07f180f95b47967c68a6c4c7264c9916fe53c101
[safe/jmp/linux-2.6] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 #include <linux/poll.h>
46
47 #include <linux/init.h>
48
49 #include <linux/file.h>
50
51 #ifdef CONFIG_KMOD
52 #include <linux/kmod.h>
53 #endif
54
55 #include <asm/unaligned.h>
56
57 #define MAJOR_NR MD_MAJOR
58 #define MD_DRIVER
59
60 /* 63 partitions with the alternate major number (mdp) */
61 #define MdpMinorShift 6
62
63 #define DEBUG 0
64 #define dprintk(x...) ((void)(DEBUG && printk(x)))
65
66
67 #ifndef MODULE
68 static void autostart_arrays (int part);
69 #endif
70
71 static LIST_HEAD(pers_list);
72 static DEFINE_SPINLOCK(pers_lock);
73
74 /*
75  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
76  * is 1000 KB/sec, so the extra system load does not show up that much.
77  * Increase it if you want to have more _guaranteed_ speed. Note that
78  * the RAID driver will use the maximum available bandwidth if the IO
79  * subsystem is idle. There is also an 'absolute maximum' reconstruction
80  * speed limit - in case reconstruction slows down your system despite
81  * idle IO detection.
82  *
83  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
84  */
85
86 static int sysctl_speed_limit_min = 1000;
87 static int sysctl_speed_limit_max = 200000;
88
89 static struct ctl_table_header *raid_table_header;
90
91 static ctl_table raid_table[] = {
92         {
93                 .ctl_name       = DEV_RAID_SPEED_LIMIT_MIN,
94                 .procname       = "speed_limit_min",
95                 .data           = &sysctl_speed_limit_min,
96                 .maxlen         = sizeof(int),
97                 .mode           = 0644,
98                 .proc_handler   = &proc_dointvec,
99         },
100         {
101                 .ctl_name       = DEV_RAID_SPEED_LIMIT_MAX,
102                 .procname       = "speed_limit_max",
103                 .data           = &sysctl_speed_limit_max,
104                 .maxlen         = sizeof(int),
105                 .mode           = 0644,
106                 .proc_handler   = &proc_dointvec,
107         },
108         { .ctl_name = 0 }
109 };
110
111 static ctl_table raid_dir_table[] = {
112         {
113                 .ctl_name       = DEV_RAID,
114                 .procname       = "raid",
115                 .maxlen         = 0,
116                 .mode           = 0555,
117                 .child          = raid_table,
118         },
119         { .ctl_name = 0 }
120 };
121
122 static ctl_table raid_root_table[] = {
123         {
124                 .ctl_name       = CTL_DEV,
125                 .procname       = "dev",
126                 .maxlen         = 0,
127                 .mode           = 0555,
128                 .child          = raid_dir_table,
129         },
130         { .ctl_name = 0 }
131 };
132
133 static struct block_device_operations md_fops;
134
135 static int start_readonly;
136
137 /*
138  * We have a system wide 'event count' that is incremented
139  * on any 'interesting' event, and readers of /proc/mdstat
140  * can use 'poll' or 'select' to find out when the event
141  * count increases.
142  *
143  * Events are:
144  *  start array, stop array, error, add device, remove device,
145  *  start build, activate spare
146  */
147 DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
148 static atomic_t md_event_count;
149 void md_new_event(mddev_t *mddev)
150 {
151         atomic_inc(&md_event_count);
152         wake_up(&md_event_waiters);
153 }
154
155 /*
156  * Enables to iterate over all existing md arrays
157  * all_mddevs_lock protects this list.
158  */
159 static LIST_HEAD(all_mddevs);
160 static DEFINE_SPINLOCK(all_mddevs_lock);
161
162
163 /*
164  * iterates through all used mddevs in the system.
165  * We take care to grab the all_mddevs_lock whenever navigating
166  * the list, and to always hold a refcount when unlocked.
167  * Any code which breaks out of this loop while own
168  * a reference to the current mddev and must mddev_put it.
169  */
170 #define ITERATE_MDDEV(mddev,tmp)                                        \
171                                                                         \
172         for (({ spin_lock(&all_mddevs_lock);                            \
173                 tmp = all_mddevs.next;                                  \
174                 mddev = NULL;});                                        \
175              ({ if (tmp != &all_mddevs)                                 \
176                         mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
177                 spin_unlock(&all_mddevs_lock);                          \
178                 if (mddev) mddev_put(mddev);                            \
179                 mddev = list_entry(tmp, mddev_t, all_mddevs);           \
180                 tmp != &all_mddevs;});                                  \
181              ({ spin_lock(&all_mddevs_lock);                            \
182                 tmp = tmp->next;})                                      \
183                 )
184
185
186 static int md_fail_request (request_queue_t *q, struct bio *bio)
187 {
188         bio_io_error(bio, bio->bi_size);
189         return 0;
190 }
191
192 static inline mddev_t *mddev_get(mddev_t *mddev)
193 {
194         atomic_inc(&mddev->active);
195         return mddev;
196 }
197
198 static void mddev_put(mddev_t *mddev)
199 {
200         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
201                 return;
202         if (!mddev->raid_disks && list_empty(&mddev->disks)) {
203                 list_del(&mddev->all_mddevs);
204                 blk_put_queue(mddev->queue);
205                 kobject_unregister(&mddev->kobj);
206         }
207         spin_unlock(&all_mddevs_lock);
208 }
209
210 static mddev_t * mddev_find(dev_t unit)
211 {
212         mddev_t *mddev, *new = NULL;
213
214  retry:
215         spin_lock(&all_mddevs_lock);
216         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
217                 if (mddev->unit == unit) {
218                         mddev_get(mddev);
219                         spin_unlock(&all_mddevs_lock);
220                         kfree(new);
221                         return mddev;
222                 }
223
224         if (new) {
225                 list_add(&new->all_mddevs, &all_mddevs);
226                 spin_unlock(&all_mddevs_lock);
227                 return new;
228         }
229         spin_unlock(&all_mddevs_lock);
230
231         new = kzalloc(sizeof(*new), GFP_KERNEL);
232         if (!new)
233                 return NULL;
234
235         new->unit = unit;
236         if (MAJOR(unit) == MD_MAJOR)
237                 new->md_minor = MINOR(unit);
238         else
239                 new->md_minor = MINOR(unit) >> MdpMinorShift;
240
241         init_MUTEX(&new->reconfig_sem);
242         INIT_LIST_HEAD(&new->disks);
243         INIT_LIST_HEAD(&new->all_mddevs);
244         init_timer(&new->safemode_timer);
245         atomic_set(&new->active, 1);
246         spin_lock_init(&new->write_lock);
247         init_waitqueue_head(&new->sb_wait);
248
249         new->queue = blk_alloc_queue(GFP_KERNEL);
250         if (!new->queue) {
251                 kfree(new);
252                 return NULL;
253         }
254
255         blk_queue_make_request(new->queue, md_fail_request);
256
257         goto retry;
258 }
259
260 static inline int mddev_lock(mddev_t * mddev)
261 {
262         return down_interruptible(&mddev->reconfig_sem);
263 }
264
265 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
266 {
267         down(&mddev->reconfig_sem);
268 }
269
270 static inline int mddev_trylock(mddev_t * mddev)
271 {
272         return down_trylock(&mddev->reconfig_sem);
273 }
274
275 static inline void mddev_unlock(mddev_t * mddev)
276 {
277         up(&mddev->reconfig_sem);
278
279         md_wakeup_thread(mddev->thread);
280 }
281
282 mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
283 {
284         mdk_rdev_t * rdev;
285         struct list_head *tmp;
286
287         ITERATE_RDEV(mddev,rdev,tmp) {
288                 if (rdev->desc_nr == nr)
289                         return rdev;
290         }
291         return NULL;
292 }
293
294 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
295 {
296         struct list_head *tmp;
297         mdk_rdev_t *rdev;
298
299         ITERATE_RDEV(mddev,rdev,tmp) {
300                 if (rdev->bdev->bd_dev == dev)
301                         return rdev;
302         }
303         return NULL;
304 }
305
306 static struct mdk_personality *find_pers(int level)
307 {
308         struct mdk_personality *pers;
309         list_for_each_entry(pers, &pers_list, list)
310                 if (pers->level == level)
311                         return pers;
312         return NULL;
313 }
314
315 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
316 {
317         sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
318         return MD_NEW_SIZE_BLOCKS(size);
319 }
320
321 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
322 {
323         sector_t size;
324
325         size = rdev->sb_offset;
326
327         if (chunk_size)
328                 size &= ~((sector_t)chunk_size/1024 - 1);
329         return size;
330 }
331
332 static int alloc_disk_sb(mdk_rdev_t * rdev)
333 {
334         if (rdev->sb_page)
335                 MD_BUG();
336
337         rdev->sb_page = alloc_page(GFP_KERNEL);
338         if (!rdev->sb_page) {
339                 printk(KERN_ALERT "md: out of memory.\n");
340                 return -EINVAL;
341         }
342
343         return 0;
344 }
345
346 static void free_disk_sb(mdk_rdev_t * rdev)
347 {
348         if (rdev->sb_page) {
349                 put_page(rdev->sb_page);
350                 rdev->sb_loaded = 0;
351                 rdev->sb_page = NULL;
352                 rdev->sb_offset = 0;
353                 rdev->size = 0;
354         }
355 }
356
357
358 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
359 {
360         mdk_rdev_t *rdev = bio->bi_private;
361         mddev_t *mddev = rdev->mddev;
362         if (bio->bi_size)
363                 return 1;
364
365         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
366                 md_error(mddev, rdev);
367
368         if (atomic_dec_and_test(&mddev->pending_writes))
369                 wake_up(&mddev->sb_wait);
370         bio_put(bio);
371         return 0;
372 }
373
374 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
375 {
376         struct bio *bio2 = bio->bi_private;
377         mdk_rdev_t *rdev = bio2->bi_private;
378         mddev_t *mddev = rdev->mddev;
379         if (bio->bi_size)
380                 return 1;
381
382         if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
383             error == -EOPNOTSUPP) {
384                 unsigned long flags;
385                 /* barriers don't appear to be supported :-( */
386                 set_bit(BarriersNotsupp, &rdev->flags);
387                 mddev->barriers_work = 0;
388                 spin_lock_irqsave(&mddev->write_lock, flags);
389                 bio2->bi_next = mddev->biolist;
390                 mddev->biolist = bio2;
391                 spin_unlock_irqrestore(&mddev->write_lock, flags);
392                 wake_up(&mddev->sb_wait);
393                 bio_put(bio);
394                 return 0;
395         }
396         bio_put(bio2);
397         bio->bi_private = rdev;
398         return super_written(bio, bytes_done, error);
399 }
400
401 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
402                    sector_t sector, int size, struct page *page)
403 {
404         /* write first size bytes of page to sector of rdev
405          * Increment mddev->pending_writes before returning
406          * and decrement it on completion, waking up sb_wait
407          * if zero is reached.
408          * If an error occurred, call md_error
409          *
410          * As we might need to resubmit the request if BIO_RW_BARRIER
411          * causes ENOTSUPP, we allocate a spare bio...
412          */
413         struct bio *bio = bio_alloc(GFP_NOIO, 1);
414         int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
415
416         bio->bi_bdev = rdev->bdev;
417         bio->bi_sector = sector;
418         bio_add_page(bio, page, size, 0);
419         bio->bi_private = rdev;
420         bio->bi_end_io = super_written;
421         bio->bi_rw = rw;
422
423         atomic_inc(&mddev->pending_writes);
424         if (!test_bit(BarriersNotsupp, &rdev->flags)) {
425                 struct bio *rbio;
426                 rw |= (1<<BIO_RW_BARRIER);
427                 rbio = bio_clone(bio, GFP_NOIO);
428                 rbio->bi_private = bio;
429                 rbio->bi_end_io = super_written_barrier;
430                 submit_bio(rw, rbio);
431         } else
432                 submit_bio(rw, bio);
433 }
434
435 void md_super_wait(mddev_t *mddev)
436 {
437         /* wait for all superblock writes that were scheduled to complete.
438          * if any had to be retried (due to BARRIER problems), retry them
439          */
440         DEFINE_WAIT(wq);
441         for(;;) {
442                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
443                 if (atomic_read(&mddev->pending_writes)==0)
444                         break;
445                 while (mddev->biolist) {
446                         struct bio *bio;
447                         spin_lock_irq(&mddev->write_lock);
448                         bio = mddev->biolist;
449                         mddev->biolist = bio->bi_next ;
450                         bio->bi_next = NULL;
451                         spin_unlock_irq(&mddev->write_lock);
452                         submit_bio(bio->bi_rw, bio);
453                 }
454                 schedule();
455         }
456         finish_wait(&mddev->sb_wait, &wq);
457 }
458
459 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
460 {
461         if (bio->bi_size)
462                 return 1;
463
464         complete((struct completion*)bio->bi_private);
465         return 0;
466 }
467
468 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
469                    struct page *page, int rw)
470 {
471         struct bio *bio = bio_alloc(GFP_NOIO, 1);
472         struct completion event;
473         int ret;
474
475         rw |= (1 << BIO_RW_SYNC);
476
477         bio->bi_bdev = bdev;
478         bio->bi_sector = sector;
479         bio_add_page(bio, page, size, 0);
480         init_completion(&event);
481         bio->bi_private = &event;
482         bio->bi_end_io = bi_complete;
483         submit_bio(rw, bio);
484         wait_for_completion(&event);
485
486         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
487         bio_put(bio);
488         return ret;
489 }
490 EXPORT_SYMBOL_GPL(sync_page_io);
491
492 static int read_disk_sb(mdk_rdev_t * rdev, int size)
493 {
494         char b[BDEVNAME_SIZE];
495         if (!rdev->sb_page) {
496                 MD_BUG();
497                 return -EINVAL;
498         }
499         if (rdev->sb_loaded)
500                 return 0;
501
502
503         if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
504                 goto fail;
505         rdev->sb_loaded = 1;
506         return 0;
507
508 fail:
509         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
510                 bdevname(rdev->bdev,b));
511         return -EINVAL;
512 }
513
514 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
515 {
516         if (    (sb1->set_uuid0 == sb2->set_uuid0) &&
517                 (sb1->set_uuid1 == sb2->set_uuid1) &&
518                 (sb1->set_uuid2 == sb2->set_uuid2) &&
519                 (sb1->set_uuid3 == sb2->set_uuid3))
520
521                 return 1;
522
523         return 0;
524 }
525
526
527 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
528 {
529         int ret;
530         mdp_super_t *tmp1, *tmp2;
531
532         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
533         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
534
535         if (!tmp1 || !tmp2) {
536                 ret = 0;
537                 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
538                 goto abort;
539         }
540
541         *tmp1 = *sb1;
542         *tmp2 = *sb2;
543
544         /*
545          * nr_disks is not constant
546          */
547         tmp1->nr_disks = 0;
548         tmp2->nr_disks = 0;
549
550         if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
551                 ret = 0;
552         else
553                 ret = 1;
554
555 abort:
556         kfree(tmp1);
557         kfree(tmp2);
558         return ret;
559 }
560
561 static unsigned int calc_sb_csum(mdp_super_t * sb)
562 {
563         unsigned int disk_csum, csum;
564
565         disk_csum = sb->sb_csum;
566         sb->sb_csum = 0;
567         csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
568         sb->sb_csum = disk_csum;
569         return csum;
570 }
571
572
573 /*
574  * Handle superblock details.
575  * We want to be able to handle multiple superblock formats
576  * so we have a common interface to them all, and an array of
577  * different handlers.
578  * We rely on user-space to write the initial superblock, and support
579  * reading and updating of superblocks.
580  * Interface methods are:
581  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
582  *      loads and validates a superblock on dev.
583  *      if refdev != NULL, compare superblocks on both devices
584  *    Return:
585  *      0 - dev has a superblock that is compatible with refdev
586  *      1 - dev has a superblock that is compatible and newer than refdev
587  *          so dev should be used as the refdev in future
588  *     -EINVAL superblock incompatible or invalid
589  *     -othererror e.g. -EIO
590  *
591  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
592  *      Verify that dev is acceptable into mddev.
593  *       The first time, mddev->raid_disks will be 0, and data from
594  *       dev should be merged in.  Subsequent calls check that dev
595  *       is new enough.  Return 0 or -EINVAL
596  *
597  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
598  *     Update the superblock for rdev with data in mddev
599  *     This does not write to disc.
600  *
601  */
602
603 struct super_type  {
604         char            *name;
605         struct module   *owner;
606         int             (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
607         int             (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
608         void            (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
609 };
610
611 /*
612  * load_super for 0.90.0 
613  */
614 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
615 {
616         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
617         mdp_super_t *sb;
618         int ret;
619         sector_t sb_offset;
620
621         /*
622          * Calculate the position of the superblock,
623          * it's at the end of the disk.
624          *
625          * It also happens to be a multiple of 4Kb.
