[PATCH] 3c59x: fix networking for 10base2 NICs
[safe/jmp/linux-2.6] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3           Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 #include <linux/poll.h>
46 #include <linux/mutex.h>
47
48 #include <linux/init.h>
49
50 #include <linux/file.h>
51
52 #ifdef CONFIG_KMOD
53 #include <linux/kmod.h>
54 #endif
55
56 #include <asm/unaligned.h>
57
58 #define MAJOR_NR MD_MAJOR
59 #define MD_DRIVER
60
61 /* 63 partitions with the alternate major number (mdp) */
62 #define MdpMinorShift 6
63
64 #define DEBUG 0
65 #define dprintk(x...) ((void)(DEBUG && printk(x)))
66
67
68 #ifndef MODULE
69 static void autostart_arrays (int part);
70 #endif
71
72 static LIST_HEAD(pers_list);
73 static DEFINE_SPINLOCK(pers_lock);
74
75 /*
76  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
77  * is 1000 KB/sec, so the extra system load does not show up that much.
78  * Increase it if you want to have more _guaranteed_ speed. Note that
79  * the RAID driver will use the maximum available bandwidth if the IO
80  * subsystem is idle. There is also an 'absolute maximum' reconstruction
81  * speed limit - in case reconstruction slows down your system despite
82  * idle IO detection.
83  *
84  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
85  * or /sys/block/mdX/md/sync_speed_{min,max}
86  */
87
88 static int sysctl_speed_limit_min = 1000;
89 static int sysctl_speed_limit_max = 200000;
90 static inline int speed_min(mddev_t *mddev)
91 {
92         return mddev->sync_speed_min ?
93                 mddev->sync_speed_min : sysctl_speed_limit_min;
94 }
95
96 static inline int speed_max(mddev_t *mddev)
97 {
98         return mddev->sync_speed_max ?
99                 mddev->sync_speed_max : sysctl_speed_limit_max;
100 }
101
102 static struct ctl_table_header *raid_table_header;
103
104 static ctl_table raid_table[] = {
105         {
106                 .ctl_name       = DEV_RAID_SPEED_LIMIT_MIN,
107                 .procname       = "speed_limit_min",
108                 .data           = &sysctl_speed_limit_min,
109                 .maxlen         = sizeof(int),
110                 .mode           = 0644,
111                 .proc_handler   = &proc_dointvec,
112         },
113         {
114                 .ctl_name       = DEV_RAID_SPEED_LIMIT_MAX,
115                 .procname       = "speed_limit_max",
116                 .data           = &sysctl_speed_limit_max,
117                 .maxlen         = sizeof(int),
118                 .mode           = 0644,
119                 .proc_handler   = &proc_dointvec,
120         },
121         { .ctl_name = 0 }
122 };
123
124 static ctl_table raid_dir_table[] = {
125         {
126                 .ctl_name       = DEV_RAID,
127                 .procname       = "raid",
128                 .maxlen         = 0,
129                 .mode           = 0555,
130                 .child          = raid_table,
131         },
132         { .ctl_name = 0 }
133 };
134
135 static ctl_table raid_root_table[] = {
136         {
137                 .ctl_name       = CTL_DEV,
138                 .procname       = "dev",
139                 .maxlen         = 0,
140                 .mode           = 0555,
141                 .child          = raid_dir_table,
142         },
143         { .ctl_name = 0 }
144 };
145
146 static struct block_device_operations md_fops;
147
148 static int start_readonly;
149
150 /*
151  * We have a system wide 'event count' that is incremented
152  * on any 'interesting' event, and readers of /proc/mdstat
153  * can use 'poll' or 'select' to find out when the event
154  * count increases.
155  *
156  * Events are:
157  *  start array, stop array, error, add device, remove device,
158  *  start build, activate spare
159  */
160 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
161 static atomic_t md_event_count;
162 void md_new_event(mddev_t *mddev)
163 {
164         atomic_inc(&md_event_count);
165         wake_up(&md_event_waiters);
166 }
167 EXPORT_SYMBOL_GPL(md_new_event);
168
169 /*
170  * Enables to iterate over all existing md arrays
171  * all_mddevs_lock protects this list.
172  */
173 static LIST_HEAD(all_mddevs);
174 static DEFINE_SPINLOCK(all_mddevs_lock);
175
176
177 /*
178  * iterates through all used mddevs in the system.
179  * We take care to grab the all_mddevs_lock whenever navigating
180  * the list, and to always hold a refcount when unlocked.
181  * Any code which breaks out of this loop while own
182  * a reference to the current mddev and must mddev_put it.
183  */
184 #define ITERATE_MDDEV(mddev,tmp)                                        \
185                                                                         \
186         for (({ spin_lock(&all_mddevs_lock);                            \
187                 tmp = all_mddevs.next;                                  \
188                 mddev = NULL;});                                        \
189              ({ if (tmp != &all_mddevs)                                 \
190                         mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
191                 spin_unlock(&all_mddevs_lock);                          \
192                 if (mddev) mddev_put(mddev);                            \
193                 mddev = list_entry(tmp, mddev_t, all_mddevs);           \
194                 tmp != &all_mddevs;});                                  \
195              ({ spin_lock(&all_mddevs_lock);                            \
196                 tmp = tmp->next;})                                      \
197                 )
198
199
200 static int md_fail_request (request_queue_t *q, struct bio *bio)
201 {
202         bio_io_error(bio, bio->bi_size);
203         return 0;
204 }
205
206 static inline mddev_t *mddev_get(mddev_t *mddev)
207 {
208         atomic_inc(&mddev->active);
209         return mddev;
210 }
211
212 static void mddev_put(mddev_t *mddev)
213 {
214         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
215                 return;
216         if (!mddev->raid_disks && list_empty(&mddev->disks)) {
217                 list_del(&mddev->all_mddevs);
218                 /* that blocks */
219                 blk_cleanup_queue(mddev->queue);
220                 /* that also blocks */
221                 kobject_unregister(&mddev->kobj);
222                 /* result blows... */
223         }
224         spin_unlock(&all_mddevs_lock);
225 }
226
227 static mddev_t * mddev_find(dev_t unit)
228 {
229         mddev_t *mddev, *new = NULL;
230
231  retry:
232         spin_lock(&all_mddevs_lock);
233         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
234                 if (mddev->unit == unit) {
235                         mddev_get(mddev);
236                         spin_unlock(&all_mddevs_lock);
237                         kfree(new);
238                         return mddev;
239                 }
240
241         if (new) {
242                 list_add(&new->all_mddevs, &all_mddevs);
243                 spin_unlock(&all_mddevs_lock);
244                 return new;
245         }
246         spin_unlock(&all_mddevs_lock);
247
248         new = kzalloc(sizeof(*new), GFP_KERNEL);
249         if (!new)
250                 return NULL;
251
252         new->unit = unit;
253         if (MAJOR(unit) == MD_MAJOR)
254                 new->md_minor = MINOR(unit);
255         else
256                 new->md_minor = MINOR(unit) >> MdpMinorShift;
257
258         mutex_init(&new->reconfig_mutex);
259         INIT_LIST_HEAD(&new->disks);
260         INIT_LIST_HEAD(&new->all_mddevs);
261         init_timer(&new->safemode_timer);
262         atomic_set(&new->active, 1);
263         spin_lock_init(&new->write_lock);
264         init_waitqueue_head(&new->sb_wait);
265
266         new->queue = blk_alloc_queue(GFP_KERNEL);
267         if (!new->queue) {
268                 kfree(new);
269                 return NULL;
270         }
271         set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
272
273         blk_queue_make_request(new->queue, md_fail_request);
274
275         goto retry;
276 }
277
278 static inline int mddev_lock(mddev_t * mddev)
279 {
280         return mutex_lock_interruptible(&mddev->reconfig_mutex);
281 }
282
283 static inline void mddev_lock_uninterruptible(mddev_t * mddev)
284 {
285         mutex_lock(&mddev->reconfig_mutex);
286 }
287
288 static inline int mddev_trylock(mddev_t * mddev)
289 {
290         return mutex_trylock(&mddev->reconfig_mutex);
291 }
292
293 static inline void mddev_unlock(mddev_t * mddev)
294 {
295         mutex_unlock(&mddev->reconfig_mutex);
296
297         md_wakeup_thread(mddev->thread);
298 }
299
300 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
301 {
302         mdk_rdev_t * rdev;
303         struct list_head *tmp;
304
305         ITERATE_RDEV(mddev,rdev,tmp) {
306                 if (rdev->desc_nr == nr)
307                         return rdev;
308         }
309         return NULL;
310 }
311
