return idle;
3830 }
3831
3832 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3833 {
3834         /* another "blocks" (512byte) blocks have been synced */
3835         atomic_sub(blocks, &mddev->recovery_active);
3836         wake_up(&mddev->recovery_wait);
3837         if (!ok) {
3838                 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3839                 md_wakeup_thread(mddev->thread);
3840                 // stop recovery, signal do_sync ....
3841         }
3842 }
3843
3844
3845 /* md_write_start(mddev, bi)
3846  * If we need to update some array metadata (e.g. 'active' flag
3847  * in superblock) before writing, schedule a superblock update
3848  * and wait for it to complete.
3849  */
3850 void md_write_start(mddev_t *mddev, struct bio *bi)
3851 {
3852         if (bio_data_dir(bi) != WRITE)
3853                 return;
3854
3855         BUG_ON(mddev->ro == 1);
3856         if (mddev->ro == 2) {
3857                 /* need to switch to read/write */
3858                 mddev->ro = 0;
3859                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3860                 md_wakeup_thread(mddev->thread);
3861         }
3862         atomic_inc(&mddev->writes_pending);
3863         if (mddev->in_sync) {
3864                 spin_lock_irq(&mddev->write_lock);
3865                 if (mddev->in_sync) {
3866                         mddev->in_sync = 0;
3867                         mddev->sb_dirty = 1;
3868                         md_wakeup_thread(mddev->thread);
3869                 }
3870                 spin_unlock_irq(&mddev->write_lock);
3871         }
3872         wait_event(mddev->sb_wait, mddev->sb_dirty==0);
3873 }
3874
3875 void md_write_end(mddev_t *mddev)
3876 {
3877         if (atomic_dec_and_test(&mddev->writes_pending)) {
3878                 if (mddev->safemode == 2)
3879                         md_wakeup_thread(mddev->thread);
3880                 else
3881                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3882         }
3883 }
3884
3885 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3886
3887 #define SYNC_MARKS      10
3888 #define SYNC_MARK_STEP  (3*HZ)
3889 static void md_do_sync(mddev_t *mddev)
3890 {
3891         mddev_t *mddev2;
3892         unsigned int currspeed = 0,
3893                  window;
3894         sector_t max_sectors,j, io_sectors;
3895         unsigned long mark[SYNC_MARKS];
3896         sector_t mark_cnt[SYNC_MARKS];
3897         int last_mark,m;
3898         struct list_head *tmp;
3899         sector_t last_check;
3900         int skipped = 0;
3901
3902         /* just incase thread restarts... */
3903         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3904                 return;
3905
3906         /* we overload curr_resync somewhat here.
3907          * 0 == not engaged in resync at all
3908          * 2 == checking that there is no conflict with another sync
3909          * 1 == like 2, but have yielded to allow conflicting resync to
3910          *              commense
3911          * other == active in resync - this many blocks
3912          *
3913          * Before starting a resync we must have set curr_resync to
3914          * 2, and then checked that every "conflicting" array has curr_resync
3915          * less than ours.  When we find one that is the same or higher
3916          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
3917          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
3918          * This will mean we have to start checking from the beginning again.