626          */
627         sb_offset = calc_dev_sboffset(rdev->bdev);
628         rdev->sb_offset = sb_offset;
629
630         ret = read_disk_sb(rdev, MD_SB_BYTES);
631         if (ret) return ret;
632
633         ret = -EINVAL;
634
635         bdevname(rdev->bdev, b);
636         sb = (mdp_super_t*)page_address(rdev->sb_page);
637
638         if (sb->md_magic != MD_SB_MAGIC) {
639                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
640                        b);
641                 goto abort;
642         }
643
644         if (sb->major_version != 0 ||
645             sb->minor_version != 90) {
646                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
647                         sb->major_version, sb->minor_version,
648                         b);
649                 goto abort;
650         }
651
652         if (sb->raid_disks <= 0)
653                 goto abort;
654
655         if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
656                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
657                         b);
658                 goto abort;
659         }
660
661         rdev->preferred_minor = sb->md_minor;
662         rdev->data_offset = 0;
663         rdev->sb_size = MD_SB_BYTES;
664
665         if (sb->level == LEVEL_MULTIPATH)
666                 rdev->desc_nr = -1;
667         else
668                 rdev->desc_nr = sb->this_disk.number;
669
670         if (refdev == 0)
671                 ret = 1;
672         else {
673                 __u64 ev1, ev2;
674                 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
675                 if (!uuid_equal(refsb, sb)) {
676                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
677                                 b, bdevname(refdev->bdev,b2));
678                         goto abort;
679                 }
680                 if (!sb_equal(refsb, sb)) {
681                         printk(KERN_WARNING "md: %s has same UUID"
682                                " but different superblock to %s\n",
683                                b, bdevname(refdev->bdev, b2));
684                         goto abort;
685                 }
686                 ev1 = md_event(sb);
687                 ev2 = md_event(refsb);
688                 if (ev1 > ev2)
689                         ret = 1;
690                 else 
691                         ret = 0;
692         }
693         rdev->size = calc_dev_size(rdev, sb->chunk_size);
694
695  abort:
696         return ret;
697 }
698
699 /*
700  * validate_super for 0.90.0
701  */
702 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
703 {
704         mdp_disk_t *desc;
705         mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
706
707         rdev->raid_disk = -1;
708         rdev->flags = 0;
709         if (mddev->raid_disks == 0) {
710                 mddev->major_version = 0;
711                 mddev->minor_version = sb->minor_version;
712                 mddev->patch_version = sb->patch_version;
713                 mddev->persistent = ! sb->not_persistent;
714                 mddev->chunk_size = sb->chunk_size;
715                 mddev->ctime = sb->ctime;
716                 mddev->utime = sb->utime;
717                 mddev->level = sb->level;
718                 mddev->layout = sb->layout;
719                 mddev->raid_disks = sb->raid_disks;
720                 mddev->size = sb->size;
721                 mddev->events = md_event(sb);
722                 mddev->bitmap_offset = 0;
723                 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
724
725                 if (sb->state & (1<<MD_SB_CLEAN))
726                         mddev->recovery_cp = MaxSector;
727                 else {
728                         if (sb->events_hi == sb->cp_events_hi && 
729                                 sb->events_lo == sb->cp_events_lo) {
730                                 mddev->recovery_cp = sb->recovery_cp;
731                         } else
732                                 mddev->recovery_cp = 0;
733                 }
734
735                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
736                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
737                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
738                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
739
740                 mddev->max_disks = MD_SB_DISKS;
741
742                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
743                     mddev->bitmap_file == NULL) {
744                         if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
745                             && mddev->level != 10) {
746                                 /* FIXME use a better test */
747                                 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
748                                 return -EINVAL;
749                         }
750                         mddev->bitmap_offset = mddev->default_bitmap_offset;
751                 }
752
753         } else if (mddev->pers == NULL) {
754                 /* Insist on good event counter while assembling */
755                 __u64 ev1 = md_event(sb);
756                 ++ev1;
757                 if (ev1 < mddev->events) 
758                         return -EINVAL;
759         } else if (mddev->bitmap) {
760                 /* if adding to array with a bitmap, then we can accept an
761                  * older device ... but not too old.
762                  */
763                 __u64 ev1 = md_event(sb);
764                 if (ev1 < mddev->bitmap->events_cleared)
765                         return 0;
766         } else /* just a hot-add of a new device, leave raid_disk at -1 */
767                 return 0;
768
769         if (mddev->level != LEVEL_MULTIPATH) {
770                 desc = sb->disks + rdev->desc_nr;
771
772                 if (desc->state & (1<<MD_DISK_FAULTY))
773                         set_bit(Faulty, &rdev->flags);
774                 else if (desc->state & (1<<MD_DISK_SYNC) &&
775                          desc->raid_disk < mddev->raid_disks) {
776                         set_bit(In_sync, &rdev->flags);
777                         rdev->raid_disk = desc->raid_disk;
778                 }
779                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
780                         set_bit(WriteMostly, &rdev->flags);
781         } else /* MULTIPATH are always insync */
782                 set_bit(In_sync, &rdev->flags);
783         return 0;
784 }
785
786 /*
787  * sync_super for 0.90.0
788  */
789 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
790 {
791         mdp_super_t *sb;
792         struct list_head *tmp;
793         mdk_rdev_t *rdev2;
794         int next_spare = mddev->raid_disks;
795
796
797         /* make rdev->sb match mddev data..
798          *
799          * 1/ zero out disks
800          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
801          * 3/ any empty disks < next_spare become removed
802          *
803          * disks[0] gets initialised to REMOVED because
804          * we cannot be sure from other fields if it has
805          * been initialised or not.
806          */
807         int i;
808         int active=0, working=0,failed=0,spare=0,nr_disks=0;
809
810         rdev->sb_size = MD_SB_BYTES;
811
812         sb = (mdp_super_t*)page_address(rdev->sb_page);
813
814         memset(sb, 0, sizeof(*sb));
815
816         sb->md_magic = MD_SB_MAGIC;
817         sb->major_version = mddev->major_version;
818         sb->minor_version = mddev->minor_version;
819         sb->patch_version = mddev->patch_version;
820         sb->gvalid_words  = 0; /* ignored */
821         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
822         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
823         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
824         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
825
826         sb->ctime = mddev->ctime;
827         sb->level = mddev->level;
828         sb->size  = mddev->size;
829         sb->raid_disks = mddev->raid_disks;
830         sb->md_minor = mddev->md_minor;
831         sb->not_persistent = !mddev->persistent;
832         sb->utime = mddev->utime;
833         sb->state = 0;
834         sb->events_hi = (mddev->events>>32);
835         sb->events_lo = (u32)mddev->events;
836
837         if (mddev->in_sync)
838         {
839                 sb->recovery_cp = mddev->recovery_cp;
840                 sb->cp_events_hi = (mddev->events>>32);
841                 sb->cp_events_lo = (u32)mddev->events;
842                 if (mddev->recovery_cp == MaxSector)
843                         sb->state = (1<< MD_SB_CLEAN);
844         } else
845                 sb->recovery_cp = 0;
846
847         sb->layout = mddev->layout;
848         sb->chunk_size = mddev->chunk_size;
849
850         if (mddev->bitmap && mddev->bitmap_file == NULL)
851                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
852
853         sb->disks[0].state = (1<<MD_DISK_REMOVED);
854         ITERATE_RDEV(mddev,rdev2,tmp) {
855                 mdp_disk_t *d;
856                 int desc_nr;
857                 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
858                     && !test_bit(Faulty, &rdev2->flags))
859                         desc_nr = rdev2->raid_disk;
860                 else
861                         desc_nr = next_spare++;
862                 rdev2->desc_nr = desc_nr;
863                 d = &sb->disks[rdev2->desc_nr];
864                 nr_disks++;
865                 d->number = rdev2->desc_nr;
866                 d->major = MAJOR(rdev2->bdev->bd_dev);
867                 d->minor = MINOR(rdev2->bdev->bd_dev);
868                 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
869                     && !test_bit(Faulty, &rdev2->flags))
870                         d->raid_disk = rdev2->raid_disk;
871                 else
872                         d->raid_disk = rdev2->desc_nr; /* compatibility */
873                 if (test_bit(Faulty, &rdev2->flags)) {
874                         d->state = (1<<MD_DISK_FAULTY);
875                         failed++;
876                 } else if (test_bit(In_sync, &rdev2->flags)) {
877                         d->state = (1<<MD_DISK_ACTIVE);
878                         d->state |= (1<<MD_DISK_SYNC);
879                         active++;
880                         working++;
881                 } else {
882                         d->state = 0;
883                         spare++;
884                         working++;
885                 }
886                 if (test_bit(WriteMostly, &rdev2->flags))
887                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
888         }
889         /* now set the "removed" and "faulty" bits on any missing devices */
890         for (i=0 ; i < mddev->raid_disks ; i++) {
891                 mdp_disk_t *d = &sb->disks[i];
892                 if (d->state == 0 && d->number == 0) {
893                         d->number = i;
894                         d->raid_disk = i;
895                         d->state = (1<<MD_DISK_REMOVED);
896                         d->state |= (1<<MD_DISK_FAULTY);
897                         failed++;
898                 }
899         }
900         sb->nr_disks = nr_disks;
901         sb->active_disks = active;
902         sb->working_disks = working;
903         sb->failed_disks = failed;
904         sb->spare_disks = spare;
905
906         sb->this_disk = sb->disks[rdev->desc_nr];
907         sb->sb_csum = calc_sb_csum(sb);
908 }
909
910 /*
911  * version 1 superblock
912  */
913
914 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
915 {
916         unsigned int disk_csum, csum;
917         unsigned long long newcsum;
918         int size = 256 + le32_to_cpu(sb->max_dev)*2;
919         unsigned int *isuper = (unsigned int*)sb;
920         int i;
921
922         disk_csum = sb->sb_csum;
923         sb->sb_csum = 0;
924         newcsum = 0;
925         for (i=0; size>=4; size -= 4 )
926                 newcsum += le32_to_cpu(*isuper++);
927
928         if (size == 2)
929                 newcsum += le16_to_cpu(*(unsigned short*) isuper);
930
931         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
932         sb->sb_csum = disk_csum;
933         return cpu_to_le32(csum);
934 }
935
936 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
937 {
938         struct mdp_superblock_1 *sb;
939         int ret;
940         sector_t sb_offset;
941         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
942         int bmask;
943
944         /*
945          * Calculate the position of the superblock.
946          * It is always aligned to a 4K boundary and
947          * depeding on minor_version, it can be:
948          * 0: At least 8K, but less than 12K, from end of device
949          * 1: At start of device
950          * 2: 4K from start of device.
951          */
952         switch(minor_version) {
953         case 0:
954                 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
955                 sb_offset -= 8*2;
956                 sb_offset &= ~(sector_t)(4*2-1);
957                 /* convert from sectors to K */
958                 sb_offset /= 2;
959                 break;
960         case 1:
961                 sb_offset = 0;
962                 break;
963         case 2:
964                 sb_offset = 4;
965                 break;
966         default:
967                 return -EINVAL;
968         }
969         rdev->sb_offset = sb_offset;
970
971         /* superblock is rarely larger than 1K, but it can be larger,
972          * and it is safe to read 4k, so we do that
973          */
974         ret = read_disk_sb(rdev, 4096);
975         if (ret) return ret;
976
977
978         sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
979
980         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
981             sb->major_version != cpu_to_le32(1) ||
982             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
983             le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
984             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
985                 return -EINVAL;
986
987         if (calc_sb_1_csum(sb) != sb->sb_csum) {
988                 printk("md: invalid superblock checksum on %s\n",
989                         bdevname(rdev->bdev,b));
990                 return -EINVAL;
991         }
992         if (le64_to_cpu(sb->data_size) < 10) {
993                 printk("md: data_size too small on %s\n",
994                        bdevname(rdev->bdev,b));
995                 return -EINVAL;
996         }
997         rdev->preferred_minor = 0xffff;
998         rdev->data_offset = le64_to_cpu(sb->data_offset);
999
1000         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1001         bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1002         if (rdev->sb_size & bmask)
1003                 rdev-> sb_size = (rdev->sb_size | bmask)+1;
1004
1005         if (refdev == 0)
1006                 return 1;
1007         else {
1008                 __u64 ev1, ev2;
1009                 struct mdp_superblock_1 *refsb = 
1010                         (struct mdp_superblock_1*)page_address(refdev->sb_page);
1011
1012                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1013                     sb->level != refsb->level ||
1014                     sb->layout != refsb->layout ||
1015                     sb->chunksize != refsb->chunksize) {
1016                         printk(KERN_WARNING "md: %s has strangely different"
1017                                 " superblock to %s\n",
1018                                 bdevname(rdev->bdev,b),
1019                                 bdevname(refdev->bdev,b2));
1020                         return -EINVAL;
1021                 }
1022                 ev1 = le64_to_cpu(sb->events);
1023                 ev2 = le64_to_cpu(refsb->events);
1024
1025                 if (ev1 > ev2)
1026                         return 1;
1027         }
1028         if (minor_version) 
1029                 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1030         else
1031                 rdev->size = rdev->sb_offset;
1032         if (rdev->size < le64_to_cpu(sb->data_size)/2)
1033                 return -EINVAL;
1034         rdev->size = le64_to_cpu(sb->data_size)/2;
1035         if (le32_to_cpu(sb->chunksize))
1036                 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1037         return 0;
1038 }
1039
1040 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1041 {
1042         struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1043
1044         rdev->raid_disk = -1;
1045         rdev->flags = 0;
1046         if (mddev->raid_disks == 0) {
1047                 mddev->major_version = 1;
1048                 mddev->patch_version = 0;
1049                 mddev->persistent = 1;
1050                 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1051                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1052                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1053                 mddev->level = le32_to_cpu(sb->level);
1054                 mddev->layout = le32_to_cpu(sb->layout);
1055                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1056                 mddev->size = le64_to_cpu(sb->size)/2;
1057                 mddev->events = le64_to_cpu(sb->events);
1058                 mddev->bitmap_offset = 0;
1059                 mddev->default_bitmap_offset = 1024;
1060                 
1061                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1062                 memcpy(mddev->uuid, sb->set_uuid, 16);
1063
1064                 mddev->max_disks =  (4096-256)/2;
1065
1066                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1067                     mddev->bitmap_file == NULL ) {
1068                         if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1069                             && mddev->level != 10) {
1070                                 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1071                                 return -EINVAL;
1072                         }
1073                         mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1074                 }
1075         } else if (mddev->pers == NULL) {
1076                 /* Insist of good event counter while assembling */
1077                 __u64 ev1 = le64_to_cpu(sb->events);
1078                 ++ev1;
1079                 if (ev1 < mddev->events)
1080                         return -EINVAL;
1081         } else if (mddev->bitmap) {
1082                 /* If adding to array with a bitmap, then we can accept an
1083                  * older device, but not too old.
1084                  */
1085                 __u64 ev1 = le64_to_cpu(sb->events);
1086                 if (ev1 < mddev->bitmap->events_cleared)
1087                         return 0;
1088         } else /* just a hot-add of a new device, leave raid_disk at -1 */
1089                 return 0;
1090
1091         if (mddev->level != LEVEL_MULTIPATH) {
1092                 int role;
1093                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1094                 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1095                 switch(role) {
1096                 case 0xffff: /* spare */
1097                         break;
1098                 case 0xfffe: /* faulty */
1099                         set_bit(Faulty, &rdev->flags);
1100                         break;
1101                 default:
1102                         set_bit(In_sync, &rdev->flags);
1103                         rdev->raid_disk = role;
1104                         break;
1105                 }
1106                 if (sb->devflags & WriteMostly1)
1107                         set_bit(WriteMostly, &rdev->flags);
1108         } else /* MULTIPATH are always insync */
1109                 set_bit(In_sync, &rdev->flags);
1110
1111         return 0;
1112 }
1113
1114 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1115 {
1116         struct mdp_superblock_1 *sb;
1117         struct list_head *tmp;
1118         mdk_rdev_t *rdev2;
1119         int max_dev, i;
1120         /* make rdev->sb match mddev and rdev data. */
1121
1122         sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1123
1124         sb->feature_map = 0;
1125         sb->pad0 = 0;
1126         memset(sb->pad1, 0, sizeof(sb->pad1));
1127         memset(sb->pad2, 0, sizeof(sb->pad2));
1128         memset(sb->pad3, 0, sizeof(sb->pad3));
1129
1130         sb->utime = cpu_to_le64((__u64)mddev->utime);
1131         sb->events = cpu_to_le64(mddev->events);
1132         if (mddev->in_sync)
1133                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1134         else
1135                 sb->resync_offset = cpu_to_le64(0);
1136
1137         if (mddev->bitmap && mddev->bitmap_file == NULL) {
1138                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1139                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1140         }
1141
1142         max_dev = 0;
1143         ITERATE_RDEV(mddev,rdev2,tmp)
1144                 if (rdev2->desc_nr+1 > max_dev)
1145                         max_dev = rdev2->desc_nr+1;
1146         
1147         sb->max_dev = cpu_to_le32(max_dev);
1148         for (i=0; i<max_dev;i++)
1149                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1150         
1151         ITERATE_RDEV(mddev,rdev2,tmp) {
1152                 i = rdev2->desc_nr;
1153                 if (test_bit(Faulty, &rdev2->flags))
1154                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1155                 else if (test_bit(In_sync, &rdev2->flags))
1156                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1157                 else
1158                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1159         }
1160
1161         sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1162         sb->sb_csum = calc_sb_1_csum(sb);
1163 }
1164
1165
1166 static struct super_type super_types[] = {
1167         [0] = {
1168                 .name   = "0.90.0",
1169                 .owner  = THIS_MODULE,
1170                 .load_super     = super_90_load,
1171                 .validate_super = super_90_validate,
1172                 .sync_super     = super_90_sync,
1173         },
1174         [1] = {
1175                 .name   = "md-1",
1176                 .owner  = THIS_MODULE,
1177                 .load_super     = super_1_load,
1178                 .validate_super = super_1_validate,
1179                 .sync_super     = super_1_sync,
1180         },
1181 };
1182         
1183 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1184 {
1185         struct list_head *tmp;
1186         mdk_rdev_t *rdev;
1187
1188         ITERATE_RDEV(mddev,rdev,tmp)
1189                 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1190                         return rdev;
1191
1192         return NULL;
1193 }
1194
1195 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1196 {
1197         struct list_head *tmp;
1198         mdk_rdev_t *rdev;
1199
1200         ITERATE_RDEV(mddev1,rdev,tmp)
1201                 if (match_dev_unit(mddev2, rdev))
1202                         return 1;
1203
1204         return 0;
1205 }
1206
1207 static LIST_HEAD(pending_raid_disks);
1208
1209 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1210 {
1211         mdk_rdev_t *same_pdev;
1212         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1213         struct kobject *ko;
1214
1215         if (rdev->mddev) {
1216                 MD_BUG();
1217                 return -EINVAL;
1218         }
1219         same_pdev = match_dev_unit(mddev, rdev);
1220         if (same_pdev)
1221                 printk(KERN_WARNING
1222                         "%s: WARNING: %s appears to be on the same physical"
1223                         " disk as %s. True\n     protection against single-disk"
1224                         " failure might be compromised.\n",
1225                         mdname(mddev), bdevname(rdev->bdev,b),
1226                         bdevname(same_pdev->bdev,b2));
1227
1228         /* Verify rdev->desc_nr is unique.