312 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
313 {
314         struct list_head *tmp;
315         mdk_rdev_t *rdev;
316
317         ITERATE_RDEV(mddev,rdev,tmp) {
318                 if (rdev->bdev->bd_dev == dev)
319                         return rdev;
320         }
321         return NULL;
322 }
323
324 static struct mdk_personality *find_pers(int level, char *clevel)
325 {
326         struct mdk_personality *pers;
327         list_for_each_entry(pers, &pers_list, list) {
328                 if (level != LEVEL_NONE && pers->level == level)
329                         return pers;
330                 if (strcmp(pers->name, clevel)==0)
331                         return pers;
332         }
333         return NULL;
334 }
335
336 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
337 {
338         sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
339         return MD_NEW_SIZE_BLOCKS(size);
340 }
341
342 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
343 {
344         sector_t size;
345
346         size = rdev->sb_offset;
347
348         if (chunk_size)
349                 size &= ~((sector_t)chunk_size/1024 - 1);
350         return size;
351 }
352
353 static int alloc_disk_sb(mdk_rdev_t * rdev)
354 {
355         if (rdev->sb_page)
356                 MD_BUG();
357
358         rdev->sb_page = alloc_page(GFP_KERNEL);
359         if (!rdev->sb_page) {
360                 printk(KERN_ALERT "md: out of memory.\n");
361                 return -EINVAL;
362         }
363
364         return 0;
365 }
366
367 static void free_disk_sb(mdk_rdev_t * rdev)
368 {
369         if (rdev->sb_page) {
370                 put_page(rdev->sb_page);
371                 rdev->sb_loaded = 0;
372                 rdev->sb_page = NULL;
373                 rdev->sb_offset = 0;
374                 rdev->size = 0;
375         }
376 }
377
378
379 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
380 {
381         mdk_rdev_t *rdev = bio->bi_private;
382         mddev_t *mddev = rdev->mddev;
383         if (bio->bi_size)
384                 return 1;
385
386         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
387                 md_error(mddev, rdev);
388
389         if (atomic_dec_and_test(&mddev->pending_writes))
390                 wake_up(&mddev->sb_wait);
391         bio_put(bio);
392         return 0;
393 }
394
395 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
396 {
397         struct bio *bio2 = bio->bi_private;
398         mdk_rdev_t *rdev = bio2->bi_private;
399         mddev_t *mddev = rdev->mddev;
400         if (bio->bi_size)
401                 return 1;
402
403         if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
404             error == -EOPNOTSUPP) {
405                 unsigned long flags;
406                 /* barriers don't appear to be supported :-( */
407                 set_bit(BarriersNotsupp, &rdev->flags);
408                 mddev->barriers_work = 0;
409                 spin_lock_irqsave(&mddev->write_lock, flags);
410                 bio2->bi_next = mddev->biolist;
411                 mddev->biolist = bio2;
412                 spin_unlock_irqrestore(&mddev->write_lock, flags);
413                 wake_up(&mddev->sb_wait);
414                 bio_put(bio);
415                 return 0;
416         }
417         bio_put(bio2);
418         bio->bi_private = rdev;
419         return super_written(bio, bytes_done, error);
420 }
421
422 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
423                    sector_t sector, int size, struct page *page)
424 {
425         /* write first size bytes of page to sector of rdev
426          * Increment mddev->pending_writes before returning
427          * and decrement it on completion, waking up sb_wait
428          * if zero is reached.
429          * If an error occurred, call md_error
430          *
431          * As we might need to resubmit the request if BIO_RW_BARRIER
432          * causes ENOTSUPP, we allocate a spare bio...
433          */
434         struct bio *bio = bio_alloc(GFP_NOIO, 1);
435         int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
436
437         bio->bi_bdev = rdev->bdev;
438         bio->bi_sector = sector;
439         bio_add_page(bio, page, size, 0);
440         bio->bi_private = rdev;
441         bio->bi_end_io = super_written;
442         bio->bi_rw = rw;
443
444         atomic_inc(&mddev->pending_writes);
445         if (!test_bit(BarriersNotsupp, &rdev->flags)) {
446                 struct bio *rbio;
447                 rw |= (1<<BIO_RW_BARRIER);
448                 rbio = bio_clone(bio, GFP_NOIO);
449                 rbio->bi_private = bio;
450                 rbio->bi_end_io = super_written_barrier;
451                 submit_bio(rw, rbio);
452         } else
453                 submit_bio(rw, bio);
454 }
455
456 void md_super_wait(mddev_t *mddev)
457 {
458         /* wait for all superblock writes that were scheduled to complete.
459          * if any had to be retried (due to BARRIER problems), retry them
460          */
461         DEFINE_WAIT(wq);
462         for(;;) {
463                 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
464                 if (atomic_read(&mddev->pending_writes)==0)
465                         break;
466                 while (mddev->biolist) {
467                         struct bio *bio;
468                         spin_lock_irq(&mddev->write_lock);
469                         bio = mddev->biolist;
470                         mddev->biolist = bio->bi_next ;
471                         bio->bi_next = NULL;
472                         spin_unlock_irq(&mddev->write_lock);
473                         submit_bio(bio->bi_rw, bio);
474                 }
475                 schedule();
476         }
477         finish_wait(&mddev->sb_wait, &wq);
478 }
479
480 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
481 {
482         if (bio->bi_size)
483                 return 1;
484
485         complete((struct completion*)bio->bi_private);
486         return 0;
487 }
488
489 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
490                    struct page *page, int rw)
491 {
492         struct bio *bio = bio_alloc(GFP_NOIO, 1);
493         struct completion event;
494         int ret;
495
496         rw |= (1 << BIO_RW_SYNC);
497
498         bio->bi_bdev = bdev;
499         bio->bi_sector = sector;
500         bio_add_page(bio, page, size, 0);
501         init_completion(&event);
502         bio->bi_private = &event;
503         bio->bi_end_io = bi_complete;
504         submit_bio(rw, bio);
505         wait_for_completion(&event);
506
507         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
508         bio_put(bio);
509         return ret;
510 }
511 EXPORT_SYMBOL_GPL(sync_page_io);
512
513 static int read_disk_sb(mdk_rdev_t * rdev, int size)
514 {
515         char b[BDEVNAME_SIZE];
516         if (!rdev->sb_page) {
517                 MD_BUG();
518                 return -EINVAL;
519         }
520         if (rdev->sb_loaded)
521                 return 0;
522
523
524         if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
525                 goto fail;
526         rdev->sb_loaded = 1;
527         return 0;
528
529 fail:
530         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
531                 bdevname(rdev->bdev,b));
532         return -EINVAL;
533 }
534
535 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
536 {
537         if (    (sb1->set_uuid0 == sb2->set_uuid0) &&
538                 (sb1->set_uuid1 == sb2->set_uuid1) &&
539                 (sb1->set_uuid2 == sb2->set_uuid2) &&
540                 (sb1->set_uuid3 == sb2->set_uuid3))
541
542                 return 1;
543
544         return 0;
545 }
546
547
548 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
549 {
550         int ret;
551         mdp_super_t *tmp1, *tmp2;
552
553         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
554         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
555
556         if (!tmp1 || !tmp2) {
557                 ret = 0;
558                 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
559                 goto abort;
560         }
561
562         *tmp1 = *sb1;
563         *tmp2 = *sb2;
564
565         /*
566          * nr_disks is not constant
567          */
568         tmp1->nr_disks = 0;
569         tmp2->nr_disks = 0;
570
571         if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
572                 ret = 0;
573         else
574                 ret = 1;
575
576 abort:
577         kfree(tmp1);
578         kfree(tmp2);
579         return ret;
580 }
581
582 static unsigned int calc_sb_csum(mdp_super_t * sb)
583 {
584         unsigned int disk_csum, csum;
585
586         disk_csum = sb->sb_csum;
587         sb->sb_csum = 0;
588         csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
589         sb->sb_csum = disk_csum;
590         return csum;
591 }
592
593
594 /*
595  * Handle superblock details.