3919          *
3920          */
3921
3922         do {
3923                 mddev->curr_resync = 2;
3924
3925         try_again:
3926                 if (signal_pending(current) ||
3927                     kthread_should_stop()) {
3928                         flush_signals(current);
3929                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3930                         goto skip;
3931                 }
3932                 ITERATE_MDDEV(mddev2,tmp) {
3933                         if (mddev2 == mddev)
3934                                 continue;
3935                         if (mddev2->curr_resync && 
3936                             match_mddev_units(mddev,mddev2)) {
3937                                 DEFINE_WAIT(wq);
3938                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
3939                                         /* arbitrarily yield */
3940                                         mddev->curr_resync = 1;
3941                                         wake_up(&resync_wait);
3942                                 }
3943                                 if (mddev > mddev2 && mddev->curr_resync == 1)
3944                                         /* no need to wait here, we can wait the next
3945                                          * time 'round when curr_resync == 2
3946                                          */
3947                                         continue;
3948                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
3949                                 if (!signal_pending(current) &&
3950                                     !kthread_should_stop() &&
3951                                     mddev2->curr_resync >= mddev->curr_resync) {
3952                                         printk(KERN_INFO "md: delaying resync of %s"
3953                                                " until %s has finished resync (they"
3954                                                " share one or more physical units)\n",
3955                                                mdname(mddev), mdname(mddev2));
3956                                         mddev_put(mddev2);
3957                                         schedule();
3958                                         finish_wait(&resync_wait, &wq);
3959                                         goto try_again;
3960                                 }
3961                                 finish_wait(&resync_wait, &wq);
3962                         }
3963                 }
3964         } while (mddev->curr_resync < 2);
3965
3966         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3967                 /* resync follows the size requested by the personality,
3968                  * which defaults to physical size, but can be virtual size
3969                  */
3970                 max_sectors = mddev->resync_max_sectors;
3971                 mddev->resync_mismatches = 0;
3972         } else
3973                 /* recovery follows the physical size of devices */
3974                 max_sectors = mddev->size << 1;
3975
3976         printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
3977         printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
3978                 " %d KB/sec/disc.\n", sysctl_speed_limit_min);
3979         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
3980                "(but not more than %d KB/sec) for reconstruction.\n",
3981                sysctl_speed_limit_max);
3982
3983         is_mddev_idle(mddev); /* this also initializes IO event counters */
3984         /* we don't use the checkpoint if there's a bitmap */
3985         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
3986             && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3987                 j = mddev->recovery_cp;
3988         else
3989                 j = 0;
3990         io_sectors = 0;
3991         for (m = 0; m < SYNC_MARKS; m++) {
3992                 mark[m] = jiffies;
3993                 mark_cnt[m] = io_sectors;
3994         }
3995         last_mark = 0;
3996         mddev->resync_mark = mark[last_mark];
3997         mddev->resync_mark_cnt = mark_cnt[last_mark];
3998
3999         /*
4000          * Tune reconstruction:
4001          */
4002         window = 32*(PAGE_SIZE/512);
4003         printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
4004                 window/2,(unsigned long long) max_sectors/2);
4005
4006         atomic_set(&mddev->recovery_active, 0);
4007         init_waitqueue_head(&mddev->recovery_wait);
4008         last_check = 0;
4009
4010         if (j>2) {
4011                 printk(KERN_INFO 
4012                         "md: resuming recovery of %s from checkpoint.\n",
4013                         mdname(mddev));
4014                 mddev->curr_resync = j;
4015         }
4016
4017         while (j < max_sectors) {
4018                 sector_t sectors;
4019
4020                 skipped = 0;
4021                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
4022                                             currspeed < sysctl_speed_limit_min);
4023                 if (sectors == 0) {
4024                         set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4025                         goto out;
4026                 }
4027
4028                 if (!skipped) { /* actual IO requested */
4029                         io_sectors += sectors;
4030                         atomic_add(sectors, &mddev->recovery_active);
4031                 }
4032
4033                 j += sectors;
4034                 if (j>1) mddev->curr_resync = j;
4035
4036
4037                 if (last_check + window > io_sectors || j == max_sectors)
4038                         continue;
4039
4040                 last_check = io_sectors;
4041
4042                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
4043                     test_bit(MD_RECOVERY_ERR, &mddev->recovery))
4044                         break;
4045
4046         repeat:
4047                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
4048                         /* step marks */
4049                         int next = (last_mark+1) % SYNC_MARKS;
4050
4051                         mddev->resync_mark = mark[next];
4052                         mddev->resync_mark_cnt = mark_cnt[next];
4053                         mark[next] = jiffies;
4054                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
4055                         last_mark = next;
4056                 }
4057
4058
4059                 if (signal_pending(current) || kthread_should_stop()) {
4060                         /*
4061                          * got a signal, exit.
4062                          */
4063                         printk(KERN_INFO 
4064                                 "md: md_do_sync() got signal ... exiting\n");
4065                         flush_signals(current);
4066                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4067                         goto out;
4068                 }
4069
4070                 /*
4071                  * this loop exits only if either when we are slower than
4072                  * the 'hard' speed limit, or the system was IO-idle for
4073                  * a jiffy.