1229          * If it is -1, assign a free number, else
1230          * check number is not in use
1231          */
1232         if (rdev->desc_nr < 0) {
1233                 int choice = 0;
1234                 if (mddev->pers) choice = mddev->raid_disks;
1235                 while (find_rdev_nr(mddev, choice))
1236                         choice++;
1237                 rdev->desc_nr = choice;
1238         } else {
1239                 if (find_rdev_nr(mddev, rdev->desc_nr))
1240                         return -EBUSY;
1241         }
1242         bdevname(rdev->bdev,b);
1243         if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1244                 return -ENOMEM;
1245                         
1246         list_add(&rdev->same_set, &mddev->disks);
1247         rdev->mddev = mddev;
1248         printk(KERN_INFO "md: bind<%s>\n", b);
1249
1250         rdev->kobj.parent = &mddev->kobj;
1251         kobject_add(&rdev->kobj);
1252
1253         if (rdev->bdev->bd_part)
1254                 ko = &rdev->bdev->bd_part->kobj;
1255         else
1256                 ko = &rdev->bdev->bd_disk->kobj;
1257         sysfs_create_link(&rdev->kobj, ko, "block");
1258         return 0;
1259 }
1260
1261 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1262 {
1263         char b[BDEVNAME_SIZE];
1264         if (!rdev->mddev) {
1265                 MD_BUG();
1266                 return;
1267         }
1268         list_del_init(&rdev->same_set);
1269         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1270         rdev->mddev = NULL;
1271         sysfs_remove_link(&rdev->kobj, "block");
1272         kobject_del(&rdev->kobj);
1273 }
1274
1275 /*
1276  * prevent the device from being mounted, repartitioned or
1277  * otherwise reused by a RAID array (or any other kernel
1278  * subsystem), by bd_claiming the device.
1279  */
1280 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1281 {
1282         int err = 0;
1283         struct block_device *bdev;
1284         char b[BDEVNAME_SIZE];
1285
1286         bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1287         if (IS_ERR(bdev)) {
1288                 printk(KERN_ERR "md: could not open %s.\n",
1289                         __bdevname(dev, b));
1290                 return PTR_ERR(bdev);
1291         }
1292         err = bd_claim(bdev, rdev);
1293         if (err) {
1294                 printk(KERN_ERR "md: could not bd_claim %s.\n",
1295                         bdevname(bdev, b));
1296                 blkdev_put(bdev);
1297                 return err;
1298         }
1299         rdev->bdev = bdev;
1300         return err;
1301 }
1302
1303 static void unlock_rdev(mdk_rdev_t *rdev)
1304 {
1305         struct block_device *bdev = rdev->bdev;
1306         rdev->bdev = NULL;
1307         if (!bdev)
1308                 MD_BUG();
1309         bd_release(bdev);
1310         blkdev_put(bdev);
1311 }
1312
1313 void md_autodetect_dev(dev_t dev);
1314
1315 static void export_rdev(mdk_rdev_t * rdev)
1316 {
1317         char b[BDEVNAME_SIZE];
1318         printk(KERN_INFO "md: export_rdev(%s)\n",
1319                 bdevname(rdev->bdev,b));
1320         if (rdev->mddev)
1321                 MD_BUG();
1322         free_disk_sb(rdev);
1323         list_del_init(&rdev->same_set);
1324 #ifndef MODULE
1325         md_autodetect_dev(rdev->bdev->bd_dev);
1326 #endif
1327         unlock_rdev(rdev);
1328         kobject_put(&rdev->kobj);
1329 }
1330
1331 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1332 {
1333         unbind_rdev_from_array(rdev);
1334         export_rdev(rdev);
1335 }
1336
1337 static void export_array(mddev_t *mddev)
1338 {
1339         struct list_head *tmp;
1340         mdk_rdev_t *rdev;
1341
1342         ITERATE_RDEV(mddev,rdev,tmp) {
1343                 if (!rdev->mddev) {
1344                         MD_BUG();
1345                         continue;
1346                 }
1347                 kick_rdev_from_array(rdev);
1348         }
1349         if (!list_empty(&mddev->disks))
1350                 MD_BUG();
1351         mddev->raid_disks = 0;
1352         mddev->major_version = 0;
1353 }
1354
1355 static void print_desc(mdp_disk_t *desc)
1356 {
1357         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1358                 desc->major,desc->minor,desc->raid_disk,desc->state);
1359 }
1360
1361 static void print_sb(mdp_super_t *sb)
1362 {
1363         int i;
1364
1365         printk(KERN_INFO 
1366                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1367                 sb->major_version, sb->minor_version, sb->patch_version,
1368                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1369                 sb->ctime);
1370         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1371                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1372                 sb->md_minor, sb->layout, sb->chunk_size);
1373         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1374                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1375                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1376                 sb->failed_disks, sb->spare_disks,
1377                 sb->sb_csum, (unsigned long)sb->events_lo);
1378
1379         printk(KERN_INFO);
1380         for (i = 0; i < MD_SB_DISKS; i++) {
1381                 mdp_disk_t *desc;
1382
1383                 desc = sb->disks + i;
1384                 if (desc->number || desc->major || desc->minor ||
1385                     desc->raid_disk || (desc->state && (desc->state != 4))) {
1386                         printk("     D %2d: ", i);
1387                         print_desc(desc);
1388                 }
1389         }
1390         printk(KERN_INFO "md:     THIS: ");
1391         print_desc(&sb->this_disk);
1392
1393 }
1394
1395 static void print_rdev(mdk_rdev_t *rdev)
1396 {
1397         char b[BDEVNAME_SIZE];
1398         printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1399                 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1400                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1401                 rdev->desc_nr);
1402         if (rdev->sb_loaded) {
1403                 printk(KERN_INFO "md: rdev superblock:\n");
1404                 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1405         } else
1406                 printk(KERN_INFO "md: no rdev superblock!\n");
1407 }
1408
1409 void md_print_devices(void)
1410 {
1411         struct list_head *tmp, *tmp2;
1412         mdk_rdev_t *rdev;
1413         mddev_t *mddev;
1414         char b[BDEVNAME_SIZE];
1415
1416         printk("\n");
1417         printk("md:     **********************************\n");
1418         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
1419         printk("md:     **********************************\n");
1420         ITERATE_MDDEV(mddev,tmp) {
1421
1422                 if (mddev->bitmap)
1423                         bitmap_print_sb(mddev->bitmap);
1424                 else
1425                         printk("%s: ", mdname(mddev));
1426                 ITERATE_RDEV(mddev,rdev,tmp2)
1427                         printk("<%s>", bdevname(rdev->bdev,b));
1428                 printk("\n");
1429
1430                 ITERATE_RDEV(mddev,rdev,tmp2)
1431                         print_rdev(rdev);
1432         }
1433         printk("md:     **********************************\n");
1434         printk("\n");
1435 }
1436
1437
1438 static void sync_sbs(mddev_t * mddev)
1439 {
1440         mdk_rdev_t *rdev;
1441         struct list_head *tmp;
1442
1443         ITERATE_RDEV(mddev,rdev,tmp) {
1444                 super_types[mddev->major_version].
1445                         sync_super(mddev, rdev);
1446                 rdev->sb_loaded = 1;
1447         }
1448 }
1449
1450 static void md_update_sb(mddev_t * mddev)
1451 {
1452         int err;
1453         struct list_head *tmp;
1454         mdk_rdev_t *rdev;
1455         int sync_req;
1456
1457 repeat:
1458         spin_lock_irq(&mddev->write_lock);
1459         sync_req = mddev->in_sync;
1460         mddev->utime = get_seconds();
1461         mddev->events ++;
1462
1463         if (!mddev->events) {
1464                 /*
1465                  * oops, this 64-bit counter should never wrap.
1466                  * Either we are in around ~1 trillion A.C., assuming
1467                  * 1 reboot per second, or we have a bug:
1468                  */
1469                 MD_BUG();
1470                 mddev->events --;
1471         }
1472         mddev->sb_dirty = 2;
1473         sync_sbs(mddev);
1474
1475         /*
1476          * do not write anything to disk if using
1477          * nonpersistent superblocks
1478          */
1479         if (!mddev->persistent) {
1480                 mddev->sb_dirty = 0;
1481                 spin_unlock_irq(&mddev->write_lock);
1482                 wake_up(&mddev->sb_wait);
1483                 return;
1484         }
1485         spin_unlock_irq(&mddev->write_lock);
1486
1487         dprintk(KERN_INFO 
1488                 "md: updating %s RAID superblock on device (in sync %d)\n",
1489                 mdname(mddev),mddev->in_sync);
1490
1491         err = bitmap_update_sb(mddev->bitmap);
1492         ITERATE_RDEV(mddev,rdev,tmp) {
1493                 char b[BDEVNAME_SIZE];
1494                 dprintk(KERN_INFO "md: ");
1495                 if (test_bit(Faulty, &rdev->flags))
1496                         dprintk("(skipping faulty ");
1497
1498                 dprintk("%s ", bdevname(rdev->bdev,b));
1499                 if (!test_bit(Faulty, &rdev->flags)) {
1500                         md_super_write(mddev,rdev,
1501                                        rdev->sb_offset<<1, rdev->sb_size,
1502                                        rdev->sb_page);
1503                         dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1504                                 bdevname(rdev->bdev,b),
1505                                 (unsigned long long)rdev->sb_offset);
1506
1507                 } else
1508                         dprintk(")\n");
1509                 if (mddev->level == LEVEL_MULTIPATH)
1510                         /* only need to write one superblock... */
1511                         break;
1512         }
1513         md_super_wait(mddev);
1514         /* if there was a failure, sb_dirty was set to 1, and we re-write super */
1515
1516         spin_lock_irq(&mddev->write_lock);
1517         if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1518                 /* have to write it out again */
1519                 spin_unlock_irq(&mddev->write_lock);
1520                 goto repeat;
1521         }
1522         mddev->sb_dirty = 0;
1523         spin_unlock_irq(&mddev->write_lock);
1524         wake_up(&mddev->sb_wait);
1525
1526 }
1527
1528 struct rdev_sysfs_entry {
1529         struct attribute attr;
1530         ssize_t (*show)(mdk_rdev_t *, char *);
1531         ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1532 };
1533
1534 static ssize_t
1535 state_show(mdk_rdev_t *rdev, char *page)
1536 {
1537         char *sep = "";
1538         int len=0;
1539
1540         if (test_bit(Faulty, &rdev->flags)) {
1541                 len+= sprintf(page+len, "%sfaulty",sep);
1542                 sep = ",";
1543         }
1544         if (test_bit(In_sync, &rdev->flags)) {
1545                 len += sprintf(page+len, "%sin_sync",sep);
1546                 sep = ",";
1547         }
1548         if (!test_bit(Faulty, &rdev->flags) &&
1549             !test_bit(In_sync, &rdev->flags)) {
1550                 len += sprintf(page+len, "%sspare", sep);
1551                 sep = ",";
1552         }
1553         return len+sprintf(page+len, "\n");
1554 }
1555
1556 static struct rdev_sysfs_entry
1557 rdev_state = __ATTR_RO(state);
1558
1559 static ssize_t
1560 super_show(mdk_rdev_t *rdev, char *page)
1561 {
1562         if (rdev->sb_loaded && rdev->sb_size) {
1563                 memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1564                 return rdev->sb_size;
1565         } else
1566                 return 0;
1567 }
1568 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1569
1570 static struct attribute *rdev_default_attrs[] = {
1571         &rdev_state.attr,
1572         &rdev_super.attr,
1573         NULL,
1574 };
1575 static ssize_t
1576 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1577 {
1578         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1579         mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1580
1581         if (!entry->show)
1582                 return -EIO;
1583         return entry->show(rdev, page);
1584 }
1585
1586 static ssize_t
1587 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1588               const char *page, size_t length)
1589 {
1590         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1591         mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1592
1593         if (!entry->store)
1594                 return -EIO;
1595         return entry->store(rdev, page, length);
1596 }
1597
1598 static void rdev_free(struct kobject *ko)
1599 {
1600         mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1601         kfree(rdev);
1602 }
1603 static struct sysfs_ops rdev_sysfs_ops = {
1604         .show           = rdev_attr_show,
1605         .store          = rdev_attr_store,
1606 };
1607 static struct kobj_type rdev_ktype = {
1608         .release        = rdev_free,
1609         .sysfs_ops      = &rdev_sysfs_ops,
1610         .default_attrs  = rdev_default_attrs,
1611 };
1612
1613 /*
1614  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1615  *
1616  * mark the device faulty if:
1617  *
1618  *   - the device is nonexistent (zero size)
1619  *   - the device has no valid superblock
1620  *
1621  * a faulty rdev _never_ has rdev->sb set.
1622  */
1623 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1624 {
1625         char b[BDEVNAME_SIZE];
1626         int err;
1627         mdk_rdev_t *rdev;
1628         sector_t size;
1629
1630         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1631         if (!rdev) {
1632                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1633                 return ERR_PTR(-ENOMEM);
1634         }
1635
1636         if ((err = alloc_disk_sb(rdev)))
1637                 goto abort_free;
1638
1639         err = lock_rdev(rdev, newdev);
1640         if (err)
1641                 goto abort_free;
1642
1643         rdev->kobj.parent = NULL;
1644         rdev->kobj.ktype = &rdev_ktype;
1645         kobject_init(&rdev->kobj);
1646
1647         rdev->desc_nr = -1;
1648         rdev->flags = 0;
1649         rdev->data_offset = 0;
1650         atomic_set(&rdev->nr_pending, 0);
1651         atomic_set(&rdev->read_errors, 0);
1652
1653         size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1654         if (!size) {
1655                 printk(KERN_WARNING 
1656                         "md: %s has zero or unknown size, marking faulty!\n",
1657                         bdevname(rdev->bdev,b));
1658                 err = -EINVAL;
1659                 goto abort_free;
1660         }
1661
1662         if (super_format >= 0) {
1663                 err = super_types[super_format].
1664                         load_super(rdev, NULL, super_minor);
1665                 if (err == -EINVAL) {
1666                         printk(KERN_WARNING 
1667                                 "md: %s has invalid sb, not importing!\n",
1668                                 bdevname(rdev->bdev,b));
1669                         goto abort_free;
1670                 }
1671                 if (err < 0) {
1672                         printk(KERN_WARNING 
1673                                 "md: could not read %s's sb, not importing!\n",
1674                                 bdevname(rdev->bdev,b));
1675                         goto abort_free;
1676                 }
1677         }
1678         INIT_LIST_HEAD(&rdev->same_set);
1679
1680         return rdev;
1681
1682 abort_free:
1683         if (rdev->sb_page) {
1684                 if (rdev->bdev)
1685                         unlock_rdev(rdev);
1686                 free_disk_sb(rdev);
1687         }
1688         kfree(rdev);
1689         return ERR_PTR(err);
1690 }
1691
1692 /*
1693  * Check a full RAID array for plausibility
1694  */
1695
1696
1697 static void analyze_sbs(mddev_t * mddev)
1698 {
1699         int i;
1700         struct list_head *tmp;
1701         mdk_rdev_t *rdev, *freshest;
1702         char b[BDEVNAME_SIZE];
1703
1704         freshest = NULL;
1705         ITERATE_RDEV(mddev,rdev,tmp)
1706                 switch (super_types[mddev->major_version].
1707                         load_super(rdev, freshest, mddev->minor_version)) {
1708                 case 1:
1709                         freshest = rdev;
1710                         break;
1711                 case 0:
1712                         break;
1713                 default:
1714                         printk( KERN_ERR \
1715                                 "md: fatal superblock inconsistency in %s"
1716                                 " -- removing from array\n", 
1717                                 bdevname(rdev->bdev,b));
1718                         kick_rdev_from_array(rdev);
1719                 }
1720
1721
1722         super_types[mddev->major_version].
1723                 validate_super(mddev, freshest);
1724
1725         i = 0;
1726         ITERATE_RDEV(mddev,rdev,tmp) {
1727                 if (rdev != freshest)
1728                         if (super_types[mddev->major_version].