596  * We want to be able to handle multiple superblock formats
597  * so we have a common interface to them all, and an array of
598  * different handlers.
599  * We rely on user-space to write the initial superblock, and support
600  * reading and updating of superblocks.
601  * Interface methods are:
602  *   int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
603  *      loads and validates a superblock on dev.
604  *      if refdev != NULL, compare superblocks on both devices
605  *    Return:
606  *      0 - dev has a superblock that is compatible with refdev
607  *      1 - dev has a superblock that is compatible and newer than refdev
608  *          so dev should be used as the refdev in future
609  *     -EINVAL superblock incompatible or invalid
610  *     -othererror e.g. -EIO
611  *
612  *   int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
613  *      Verify that dev is acceptable into mddev.
614  *       The first time, mddev->raid_disks will be 0, and data from
615  *       dev should be merged in.  Subsequent calls check that dev
616  *       is new enough.  Return 0 or -EINVAL
617  *
618  *   void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
619  *     Update the superblock for rdev with data in mddev
620  *     This does not write to disc.
621  *
622  */
623
624 struct super_type  {
625         char            *name;
626         struct module   *owner;
627         int             (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
628         int             (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
629         void            (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
630 };
631
632 /*
633  * load_super for 0.90.0 
634  */
635 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
636 {
637         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
638         mdp_super_t *sb;
639         int ret;
640         sector_t sb_offset;
641
642         /*
643          * Calculate the position of the superblock,
644          * it's at the end of the disk.
645          *
646          * It also happens to be a multiple of 4Kb.
647          */
648         sb_offset = calc_dev_sboffset(rdev->bdev);
649         rdev->sb_offset = sb_offset;
650
651         ret = read_disk_sb(rdev, MD_SB_BYTES);
652         if (ret) return ret;
653
654         ret = -EINVAL;
655
656         bdevname(rdev->bdev, b);
657         sb = (mdp_super_t*)page_address(rdev->sb_page);
658
659         if (sb->md_magic != MD_SB_MAGIC) {
660                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
661                        b);
662                 goto abort;
663         }
664
665         if (sb->major_version != 0 ||
666             sb->minor_version < 90 ||
667             sb->minor_version > 91) {
668                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
669                         sb->major_version, sb->minor_version,
670                         b);
671                 goto abort;
672         }
673
674         if (sb->raid_disks <= 0)
675                 goto abort;
676
677         if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
678                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
679                         b);
680                 goto abort;
681         }
682
683         rdev->preferred_minor = sb->md_minor;
684         rdev->data_offset = 0;
685         rdev->sb_size = MD_SB_BYTES;
686
687         if (sb->level == LEVEL_MULTIPATH)
688                 rdev->desc_nr = -1;
689         else
690                 rdev->desc_nr = sb->this_disk.number;
691
692         if (refdev == 0)
693                 ret = 1;
694         else {
695                 __u64 ev1, ev2;
696                 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
697                 if (!uuid_equal(refsb, sb)) {
698                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
699                                 b, bdevname(refdev->bdev,b2));
700                         goto abort;
701                 }
702                 if (!sb_equal(refsb, sb)) {
703                         printk(KERN_WARNING "md: %s has same UUID"
704                                " but different superblock to %s\n",
705                                b, bdevname(refdev->bdev, b2));
706                         goto abort;
707                 }
708                 ev1 = md_event(sb);
709                 ev2 = md_event(refsb);
710                 if (ev1 > ev2)
711                         ret = 1;
712                 else 
713                         ret = 0;
714         }
715         rdev->size = calc_dev_size(rdev, sb->chunk_size);
716
717         if (rdev->size < sb->size && sb->level > 1)
718                 /* "this cannot possibly happen" ... */
719                 ret = -EINVAL;
720
721  abort:
722         return ret;
723 }
724
725 /*
726  * validate_super for 0.90.0
727  */
728 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
729 {
730         mdp_disk_t *desc;
731         mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
732
733         rdev->raid_disk = -1;
734         rdev->flags = 0;
735         if (mddev->raid_disks == 0) {
736                 mddev->major_version = 0;
737                 mddev->minor_version = sb->minor_version;
738                 mddev->patch_version = sb->patch_version;
739                 mddev->persistent = ! sb->not_persistent;
740                 mddev->chunk_size = sb->chunk_size;
741                 mddev->ctime = sb->ctime;
742                 mddev->utime = sb->utime;
743                 mddev->level = sb->level;
744                 mddev->clevel[0] = 0;
745                 mddev->layout = sb->layout;
746                 mddev->raid_disks = sb->raid_disks;
747                 mddev->size = sb->size;
748                 mddev->events = md_event(sb);
749                 mddev->bitmap_offset = 0;
750                 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
751
752                 if (mddev->minor_version >= 91) {
753                         mddev->reshape_position = sb->reshape_position;
754                         mddev->delta_disks = sb->delta_disks;
755                         mddev->new_level = sb->new_level;
756                         mddev->new_layout = sb->new_layout;
757                         mddev->new_chunk = sb->new_chunk;
758                 } else {
759                         mddev->reshape_position = MaxSector;
760                         mddev->delta_disks = 0;
761                         mddev->new_level = mddev->level;
762                         mddev->new_layout = mddev->layout;
763                         mddev->new_chunk = mddev->chunk_size;
764                 }
765
766                 if (sb->state & (1<<MD_SB_CLEAN))
767                         mddev->recovery_cp = MaxSector;
768                 else {
769                         if (sb->events_hi == sb->cp_events_hi && 
770                                 sb->events_lo == sb->cp_events_lo) {
771                                 mddev->recovery_cp = sb->recovery_cp;
772                         } else
773                                 mddev->recovery_cp = 0;
774                 }
775
776                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
777                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
778                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
779                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
780
781                 mddev->max_disks = MD_SB_DISKS;
782
783                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
784                     mddev->bitmap_file == NULL) {
785                         if (mddev->level != 1 && mddev->level != 4
786                             && mddev->level != 5 && mddev->level != 6
787                             && mddev->level != 10) {
788                                 /* FIXME use a better test */
789                                 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
790                                 return -EINVAL;
791                         }
792                         mddev->bitmap_offset = mddev->default_bitmap_offset;
793                 }
794
795         } else if (mddev->pers == NULL) {
796                 /* Insist on good event counter while assembling */
797                 __u64 ev1 = md_event(sb);
798                 ++ev1;
799                 if (ev1 < mddev->events) 
800                         return -EINVAL;
801         } else if (mddev->bitmap) {
802                 /* if adding to array with a bitmap, then we can accept an
803                  * older device ... but not too old.