4074                  * the system might be non-idle CPU-wise, but we only care
4075                  * about not overloading the IO subsystem. (things like an
4076                  * e2fsck being done on the RAID array should execute fast)
4077                  */
4078                 mddev->queue->unplug_fn(mddev->queue);
4079                 cond_resched();
4080
4081                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
4082                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
4083
4084                 if (currspeed > sysctl_speed_limit_min) {
4085                         if ((currspeed > sysctl_speed_limit_max) ||
4086                                         !is_mddev_idle(mddev)) {
4087                                 msleep_interruptible(250);
4088                                 goto repeat;
4089                         }
4090                 }
4091         }
4092         printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
4093         /*
4094          * this also signals 'finished resyncing' to md_stop
4095          */
4096  out:
4097         mddev->queue->unplug_fn(mddev->queue);
4098
4099         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
4100
4101         /* tell personality that we are finished */
4102         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
4103
4104         if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4105             mddev->curr_resync > 2 &&
4106             mddev->curr_resync >= mddev->recovery_cp) {
4107                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4108                         printk(KERN_INFO 
4109                                 "md: checkpointing recovery of %s.\n",
4110                                 mdname(mddev));
4111                         mddev->recovery_cp = mddev->curr_resync;
4112                 } else
4113                         mddev->recovery_cp = MaxSector;
4114         }
4115
4116  skip:
4117         mddev->curr_resync = 0;
4118         wake_up(&resync_wait);
4119         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
4120         md_wakeup_thread(mddev->thread);
4121 }
4122
4123
4124 /*
4125  * This routine is regularly called by all per-raid-array threads to
4126  * deal with generic issues like resync and super-block update.
4127  * Raid personalities that don't have a thread (linear/raid0) do not
4128  * need this as they never do any recovery or update the superblock.
4129  *
4130  * It does not do any resync itself, but rather "forks" off other threads
4131  * to do that as needed.
4132  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4133  * "->recovery" and create a thread at ->sync_thread.
4134  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4135  * and wakeups up this thread which will reap the thread and finish up.
4136  * This thread also removes any faulty devices (with nr_pending == 0).
4137  *
4138  * The overall approach is:
4139  *  1/ if the superblock needs updating, update it.
4140  *  2/ If a recovery thread is running, don't do anything else.
4141  *  3/ If recovery has finished, clean up, possibly marking spares active.
4142  *  4/ If there are any faulty devices, remove them.
4143  *  5/ If array is degraded, try to add spares devices
4144  *  6/ If array has spares or is not in-sync, start a resync thread.
4145  */
4146 void md_check_recovery(mddev_t *mddev)
4147 {
4148         mdk_rdev_t *rdev;
4149         struct list_head *rtmp;
4150
4151
4152         if (mddev->bitmap)
4153                 bitmap_daemon_work(mddev->bitmap);
4154
4155         if (mddev->ro)
4156                 return;
4157
4158         if (signal_pending(current)) {
4159                 if (mddev->pers->sync_request) {
4160                         printk(KERN_INFO "md: %s in immediate safe mode\n",
4161                                mdname(mddev));
4162                         mddev->safemode = 2;
4163                 }
4164                 flush_signals(current);
4165         }
4166
4167         if ( ! (
4168                 mddev->sb_dirty ||
4169                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
4170                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4171                 (mddev->safemode == 1) ||
4172                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4173                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
4174                 ))
4175                 return;
4176
4177         if (mddev_trylock(mddev)==0) {
4178                 int spares =0;
4179
4180                 spin_lock_irq(&mddev->write_lock);
4181                 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4182                     !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4183                         mddev->in_sync = 1;
4184                         mddev->sb_dirty = 1;
4185                 }
4186                 if (mddev->safemode == 1)
4187                         mddev->safemode = 0;
4188                 spin_unlock_irq(&mddev->write_lock);
4189
4190                 if (mddev->sb_dirty)
4191                         md_update_sb(mddev);
4192
4193
4194                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4195                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4196                         /* resync/recovery still happening */
4197                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4198                         goto unlock;
4199                 }
4200                 if (mddev->sync_thread) {
4201                         /* resync has finished, collect result */
4202                         md_unregister_thread(mddev->sync_thread);
4203                         mddev->sync_thread = NULL;
4204                         if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4205                             !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4206                                 /* success...*/
4207                                 /* activate any spares */
4208                                 mddev->pers->spare_active(mddev);
4209                         }
4210                         md_update_sb(mddev);
4211
4212                         /* if array is no-longer degraded, then any saved_raid_disk
4213                          * information must be scrapped
4214                          */
4215                         if (!mddev->degraded)
4216                                 ITERATE_RDEV(mddev,rdev,rtmp)
4217                                         rdev->saved_raid_disk = -1;
4218
4219                         mddev->recovery = 0;
4220                         /* flag recovery needed just to double check */
4221                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4222                         goto unlock;
4223                 }
4224                 /* Clear some bits that don't mean anything, but
4225                  * might be left set
4226                  */
4227                 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4228                 clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
4229                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
4230                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4231
4232                 /* no recovery is running.