1729                             validate_super(mddev, rdev)) {
1730                                 printk(KERN_WARNING "md: kicking non-fresh %s"
1731                                         " from array!\n",
1732                                         bdevname(rdev->bdev,b));
1733                                 kick_rdev_from_array(rdev);
1734                                 continue;
1735                         }
1736                 if (mddev->level == LEVEL_MULTIPATH) {
1737                         rdev->desc_nr = i++;
1738                         rdev->raid_disk = rdev->desc_nr;
1739                         set_bit(In_sync, &rdev->flags);
1740                 }
1741         }
1742
1743
1744
1745         if (mddev->recovery_cp != MaxSector &&
1746             mddev->level >= 1)
1747                 printk(KERN_ERR "md: %s: raid array is not clean"
1748                        " -- starting background reconstruction\n",
1749                        mdname(mddev));
1750
1751 }
1752
1753 static ssize_t
1754 level_show(mddev_t *mddev, char *page)
1755 {
1756         struct mdk_personality *p = mddev->pers;
1757         if (p == NULL && mddev->raid_disks == 0)
1758                 return 0;
1759         if (mddev->level >= 0)
1760                 return sprintf(page, "raid%d\n", mddev->level);
1761         else
1762                 return sprintf(page, "%s\n", p->name);
1763 }
1764
1765 static struct md_sysfs_entry md_level = __ATTR_RO(level);
1766
1767 static ssize_t
1768 raid_disks_show(mddev_t *mddev, char *page)
1769 {
1770         if (mddev->raid_disks == 0)
1771                 return 0;
1772         return sprintf(page, "%d\n", mddev->raid_disks);
1773 }
1774
1775 static struct md_sysfs_entry md_raid_disks = __ATTR_RO(raid_disks);
1776
1777 static ssize_t
1778 action_show(mddev_t *mddev, char *page)
1779 {
1780         char *type = "idle";
1781         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1782             test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
1783                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1784                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1785                                 type = "resync";
1786                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1787                                 type = "check";
1788                         else
1789                                 type = "repair";
1790                 } else
1791                         type = "recover";
1792         }
1793         return sprintf(page, "%s\n", type);
1794 }
1795
1796 static ssize_t
1797 action_store(mddev_t *mddev, const char *page, size_t len)
1798 {
1799         if (!mddev->pers || !mddev->pers->sync_request)
1800                 return -EINVAL;
1801
1802         if (strcmp(page, "idle")==0 || strcmp(page, "idle\n")==0) {
1803                 if (mddev->sync_thread) {
1804                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1805                         md_unregister_thread(mddev->sync_thread);
1806                         mddev->sync_thread = NULL;
1807                         mddev->recovery = 0;
1808                 }
1809                 return len;
1810         }
1811
1812         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
1813             test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
1814                 return -EBUSY;
1815         if (strcmp(page, "resync")==0 || strcmp(page, "resync\n")==0 ||
1816             strcmp(page, "recover")==0 || strcmp(page, "recover\n")==0)
1817                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1818         else {
1819                 if (strcmp(page, "check")==0 || strcmp(page, "check\n")==0)
1820                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
1821                 else if (strcmp(page, "repair")!=0 && strcmp(page, "repair\n")!=0)
1822                         return -EINVAL;
1823                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
1824                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
1825                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
1826         }
1827         md_wakeup_thread(mddev->thread);
1828         return len;
1829 }
1830
1831 static ssize_t
1832 mismatch_cnt_show(mddev_t *mddev, char *page)
1833 {
1834         return sprintf(page, "%llu\n",
1835                        (unsigned long long) mddev->resync_mismatches);
1836 }
1837
1838 static struct md_sysfs_entry
1839 md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
1840
1841
1842 static struct md_sysfs_entry
1843 md_mismatches = __ATTR_RO(mismatch_cnt);
1844
1845 static struct attribute *md_default_attrs[] = {
1846         &md_level.attr,
1847         &md_raid_disks.attr,
1848         NULL,
1849 };
1850
1851 static struct attribute *md_redundancy_attrs[] = {
1852         &md_scan_mode.attr,
1853         &md_mismatches.attr,
1854         NULL,
1855 };
1856 static struct attribute_group md_redundancy_group = {
1857         .name = NULL,
1858         .attrs = md_redundancy_attrs,
1859 };
1860
1861
1862 static ssize_t
1863 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1864 {
1865         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1866         mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1867         ssize_t rv;
1868
1869         if (!entry->show)
1870                 return -EIO;
1871         mddev_lock(mddev);
1872         rv = entry->show(mddev, page);
1873         mddev_unlock(mddev);
1874         return rv;
1875 }
1876
1877 static ssize_t
1878 md_attr_store(struct kobject *kobj, struct attribute *attr,
1879               const char *page, size_t length)
1880 {
1881         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
1882         mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
1883         ssize_t rv;
1884
1885         if (!entry->store)
1886                 return -EIO;
1887         mddev_lock(mddev);
1888         rv = entry->store(mddev, page, length);
1889         mddev_unlock(mddev);
1890         return rv;
1891 }
1892
1893 static void md_free(struct kobject *ko)
1894 {
1895         mddev_t *mddev = container_of(ko, mddev_t, kobj);
1896         kfree(mddev);
1897 }
1898
1899 static struct sysfs_ops md_sysfs_ops = {
1900         .show   = md_attr_show,
1901         .store  = md_attr_store,
1902 };
1903 static struct kobj_type md_ktype = {
1904         .release        = md_free,
1905         .sysfs_ops      = &md_sysfs_ops,
1906         .default_attrs  = md_default_attrs,
1907 };
1908
1909 int mdp_major = 0;
1910
1911 static struct kobject *md_probe(dev_t dev, int *part, void *data)
1912 {
1913         static DECLARE_MUTEX(disks_sem);
1914         mddev_t *mddev = mddev_find(dev);
1915         struct gendisk *disk;
1916         int partitioned = (MAJOR(dev) != MD_MAJOR);
1917         int shift = partitioned ? MdpMinorShift : 0;
1918         int unit = MINOR(dev) >> shift;
1919
1920         if (!mddev)
1921                 return NULL;
1922
1923         down(&disks_sem);
1924         if (mddev->gendisk) {
1925                 up(&disks_sem);
1926                 mddev_put(mddev);
1927                 return NULL;
1928         }
1929         disk = alloc_disk(1 << shift);
1930         if (!disk) {
1931                 up(&disks_sem);
1932                 mddev_put(mddev);
1933                 return NULL;
1934         }
1935         disk->major = MAJOR(dev);
1936         disk->first_minor = unit << shift;
1937         if (partitioned) {
1938                 sprintf(disk->disk_name, "md_d%d", unit);
1939                 sprintf(disk->devfs_name, "md/d%d", unit);
1940         } else {
1941                 sprintf(disk->disk_name, "md%d", unit);
1942                 sprintf(disk->devfs_name, "md/%d", unit);
1943         }
1944         disk->fops = &md_fops;
1945         disk->private_data = mddev;
1946         disk->queue = mddev->queue;
1947         add_disk(disk);
1948         mddev->gendisk = disk;
1949         up(&disks_sem);
1950         mddev->kobj.parent = &disk->kobj;
1951         mddev->kobj.k_name = NULL;
1952         snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
1953         mddev->kobj.ktype = &md_ktype;
1954         kobject_register(&mddev->kobj);
1955         return NULL;
1956 }
1957
1958 void md_wakeup_thread(mdk_thread_t *thread);
1959
1960 static void md_safemode_timeout(unsigned long data)
1961 {
1962         mddev_t *mddev = (mddev_t *) data;
1963
1964         mddev->safemode = 1;
1965         md_wakeup_thread(mddev->thread);
1966 }
1967
1968 static int start_dirty_degraded;
1969
1970 static int do_md_run(mddev_t * mddev)
1971 {
1972         int err;
1973         int chunk_size;
1974         struct list_head *tmp;
1975         mdk_rdev_t *rdev;
1976         struct gendisk *disk;
1977         struct mdk_personality *pers;
1978         char b[BDEVNAME_SIZE];
1979
1980         if (list_empty(&mddev->disks))
1981                 /* cannot run an array with no devices.. */
1982                 return -EINVAL;
1983
1984         if (mddev->pers)
1985                 return -EBUSY;
1986
1987         /*
1988          * Analyze all RAID superblock(s)
1989          */
1990         if (!mddev->raid_disks)
1991                 analyze_sbs(mddev);
1992
1993         chunk_size = mddev->chunk_size;
1994
1995         if (chunk_size) {
1996                 if (chunk_size > MAX_CHUNK_SIZE) {
1997                         printk(KERN_ERR "too big chunk_size: %d > %d\n",
1998                                 chunk_size, MAX_CHUNK_SIZE);
1999                         return -EINVAL;
2000                 }
2001                 /*
2002                  * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
2003                  */
2004                 if ( (1 << ffz(~chunk_size)) != chunk_size) {
2005                         printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
2006                         return -EINVAL;
2007                 }
2008                 if (chunk_size < PAGE_SIZE) {
2009                         printk(KERN_ERR "too small chunk_size: %d < %ld\n",
2010                                 chunk_size, PAGE_SIZE);
2011                         return -EINVAL;
2012                 }
2013
2014                 /* devices must have minimum size of one chunk */
2015                 ITERATE_RDEV(mddev,rdev,tmp) {
2016                         if (test_bit(Faulty, &rdev->flags))
2017                                 continue;
2018                         if (rdev->size < chunk_size / 1024) {
2019                                 printk(KERN_WARNING
2020                                         "md: Dev %s smaller than chunk_size:"
2021                                         " %lluk < %dk\n",
2022                                         bdevname(rdev->bdev,b),
2023                                         (unsigned long long)rdev->size,
2024                                         chunk_size / 1024);
2025                                 return -EINVAL;
2026                         }
2027                 }
2028         }
2029
2030 #ifdef CONFIG_KMOD
2031         request_module("md-level-%d", mddev->level);
2032 #endif
2033
2034         /*
2035          * Drop all container device buffers, from now on
2036          * the only valid external interface is through the md
2037          * device.
2038          * Also find largest hardsector size
2039          */
2040         ITERATE_RDEV(mddev,rdev,tmp) {
2041                 if (test_bit(Faulty, &rdev->flags))
2042                         continue;
2043                 sync_blockdev(rdev->bdev);
2044                 invalidate_bdev(rdev->bdev, 0);
2045         }
2046
2047         md_probe(mddev->unit, NULL, NULL);
2048         disk = mddev->gendisk;
2049         if (!disk)
2050                 return -ENOMEM;
2051
2052         spin_lock(&pers_lock);
2053         pers = find_pers(mddev->level);
2054         if (!pers || !try_module_get(pers->owner)) {
2055                 spin_unlock(&pers_lock);
2056                 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
2057                        mddev->level);
2058                 return -EINVAL;
2059         }
2060         mddev->pers = pers;
2061         spin_unlock(&pers_lock);
2062
2063         mddev->recovery = 0;
2064         mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
2065         mddev->barriers_work = 1;
2066         mddev->ok_start_degraded = start_dirty_degraded;
2067
2068         if (start_readonly)
2069                 mddev->ro = 2; /* read-only, but switch on first write */
2070
2071         err = mddev->pers->run(mddev);
2072         if (!err && mddev->pers->sync_request) {
2073                 err = bitmap_create(mddev);
2074                 if (err) {
2075                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
2076                                mdname(mddev), err);
2077                         mddev->pers->stop(mddev);
2078                 }
2079         }
2080         if (err) {
2081                 printk(KERN_ERR "md: pers->run() failed ...\n");
2082                 module_put(mddev->pers->owner);
2083                 mddev->pers = NULL;
2084                 bitmap_destroy(mddev);
2085                 return err;
2086         }
2087         if (mddev->pers->sync_request)
2088                 sysfs_create_group(&mddev->kobj, &md_redundancy_group);
2089         else if (mddev->ro == 2) /* auto-readonly not meaningful */
2090                 mddev->ro = 0;
2091
2092         atomic_set(&mddev->writes_pending,0);
2093         mddev->safemode = 0;
2094         mddev->safemode_timer.function = md_safemode_timeout;
2095         mddev->safemode_timer.data = (unsigned long) mddev;
2096         mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
2097         mddev->in_sync = 1;
2098
2099         ITERATE_RDEV(mddev,rdev,tmp)
2100                 if (rdev->raid_disk >= 0) {
2101                         char nm[20];
2102                         sprintf(nm, "rd%d", rdev->raid_disk);
2103                         sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2104                 }
2105         
2106         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2107         md_wakeup_thread(mddev->thread);
2108         
2109         if (mddev->sb_dirty)
2110                 md_update_sb(mddev);
2111
2112         set_capacity(disk, mddev->array_size<<1);
2113
2114         /* If we call blk_queue_make_request here, it will
2115          * re-initialise max_sectors etc which may have been
2116          * refined inside -> run.  So just set the bits we need to set.
2117          * Most initialisation happended when we called
2118          * blk_queue_make_request(..., md_fail_request)
2119          * earlier.
2120          */
2121         mddev->queue->queuedata = mddev;
2122         mddev->queue->make_request_fn = mddev->pers->make_request;
2123
2124         mddev->changed = 1;
2125         md_new_event(mddev);
2126         return 0;
2127 }
2128
2129 static int restart_array(mddev_t *mddev)
2130 {
2131         struct gendisk *disk = mddev->gendisk;
2132         int err;
2133
2134         /*
2135          * Complain if it has no devices
2136          */
2137         err = -ENXIO;
2138         if (list_empty(&mddev->disks))
2139                 goto out;
2140
2141         if (mddev->pers) {
2142                 err = -EBUSY;
2143                 if (!mddev->ro)
2144                         goto out;
2145
2146                 mddev->safemode = 0;
2147                 mddev->ro = 0;
2148                 set_disk_ro(disk, 0);
2149
2150                 printk(KERN_INFO "md: %s switched to read-write mode.\n",
2151                         mdname(mddev));
2152                 /*
2153                  * Kick recovery or resync if necessary
2154                  */
2155                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2156                 md_wakeup_thread(mddev->thread);
2157                 err = 0;
2158         } else {
2159                 printk(KERN_ERR "md: %s has no personality assigned.\n",
2160                         mdname(mddev));
2161                 err = -EINVAL;
2162         }
2163
2164 out:
2165         return err;
2166 }
2167
2168 static int do_md_stop(mddev_t * mddev, int ro)
2169 {
2170         int err = 0;
2171         struct gendisk *disk = mddev->gendisk;
2172
2173         if (mddev->pers) {
2174                 if (atomic_read(&mddev->active)>2) {
2175                         printk("md: %s still in use.\n",mdname(mddev));
2176                         return -EBUSY;
2177                 }
2178
2179                 if (mddev->sync_thread) {
2180                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2181                         md_unregister_thread(mddev->sync_thread);
2182                         mddev->sync_thread = NULL;
2183                 }
2184
2185                 del_timer_sync(&mddev->safemode_timer);
2186
2187                 invalidate_partition(disk, 0);
2188
2189                 if (ro) {
2190                         err  = -ENXIO;
2191                         if (mddev->ro==1)
2192                                 goto out;
2193                         mddev->ro = 1;
2194                 } else {
2195                         bitmap_flush(mddev);
2196                         md_super_wait(mddev);
2197                         if (mddev->ro)
2198                                 set_disk_ro(disk, 0);
2199                         blk_queue_make_request(mddev->queue, md_fail_request);
2200                         mddev->pers->stop(mddev);
2201                         if (mddev->pers->sync_request)
2202                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
2203
2204                         module_put(mddev->pers->owner);
2205                         mddev->pers = NULL;
2206                         if (mddev->ro)
2207                                 mddev->ro = 0;
2208                 }
2209                 if (!mddev->in_sync) {
2210                         /* mark array as shutdown cleanly */
2211                         mddev->in_sync = 1;
2212                         md_update_sb(mddev);
2213                 }
2214                 if (ro)
2215                         set_disk_ro(disk, 1);
2216         }
2217
2218         bitmap_destroy(mddev);
2219         if (mddev->bitmap_file) {
2220                 atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2221                 fput(mddev->bitmap_file);
2222                 mddev->bitmap_file = NULL;
2223         }
2224         mddev->bitmap_offset = 0;
2225
2226         /*
2227          * Free resources if final stop
2228          */
2229         if (!ro) {
2230                 mdk_rdev_t *rdev;
2231                 struct list_head *tmp;
2232                 struct gendisk *disk;
2233                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2234
2235                 ITERATE_RDEV(mddev,rdev,tmp)
2236                         if (rdev->raid_disk >= 0) {
2237                                 char nm[20];
2238                                 sprintf(nm, "rd%d", rdev->raid_disk);
2239                                 sysfs_remove_link(&mddev->kobj, nm);
2240                         }
2241
2242                 export_array(mddev);
2243
2244                 mddev->array_size = 0;
2245                 disk = mddev->gendisk;
2246                 if (disk)
2247                         set_capacity(disk, 0);
2248                 mddev->changed = 1;
2249         } else
2250                 printk(KERN_INFO "md: %s switched to read-only mode.\n",
2251                         mdname(mddev));
2252         err = 0;
2253         md_new_event(mddev);
2254 out:
2255         return err;
2256 }
2257
2258 static void autorun_array(mddev_t *mddev)
2259 {
2260         mdk_rdev_t *rdev;
2261         struct list_head *tmp;
2262         int err;
2263
2264         if (list_empty(&mddev->disks))
2265                 return;
2266
2267         printk(KERN_INFO "md: running: ");
2268
2269         ITERATE_RDEV(mddev,rdev,tmp) {
2270                 char b[BDEVNAME_SIZE];
2271                 printk("<%s>", bdevname(rdev->bdev,b));
2272         }
2273         printk("\n");
2274
2275         err = do_md_run (mddev);
2276         if (err) {
2277                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2278                 do_md_stop (mddev, 0);
2279         }
2280 }
2281
2282 /*
2283  * lets try to run arrays based on all disks that have arrived
2284  * until now. (those are in pending_raid_disks)
2285  *
2286  * the method: pick the first pending disk, collect all disks with
2287  * the same UUID, remove all from the pending list and put them into
2288  * the 'same_array' list. Then order this list based on superblock
2289  * update time (freshest comes first), kick out 'old' disks and
2290  * compare superblocks. If everything's fine then run it.
2291  *
2292  * If "unit" is allocated, then bump its reference count
2293  */
2294 static void autorun_devices(int part)
2295 {
2296         struct list_head candidates;
2297         struct list_head *tmp;
2298         mdk_rdev_t *rdev0, *rdev;
2299         mddev_t *mddev;
2300         char b[BDEVNAME_SIZE];
2301
2302         printk(KERN_INFO "md: autorun ...\n");
2303         while (!list_empty(&pending_raid_disks)) {
2304                 dev_t dev;
2305                 rdev0 = list_entry(pending_raid_disks.next,
2306                                          mdk_rdev_t, same_set);
2307
2308                 printk(KERN_INFO "md: considering %s ...\n",
2309                         bdevname(rdev0->bdev,b));
2310                 INIT_LIST_HEAD(&candidates);
2311                 ITERATE_RDEV_PENDING(rdev,tmp)
2312                         if (super_90_load(rdev, rdev0, 0) >= 0) {
2313                                 printk(KERN_INFO "md:  adding %s ...\n",
2314                                         bdevname(rdev->bdev,b));
2315                                 list_move(&rdev->same_set, &candidates);
2316                         }
2317                 /*
2318                  * now we have a set of devices, with all of them having
2319                  * mostly sane superblocks. It's time to allocate the
2320                  * mddev.
2321                  */
2322                 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2323                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2324                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2325                         break;
2326                 }
2327                 if (part)
2328                         dev = MKDEV(mdp_major,
2329                                     rdev0->preferred_minor << MdpMinorShift);
2330                 else
2331                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2332
2333                 md_probe(dev, NULL, NULL);
2334                 mddev = mddev_find(dev);
2335                 if (!mddev) {
2336                         printk(KERN_ERR 
2337                                 "md: cannot allocate memory for md drive.\n");
2338                         break;
2339                 }
2340                 if (mddev_lock(mddev)) 
2341                         printk(KERN_WARNING "md: %s locked, cannot run\n",
2342                                mdname(mddev));
2343                 else if (mddev->raid_disks || mddev->major_version
2344                          || !list_empty(&mddev->disks)) {
2345                         printk(KERN_WARNING 
2346                                 "md: %s already running, cannot run %s\n",
2347                                 mdname(mddev), bdevname(rdev0->bdev,b));
2348                         mddev_unlock(mddev);
2349                 } else {
2350                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
2351                         ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
2352                                 list_del_init(&rdev->same_set);
2353                                 if (bind_rdev_to_array(rdev, mddev))
2354                                         export_rdev(rdev);
2355                         }
2356                         autorun_array(mddev);
2357                         mddev_unlock(mddev);
2358                 }
2359                 /* on success, candidates will be empty, on error
2360                  * it won't...