804                  */
805                 __u64 ev1 = md_event(sb);
806                 if (ev1 < mddev->bitmap->events_cleared)
807                         return 0;
808         } else /* just a hot-add of a new device, leave raid_disk at -1 */
809                 return 0;
810
811         if (mddev->level != LEVEL_MULTIPATH) {
812                 desc = sb->disks + rdev->desc_nr;
813
814                 if (desc->state & (1<<MD_DISK_FAULTY))
815                         set_bit(Faulty, &rdev->flags);
816                 else if (desc->state & (1<<MD_DISK_SYNC) &&
817                          desc->raid_disk < mddev->raid_disks) {
818                         set_bit(In_sync, &rdev->flags);
819                         rdev->raid_disk = desc->raid_disk;
820                 }
821                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
822                         set_bit(WriteMostly, &rdev->flags);
823         } else /* MULTIPATH are always insync */
824                 set_bit(In_sync, &rdev->flags);
825         return 0;
826 }
827
828 /*
829  * sync_super for 0.90.0
830  */
831 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
832 {
833         mdp_super_t *sb;
834         struct list_head *tmp;
835         mdk_rdev_t *rdev2;
836         int next_spare = mddev->raid_disks;
837
838
839         /* make rdev->sb match mddev data..
840          *
841          * 1/ zero out disks
842          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
843          * 3/ any empty disks < next_spare become removed
844          *
845          * disks[0] gets initialised to REMOVED because
846          * we cannot be sure from other fields if it has
847          * been initialised or not.
848          */
849         int i;
850         int active=0, working=0,failed=0,spare=0,nr_disks=0;
851
852         rdev->sb_size = MD_SB_BYTES;
853
854         sb = (mdp_super_t*)page_address(rdev->sb_page);
855
856         memset(sb, 0, sizeof(*sb));
857
858         sb->md_magic = MD_SB_MAGIC;
859         sb->major_version = mddev->major_version;
860         sb->patch_version = mddev->patch_version;
861         sb->gvalid_words  = 0; /* ignored */
862         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
863         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
864         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
865         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
866
867         sb->ctime = mddev->ctime;
868         sb->level = mddev->level;
869         sb->size  = mddev->size;
870         sb->raid_disks = mddev->raid_disks;
871         sb->md_minor = mddev->md_minor;
872         sb->not_persistent = !mddev->persistent;
873         sb->utime = mddev->utime;
874         sb->state = 0;
875         sb->events_hi = (mddev->events>>32);
876         sb->events_lo = (u32)mddev->events;
877
878         if (mddev->reshape_position == MaxSector)
879                 sb->minor_version = 90;
880         else {
881                 sb->minor_version = 91;
882                 sb->reshape_position = mddev->reshape_position;
883                 sb->new_level = mddev->new_level;
884                 sb->delta_disks = mddev->delta_disks;
885                 sb->new_layout = mddev->new_layout;
886                 sb->new_chunk = mddev->new_chunk;
887         }
888         mddev->minor_version = sb->minor_version;
889         if (mddev->in_sync)
890         {
891                 sb->recovery_cp = mddev->recovery_cp;
892                 sb->cp_events_hi = (mddev->events>>32);
893                 sb->cp_events_lo = (u32)mddev->events;
894                 if (mddev->recovery_cp == MaxSector)
895                         sb->state = (1<< MD_SB_CLEAN);
896         } else
897                 sb->recovery_cp = 0;
898
899         sb->layout = mddev->layout;
900         sb->chunk_size = mddev->chunk_size;
901
902         if (mddev->bitmap && mddev->bitmap_file == NULL)
903                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
904
905         sb->disks[0].state = (1<<MD_DISK_REMOVED);
906         ITERATE_RDEV(mddev,rdev2,tmp) {
907                 mdp_disk_t *d;
908                 int desc_nr;
909                 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
910                     && !test_bit(Faulty, &rdev2->flags))
911                         desc_nr = rdev2->raid_disk;
912                 else
913                         desc_nr = next_spare++;
914                 rdev2->desc_nr = desc_nr;
915                 d = &sb->disks[rdev2->desc_nr];
916                 nr_disks++;
917                 d->number = rdev2->desc_nr;
918                 d->major = MAJOR(rdev2->bdev->bd_dev);
919                 d->minor = MINOR(rdev2->bdev->bd_dev);
920                 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
921                     && !test_bit(Faulty, &rdev2->flags))
922                         d->raid_disk = rdev2->raid_disk;
923                 else
924                         d->raid_disk = rdev2->desc_nr; /* compatibility */
925                 if (test_bit(Faulty, &rdev2->flags))
926                         d->state = (1<<MD_DISK_FAULTY);
927                 else if (test_bit(In_sync, &rdev2->flags)) {
928                         d->state = (1<<MD_DISK_ACTIVE);
929                         d->state |= (1<<MD_DISK_SYNC);
930                         active++;
931                         working++;
932                 } else {
933                         d->state = 0;
934                         spare++;
935                         working++;
936                 }
937                 if (test_bit(WriteMostly, &rdev2->flags))
938                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
939         }
940         /* now set the "removed" and "faulty" bits on any missing devices */
941         for (i=0 ; i < mddev->raid_disks ; i++) {
942                 mdp_disk_t *d = &sb->disks[i];
943                 if (d->state == 0 && d->number == 0) {
944                         d->number = i;
945                         d->raid_disk = i;
946                         d->state = (1<<MD_DISK_REMOVED);
947                         d->state |= (1<<MD_DISK_FAULTY);
948                         failed++;
949                 }
950         }
951         sb->nr_disks = nr_disks;
952         sb->active_disks = active;
953         sb->working_disks = working;
954         sb->failed_disks = failed;
955         sb->spare_disks = spare;
956
957         sb->this_disk = sb->disks[rdev->desc_nr];
958         sb->sb_csum = calc_sb_csum(sb);
959 }
960
961 /*
962  * version 1 superblock
963  */
964
965 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
966 {
967         unsigned int disk_csum, csum;
968         unsigned long long newcsum;
969         int size = 256 + le32_to_cpu(sb->max_dev)*2;
970         unsigned int *isuper = (unsigned int*)sb;
971         int i;
972
973         disk_csum = sb->sb_csum;
974         sb->sb_csum = 0;
975         newcsum = 0;
976         for (i=0; size>=4; size -= 4 )
977                 newcsum += le32_to_cpu(*isuper++);
978
979         if (size == 2)
980                 newcsum += le16_to_cpu(*(unsigned short*) isuper);
981
982         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
983         sb->sb_csum = disk_csum;
984         return cpu_to_le32(csum);
985 }
986
987 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
988 {
989         struct mdp_superblock_1 *sb;
990         int ret;
991         sector_t sb_offset;
992         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
993         int bmask;
994
995         /*
996          * Calculate the position of the superblock.
997          * It is always aligned to a 4K boundary and
998          * depeding on minor_version, it can be:
999          * 0: At least 8K, but less than 12K, from end of device
1000          * 1: At start of device
1001          * 2: 4K from start of device.