4233                  * remove any failed drives, then
4234                  * add spares if possible.
4235                  * Spare are also removed and re-added, to allow
4236                  * the personality to fail the re-add.
4237                  */
4238                 ITERATE_RDEV(mddev,rdev,rtmp)
4239                         if (rdev->raid_disk >= 0 &&
4240                             (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
4241                             atomic_read(&rdev->nr_pending)==0) {
4242                                 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
4243                                         char nm[20];
4244                                         sprintf(nm,"rd%d", rdev->raid_disk);
4245                                         sysfs_remove_link(&mddev->kobj, nm);
4246                                         rdev->raid_disk = -1;
4247                                 }
4248                         }
4249
4250                 if (mddev->degraded) {
4251                         ITERATE_RDEV(mddev,rdev,rtmp)
4252                                 if (rdev->raid_disk < 0
4253                                     && !test_bit(Faulty, &rdev->flags)) {
4254                                         if (mddev->pers->hot_add_disk(mddev,rdev)) {
4255                                                 char nm[20];
4256                                                 sprintf(nm, "rd%d", rdev->raid_disk);
4257                                                 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
4258                                                 spares++;
4259                                         } else
4260                                                 break;
4261                                 }
4262                 }
4263
4264                 if (spares) {
4265                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4266                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4267                 } else if (mddev->recovery_cp < MaxSector) {
4268                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4269                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4270                         /* nothing to be done ... */
4271                         goto unlock;
4272
4273                 if (mddev->pers->sync_request) {
4274                         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4275                         if (spares && mddev->bitmap && ! mddev->bitmap->file) {
4276                                 /* We are adding a device or devices to an array
4277                                  * which has the bitmap stored on all devices.
4278                                  * So make sure all bitmap pages get written
4279                                  */
4280                                 bitmap_write_all(mddev->bitmap);
4281                         }
4282                         mddev->sync_thread = md_register_thread(md_do_sync,
4283                                                                 mddev,
4284                                                                 "%s_resync");
4285                         if (!mddev->sync_thread) {
4286                                 printk(KERN_ERR "%s: could not start resync"
4287                                         " thread...\n", 
4288                                         mdname(mddev));
4289                                 /* leave the spares where they are, it shouldn't hurt */
4290                                 mddev->recovery = 0;
4291                         } else {
4292                                 md_wakeup_thread(mddev->sync_thread);
4293                         }
4294                 }
4295         unlock:
4296                 mddev_unlock(mddev);
4297         }
4298 }
4299
4300 static int md_notify_reboot(struct notifier_block *this,
4301                             unsigned long code, void *x)
4302 {
4303         struct list_head *tmp;
4304         mddev_t *mddev;
4305
4306         if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
4307
4308                 printk(KERN_INFO "md: stopping all md devices.\n");
4309
4310                 ITERATE_MDDEV(mddev,tmp)
4311                         if (mddev_trylock(mddev)==0)
4312                                 do_md_stop (mddev, 1);
4313                 /*
4314                  * certain more exotic SCSI devices are known to be
4315                  * volatile wrt too early system reboots. While the
4316                  * right place to handle this issue is the given
4317                  * driver, we do want to have a safe RAID driver ...
4318                  */
4319                 mdelay(1000*1);
4320         }
4321         return NOTIFY_DONE;
4322 }
4323
4324 static struct notifier_block md_notifier = {
4325         .notifier_call  = md_notify_reboot,
4326         .next           = NULL,
4327         .priority       = INT_MAX, /* before any real devices */
4328 };
4329
4330 static void md_geninit(void)
4331 {
4332         struct proc_dir_entry *p;
4333
4334         dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
4335
4336         p = create_proc_entry("mdstat", S_IRUGO, NULL);
4337         if (p)
4338                 p->proc_fops = &md_seq_fops;
4339 }
4340
4341 static int __init md_init(void)
4342 {
4343         int minor;
4344
4345         printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
4346                         " MD_SB_DISKS=%d\n",
4347                         MD_MAJOR_VERSION, MD_MINOR_VERSION,
4348                         MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
4349         printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
4350                         BITMAP_MINOR);
4351
4352         if (register_blkdev(MAJOR_NR, "md"))
4353                 return -1;
4354         if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
4355                 unregister_blkdev(MAJOR_NR, "md");
4356                 return -1;
4357         }
4358         devfs_mk_dir("md");
4359         blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
4360                                 md_probe, NULL, NULL);
4361         blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
4362                             md_probe, NULL, NULL);
4363
4364         for (minor=0; minor < MAX_MD_DEVS; ++minor)
4365                 devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
4366                                 S_IFBLK|S_IRUSR|S_IWUSR,
4367                                 "md/%d", minor);
4368
4369         for (minor=0; minor < MAX_MD_DEVS; ++minor)
4370                 devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
4371                               S_IFBLK|S_IRUSR|S_IWUSR,
4372                               "md/mdp%d", minor);
4373
4374
4375         register_reboot_notifier(&md_notifier);
4376         raid_table_header = register_sysctl_table(raid_root_table, 1);
4377
4378         md_geninit();
4379         return (0);
4380 }
4381
4382
4383 #ifndef MODULE
4384
4385 /*
4386  * Searches all registered partitions for autorun RAID arrays
4387  * at boot time.