2361                  */
2362                 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
2363                         export_rdev(rdev);
2364                 mddev_put(mddev);
2365         }
2366         printk(KERN_INFO "md: ... autorun DONE.\n");
2367 }
2368
2369 /*
2370  * import RAID devices based on one partition
2371  * if possible, the array gets run as well.
2372  */
2373
2374 static int autostart_array(dev_t startdev)
2375 {
2376         char b[BDEVNAME_SIZE];
2377         int err = -EINVAL, i;
2378         mdp_super_t *sb = NULL;
2379         mdk_rdev_t *start_rdev = NULL, *rdev;
2380
2381         start_rdev = md_import_device(startdev, 0, 0);
2382         if (IS_ERR(start_rdev))
2383                 return err;
2384
2385
2386         /* NOTE: this can only work for 0.90.0 superblocks */
2387         sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2388         if (sb->major_version != 0 ||
2389             sb->minor_version != 90 ) {
2390                 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2391                 export_rdev(start_rdev);
2392                 return err;
2393         }
2394
2395         if (test_bit(Faulty, &start_rdev->flags)) {
2396                 printk(KERN_WARNING 
2397                         "md: can not autostart based on faulty %s!\n",
2398                         bdevname(start_rdev->bdev,b));
2399                 export_rdev(start_rdev);
2400                 return err;
2401         }
2402         list_add(&start_rdev->same_set, &pending_raid_disks);
2403
2404         for (i = 0; i < MD_SB_DISKS; i++) {
2405                 mdp_disk_t *desc = sb->disks + i;
2406                 dev_t dev = MKDEV(desc->major, desc->minor);
2407
2408                 if (!dev)
2409                         continue;
2410                 if (dev == startdev)
2411                         continue;
2412                 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
2413                         continue;
2414                 rdev = md_import_device(dev, 0, 0);
2415                 if (IS_ERR(rdev))
2416                         continue;
2417
2418                 list_add(&rdev->same_set, &pending_raid_disks);
2419         }
2420
2421         /*
2422          * possibly return codes
2423          */
2424         autorun_devices(0);
2425         return 0;
2426
2427 }
2428
2429
2430 static int get_version(void __user * arg)
2431 {
2432         mdu_version_t ver;
2433
2434         ver.major = MD_MAJOR_VERSION;
2435         ver.minor = MD_MINOR_VERSION;
2436         ver.patchlevel = MD_PATCHLEVEL_VERSION;
2437
2438         if (copy_to_user(arg, &ver, sizeof(ver)))
2439                 return -EFAULT;
2440
2441         return 0;
2442 }
2443
2444 static int get_array_info(mddev_t * mddev, void __user * arg)
2445 {
2446         mdu_array_info_t info;
2447         int nr,working,active,failed,spare;
2448         mdk_rdev_t *rdev;
2449         struct list_head *tmp;
2450
2451         nr=working=active=failed=spare=0;
2452         ITERATE_RDEV(mddev,rdev,tmp) {
2453                 nr++;
2454                 if (test_bit(Faulty, &rdev->flags))
2455                         failed++;
2456                 else {
2457                         working++;
2458                         if (test_bit(In_sync, &rdev->flags))
2459                                 active++;       
2460                         else
2461                                 spare++;
2462                 }
2463         }
2464
2465         info.major_version = mddev->major_version;
2466         info.minor_version = mddev->minor_version;
2467         info.patch_version = MD_PATCHLEVEL_VERSION;
2468         info.ctime         = mddev->ctime;
2469         info.level         = mddev->level;
2470         info.size          = mddev->size;
2471         info.nr_disks      = nr;
2472         info.raid_disks    = mddev->raid_disks;
2473         info.md_minor      = mddev->md_minor;
2474         info.not_persistent= !mddev->persistent;
2475
2476         info.utime         = mddev->utime;
2477         info.state         = 0;
2478         if (mddev->in_sync)
2479                 info.state = (1<<MD_SB_CLEAN);
2480         if (mddev->bitmap && mddev->bitmap_offset)
2481                 info.state = (1<<MD_SB_BITMAP_PRESENT);
2482         info.active_disks  = active;
2483         info.working_disks = working;
2484         info.failed_disks  = failed;
2485         info.spare_disks   = spare;
2486
2487         info.layout        = mddev->layout;
2488         info.chunk_size    = mddev->chunk_size;
2489
2490         if (copy_to_user(arg, &info, sizeof(info)))
2491                 return -EFAULT;
2492
2493         return 0;
2494 }
2495
2496 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
2497 {
2498         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
2499         char *ptr, *buf = NULL;
2500         int err = -ENOMEM;
2501
2502         file = kmalloc(sizeof(*file), GFP_KERNEL);
2503         if (!file)
2504                 goto out;
2505
2506         /* bitmap disabled, zero the first byte and copy out */
2507         if (!mddev->bitmap || !mddev->bitmap->file) {
2508                 file->pathname[0] = '\0';
2509                 goto copy_out;
2510         }
2511
2512         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
2513         if (!buf)
2514                 goto out;
2515
2516         ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
2517         if (!ptr)
2518                 goto out;
2519
2520         strcpy(file->pathname, ptr);
2521
2522 copy_out:
2523         err = 0;
2524         if (copy_to_user(arg, file, sizeof(*file)))
2525                 err = -EFAULT;
2526 out:
2527         kfree(buf);
2528         kfree(file);
2529         return err;
2530 }
2531
2532 static int get_disk_info(mddev_t * mddev, void __user * arg)
2533 {
2534         mdu_disk_info_t info;
2535         unsigned int nr;
2536         mdk_rdev_t *rdev;
2537
2538         if (copy_from_user(&info, arg, sizeof(info)))
2539                 return -EFAULT;
2540
2541         nr = info.number;
2542
2543         rdev = find_rdev_nr(mddev, nr);
2544         if (rdev) {
2545                 info.major = MAJOR(rdev->bdev->bd_dev);
2546                 info.minor = MINOR(rdev->bdev->bd_dev);
2547                 info.raid_disk = rdev->raid_disk;
2548                 info.state = 0;
2549                 if (test_bit(Faulty, &rdev->flags))
2550                         info.state |= (1<<MD_DISK_FAULTY);
2551                 else if (test_bit(In_sync, &rdev->flags)) {
2552                         info.state |= (1<<MD_DISK_ACTIVE);
2553                         info.state |= (1<<MD_DISK_SYNC);
2554                 }
2555                 if (test_bit(WriteMostly, &rdev->flags))
2556                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
2557         } else {
2558                 info.major = info.minor = 0;
2559                 info.raid_disk = -1;
2560                 info.state = (1<<MD_DISK_REMOVED);
2561         }
2562
2563         if (copy_to_user(arg, &info, sizeof(info)))
2564                 return -EFAULT;
2565
2566         return 0;
2567 }
2568
2569 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
2570 {
2571         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
2572         mdk_rdev_t *rdev;
2573         dev_t dev = MKDEV(info->major,info->minor);
2574
2575         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
2576                 return -EOVERFLOW;
2577
2578         if (!mddev->raid_disks) {
2579                 int err;
2580                 /* expecting a device which has a superblock */
2581                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
2582                 if (IS_ERR(rdev)) {
2583                         printk(KERN_WARNING 
2584                                 "md: md_import_device returned %ld\n",
2585                                 PTR_ERR(rdev));
2586                         return PTR_ERR(rdev);
2587                 }
2588                 if (!list_empty(&mddev->disks)) {
2589                         mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2590                                                         mdk_rdev_t, same_set);
2591                         int err = super_types[mddev->major_version]
2592                                 .load_super(rdev, rdev0, mddev->minor_version);
2593                         if (err < 0) {
2594                                 printk(KERN_WARNING 
2595                                         "md: %s has different UUID to %s\n",
2596                                         bdevname(rdev->bdev,b), 
2597                                         bdevname(rdev0->bdev,b2));
2598                                 export_rdev(rdev);
2599                                 return -EINVAL;
2600                         }
2601                 }
2602                 err = bind_rdev_to_array(rdev, mddev);
2603                 if (err)
2604                         export_rdev(rdev);
2605                 return err;
2606         }
2607
2608         /*
2609          * add_new_disk can be used once the array is assembled
2610          * to add "hot spares".  They must already have a superblock
2611          * written
2612          */
2613         if (mddev->pers) {
2614                 int err;
2615                 if (!mddev->pers->hot_add_disk) {
2616                         printk(KERN_WARNING 
2617                                 "%s: personality does not support diskops!\n",
2618                                mdname(mddev));
2619                         return -EINVAL;
2620                 }
2621                 if (mddev->persistent)
2622                         rdev = md_import_device(dev, mddev->major_version,
2623                                                 mddev->minor_version);
2624                 else
2625                         rdev = md_import_device(dev, -1, -1);
2626                 if (IS_ERR(rdev)) {
2627                         printk(KERN_WARNING 
2628                                 "md: md_import_device returned %ld\n",
2629                                 PTR_ERR(rdev));
2630                         return PTR_ERR(rdev);
2631                 }
2632                 /* set save_raid_disk if appropriate */
2633                 if (!mddev->persistent) {
2634                         if (info->state & (1<<MD_DISK_SYNC)  &&
2635                             info->raid_disk < mddev->raid_disks)
2636                                 rdev->raid_disk = info->raid_disk;
2637                         else
2638                                 rdev->raid_disk = -1;
2639                 } else
2640                         super_types[mddev->major_version].
2641                                 validate_super(mddev, rdev);
2642                 rdev->saved_raid_disk = rdev->raid_disk;
2643
2644                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
2645                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2646                         set_bit(WriteMostly, &rdev->flags);
2647
2648                 rdev->raid_disk = -1;
2649                 err = bind_rdev_to_array(rdev, mddev);
2650                 if (err)
2651                         export_rdev(rdev);
2652
2653                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2654                 md_wakeup_thread(mddev->thread);
2655                 return err;
2656         }
2657
2658         /* otherwise, add_new_disk is only allowed
2659          * for major_version==0 superblocks
2660          */
2661         if (mddev->major_version != 0) {
2662                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
2663                        mdname(mddev));
2664                 return -EINVAL;
2665         }
2666
2667         if (!(info->state & (1<<MD_DISK_FAULTY))) {
2668                 int err;
2669                 rdev = md_import_device (dev, -1, 0);
2670                 if (IS_ERR(rdev)) {
2671                         printk(KERN_WARNING 
2672                                 "md: error, md_import_device() returned %ld\n",
2673                                 PTR_ERR(rdev));
2674                         return PTR_ERR(rdev);
2675                 }
2676                 rdev->desc_nr = info->number;
2677                 if (info->raid_disk < mddev->raid_disks)
2678                         rdev->raid_disk = info->raid_disk;
2679                 else
2680                         rdev->raid_disk = -1;
2681
2682                 rdev->flags = 0;
2683
2684                 if (rdev->raid_disk < mddev->raid_disks)
2685                         if (info->state & (1<<MD_DISK_SYNC))
2686                                 set_bit(In_sync, &rdev->flags);
2687
2688                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
2689                         set_bit(WriteMostly, &rdev->flags);
2690
2691                 err = bind_rdev_to_array(rdev, mddev);
2692                 if (err) {
2693                         export_rdev(rdev);
2694                         return err;
2695                 }
2696
2697                 if (!mddev->persistent) {
2698                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
2699                         rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2700                 } else 
2701                         rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2702                 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
2703
2704                 if (!mddev->size || (mddev->size > rdev->size))
2705                         mddev->size = rdev->size;
2706         }
2707
2708         return 0;
2709 }
2710
2711 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
2712 {
2713         char b[BDEVNAME_SIZE];
2714         mdk_rdev_t *rdev;
2715
2716         if (!mddev->pers)
2717                 return -ENODEV;
2718
2719         rdev = find_rdev(mddev, dev);
2720         if (!rdev)
2721                 return -ENXIO;
2722
2723         if (rdev->raid_disk >= 0)
2724                 goto busy;
2725
2726         kick_rdev_from_array(rdev);
2727         md_update_sb(mddev);
2728         md_new_event(mddev);
2729
2730         return 0;
2731 busy:
2732         printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
2733                 bdevname(rdev->bdev,b), mdname(mddev));
2734         return -EBUSY;
2735 }
2736
2737 static int hot_add_disk(mddev_t * mddev, dev_t dev)
2738 {
2739         char b[BDEVNAME_SIZE];
2740         int err;
2741         unsigned int size;
2742         mdk_rdev_t *rdev;
2743
2744         if (!mddev->pers)
2745                 return -ENODEV;
2746
2747         if (mddev->major_version != 0) {
2748                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
2749                         " version-0 superblocks.\n",
2750                         mdname(mddev));
2751                 return -EINVAL;
2752         }
2753         if (!mddev->pers->hot_add_disk) {
2754                 printk(KERN_WARNING 
2755                         "%s: personality does not support diskops!\n",
2756                         mdname(mddev));
2757                 return -EINVAL;
2758         }
2759
2760         rdev = md_import_device (dev, -1, 0);
2761         if (IS_ERR(rdev)) {
2762                 printk(KERN_WARNING 
2763                         "md: error, md_import_device() returned %ld\n",
2764                         PTR_ERR(rdev));
2765                 return -EINVAL;
2766         }
2767
2768         if (mddev->persistent)
2769                 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
2770         else
2771                 rdev->sb_offset =
2772                         rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2773
2774         size = calc_dev_size(rdev, mddev->chunk_size);
2775         rdev->size = size;
2776
2777         if (size < mddev->size) {
2778                 printk(KERN_WARNING 
2779                         "%s: disk size %llu blocks < array size %llu\n",
2780                         mdname(mddev), (unsigned long long)size,
2781                         (unsigned long long)mddev->size);
2782                 err = -ENOSPC;
2783                 goto abort_export;
2784         }
2785
2786         if (test_bit(Faulty, &rdev->flags)) {
2787                 printk(KERN_WARNING 
2788                         "md: can not hot-add faulty %s disk to %s!\n",
2789                         bdevname(rdev->bdev,b), mdname(mddev));
2790                 err = -EINVAL;
2791                 goto abort_export;
2792         }
2793         clear_bit(In_sync, &rdev->flags);
2794         rdev->desc_nr = -1;
2795         bind_rdev_to_array(rdev, mddev);
2796
2797         /*
2798          * The rest should better be atomic, we can have disk failures
2799          * noticed in interrupt contexts ...
2800          */
2801
2802         if (rdev->desc_nr == mddev->max_disks) {
2803                 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
2804                         mdname(mddev));
2805                 err = -EBUSY;
2806                 goto abort_unbind_export;
2807         }
2808
2809         rdev->raid_disk = -1;
2810
2811         md_update_sb(mddev);
2812
2813         /*
2814          * Kick recovery, maybe this spare has to be added to the
2815          * array immediately.
2816          */
2817         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2818         md_wakeup_thread(mddev->thread);
2819         md_new_event(mddev);
2820         return 0;
2821
2822 abort_unbind_export:
2823         unbind_rdev_from_array(rdev);
2824
2825 abort_export:
2826         export_rdev(rdev);
2827         return err;
2828 }
2829
2830 /* similar to deny_write_access, but accounts for our holding a reference
2831  * to the file ourselves */
2832 static int deny_bitmap_write_access(struct file * file)
2833 {
2834         struct inode *inode = file->f_mapping->host;
2835
2836         spin_lock(&inode->i_lock);
2837         if (atomic_read(&inode->i_writecount) > 1) {
2838                 spin_unlock(&inode->i_lock);
2839                 return -ETXTBSY;
2840         }
2841         atomic_set(&inode->i_writecount, -1);
2842         spin_unlock(&inode->i_lock);
2843
2844         return 0;
2845 }
2846
2847 static int set_bitmap_file(mddev_t *mddev, int fd)
2848 {
2849         int err;
2850
2851         if (mddev->pers) {
2852                 if (!mddev->pers->quiesce)
2853                         return -EBUSY;
2854                 if (mddev->recovery || mddev->sync_thread)
2855                         return -EBUSY;
2856                 /* we should be able to change the bitmap.. */
2857         }
2858
2859
2860         if (fd >= 0) {
2861                 if (mddev->bitmap)
2862                         return -EEXIST; /* cannot add when bitmap is present */
2863                 mddev->bitmap_file = fget(fd);
2864
2865                 if (mddev->bitmap_file == NULL) {
2866                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
2867                                mdname(mddev));
2868                         return -EBADF;
2869                 }
2870
2871                 err = deny_bitmap_write_access(mddev->bitmap_file);
2872                 if (err) {
2873                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
2874                                mdname(mddev));
2875                         fput(mddev->bitmap_file);
2876                         mddev->bitmap_file = NULL;
2877                         return err;
2878                 }
2879                 mddev->bitmap_offset = 0; /* file overrides offset */
2880         } else if (mddev->bitmap == NULL)
2881                 return -ENOENT; /* cannot remove what isn't there */
2882         err = 0;
2883         if (mddev->pers) {
2884                 mddev->pers->quiesce(mddev, 1);
2885                 if (fd >= 0)
2886                         err = bitmap_create(mddev);
2887                 if (fd < 0 || err)
2888                         bitmap_destroy(mddev);
2889                 mddev->pers->quiesce(mddev, 0);
2890         } else if (fd < 0) {
2891                 if (mddev->bitmap_file)
2892                         fput(mddev->bitmap_file);
2893                 mddev->bitmap_file = NULL;
2894         }
2895
2896         return err;
2897 }
2898
2899 /*
2900  * set_array_info is used two different ways
2901  * The original usage is when creating a new array.
2902  * In this usage, raid_disks is > 0 and it together with
2903  *  level, size, not_persistent,layout,chunksize determine the
2904  *  shape of the array.
2905  *  This will always create an array with a type-0.90.0 superblock.
2906  * The newer usage is when assembling an array.
2907  *  In this case raid_disks will be 0, and the major_version field is
2908  *  use to determine which style super-blocks are to be found on the devices.
2909  *  The minor and patch _version numbers are also kept incase the
2910  *  super_block handler wishes to interpret them.