1002          */
1003         switch(minor_version) {
1004         case 0:
1005                 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1006                 sb_offset -= 8*2;
1007                 sb_offset &= ~(sector_t)(4*2-1);
1008                 /* convert from sectors to K */
1009                 sb_offset /= 2;
1010                 break;
1011         case 1:
1012                 sb_offset = 0;
1013                 break;
1014         case 2:
1015                 sb_offset = 4;
1016                 break;
1017         default:
1018                 return -EINVAL;
1019         }
1020         rdev->sb_offset = sb_offset;
1021
1022         /* superblock is rarely larger than 1K, but it can be larger,
1023          * and it is safe to read 4k, so we do that
1024          */
1025         ret = read_disk_sb(rdev, 4096);
1026         if (ret) return ret;
1027
1028
1029         sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1030
1031         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1032             sb->major_version != cpu_to_le32(1) ||
1033             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1034             le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1035             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1036                 return -EINVAL;
1037
1038         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1039                 printk("md: invalid superblock checksum on %s\n",
1040                         bdevname(rdev->bdev,b));
1041                 return -EINVAL;
1042         }
1043         if (le64_to_cpu(sb->data_size) < 10) {
1044                 printk("md: data_size too small on %s\n",
1045                        bdevname(rdev->bdev,b));
1046                 return -EINVAL;
1047         }
1048         rdev->preferred_minor = 0xffff;
1049         rdev->data_offset = le64_to_cpu(sb->data_offset);
1050         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1051
1052         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1053         bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1054         if (rdev->sb_size & bmask)
1055                 rdev-> sb_size = (rdev->sb_size | bmask)+1;
1056
1057         if (refdev == 0)
1058                 ret = 1;
1059         else {
1060                 __u64 ev1, ev2;
1061                 struct mdp_superblock_1 *refsb = 
1062                         (struct mdp_superblock_1*)page_address(refdev->sb_page);
1063
1064                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1065                     sb->level != refsb->level ||
1066                     sb->layout != refsb->layout ||
1067                     sb->chunksize != refsb->chunksize) {
1068                         printk(KERN_WARNING "md: %s has strangely different"
1069                                 " superblock to %s\n",
1070                                 bdevname(rdev->bdev,b),
1071                                 bdevname(refdev->bdev,b2));
1072                         return -EINVAL;
1073                 }
1074                 ev1 = le64_to_cpu(sb->events);
1075                 ev2 = le64_to_cpu(refsb->events);
1076
1077                 if (ev1 > ev2)
1078                         ret = 1;
1079                 else
1080                         ret = 0;
1081         }
1082         if (minor_version) 
1083                 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1084         else
1085                 rdev->size = rdev->sb_offset;
1086         if (rdev->size < le64_to_cpu(sb->data_size)/2)
1087                 return -EINVAL;
1088         rdev->size = le64_to_cpu(sb->data_size)/2;
1089         if (le32_to_cpu(sb->chunksize))
1090                 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1091
1092         if (le32_to_cpu(sb->size) > rdev->size*2)
1093                 return -EINVAL;
1094         return ret;
1095 }
1096
1097 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1098 {
1099         struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1100
1101         rdev->raid_disk = -1;
1102         rdev->flags = 0;
1103         if (mddev->raid_disks == 0) {
1104                 mddev->major_version = 1;
1105                 mddev->patch_version = 0;
1106                 mddev->persistent = 1;
1107                 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1108                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1109                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1110                 mddev->level = le32_to_cpu(sb->level);
1111                 mddev->clevel[0] = 0;
1112                 mddev->layout = le32_to_cpu(sb->layout);
1113                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1114                 mddev->size = le64_to_cpu(sb->size)/2;
1115                 mddev->events = le64_to_cpu(sb->events);
1116                 mddev->bitmap_offset = 0;
1117                 mddev->default_bitmap_offset = 1024 >> 9;
1118                 
1119                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1120                 memcpy(mddev->uuid, sb->set_uuid, 16);
1121
1122                 mddev->max_disks =  (4096-256)/2;
1123
1124                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1125                     mddev->bitmap_file == NULL ) {
1126                         if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1127                             && mddev->level != 10) {
1128                                 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1129                                 return -EINVAL;
1130                         }
1131                         mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1132                 }
1133                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1134                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1135                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1136                         mddev->new_level = le32_to_cpu(sb->new_level);
1137                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1138                         mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1139                 } else {
1140                         mddev->reshape_position = MaxSector;
1141                         mddev->delta_disks = 0;
1142                         mddev->new_level = mddev->level;
1143                         mddev->new_layout = mddev->layout;
1144                         mddev->new_chunk = mddev->chunk_size;
1145                 }
1146
1147         } else if (mddev->pers == NULL) {
1148                 /* Insist of good event counter while assembling */
1149                 __u64 ev1 = le64_to_cpu(sb->events);
1150                 ++ev1;
1151                 if (ev1 < mddev->events)
1152                         return -EINVAL;
1153         } else if (mddev->bitmap) {
1154                 /* If adding to array with a bitmap, then we can accept an
1155                  * older device, but not too old.
1156                  */
1157                 __u64 ev1 = le64_to_cpu(sb->events);
1158                 if (ev1 < mddev->bitmap->events_cleared)
1159                         return 0;
1160         } else /* just a hot-add of a new device, leave raid_disk at -1 */
1161                 return 0;
1162
1163         if (mddev->level != LEVEL_MULTIPATH) {
1164                 int role;
1165                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1166                 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1167                 switch(role) {
1168                 case 0xffff: /* spare */
1169                         break;
1170                 case 0xfffe: /* faulty */
1171                         set_bit(Faulty, &rdev->flags);
1172                         break;
1173                 default:
1174                         set_bit(In_sync, &rdev->flags);
1175                         rdev->raid_disk = role;
1176                         break;
1177                 }
1178                 if (sb->devflags & WriteMostly1)
1179                         set_bit(WriteMostly, &rdev->flags);
1180         } else /* MULTIPATH are always insync */
1181                 set_bit(In_sync, &rdev->flags);
1182
1183         return 0;
1184 }
1185
1186 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1187 {
1188         struct mdp_superblock_1 *sb;
1189         struct list_head *tmp;
1190         mdk_rdev_t *rdev2;
1191         int max_dev, i;
1192         /* make rdev->sb match mddev and rdev data. */
1193
1194         sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1195
1196         sb->feature_map = 0;
1197         sb->pad0 = 0;
1198         memset(sb->pad1, 0, sizeof(sb->pad1));
1199         memset(sb->pad2, 0, sizeof(sb->pad2));
1200         memset(sb->pad3, 0, sizeof(sb->pad3));
1201
1202         sb->utime = cpu_to_le64((__u64)mddev->utime);
1203         sb->events = cpu_to_le64(mddev->events);
1204         if (mddev->in_sync)
1205                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1206         else
1207                 sb->resync_offset = cpu_to_le64(0);
1208
1209         sb->cnt_corrected_read = atomic_read(&rdev->corrected_errors);
1210
1211         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1212         sb->size = cpu_to_le64(mddev->size<<1);
1213
1214         if (mddev->bitmap && mddev->bitmap_file == NULL) {
1215                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1216                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1217         }
1218         if (mddev->reshape_position != MaxSector) {
1219                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1220                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1221                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1222                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1223                 sb->new_level = cpu_to_le32(mddev->new_level);
1224                 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1225         }
1226
1227         max_dev = 0;
1228         ITERATE_RDEV(mddev,rdev2,tmp)
1229                 if (rdev2->desc_nr+1 > max_dev)
1230                         max_dev = rdev2->desc_nr+1;
1231         
1232         sb->max_dev = cpu_to_le32(max_dev);
1233         for (i=0; i<max_dev;i++)
1234                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1235         
1236         ITERATE_RDEV(mddev,rdev2,tmp) {
1237                 i = rdev2->desc_nr;
1238                 if (test_bit(Faulty, &rdev2->flags))
1239                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1240                 else if (test_bit(In_sync, &rdev2->flags))
1241                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1242                 else