4388  */
4389 static dev_t detected_devices[128];
4390 static int dev_cnt;
4391
4392 void md_autodetect_dev(dev_t dev)
4393 {
4394         if (dev_cnt >= 0 && dev_cnt < 127)
4395                 detected_devices[dev_cnt++] = dev;
4396 }
4397
4398
4399 static void autostart_arrays(int part)
4400 {
4401         mdk_rdev_t *rdev;
4402         int i;
4403
4404         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4405
4406         for (i = 0; i < dev_cnt; i++) {
4407                 dev_t dev = detected_devices[i];
4408
4409                 rdev = md_import_device(dev,0, 0);
4410                 if (IS_ERR(rdev))
4411                         continue;
4412
4413                 if (test_bit(Faulty, &rdev->flags)) {
4414                         MD_BUG();
4415                         continue;
4416                 }
4417                 list_add(&rdev->same_set, &pending_raid_disks);
4418         }
4419         dev_cnt = 0;
4420
4421         autorun_devices(part);
4422 }
4423
4424 #endif
4425
4426 static __exit void md_exit(void)
4427 {
4428         mddev_t *mddev;
4429         struct list_head *tmp;
4430         int i;
4431         blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4432         blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4433         for (i=0; i < MAX_MD_DEVS; i++)
4434                 devfs_remove("md/%d", i);
4435         for (i=0; i < MAX_MD_DEVS; i++)
4436                 devfs_remove("md/d%d", i);
4437
4438         devfs_remove("md");
4439
4440         unregister_blkdev(MAJOR_NR,"md");
4441         unregister_blkdev(mdp_major, "mdp");
4442         unregister_reboot_notifier(&md_notifier);
4443         unregister_sysctl_table(raid_table_header);
4444         remove_proc_entry("mdstat", NULL);
4445         ITERATE_MDDEV(mddev,tmp) {
4446                 struct gendisk *disk = mddev->gendisk;
4447                 if (!disk)
4448                         continue;
4449                 export_array(mddev);
4450                 del_gendisk(disk);
4451                 put_disk(disk);
4452                 mddev->gendisk = NULL;
4453                 mddev_put(mddev);
4454         }
4455 }
4456
4457 module_init(md_init)
4458 module_exit(md_exit)
4459
4460 static int get_ro(char *buffer, struct kernel_param *kp)
4461 {
4462         return sprintf(buffer, "%d", start_readonly);
4463 }
4464 static int set_ro(const char *val, struct kernel_param *kp)
4465 {
4466         char *e;
4467         int num = simple_strtoul(val, &e, 10);
4468         if (*val && (*e == '\0' || *e == '\n')) {
4469                 start_readonly = num;
4470                 return 0;;
4471         }
4472         return -EINVAL;
4473 }
4474
4475 module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
4476
4477 EXPORT_SYMBOL(register_md_personality);
4478 EXPORT_SYMBOL(unregister_md_personality);
4479 EXPORT_SYMBOL(md_error);
4480 EXPORT_SYMBOL(md_done_sync);
4481 EXPORT_SYMBOL(md_write_start);
4482 EXPORT_SYMBOL(md_write_end);
4483 EXPORT_SYMBOL(md_register_thread);
4484 EXPORT_SYMBOL(md_unregister_thread);
4485 EXPORT_SYMBOL(md_wakeup_thread);
4486 EXPORT_SYMBOL(md_print_devices);
4487 EXPORT_SYMBOL(md_check_recovery);
4488 MODULE_LICENSE("GPL");
4489 MODULE_ALIAS("md");
4490 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);