2911  */
2912 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
2913 {
2914
2915         if (info->raid_disks == 0) {
2916                 /* just setting version number for superblock loading */
2917                 if (info->major_version < 0 ||
2918                     info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
2919                     super_types[info->major_version].name == NULL) {
2920                         /* maybe try to auto-load a module? */
2921                         printk(KERN_INFO 
2922                                 "md: superblock version %d not known\n",
2923                                 info->major_version);
2924                         return -EINVAL;
2925                 }
2926                 mddev->major_version = info->major_version;
2927                 mddev->minor_version = info->minor_version;
2928                 mddev->patch_version = info->patch_version;
2929                 return 0;
2930         }
2931         mddev->major_version = MD_MAJOR_VERSION;
2932         mddev->minor_version = MD_MINOR_VERSION;
2933         mddev->patch_version = MD_PATCHLEVEL_VERSION;
2934         mddev->ctime         = get_seconds();
2935
2936         mddev->level         = info->level;
2937         mddev->size          = info->size;
2938         mddev->raid_disks    = info->raid_disks;
2939         /* don't set md_minor, it is determined by which /dev/md* was
2940          * openned
2941          */
2942         if (info->state & (1<<MD_SB_CLEAN))
2943                 mddev->recovery_cp = MaxSector;
2944         else
2945                 mddev->recovery_cp = 0;
2946         mddev->persistent    = ! info->not_persistent;
2947
2948         mddev->layout        = info->layout;
2949         mddev->chunk_size    = info->chunk_size;
2950
2951         mddev->max_disks     = MD_SB_DISKS;
2952
2953         mddev->sb_dirty      = 1;
2954
2955         mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
2956         mddev->bitmap_offset = 0;
2957
2958         /*
2959          * Generate a 128 bit UUID
2960          */
2961         get_random_bytes(mddev->uuid, 16);
2962
2963         return 0;
2964 }
2965
2966 /*
2967  * update_array_info is used to change the configuration of an
2968  * on-line array.
2969  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
2970  * fields in the info are checked against the array.
2971  * Any differences that cannot be handled will cause an error.
2972  * Normally, only one change can be managed at a time.
2973  */
2974 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
2975 {
2976         int rv = 0;
2977         int cnt = 0;
2978         int state = 0;
2979
2980         /* calculate expected state,ignoring low bits */
2981         if (mddev->bitmap && mddev->bitmap_offset)
2982                 state |= (1 << MD_SB_BITMAP_PRESENT);
2983
2984         if (mddev->major_version != info->major_version ||
2985             mddev->minor_version != info->minor_version ||
2986 /*          mddev->patch_version != info->patch_version || */
2987             mddev->ctime         != info->ctime         ||
2988             mddev->level         != info->level         ||
2989 /*          mddev->layout        != info->layout        || */
2990             !mddev->persistent   != info->not_persistent||
2991             mddev->chunk_size    != info->chunk_size    ||
2992             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
2993             ((state^info->state) & 0xfffffe00)
2994                 )
2995                 return -EINVAL;
2996         /* Check there is only one change */
2997         if (mddev->size != info->size) cnt++;
2998         if (mddev->raid_disks != info->raid_disks) cnt++;
2999         if (mddev->layout != info->layout) cnt++;
3000         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
3001         if (cnt == 0) return 0;
3002         if (cnt > 1) return -EINVAL;
3003
3004         if (mddev->layout != info->layout) {
3005                 /* Change layout
3006                  * we don't need to do anything at the md level, the
3007                  * personality will take care of it all.
3008                  */
3009                 if (mddev->pers->reconfig == NULL)
3010                         return -EINVAL;
3011                 else
3012                         return mddev->pers->reconfig(mddev, info->layout, -1);
3013         }
3014         if (mddev->size != info->size) {
3015                 mdk_rdev_t * rdev;
3016                 struct list_head *tmp;
3017                 if (mddev->pers->resize == NULL)
3018                         return -EINVAL;
3019                 /* The "size" is the amount of each device that is used.
3020                  * This can only make sense for arrays with redundancy.
3021                  * linear and raid0 always use whatever space is available
3022                  * We can only consider changing the size if no resync
3023                  * or reconstruction is happening, and if the new size
3024                  * is acceptable. It must fit before the sb_offset or,
3025                  * if that is <data_offset, it must fit before the
3026                  * size of each device.
3027                  * If size is zero, we find the largest size that fits.
3028                  */
3029                 if (mddev->sync_thread)
3030                         return -EBUSY;
3031                 ITERATE_RDEV(mddev,rdev,tmp) {
3032                         sector_t avail;
3033                         int fit = (info->size == 0);
3034                         if (rdev->sb_offset > rdev->data_offset)
3035                                 avail = (rdev->sb_offset*2) - rdev->data_offset;
3036                         else
3037                                 avail = get_capacity(rdev->bdev->bd_disk)
3038                                         - rdev->data_offset;
3039                         if (fit && (info->size == 0 || info->size > avail/2))
3040                                 info->size = avail/2;
3041                         if (avail < ((sector_t)info->size << 1))
3042                                 return -ENOSPC;
3043                 }
3044                 rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
3045                 if (!rv) {
3046                         struct block_device *bdev;
3047
3048                         bdev = bdget_disk(mddev->gendisk, 0);
3049                         if (bdev) {
3050                                 down(&bdev->bd_inode->i_sem);
3051                                 i_size_write(bdev->bd_inode, mddev->array_size << 10);
3052                                 up(&bdev->bd_inode->i_sem);
3053                                 bdput(bdev);
3054                         }
3055                 }
3056         }
3057         if (mddev->raid_disks    != info->raid_disks) {
3058                 /* change the number of raid disks */
3059                 if (mddev->pers->reshape == NULL)
3060                         return -EINVAL;
3061                 if (info->raid_disks <= 0 ||
3062                     info->raid_disks >= mddev->max_disks)
3063                         return -EINVAL;
3064                 if (mddev->sync_thread)
3065                         return -EBUSY;
3066                 rv = mddev->pers->reshape(mddev, info->raid_disks);
3067                 if (!rv) {
3068                         struct block_device *bdev;
3069
3070                         bdev = bdget_disk(mddev->gendisk, 0);
3071                         if (bdev) {
3072                                 down(&bdev->bd_inode->i_sem);
3073                                 i_size_write(bdev->bd_inode, mddev->array_size << 10);
3074                                 up(&bdev->bd_inode->i_sem);
3075                                 bdput(bdev);
3076                         }
3077                 }
3078         }
3079         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
3080                 if (mddev->pers->quiesce == NULL)
3081                         return -EINVAL;
3082                 if (mddev->recovery || mddev->sync_thread)
3083                         return -EBUSY;
3084                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
3085                         /* add the bitmap */
3086                         if (mddev->bitmap)
3087                                 return -EEXIST;
3088                         if (mddev->default_bitmap_offset == 0)
3089                                 return -EINVAL;
3090                         mddev->bitmap_offset = mddev->default_bitmap_offset;
3091                         mddev->pers->quiesce(mddev, 1);
3092                         rv = bitmap_create(mddev);
3093                         if (rv)
3094                                 bitmap_destroy(mddev);
3095                         mddev->pers->quiesce(mddev, 0);
3096                 } else {
3097                         /* remove the bitmap */
3098                         if (!mddev->bitmap)
3099                                 return -ENOENT;
3100                         if (mddev->bitmap->file)
3101                                 return -EINVAL;
3102                         mddev->pers->quiesce(mddev, 1);
3103                         bitmap_destroy(mddev);
3104                         mddev->pers->quiesce(mddev, 0);
3105                         mddev->bitmap_offset = 0;
3106                 }
3107         }
3108         md_update_sb(mddev);
3109         return rv;
3110 }
3111
3112 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
3113 {
3114         mdk_rdev_t *rdev;
3115
3116         if (mddev->pers == NULL)
3117                 return -ENODEV;
3118
3119         rdev = find_rdev(mddev, dev);
3120         if (!rdev)
3121                 return -ENODEV;
3122
3123         md_error(mddev, rdev);
3124         return 0;
3125 }
3126
3127 static int md_ioctl(struct inode *inode, struct file *file,
3128                         unsigned int cmd, unsigned long arg)
3129 {
3130         int err = 0;
3131         void __user *argp = (void __user *)arg;
3132         struct hd_geometry __user *loc = argp;
3133         mddev_t *mddev = NULL;
3134
3135         if (!capable(CAP_SYS_ADMIN))
3136                 return -EACCES;
3137
3138         /*
3139          * Commands dealing with the RAID driver but not any
3140          * particular array:
3141          */
3142         switch (cmd)
3143         {
3144                 case RAID_VERSION:
3145                         err = get_version(argp);
3146                         goto done;
3147
3148                 case PRINT_RAID_DEBUG:
3149                         err = 0;
3150                         md_print_devices();
3151                         goto done;
3152
3153 #ifndef MODULE
3154                 case RAID_AUTORUN:
3155                         err = 0;
3156                         autostart_arrays(arg);
3157                         goto done;
3158 #endif
3159                 default:;
3160         }
3161
3162         /*
3163          * Commands creating/starting a new array:
3164          */
3165
3166         mddev = inode->i_bdev->bd_disk->private_data;
3167
3168         if (!mddev) {
3169                 BUG();
3170                 goto abort;
3171         }
3172
3173
3174         if (cmd == START_ARRAY) {
3175                 /* START_ARRAY doesn't need to lock the array as autostart_array
3176                  * does the locking, and it could even be a different array
3177                  */
3178                 static int cnt = 3;
3179                 if (cnt > 0 ) {
3180                         printk(KERN_WARNING
3181                                "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3182                                "This will not be supported beyond July 2006\n",
3183                                current->comm, current->pid);
3184                         cnt--;
3185                 }
3186                 err = autostart_array(new_decode_dev(arg));
3187                 if (err) {
3188                         printk(KERN_WARNING "md: autostart failed!\n");
3189                         goto abort;
3190                 }
3191                 goto done;
3192         }
3193
3194         err = mddev_lock(mddev);
3195         if (err) {
3196                 printk(KERN_INFO 
3197                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
3198                         err, cmd);
3199                 goto abort;
3200         }
3201
3202         switch (cmd)
3203         {
3204                 case SET_ARRAY_INFO:
3205                         {
3206                                 mdu_array_info_t info;
3207                                 if (!arg)
3208                                         memset(&info, 0, sizeof(info));
3209                                 else if (copy_from_user(&info, argp, sizeof(info))) {
3210                                         err = -EFAULT;
3211                                         goto abort_unlock;
3212                                 }
3213                                 if (mddev->pers) {
3214                                         err = update_array_info(mddev, &info);
3215                                         if (err) {
3216                                                 printk(KERN_WARNING "md: couldn't update"
3217                                                        " array info. %d\n", err);
3218                                                 goto abort_unlock;
3219                                         }
3220                                         goto done_unlock;
3221                                 }
3222                                 if (!list_empty(&mddev->disks)) {
3223                                         printk(KERN_WARNING
3224                                                "md: array %s already has disks!\n",
3225                                                mdname(mddev));
3226                                         err = -EBUSY;
3227                                         goto abort_unlock;
3228                                 }
3229                                 if (mddev->raid_disks) {
3230                                         printk(KERN_WARNING
3231                                                "md: array %s already initialised!\n",
3232                                                mdname(mddev));
3233                                         err = -EBUSY;
3234                                         goto abort_unlock;
3235                                 }
3236                                 err = set_array_info(mddev, &info);
3237                                 if (err) {
3238                                         printk(KERN_WARNING "md: couldn't set"
3239                                                " array info. %d\n", err);
3240                                         goto abort_unlock;
3241                                 }
3242                         }
3243                         goto done_unlock;
3244
3245                 default:;
3246         }
3247
3248         /*
3249          * Commands querying/configuring an existing array:
3250          */
3251         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3252          * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3253         if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3254                         && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
3255                 err = -ENODEV;
3256                 goto abort_unlock;
3257         }
3258
3259         /*
3260          * Commands even a read-only array can execute:
3261          */
3262         switch (cmd)
3263         {
3264                 case GET_ARRAY_INFO:
3265                         err = get_array_info(mddev, argp);
3266                         goto done_unlock;
3267
3268                 case GET_BITMAP_FILE:
3269                         err = get_bitmap_file(mddev, argp);
3270                         goto done_unlock;
3271
3272                 case GET_DISK_INFO:
3273                         err = get_disk_info(mddev, argp);
3274                         goto done_unlock;
3275
3276                 case RESTART_ARRAY_RW:
3277                         err = restart_array(mddev);
3278                         goto done_unlock;
3279
3280                 case STOP_ARRAY:
3281                         err = do_md_stop (mddev, 0);
3282                         goto done_unlock;
3283
3284                 case STOP_ARRAY_RO:
3285                         err = do_md_stop (mddev, 1);
3286                         goto done_unlock;
3287
3288         /*
3289          * We have a problem here : there is no easy way to give a CHS
3290          * virtual geometry. We currently pretend that we have a 2 heads
3291          * 4 sectors (with a BIG number of cylinders...). This drives
3292          * dosfs just mad... ;-)
3293          */
3294                 case HDIO_GETGEO:
3295                         if (!loc) {
3296                                 err = -EINVAL;
3297                                 goto abort_unlock;
3298                         }
3299                         err = put_user (2, (char __user *) &loc->heads);
3300                         if (err)
3301                                 goto abort_unlock;
3302                         err = put_user (4, (char __user *) &loc->sectors);
3303                         if (err)
3304                                 goto abort_unlock;
3305                         err = put_user(get_capacity(mddev->gendisk)/8,
3306                                         (short __user *) &loc->cylinders);
3307                         if (err)
3308                                 goto abort_unlock;
3309                         err = put_user (get_start_sect(inode->i_bdev),
3310                                                 (long __user *) &loc->start);
3311                         goto done_unlock;
3312         }
3313
3314         /*
3315          * The remaining ioctls are changing the state of the
3316          * superblock, so we do not allow them on read-only arrays.
3317          * However non-MD ioctls (e.g. get-size) will still come through
3318          * here and hit the 'default' below, so only disallow
3319          * 'md' ioctls, and switch to rw mode if started auto-readonly.
3320          */
3321         if (_IOC_TYPE(cmd) == MD_MAJOR &&
3322             mddev->ro && mddev->pers) {
3323                 if (mddev->ro == 2) {
3324                         mddev->ro = 0;
3325                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3326                 md_wakeup_thread(mddev->thread);
3327
3328                 } else {
3329                         err = -EROFS;
3330                         goto abort_unlock;
3331                 }
3332         }
3333
3334         switch (cmd)
3335         {
3336                 case ADD_NEW_DISK:
3337                 {
3338                         mdu_disk_info_t info;
3339                         if (copy_from_user(&info, argp, sizeof(info)))
3340                                 err = -EFAULT;
3341                         else
3342                                 err = add_new_disk(mddev, &info);
3343                         goto done_unlock;
3344                 }
3345
3346                 case HOT_REMOVE_DISK:
3347                         err = hot_remove_disk(mddev, new_decode_dev(arg));
3348                         goto done_unlock;
3349
3350                 case HOT_ADD_DISK:
3351                         err = hot_add_disk(mddev, new_decode_dev(arg));
3352                         goto done_unlock;
3353
3354                 case SET_DISK_FAULTY:
3355                         err = set_disk_faulty(mddev, new_decode_dev(arg));
3356                         goto done_unlock;
3357
3358                 case RUN_ARRAY:
3359                         err = do_md_run (mddev);
3360                         goto done_unlock;
3361
3362                 case SET_BITMAP_FILE:
3363                         err = set_bitmap_file(mddev, (int)arg);
3364                         goto done_unlock;
3365
3366                 default:
3367                         if (_IOC_TYPE(cmd) == MD_MAJOR)
3368                                 printk(KERN_WARNING "md: %s(pid %d) used"
3369                                         " obsolete MD ioctl, upgrade your"
3370                                         " software to use new ictls.\n",
3371                                         current->comm, current->pid);
3372                         err = -EINVAL;
3373                         goto abort_unlock;
3374         }
3375
3376 done_unlock:
3377 abort_unlock:
3378         mddev_unlock(mddev);
3379
3380         return err;
3381 done:
3382         if (err)
3383                 MD_BUG();
3384 abort:
3385         return err;
3386 }
3387
3388 static int md_open(struct inode *inode, struct file *file)
3389 {
3390         /*
3391          * Succeed if we can lock the mddev, which confirms that
3392          * it isn't being stopped right now.
3393          */
3394         mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3395         int err;
3396
3397         if ((err = mddev_lock(mddev)))
3398                 goto out;
3399
3400         err = 0;
3401         mddev_get(mddev);
3402         mddev_unlock(mddev);
3403
3404         check_disk_change(inode->i_bdev);
3405  out:
3406         return err;
3407 }
3408
3409 static int md_release(struct inode *inode, struct file * file)
3410 {
3411         mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
3412
3413         if (!mddev)
3414                 BUG();
3415         mddev_put(mddev);
3416
3417         return 0;
3418 }
3419
3420 static int md_media_changed(struct gendisk *disk)
3421 {
3422         mddev_t *mddev = disk->private_data;
3423
3424         return mddev->changed;
3425 }
3426
3427 static int md_revalidate(struct gendisk *disk)
3428 {
3429         mddev_t *mddev = disk->private_data;
3430
3431         mddev->changed = 0;
3432         return 0;
3433 }
3434 static struct block_device_operations md_fops =
3435 {
3436         .owner          = THIS_MODULE,
3437         .open           = md_open,
3438         .release        = md_release,
3439         .ioctl          = md_ioctl,
3440         .media_changed  = md_media_changed,
3441         .revalidate_disk= md_revalidate,
3442 };
3443
3444 static int md_thread(void * arg)
3445 {
3446         mdk_thread_t *thread = arg;
3447
3448         /*
3449          * md_thread is a 'system-thread', it's priority should be very
3450          * high. We avoid resource deadlocks individually in each
3451          * raid personality. (RAID5 does preallocation) We also use RR and
3452          * the very same RT priority as kswapd, thus we will never get
3453          * into a priority inversion deadlock.
3454          *
3455          * we definitely have to have equal or higher priority than
3456          * bdflush, otherwise bdflush will deadlock if there are too
3457          * many dirty RAID5 blocks.
3458          */
3459
3460         allow_signal(SIGKILL);
3461         while (!kthread_should_stop()) {
3462
3463                 /* We need to wait INTERRUPTIBLE so that
3464                  * we don't add to the load-average.