1243                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1244         }
1245
1246         sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
1247         sb->sb_csum = calc_sb_1_csum(sb);
1248 }
1249
1250
1251 static struct super_type super_types[] = {
1252         [0] = {
1253                 .name   = "0.90.0",
1254                 .owner  = THIS_MODULE,
1255                 .load_super     = super_90_load,
1256                 .validate_super = super_90_validate,
1257                 .sync_super     = super_90_sync,
1258         },
1259         [1] = {
1260                 .name   = "md-1",
1261                 .owner  = THIS_MODULE,
1262                 .load_super     = super_1_load,
1263                 .validate_super = super_1_validate,
1264                 .sync_super     = super_1_sync,
1265         },
1266 };
1267         
1268 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1269 {
1270         struct list_head *tmp;
1271         mdk_rdev_t *rdev;
1272
1273         ITERATE_RDEV(mddev,rdev,tmp)
1274                 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1275                         return rdev;
1276
1277         return NULL;
1278 }
1279
1280 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1281 {
1282         struct list_head *tmp;
1283         mdk_rdev_t *rdev;
1284
1285         ITERATE_RDEV(mddev1,rdev,tmp)
1286                 if (match_dev_unit(mddev2, rdev))
1287                         return 1;
1288
1289         return 0;
1290 }
1291
1292 static LIST_HEAD(pending_raid_disks);
1293
1294 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1295 {
1296         mdk_rdev_t *same_pdev;
1297         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1298         struct kobject *ko;
1299         char *s;
1300
1301         if (rdev->mddev) {
1302                 MD_BUG();
1303                 return -EINVAL;
1304         }
1305         /* make sure rdev->size exceeds mddev->size */
1306         if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1307                 if (mddev->pers)
1308                         /* Cannot change size, so fail */
1309                         return -ENOSPC;
1310                 else
1311                         mddev->size = rdev->size;
1312         }
1313         same_pdev = match_dev_unit(mddev, rdev);
1314         if (same_pdev)
1315                 printk(KERN_WARNING
1316                         "%s: WARNING: %s appears to be on the same physical"
1317                         " disk as %s. True\n     protection against single-disk"
1318                         " failure might be compromised.\n",
1319                         mdname(mddev), bdevname(rdev->bdev,b),
1320                         bdevname(same_pdev->bdev,b2));
1321
1322         /* Verify rdev->desc_nr is unique.
1323          * If it is -1, assign a free number, else
1324          * check number is not in use
1325          */
1326         if (rdev->desc_nr < 0) {
1327                 int choice = 0;
1328                 if (mddev->pers) choice = mddev->raid_disks;
1329                 while (find_rdev_nr(mddev, choice))
1330                         choice++;
1331                 rdev->desc_nr = choice;
1332         } else {
1333                 if (find_rdev_nr(mddev, rdev->desc_nr))
1334                         return -EBUSY;
1335         }
1336         bdevname(rdev->bdev,b);
1337         if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1338                 return -ENOMEM;
1339         while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1340                 *s = '!';
1341                         
1342         list_add(&rdev->same_set, &mddev->disks);
1343         rdev->mddev = mddev;
1344         printk(KERN_INFO "md: bind<%s>\n", b);
1345
1346         rdev->kobj.parent = &mddev->kobj;
1347         kobject_add(&rdev->kobj);
1348
1349         if (rdev->bdev->bd_part)
1350                 ko = &rdev->bdev->bd_part->kobj;
1351         else
1352                 ko = &rdev->bdev->bd_disk->kobj;
1353         sysfs_create_link(&rdev->kobj, ko, "block");
1354         bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1355         return 0;
1356 }
1357
1358 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1359 {
1360         char b[BDEVNAME_SIZE];
1361         if (!rdev->mddev) {
1362                 MD_BUG();
1363                 return;
1364         }
1365         bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1366         list_del_init(&rdev->same_set);
1367         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1368         rdev->mddev = NULL;
1369         sysfs_remove_link(&rdev->kobj, "block");
1370         kobject_del(&rdev->kobj);
1371 }
1372
1373 /*
1374  * prevent the device from being mounted, repartitioned or
1375  * otherwise reused by a RAID array (or any other kernel
1376  * subsystem), by bd_claiming the device.
1377  */
1378 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1379 {
1380         int err = 0;
1381         struct block_device *bdev;
1382         char b[BDEVNAME_SIZE];
1383
1384         bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1385         if (IS_ERR(bdev)) {
1386                 printk(KERN_ERR "md: could not open %s.\n",
1387                         __bdevname(dev, b));
1388                 return PTR_ERR(bdev);
1389         }
1390         err = bd_claim(bdev, rdev);
1391         if (err) {
1392                 printk(KERN_ERR "md: could not bd_claim %s.\n",
1393                         bdevname(bdev, b));
1394                 blkdev_put(bdev);
1395                 return err;
1396         }
1397         rdev->bdev = bdev;
1398         return err;
1399 }
1400
1401 static void unlock_rdev(mdk_rdev_t *rdev)
1402 {
1403         struct block_device *bdev = rdev->bdev;
1404         rdev->bdev = NULL;
1405         if (!bdev)
1406                 MD_BUG();
1407         bd_release(bdev);
1408         blkdev_put(bdev);
1409 }
1410
1411 void md_autodetect_dev(dev_t dev);
1412
1413 static void export_rdev(mdk_rdev_t * rdev)
1414 {
1415         char b[BDEVNAME_SIZE];
1416         printk(KERN_INFO "md: export_rdev(%s)\n",
1417                 bdevname(rdev->bdev,b));
1418         if (rdev->mddev)
1419                 MD_BUG();
1420         free_disk_sb(rdev);
1421         list_del_init(&rdev->same_set);
1422 #ifndef MODULE
1423         md_autodetect_dev(rdev->bdev->bd_dev);
1424 #endif
1425         unlock_rdev(rdev);
1426         kobject_put(&rdev->kobj);
1427 }
1428
1429 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1430 {
1431         unbind_rdev_from_array(rdev);
1432         export_rdev(rdev);
1433 }
1434
1435 static void export_array(mddev_t *mddev)
1436 {
1437         struct list_head *tmp;
1438         mdk_rdev_t *rdev;
1439
1440         ITERATE_RDEV(mddev,rdev,tmp) {
1441                 if (!rdev->mddev) {
1442                         MD_BUG();
1443                         continue;
1444                 }
1445                 kick_rdev_from_array(rdev);
1446         }
1447         if (!list_empty(&mddev->disks))
1448                 MD_BUG();
1449         mddev->raid_disks = 0;
1450         mddev->major_version = 0;
1451 }
1452
1453 static void print_desc(mdp_disk_t *desc)
1454 {
1455         printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1456                 desc->major,desc->minor,desc->raid_disk,desc->state);
1457 }
1458
1459 static void print_sb(mdp_super_t *sb)
1460 {
1461         int i;
1462
1463         printk(KERN_INFO 
1464                 "md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1465                 sb->major_version, sb->minor_version, sb->patch_version,
1466                 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1467                 sb->ctime);
1468         printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1469                 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1470                 sb->md_minor, sb->layout, sb->chunk_size);
1471         printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
1472                 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1473                 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1474                 sb->failed_disks, sb->spare_disks,
1475                 sb->sb_csum, (unsigned long)sb->events_lo);
1476
1477         printk(KERN_INFO);
1478         for (i = 0; i < MD_SB_DISKS; i++) {
1479                 mdp_disk_t *desc;
1480
1481                 desc = sb->disks + i;
1482                 if (desc->number || desc->major || desc->minor ||
1483                     desc->raid_disk || (desc->state && (desc->state != 4))) {
1484                         printk("     D %2d: ", i);
1485                         print_desc(desc);
1486                 }
1487         }
1488         printk(KERN_INFO "md:     THIS: ");
1489         print_desc(&sb->this_disk);
1490
1491 }
1492
1493 static void print_rdev(mdk_rdev_t *rdev)
1494 {
1495         char b[BDEVNAME_SIZE];
1496         printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1497                 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1498                 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1499                 rdev->desc_nr);
1500         if (rdev->sb_loaded) {
1501                 printk(KERN_INFO "md: rdev superblock:\n");
1502                 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1503         } else
1504                 printk(KERN_INFO "md: no rdev superblock!\n");
1505 }
1506
1507 void md_print_devices(void)
1508 {
1509         struct list_head *tmp, *tmp2;
1510         mdk_rdev_t *rdev;
1511         mddev_t *mddev;
1512         char b[BDEVNAME_SIZE];
1513
1514         printk("\n");
1515         printk("md:     **********************************\n");
1516         printk("md:     * <COMPLETE RAID STATE PRINTOUT> *\n");
1517         printk("md:     **********************************\n");
1518         ITERATE_MDDEV(mddev,tmp) {
1519
1520                 if (mddev->bitmap)
1521                         bitmap_print_sb(mddev->bitmap);
1522                 else
1523                         printk("%s: ", mdname(mddev));
1524                 ITERATE_RDEV(mddev,rdev,tmp2)
1525                         printk("<%s>", bdevname(rdev->bdev,b));
1526                 printk("\n");
1527
1528                 ITERATE_RDEV(mddev,rdev,tmp2)
1529                         print_rdev(rdev);
1530         }
1531         printk("md:     **********************************\n");
1532         printk("\n");
1533 }
1534
1535
1536 static void sync_sbs(mddev_t * mddev)
1537 {
1538         mdk_rdev_t *rdev;
1539         struct list_head *tmp;
1540
1541         ITERATE_RDEV(mddev,rdev,tmp) {
1542                 super_types[mddev->major_version].
1543                         sync_super(mddev, rdev);
1544                 rdev->sb_loaded = 1;
1545         }
1546 }
1547
1548 void md_update_sb(mddev_t * mddev)
1549 {
1550         int err;
1551         struct list_head *tmp;
1552         mdk_rdev_t *rdev;
1553         int sync_req;
1554
1555 repeat:
1556         spin_lock_irq(&mddev->write_lock);
1557         sync_req = mddev->in_sync;
1558         mddev->utime = get_seconds();
1559         mddev->events ++;
1560
1561         if (!mddev->events) {
1562                 /*
1563                  * oops, this 64-bit counter should never wrap.
1564                  * Either we are in around ~1 trillion A.C., assuming
1565                  * 1 reboot per second, or we have a bug:
1566                  */
1567                 MD_BUG();
1568                 mddev->events --;
1569         }
1570         mddev->sb_dirty = 2;
1571         sync_sbs(mddev);
1572
1573         /*
1574          * do not write anything to disk if using
1575          * nonpersistent superblocks
1576          */
1577         if (!mddev->persistent) {
1578                 mddev->sb_dirty = 0;
1579                 spin_unlock_irq(&mddev->write_lock);
1580                 wake_up(&mddev->sb_wait);
1581                 return;
1582         }
1583         spin_unlock_irq(&mddev->write_lock);
1584
1585         dprintk(KERN_INFO 
1586                 "md: updating %s RAID superblock on device (in sync %d)\n",
1587                 mdname(mddev),mddev->in_sync);
1588
1589         err = bitmap_update_sb(mddev->bitmap);
1590         ITERATE_RDEV(mddev,rdev,tmp) {
1591                 char b[BDEVNAME_SIZE];
1592                 dprintk(KERN_INFO "md: ");
1593                 if (test_bit(Faulty, &rdev->flags))
1594                         dprintk("(skipping faulty ");
1595
1596                 dprintk("%s ", bdevname(rdev->bdev,b));
1597                 if (!test_bit(Faulty, &rdev->flags)) {
1598                         md_super_write(mddev,rdev,
1599                                        rdev->sb_offset<<1, rdev->sb_size,
1600                                        rdev->sb_page);
1601                         dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1602                                 bdevname(rdev->bdev,b),
1603                                 (unsigned long long)rdev->sb_offset);
1604
1605                 } else
1606                         dprintk(")\n");
1607                 if (mddev->level == LEVEL_MULTIPATH)
1608                         /* only need to write one superblock... */
1609                         break;
1610         }
1611         md_super_wait(mddev);
1612         /* if there was a failure, sb_dirty was set to 1, and we re-write super */
1613
1614         spin_lock_irq(&mddev->write_lock);
1615         if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1616                 /* have to write it out again */
1617                 spin_unlock_irq(&mddev->write_lock);
1618                 goto repeat;
1619         }
1620         mddev->sb_dirty = 0;
1621         spin_unlock_irq(&mddev->write_lock);
1622         wake_up(&mddev->sb_wait);
1623
1624 }
1625 EXPORT_SYMBOL_GPL(md_update_sb);
1626
1627 /* words written to sysfs files may, or my not, be \n terminated.
1628  * We want to accept with case. For this we use cmd_match.
1629  */
1630 static int cmd_match(const char *cmd, const char *str)
1631 {
1632         /* See if cmd, written into a sysfs file, matches
1633          * str.  They must either be the same, or cmd can
1634          * have a trailing newline
1635          */
1636         while (*cmd && *str && *cmd == *str) {
1637                 cmd++;
1638                 str++;
1639         }
1640         if (*cmd == '\n')
1641                 cmd++;
1642         if (*str || *cmd)
1643                 return 0;
1644         return 1;
1645 }
1646
1647 struct rdev_sysfs_entry {
1648         struct attribute attr;
1649         ssize_t (*show)(mdk_rdev_t *, char *);
1650         ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1651 };
1652
1653 static ssize_t
1654 state_show(mdk_rdev_t *rdev, char *page)
1655 {
1656         char *sep = "";
1657         int len=0;
1658
1659         if (test_bit(Faulty, &rdev->flags)) {
1660                 len+= sprintf(page+len, "%sfaulty",sep);
1661                 sep = ",";
1662         }
1663         if (test_bit(In_sync, &rdev->flags)) {
1664                 len += sprintf(page+len, "%sin_sync",sep);
1665                 sep = ",";
1666         }
1667         if (!test_bit(Faulty, &rdev->flags) &&
1668             !test_bit(In_sync, &rdev->flags)) {
1669                 len += sprintf(page+len, "%sspare", sep);
1670                 sep = ",";
1671         }
1672         return len+sprintf(page+len, "\n");
1673 }
1674
1675 static struct rdev_sysfs_entry
1676 rdev_state = __ATTR_RO(state);
1677
1678 static ssize_t
1679 super_show(mdk_rdev_t *rdev, char *page)
1680 {
1681         if (rdev->sb_loaded && rdev->sb_size) {
1682                 memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1683                 return rdev->sb_size;
1684         } else
1685                 return 0;
1686 }
1687 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1688
1689 static ssize_t
1690 errors_show(mdk_rdev_t *rdev, char *page)
1691 {
1692         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1693 }
1694
1695 static ssize_t
1696 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1697 {
1698         char *e;
1699         unsigned long n = simple_strtoul(buf, &e, 10);
1700         if (*buf && (*e == 0 || *e == '\n')) {
1701                 atomic_set(&rdev->corrected_errors, n);
1702                 return len;
1703         }
1704         return -EINVAL;
1705 }
1706 static struct rdev_sysfs_entry rdev_errors =
1707 __ATTR(errors, 0644, errors_show, errors_store);
1708
1709 static ssize_t
1710 slot_show(mdk_rdev_t *rdev, char *page)
1711 {
1712         if (rdev->raid_disk < 0)
1713                 return sprintf(page, "none\n");
1714         else
1715                 return sprintf(page, "%d\n", rdev->raid_disk);
1716 }
1717
1718 static ssize_t
1719 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1720 {
1721         char *e;
1722         int slot = simple_strtoul(buf, &e, 10);
1723         if (strncmp(buf, "none", 4)==0)
1724                 slot = -1;
1725         else if (e==buf || (*e && *e!= '\n'))
1726                 return -EINVAL;
1727         if (rdev->mddev->pers)
1728                 /* Cannot set slot in active array (yet) */
1729                 return -EBUSY;
1730         if (slot >= rdev->mddev->raid_disks)
1731                 return -ENOSPC;
1732         rdev->raid_disk = slot;
1733         /* assume it is working */
1734         rdev->flags = 0;
1735         set_bit(In_sync, &rdev->flags);
1736         return len;
1737 }
1738
1739
1740 static struct rdev_sysfs_entry rdev_slot =
1741 __ATTR(slot, 0644, slot_show, slot_store);