3465                  * That means we need to be sure no signals are
3466                  * pending
3467                  */
3468                 if (signal_pending(current))
3469                         flush_signals(current);
3470
3471                 wait_event_interruptible_timeout
3472                         (thread->wqueue,
3473                          test_bit(THREAD_WAKEUP, &thread->flags)
3474                          || kthread_should_stop(),
3475                          thread->timeout);
3476                 try_to_freeze();
3477
3478                 clear_bit(THREAD_WAKEUP, &thread->flags);
3479
3480                 thread->run(thread->mddev);
3481         }
3482
3483         return 0;
3484 }
3485
3486 void md_wakeup_thread(mdk_thread_t *thread)
3487 {
3488         if (thread) {
3489                 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
3490                 set_bit(THREAD_WAKEUP, &thread->flags);
3491                 wake_up(&thread->wqueue);
3492         }
3493 }
3494
3495 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
3496                                  const char *name)
3497 {
3498         mdk_thread_t *thread;
3499
3500         thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
3501         if (!thread)
3502                 return NULL;
3503
3504         init_waitqueue_head(&thread->wqueue);
3505
3506         thread->run = run;
3507         thread->mddev = mddev;
3508         thread->timeout = MAX_SCHEDULE_TIMEOUT;
3509         thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
3510         if (IS_ERR(thread->tsk)) {
3511                 kfree(thread);
3512                 return NULL;
3513         }
3514         return thread;
3515 }
3516
3517 void md_unregister_thread(mdk_thread_t *thread)
3518 {
3519         dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
3520
3521         kthread_stop(thread->tsk);
3522         kfree(thread);
3523 }
3524
3525 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
3526 {
3527         if (!mddev) {
3528                 MD_BUG();
3529                 return;
3530         }
3531
3532         if (!rdev || test_bit(Faulty, &rdev->flags))
3533                 return;
3534 /*
3535         dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
3536                 mdname(mddev),
3537                 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
3538                 __builtin_return_address(0),__builtin_return_address(1),
3539                 __builtin_return_address(2),__builtin_return_address(3));
3540 */
3541         if (!mddev->pers->error_handler)
3542                 return;
3543         mddev->pers->error_handler(mddev,rdev);
3544         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3545         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3546         md_wakeup_thread(mddev->thread);
3547         md_new_event(mddev);
3548 }
3549
3550 /* seq_file implementation /proc/mdstat */
3551
3552 static void status_unused(struct seq_file *seq)
3553 {
3554         int i = 0;
3555         mdk_rdev_t *rdev;
3556         struct list_head *tmp;
3557
3558         seq_printf(seq, "unused devices: ");
3559
3560         ITERATE_RDEV_PENDING(rdev,tmp) {
3561                 char b[BDEVNAME_SIZE];
3562                 i++;
3563                 seq_printf(seq, "%s ",
3564                               bdevname(rdev->bdev,b));
3565         }
3566         if (!i)
3567                 seq_printf(seq, "<none>");
3568
3569         seq_printf(seq, "\n");
3570 }
3571
3572
3573 static void status_resync(struct seq_file *seq, mddev_t * mddev)
3574 {
3575         unsigned long max_blocks, resync, res, dt, db, rt;
3576
3577         resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
3578
3579         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3580                 max_blocks = mddev->resync_max_sectors >> 1;
3581         else
3582                 max_blocks = mddev->size;
3583
3584         /*
3585          * Should not happen.
3586          */
3587         if (!max_blocks) {
3588                 MD_BUG();
3589                 return;
3590         }
3591         res = (resync/1024)*1000/(max_blocks/1024 + 1);
3592         {
3593                 int i, x = res/50, y = 20-x;
3594                 seq_printf(seq, "[");
3595                 for (i = 0; i < x; i++)
3596                         seq_printf(seq, "=");
3597                 seq_printf(seq, ">");
3598                 for (i = 0; i < y; i++)
3599                         seq_printf(seq, ".");
3600                 seq_printf(seq, "] ");
3601         }
3602         seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
3603                       (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
3604                        "resync" : "recovery"),
3605                       res/10, res % 10, resync, max_blocks);
3606
3607         /*
3608          * We do not want to overflow, so the order of operands and
3609          * the * 100 / 100 trick are important. We do a +1 to be
3610          * safe against division by zero. We only estimate anyway.
3611          *
3612          * dt: time from mark until now
3613          * db: blocks written from mark until now
3614          * rt: remaining time
3615          */
3616         dt = ((jiffies - mddev->resync_mark) / HZ);
3617         if (!dt) dt++;
3618         db = resync - (mddev->resync_mark_cnt/2);
3619         rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
3620
3621         seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
3622
3623         seq_printf(seq, " speed=%ldK/sec", db/dt);
3624 }
3625
3626 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
3627 {
3628         struct list_head *tmp;
3629         loff_t l = *pos;
3630         mddev_t *mddev;
3631
3632         if (l >= 0x10000)
3633                 return NULL;
3634         if (!l--)
3635                 /* header */
3636                 return (void*)1;
3637
3638         spin_lock(&all_mddevs_lock);
3639         list_for_each(tmp,&all_mddevs)
3640                 if (!l--) {
3641                         mddev = list_entry(tmp, mddev_t, all_mddevs);
3642                         mddev_get(mddev);
3643                         spin_unlock(&all_mddevs_lock);
3644                         return mddev;
3645                 }
3646         spin_unlock(&all_mddevs_lock);
3647         if (!l--)
3648                 return (void*)2;/* tail */
3649         return NULL;
3650 }
3651
3652 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3653 {
3654         struct list_head *tmp;
3655         mddev_t *next_mddev, *mddev = v;
3656         
3657         ++*pos;
3658         if (v == (void*)2)
3659                 return NULL;
3660
3661         spin_lock(&all_mddevs_lock);
3662         if (v == (void*)1)
3663                 tmp = all_mddevs.next;
3664         else
3665                 tmp = mddev->all_mddevs.next;
3666         if (tmp != &all_mddevs)
3667                 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
3668         else {
3669                 next_mddev = (void*)2;
3670                 *pos = 0x10000;
3671         }               
3672         spin_unlock(&all_mddevs_lock);
3673
3674         if (v != (void*)1)
3675                 mddev_put(mddev);
3676         return next_mddev;
3677
3678 }
3679
3680 static void md_seq_stop(struct seq_file *seq, void *v)
3681 {
3682         mddev_t *mddev = v;
3683
3684         if (mddev && v != (void*)1 && v != (void*)2)
3685                 mddev_put(mddev);
3686 }
3687
3688 struct mdstat_info {
3689         int event;
3690 };
3691
3692 static int md_seq_show(struct seq_file *seq, void *v)
3693 {
3694         mddev_t *mddev = v;
3695         sector_t size;
3696         struct list_head *tmp2;
3697         mdk_rdev_t *rdev;
3698         struct mdstat_info *mi = seq->private;
3699         struct bitmap *bitmap;
3700
3701         if (v == (void*)1) {
3702                 struct mdk_personality *pers;
3703                 seq_printf(seq, "Personalities : ");
3704                 spin_lock(&pers_lock);
3705                 list_for_each_entry(pers, &pers_list, list)
3706                         seq_printf(seq, "[%s] ", pers->name);
3707
3708                 spin_unlock(&pers_lock);
3709                 seq_printf(seq, "\n");
3710                 mi->event = atomic_read(&md_event_count);
3711                 return 0;
3712         }
3713         if (v == (void*)2) {
3714                 status_unused(seq);
3715                 return 0;
3716         }
3717
3718         if (mddev_lock(mddev)!=0) 
3719                 return -EINTR;
3720         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
3721                 seq_printf(seq, "%s : %sactive", mdname(mddev),
3722                                                 mddev->pers ? "" : "in");
3723                 if (mddev->pers) {
3724                         if (mddev->ro==1)
3725                                 seq_printf(seq, " (read-only)");
3726                         if (mddev->ro==2)
3727                                 seq_printf(seq, "(auto-read-only)");
3728                         seq_printf(seq, " %s", mddev->pers->name);
3729                 }
3730
3731                 size = 0;
3732                 ITERATE_RDEV(mddev,rdev,tmp2) {
3733                         char b[BDEVNAME_SIZE];
3734                         seq_printf(seq, " %s[%d]",
3735                                 bdevname(rdev->bdev,b), rdev->desc_nr);
3736                         if (test_bit(WriteMostly, &rdev->flags))
3737                                 seq_printf(seq, "(W)");
3738                         if (test_bit(Faulty, &rdev->flags)) {
3739                                 seq_printf(seq, "(F)");
3740                                 continue;
3741                         } else if (rdev->raid_disk < 0)
3742                                 seq_printf(seq, "(S)"); /* spare */
3743                         size += rdev->size;
3744                 }
3745
3746                 if (!list_empty(&mddev->disks)) {
3747                         if (mddev->pers)
3748                                 seq_printf(seq, "\n      %llu blocks",
3749                                         (unsigned long long)mddev->array_size);
3750                         else
3751                                 seq_printf(seq, "\n      %llu blocks",
3752                                         (unsigned long long)size);
3753                 }
3754                 if (mddev->persistent) {
3755                         if (mddev->major_version != 0 ||
3756                             mddev->minor_version != 90) {
3757                                 seq_printf(seq," super %d.%d",
3758                                            mddev->major_version,
3759                                            mddev->minor_version);
3760                         }
3761                 } else
3762                         seq_printf(seq, " super non-persistent");
3763
3764                 if (mddev->pers) {
3765                         mddev->pers->status (seq, mddev);
3766                         seq_printf(seq, "\n      ");
3767                         if (mddev->pers->sync_request) {
3768                                 if (mddev->curr_resync > 2) {
3769                                         status_resync (seq, mddev);
3770                                         seq_printf(seq, "\n      ");
3771                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
3772                                         seq_printf(seq, "\tresync=DELAYED\n      ");
3773                                 else if (mddev->recovery_cp < MaxSector)
3774                                         seq_printf(seq, "\tresync=PENDING\n      ");
3775                         }
3776                 } else
3777                         seq_printf(seq, "\n       ");
3778
3779                 if ((bitmap = mddev->bitmap)) {
3780                         unsigned long chunk_kb;
3781                         unsigned long flags;
3782                         spin_lock_irqsave(&bitmap->lock, flags);
3783                         chunk_kb = bitmap->chunksize >> 10;
3784                         seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
3785                                 "%lu%s chunk",
3786                                 bitmap->pages - bitmap->missing_pages,
3787                                 bitmap->pages,
3788                                 (bitmap->pages - bitmap->missing_pages)
3789                                         << (PAGE_SHIFT - 10),
3790                                 chunk_kb ? chunk_kb : bitmap->chunksize,
3791                                 chunk_kb ? "KB" : "B");
3792                         if (bitmap->file) {
3793                                 seq_printf(seq, ", file: ");
3794                                 seq_path(seq, bitmap->file->f_vfsmnt,
3795                                          bitmap->file->f_dentry," \t\n");
3796                         }
3797
3798                         seq_printf(seq, "\n");
3799                         spin_unlock_irqrestore(&bitmap->lock, flags);
3800                 }
3801
3802                 seq_printf(seq, "\n");
3803         }
3804         mddev_unlock(mddev);
3805         
3806         return 0;
3807 }
3808
3809 static struct seq_operations md_seq_ops = {
3810         .start  = md_seq_start,
3811         .next   = md_seq_next,
3812         .stop   = md_seq_stop,
3813         .show   = md_seq_show,
3814 };
3815
3816 static int md_seq_open(struct inode *inode, struct file *file)
3817 {
3818         int error;
3819         struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
3820         if (mi == NULL)
3821                 return -ENOMEM;
3822
3823         error = seq_open(file, &md_seq_ops);
3824         if (error)
3825                 kfree(mi);
3826         else {
3827                 struct seq_file *p = file->private_data;
3828                 p->private = mi;
3829                 mi->event = atomic_read(&md_event_count);
3830         }
3831         return error;
3832 }
3833
3834 static int md_seq_release(struct inode *inode, struct file *file)
3835 {
3836         struct seq_file *m = file->private_data;
3837         struct mdstat_info *mi = m->private;
3838         m->private = NULL;
3839         kfree(mi);
3840         return seq_release(inode, file);
3841 }
3842
3843 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
3844 {
3845         struct seq_file *m = filp->private_data;
3846         struct mdstat_info *mi = m->private;
3847         int mask;
3848
3849         poll_wait(filp, &md_event_waiters, wait);
3850
3851         /* always allow read */
3852         mask = POLLIN | POLLRDNORM;
3853
3854         if (mi->event != atomic_read(&md_event_count))
3855                 mask |= POLLERR | POLLPRI;
3856         return mask;
3857 }
3858
3859 static struct file_operations md_seq_fops = {
3860         .open           = md_seq_open,
3861         .read           = seq_read,
3862         .llseek         = seq_lseek,
3863         .release        = md_seq_release,
3864         .poll           = mdstat_poll,
3865 };
3866
3867 int register_md_personality(struct mdk_personality *p)
3868 {
3869         spin_lock(&pers_lock);
3870         list_add_tail(&p->list, &pers_list);
3871         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
3872         spin_unlock(&pers_lock);
3873         return 0;
3874 }
3875
3876 int unregister_md_personality(struct mdk_personality *p)
3877 {
3878         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
3879         spin_lock(&pers_lock);
3880         list_del_init(&p->list);
3881         spin_unlock(&pers_lock);
3882         return 0;
3883 }
3884
3885 static int is_mddev_idle(mddev_t *mddev)
3886 {
3887         mdk_rdev_t * rdev;
3888         struct list_head *tmp;
3889         int idle;
3890         unsigned long curr_events;
3891
3892         idle = 1;
3893         ITERATE_RDEV(mddev,rdev,tmp) {
3894                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
3895                 curr_events = disk_stat_read(disk, sectors[0]) + 
3896                                 disk_stat_read(disk, sectors[1]) - 
3897                                 atomic_read(&disk->sync_io);
3898                 /* The difference between curr_events and last_events
3899                  * will be affected by any new non-sync IO (making
3900                  * curr_events bigger) and any difference in the amount of
3901                  * in-flight syncio (making current_events bigger or smaller)
3902                  * The amount in-flight is currently limited to
3903                  * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
3904                  * which is at most 4096 sectors.
3905                  * These numbers are fairly fragile and should be made
3906                  * more robust, probably by enforcing the
3907                  * 'window size' that md_do_sync sort-of uses.
3908                  *
3909                  * Note: the following is an unsigned comparison.
3910                  */
3911                 if ((curr_events - rdev->last_events + 4096) > 8192) {
3912                         rdev->last_events = curr_events;
3913                         idle = 0;
3914                 }
3915         }
3916         return idle;
3917 }
3918
3919 void md_done_sync(mddev_t *mddev, int blocks, int ok)
3920 {
3921         /* another "blocks" (512byte) blocks have been synced */
3922         atomic_sub(blocks, &mddev->recovery_active);
3923         wake_up(&mddev->recovery_wait);
3924         if (!ok) {
3925                 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
3926                 md_wakeup_thread(mddev->thread);
3927                 // stop recovery, signal do_sync ....
3928         }
3929 }
3930
3931
3932 /* md_write_start(mddev, bi)
3933  * If we need to update some array metadata (e.g. 'active' flag
3934  * in superblock) before writing, schedule a superblock update
3935  * and wait for it to complete.
3936  */
3937 void md_write_start(mddev_t *mddev, struct bio *bi)
3938 {
3939         if (bio_data_dir(bi) != WRITE)
3940                 return;
3941
3942         BUG_ON(mddev->ro == 1);
3943         if (mddev->ro == 2) {
3944                 /* need to switch to read/write */
3945                 mddev->ro = 0;
3946                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3947                 md_wakeup_thread(mddev->thread);
3948         }
3949         atomic_inc(&mddev->writes_pending);
3950         if (mddev->in_sync) {
3951                 spin_lock_irq(&mddev->write_lock);
3952                 if (mddev->in_sync) {
3953                         mddev->in_sync = 0;
3954                         mddev->sb_dirty = 1;
3955                         md_wakeup_thread(mddev->thread);
3956                 }
3957                 spin_unlock_irq(&mddev->write_lock);
3958         }
3959         wait_event(mddev->sb_wait, mddev->sb_dirty==0);
3960 }
3961
3962 void md_write_end(mddev_t *mddev)
3963 {
3964         if (atomic_dec_and_test(&mddev->writes_pending)) {
3965                 if (mddev->safemode == 2)
3966                         md_wakeup_thread(mddev->thread);
3967                 else
3968                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
3969         }
3970 }
3971
3972 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
3973
3974 #define SYNC_MARKS      10
3975 #define SYNC_MARK_STEP  (3*HZ)
3976 static void md_do_sync(mddev_t *mddev)
3977 {
3978         mddev_t *mddev2;
3979         unsigned int currspeed = 0,
3980                  window;
3981         sector_t max_sectors,j, io_sectors;
3982         unsigned long mark[SYNC_MARKS];
3983         sector_t mark_cnt[SYNC_MARKS];
3984         int last_mark,m;
3985         struct list_head *tmp;
3986         sector_t last_check;
3987         int skipped = 0;
3988
3989         /* just incase thread restarts... */
3990         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
3991                 return;
3992
3993         /* we overload curr_resync somewhat here.
3994          * 0 == not engaged in resync at all
3995          * 2 == checking that there is no conflict with another sync
3996          * 1 == like 2, but have yielded to allow conflicting resync to
3997          *              commense
3998          * other == active in resync - this many blocks
3999          *
4000          * Before starting a resync we must have set curr_resync to
4001          * 2, and then checked that every "conflicting" array has curr_resync
4002          * less than ours.  When we find one that is the same or higher
4003          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
4004          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
4005          * This will mean we have to start checking from the beginning again.
4006          *
4007          */
4008
4009         do {
4010                 mddev->curr_resync = 2;
4011
4012         try_again:
4013                 if (kthread_should_stop()) {
4014                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4015                         goto skip;
4016                 }
4017                 ITERATE_MDDEV(mddev2,tmp) {
4018                         if (mddev2 == mddev)
4019                                 continue;
4020                         if (mddev2->curr_resync && 
4021                             match_mddev_units(mddev,mddev2)) {
4022                                 DEFINE_WAIT(wq);
4023                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
4024                                         /* arbitrarily yield */
4025                                         mddev->curr_resync = 1;
4026                                         wake_up(&resync_wait);
4027                                 }
4028                                 if (mddev > mddev2 && mddev->curr_resync == 1)
4029                                         /* no need to wait here, we can wait the next
4030                                          * time 'round when curr_resync == 2
4031                                          */
4032                                         continue;
4033                                 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
4034                                 if (!kthread_should_stop() &&
4035                                     mddev2->curr_resync >= mddev->curr_resync) {
4036                                         printk(KERN_INFO "md: delaying resync of %s"
4037                                                " until %s has finished resync (they"
4038                                                " share one or more physical units)\n",
4039                                                mdname(mddev), mdname(mddev2));
4040                                         mddev_put(mddev2);
4041                                         schedule();
4042                                         finish_wait(&resync_wait, &wq);
4043                                         goto try_again;
4044                                 }
4045                                 finish_wait(&resync_wait, &wq);
4046                         }
4047                 }
4048         } while (mddev->curr_resync < 2);
4049
4050         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4051                 /* resync follows the size requested by the personality,
4052                  * which defaults to physical size, but can be virtual size
4053                  */
4054                 max_sectors = mddev->resync_max_sectors;
4055                 mddev->resync_mismatches = 0;
4056         } else
4057                 /* recovery follows the physical size of devices */
4058                 max_sectors = mddev->size << 1;
4059
4060         printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
4061         printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
4062                 " %d KB/sec/disc.\n", sysctl_speed_limit_min);
4063         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
4064                "(but not more than %d KB/sec) for reconstruction.\n",
4065                sysctl_speed_limit_max);
4066
4067         is_mddev_idle(mddev); /* this also initializes IO event counters */
4068         /* we don't use the checkpoint if there's a bitmap */
4069         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
4070             && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4071                 j = mddev->recovery_cp;
4072         else
4073                 j = 0;
4074         io_sectors = 0;
4075         for (m = 0; m < SYNC_MARKS; m++) {
4076                 mark[m] = jiffies;
4077                 mark_cnt[m] = io_sectors;
4078         }
4079         last_mark = 0;
4080         mddev->resync_mark = mark[last_mark];
4081         mddev->resync_mark_cnt = mark_cnt[last_mark];
4082
4083         /*
4084          * Tune reconstruction:
4085          */
4086         window = 32*(PAGE_SIZE/512);
4087         printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
4088                 window/2,(unsigned long long) max_sectors/2);
4089
4090         atomic_set(&mddev->recovery_active, 0);
4091         init_waitqueue_head(&mddev->recovery_wait);
4092         last_check = 0;
4093
4094         if (j>2) {
4095                 printk(KERN_INFO 
4096                         "md: resuming recovery of %s from checkpoint.\n",
4097                         mdname(mddev));
4098                 mddev->curr_resync = j;
4099         }
4100
4101         while (j < max_sectors) {
4102                 sector_t sectors;
4103
4104                 skipped = 0;
4105                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
4106                                             currspeed < sysctl_speed_limit_min);
4107                 if (sectors == 0) {
4108                         set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4109                         goto out;
4110                 }
4111
4112                 if (!skipped) { /* actual IO requested */
4113                         io_sectors += sectors;
4114                         atomic_add(sectors, &mddev->recovery_active);
4115                 }
4116
4117                 j += sectors;
4118                 if (j>1) mddev->curr_resync = j;
4119                 if (last_check == 0)
4120                         /* this is the earliers that rebuilt will be
4121                          * visible in /proc/mdstat
4122                          */
4123                         md_new_event(mddev);
4124
4125                 if (last_check + window > io_sectors || j == max_sectors)
4126                         continue;
4127
4128                 last_check = io_sectors;
4129
4130                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
4131                     test_bit(MD_RECOVERY_ERR, &mddev->recovery))
4132                         break;
4133
4134         repeat:
4135                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
4136                         /* step marks */
4137                         int next = (last_mark+1) % SYNC_MARKS;
4138
4139                         mddev->resync_mark = mark[next];
4140                         mddev->resync_mark_cnt = mark_cnt[next];
4141                         mark[next] = jiffies;
4142                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
4143                         last_mark = next;
4144                 }
4145
4146
4147                 if (kthread_should_stop()) {
4148                         /*
4149                          * got a signal, exit.
4150                          */
4151                         printk(KERN_INFO 
4152                                 "md: md_do_sync() got signal ... exiting\n");
4153                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4154                         goto out;
4155                 }
4156
4157                 /*
4158                  * this loop exits only if either when we are slower than
4159                  * the 'hard' speed limit, or the system was IO-idle for
4160                  * a jiffy.
4161                  * the system might be non-idle CPU-wise, but we only care
4162                  * about not overloading the IO subsystem. (things like an
4163                  * e2fsck being done on the RAID array should execute fast)
4164                  */
4165                 mddev->queue->unplug_fn(mddev->queue);
4166                 cond_resched();
4167
4168                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
4169                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
4170
4171                 if (currspeed > sysctl_speed_limit_min) {
4172                         if ((currspeed > sysctl_speed_limit_max) ||
4173                                         !is_mddev_idle(mddev)) {
4174                                 msleep(500);
4175                                 goto repeat;
4176                         }
4177                 }
4178         }
4179         printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
4180         /*
4181          * this also signals 'finished resyncing' to md_stop
4182          */
4183  out:
4184         mddev->queue->unplug_fn(mddev->queue);
4185
4186         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
4187
4188         /* tell personality that we are finished */
4189         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
4190
4191         if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4192             mddev->curr_resync > 2 &&
4193             mddev->curr_resync >= mddev->recovery_cp) {
4194                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4195                         printk(KERN_INFO 
4196                                 "md: checkpointing recovery of %s.\n",
4197                                 mdname(mddev));
4198                         mddev->recovery_cp = mddev->curr_resync;
4199                 } else
4200                         mddev->recovery_cp = MaxSector;
4201         }
4202
4203  skip:
4204         mddev->curr_resync = 0;
4205         wake_up(&resync_wait);
4206         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
4207         md_wakeup_thread(mddev->thread);
4208 }
4209
4210
4211 /*
4212  * This routine is regularly called by all per-raid-array threads to
4213  * deal with generic issues like resync and super-block update.
4214  * Raid personalities that don't have a thread (linear/raid0) do not
4215  * need this as they never do any recovery or update the superblock.
4216  *
4217  * It does not do any resync itself, but rather "forks" off other threads
4218  * to do that as needed.
4219  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4220  * "->recovery" and create a thread at ->sync_thread.
4221  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4222  * and wakeups up this thread which will reap the thread and finish up.
4223  * This thread also removes any faulty devices (with nr_pending == 0).
4224  *
4225  * The overall approach is:
4226  *  1/ if the superblock needs updating, update it.
4227  *  2/ If a recovery thread is running, don't do anything else.
4228  *  3/ If recovery has finished, clean up, possibly marking spares active.
4229  *  4/ If there are any faulty devices, remove them.
4230  *  5/ If array is degraded, try to add spares devices
4231  *  6/ If array has spares or is not in-sync, start a resync thread.
4232  */
4233 void md_check_recovery(mddev_t *mddev)
4234 {
4235         mdk_rdev_t *rdev;
4236         struct list_head *rtmp;
4237
4238
4239         if (mddev->bitmap)
4240                 bitmap_daemon_work(mddev->bitmap);
4241
4242         if (mddev->ro)
4243                 return;
4244
4245         if (signal_pending(current)) {
4246                 if (mddev->pers->sync_request) {
4247                         printk(KERN_INFO "md: %s in immediate safe mode\n",
4248                                mdname(mddev));
4249                         mddev->safemode = 2;
4250                 }
4251                 flush_signals(current);
4252         }
4253
4254         if ( ! (
4255                 mddev->sb_dirty ||
4256                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
4257                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4258                 (mddev->safemode == 1) ||
4259                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4260                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
4261                 ))
4262                 return;
4263
4264         if (mddev_trylock(mddev)==0) {
4265                 int spares =0;
4266
4267                 spin_lock_irq(&mddev->write_lock);
4268                 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4269                     !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4270                         mddev->in_sync = 1;
4271                         mddev->sb_dirty = 1;
4272                 }
4273                 if (mddev->safemode == 1)
4274                         mddev->safemode = 0;
4275                 spin_unlock_irq(&mddev->write_lock);
4276
4277                 if (mddev->sb_dirty)
4278                         md_update_sb(mddev);
4279
4280
4281                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4282                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4283                         /* resync/recovery still happening */
4284                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4285                         goto unlock;
4286                 }
4287                 if (mddev->sync_thread) {
4288                         /* resync has finished, collect result */
4289                         md_unregister_thread(mddev->sync_thread);
4290                         mddev->sync_thread = NULL;
4291                         if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4292                             !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4293                                 /* success...*/
4294                                 /* activate any spares */
4295                                 mddev->pers->spare_active(mddev);
4296                         }
4297                         md_update_sb(mddev);
4298
4299                         /* if array is no-longer degraded, then any saved_raid_disk
4300                          * information must be scrapped
4301                          */
4302                         if (!mddev->degraded)
4303                                 ITERATE_RDEV(mddev,rdev,rtmp)
4304                                         rdev->saved_raid_disk = -1;
4305
4306                         mddev->recovery = 0;
4307                         /* flag recovery needed just to double check */
4308                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4309                         md_new_event(mddev);
4310                         goto unlock;
4311                 }
4312                 /* Clear some bits that don't mean anything, but
4313                  * might be left set
4314                  */
4315                 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4316                 clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
4317                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
4318                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4319
4320                 /* no recovery is running.
4321                  * remove any failed drives, then
4322                  * add spares if possible.
4323                  * Spare are also removed and re-added, to allow
4324                  * the personality to fail the re-add.
4325                  */
4326                 ITERATE_RDEV(mddev,rdev,rtmp)
4327                         if (rdev->raid_disk >= 0 &&
4328                             (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
4329                             atomic_read(&rdev->nr_pending)==0) {
4330                                 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
4331                                         char nm[20];
4332                                         sprintf(nm,"rd%d", rdev->raid_disk);
4333                                         sysfs_remove_link(&mddev->kobj, nm);
4334                                         rdev->raid_disk = -1;
4335                                 }
4336                         }
4337
4338                 if (mddev->degraded) {
4339                         ITERATE_RDEV(mddev,rdev,rtmp)
4340                                 if (rdev->raid_disk < 0
4341                                     && !test_bit(Faulty, &rdev->flags)) {
4342                                         if (mddev->pers->hot_add_disk(mddev,rdev)) {
4343                                                 char nm[20];
4344                                                 sprintf(nm, "rd%d", rdev->raid_disk);
4345                                                 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
4346                                                 spares++;
4347                                                 md_new_event(mddev);
4348                                         } else
4349                                                 break;
4350                                 }
4351                 }
4352
4353                 if (spares) {
4354                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4355                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4356                 } else if (mddev->recovery_cp < MaxSector) {
4357                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4358                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4359                         /* nothing to be done ... */
4360                         goto unlock;
4361
4362                 if (mddev->pers->sync_request) {
4363                         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4364                         if (spares && mddev->bitmap && ! mddev->bitmap->file) {
4365                                 /* We are adding a device or devices to an array
4366                                  * which has the bitmap stored on all devices.
4367                                  * So make sure all bitmap pages get written
4368                                  */
4369                                 bitmap_write_all(mddev->bitmap);
4370                         }
4371                         mddev->sync_thread = md_register_thread(md_do_sync,
4372                                                                 mddev,
4373                                                                 "%s_resync");
4374                         if (!mddev->sync_thread) {
4375                                 printk(KERN_ERR "%s: could not start resync"
4376                                         " thread...\n", 
4377                                         mdname(mddev));
4378                                 /* leave the spares where they are, it shouldn't hurt */
4379                                 mddev->recovery = 0;
4380                         } else
4381                                 md_wakeup_thread(mddev->sync_thread);
4382                         md_new_event(mddev);
4383                 }
4384         unlock:
4385                 mddev_unlock(mddev);
4386         }
4387 }
4388
4389 static int md_notify_reboot(struct notifier_block *this,
4390                             unsigned long code, void *x)
4391 {
4392         struct list_head *tmp;
4393         mddev_t *mddev;
4394
4395         if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
4396
4397                 printk(KERN_INFO "md: stopping all md devices.\n");
4398
4399                 ITERATE_MDDEV(mddev,tmp)
4400                         if (mddev_trylock(mddev)==0)
4401                                 do_md_stop (mddev, 1);
4402                 /*
4403                  * certain more exotic SCSI devices are known to be
4404                  * volatile wrt too early system reboots. While the
4405                  * right place to handle this issue is the given
4406                  * driver, we do want to have a safe RAID driver ...
4407                  */
4408                 mdelay(1000*1);
4409         }
4410         return NOTIFY_DONE;
4411 }
4412
4413 static struct notifier_block md_notifier = {
4414         .notifier_call  = md_notify_reboot,
4415         .next           = NULL,
4416         .priority       = INT_MAX, /* before any real devices */
4417 };
4418
4419 static void md_geninit(void)
4420 {
4421         struct proc_dir_entry *p;
4422
4423         dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
4424
4425         p = create_proc_entry("mdstat", S_IRUGO, NULL);
4426         if (p)
4427                 p->proc_fops = &md_seq_fops;
4428 }
4429
4430 static int __init md_init(void)
4431 {
4432         int minor;
4433
4434         printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
4435                         " MD_SB_DISKS=%d\n",
4436                         MD_MAJOR_VERSION, MD_MINOR_VERSION,
4437                         MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
4438         printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
4439                         BITMAP_MINOR);
4440
4441         if (register_blkdev(MAJOR_NR, "md"))
4442                 return -1;
4443         if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
4444                 unregister_blkdev(MAJOR_NR, "md");
4445                 return -1;
4446         }
4447         devfs_mk_dir("md");
4448         blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
4449                                 md_probe, NULL, NULL);
4450         blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
4451                             md_probe, NULL, NULL);
4452
4453         for (minor=0; minor < MAX_MD_DEVS; ++minor)
4454                 devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
4455                                 S_IFBLK|S_IRUSR|S_IWUSR,
4456                                 "md/%d", minor);
4457
4458         for (minor=0; minor < MAX_MD_DEVS; ++minor)
4459                 devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
4460                               S_IFBLK|S_IRUSR|S_IWUSR,
4461                               "md/mdp%d", minor);
4462
4463
4464         register_reboot_notifier(&md_notifier);
4465         raid_table_header = register_sysctl_table(raid_root_table, 1);
4466
4467         md_geninit();
4468         return (0);
4469 }
4470
4471
4472 #ifndef MODULE
4473
4474 /*
4475  * Searches all registered partitions for autorun RAID arrays
4476  * at boot time.
4477  */
4478 static dev_t detected_devices[128];
4479 static int dev_cnt;
4480
4481 void md_autodetect_dev(dev_t dev)
4482 {
4483         if (dev_cnt >= 0 && dev_cnt < 127)
4484                 detected_devices[dev_cnt++] = dev;
4485 }
4486
4487
4488 static void autostart_arrays(int part)
4489 {
4490         mdk_rdev_t *rdev;
4491         int i;
4492
4493         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
4494
4495         for (i = 0; i < dev_cnt; i++) {
4496                 dev_t dev = detected_devices[i];
4497
4498                 rdev = md_import_device(dev,0, 0);
4499                 if (IS_ERR(rdev))
4500                         continue;
4501
4502                 if (test_bit(Faulty, &rdev->flags)) {
4503                         MD_BUG();
4504                         continue;
4505                 }
4506                 list_add(&rdev->same_set, &pending_raid_disks);
4507         }
4508         dev_cnt = 0;
4509
4510         autorun_devices(part);
4511 }
4512
4513 #endif
4514
4515 static __exit void md_exit(void)
4516 {
4517         mddev_t *mddev;
4518         struct list_head *tmp;
4519         int i;
4520         blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
4521         blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
4522         for (i=0; i < MAX_MD_DEVS; i++)
4523                 devfs_remove("md/%d", i);
4524         for (i=0; i < MAX_MD_DEVS; i++)
4525                 devfs_remove("md/d%d", i);
4526
4527         devfs_remove("md");
4528
4529         unregister_blkdev(MAJOR_NR,"md");
4530         unregister_blkdev(mdp_major, "mdp");
4531         unregister_reboot_notifier(&md_notifier);
4532         unregister_sysctl_table(raid_table_header);
4533         remove_proc_entry("mdstat", NULL);
4534         ITERATE_MDDEV(mddev,tmp) {
4535                 struct gendisk *disk = mddev->gendisk;
4536                 if (!disk)
4537                         continue;
4538                 export_array(mddev);
4539                 del_gendisk(disk);
4540                 put_disk(disk);
4541                 mddev->gendisk = NULL;
4542                 mddev_put(mddev);
4543         }
4544 }
4545
4546 module_init(md_init)
4547 module_exit(md_exit)
4548
4549 static int get_ro(char *buffer, struct kernel_param *kp)
4550 {
4551         return sprintf(buffer, "%d", start_readonly);
4552 }
4553 static int set_ro(const char *val, struct kernel_param *kp)
4554 {
4555         char *e;
4556         int num = simple_strtoul(val, &e, 10);
4557         if (*val && (*e == '\0' || *e == '\n')) {
4558                 start_readonly = num;
4559                 return 0;;
4560         }
4561         return -EINVAL;
4562 }
4563
4564 module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
4565 module_param(start_dirty_degraded, int, 0644);
4566
4567
4568 EXPORT_SYMBOL(register_md_personality);
4569 EXPORT_SYMBOL(unregister_md_personality);
4570 EXPORT_SYMBOL(md_error);
4571 EXPORT_SYMBOL(md_done_sync);
4572 EXPORT_SYMBOL(md_write_start);
4573 EXPORT_SYMBOL(md_write_end);
4574 EXPORT_SYMBOL(md_register_thread);
4575 EXPORT_SYMBOL(md_unregister_thread);
4576 EXPORT_SYMBOL(md_wakeup_thread);
4577 EXPORT_SYMBOL(md_print_devices);
4578 EXPORT_SYMBOL(md_check_recovery);
4579 MODULE_LICENSE("GPL");
4580 MODULE_ALIAS("md");
4581 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);