1742
1743 static ssize_t
1744 offset_show(mdk_rdev_t *rdev, char *page)
1745 {
1746         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1747 }
1748
1749 static ssize_t
1750 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1751 {
1752         char *e;
1753         unsigned long long offset = simple_strtoull(buf, &e, 10);
1754         if (e==buf || (*e && *e != '\n'))
1755                 return -EINVAL;
1756         if (rdev->mddev->pers)
1757                 return -EBUSY;
1758         rdev->data_offset = offset;
1759         return len;
1760 }
1761
1762 static struct rdev_sysfs_entry rdev_offset =
1763 __ATTR(offset, 0644, offset_show, offset_store);
1764
1765 static ssize_t
1766 rdev_size_show(mdk_rdev_t *rdev, char *page)
1767 {
1768         return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1769 }
1770
1771 static ssize_t
1772 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1773 {
1774         char *e;
1775         unsigned long long size = simple_strtoull(buf, &e, 10);
1776         if (e==buf || (*e && *e != '\n'))
1777                 return -EINVAL;
1778         if (rdev->mddev->pers)
1779                 return -EBUSY;
1780         rdev->size = size;
1781         if (size < rdev->mddev->size || rdev->mddev->size == 0)
1782                 rdev->mddev->size = size;
1783         return len;
1784 }
1785
1786 static struct rdev_sysfs_entry rdev_size =
1787 __ATTR(size, 0644, rdev_size_show, rdev_size_store);
1788
1789 static struct attribute *rdev_default_attrs[] = {
1790         &rdev_state.attr,
1791         &rdev_super.attr,
1792         &rdev_errors.attr,
1793         &rdev_slot.attr,
1794         &rdev_offset.attr,
1795         &rdev_size.attr,
1796         NULL,
1797 };
1798 static ssize_t
1799 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1800 {
1801         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1802         mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1803
1804         if (!entry->show)
1805                 return -EIO;
1806         return entry->show(rdev, page);
1807 }
1808
1809 static ssize_t
1810 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1811               const char *page, size_t length)
1812 {
1813         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1814         mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1815
1816         if (!entry->store)
1817                 return -EIO;
1818         return entry->store(rdev, page, length);
1819 }
1820
1821 static void rdev_free(struct kobject *ko)
1822 {
1823         mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1824         kfree(rdev);
1825 }
1826 static struct sysfs_ops rdev_sysfs_ops = {
1827         .show           = rdev_attr_show,
1828         .store          = rdev_attr_store,
1829 };
1830 static struct kobj_type rdev_ktype = {
1831         .release        = rdev_free,
1832         .sysfs_ops      = &rdev_sysfs_ops,
1833         .default_attrs  = rdev_default_attrs,
1834 };
1835
1836 /*
1837  * Import a device. If 'super_format' >= 0, then sanity check the superblock
1838  *
1839  * mark the device faulty if:
1840  *
1841  *   - the device is nonexistent (zero size)
1842  *   - the device has no valid superblock
1843  *
1844  * a faulty rdev _never_ has rdev->sb set.
1845  */
1846 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1847 {
1848         char b[BDEVNAME_SIZE];
1849         int err;
1850         mdk_rdev_t *rdev;
1851         sector_t size;
1852
1853         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1854         if (!rdev) {
1855                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1856                 return ERR_PTR(-ENOMEM);
1857         }
1858
1859         if ((err = alloc_disk_sb(rdev)))
1860                 goto abort_free;
1861
1862         err = lock_rdev(rdev, newdev);
1863         if (err)
1864                 goto abort_free;
1865
1866         rdev->kobj.parent = NULL;
1867         rdev->kobj.ktype = &rdev_ktype;
1868         kobject_init(&rdev->kobj);
1869
1870         rdev->desc_nr = -1;
1871         rdev->flags = 0;
1872         rdev->data_offset = 0;
1873         atomic_set(&rdev->nr_pending, 0);
1874         atomic_set(&rdev->read_errors, 0);
1875         atomic_set(&rdev->corrected_errors, 0);
1876
1877         size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1878         if (!size) {
1879                 printk(KERN_WARNING 
1880                         "md: %s has zero or unknown size, marking faulty!\n",
1881                         bdevname(rdev->bdev,b));
1882                 err = -EINVAL;
1883                 goto abort_free;
1884         }
1885
1886         if (super_format >= 0) {
1887                 err = super_types[super_format].
1888                         load_super(rdev, NULL, super_minor);
1889                 if (err == -EINVAL) {
1890                         printk(KERN_WARNING 
1891                                 "md: %s has invalid sb, not importing!\n",
1892                                 bdevname(rdev->bdev,b));
1893                         goto abort_free;
1894                 }
1895                 if (err < 0) {
1896                         printk(KERN_WARNING 
1897                                 "md: could not read %s's sb, not importing!\n",
1898                                 bdevname(rdev->bdev,b));
1899                         goto abort_free;
1900                 }
1901         }
1902         INIT_LIST_HEAD(&rdev->same_set);
1903
1904         return rdev;
1905
1906 abort_free:
1907         if (rdev->sb_page) {
1908                 if (rdev->bdev)
1909                         unlock_rdev(rdev);
1910                 free_disk_sb(rdev);
1911         }
1912         kfree(rdev);
1913         return ERR_PTR(err);
1914 }
1915
1916 /*
1917  * Check a full RAID array for plausibility
1918  */
1919
1920
1921 static void analyze_sbs(mddev_t * mddev)
1922 {
1923         int i;
1924         struct list_head *tmp;
1925         mdk_rdev_t *rdev, *freshest;
1926         char b[BDEVNAME_SIZE];
1927
1928         freshest = NULL;
1929         ITERATE_RDEV(mddev,rdev,tmp)
1930                 switch (super_types[mddev->major_version].
1931                         load_super(rdev, freshest, mddev->minor_version)) {
1932                 case 1:
1933                         freshest = rdev;
1934                         break;
1935                 case 0:
1936                         break;
1937                 default:
1938                         printk( KERN_ERR \
1939                                 "md: fatal superblock inconsistency in %s"
1940                                 " -- removing from array\n", 
1941                                 bdevname(rdev->bdev,b));
1942                         kick_rdev_from_array(rdev);
1943                 }
1944
1945
1946         super_types[mddev->major_version].
1947                 validate_super(mddev, freshest);
1948
1949         i = 0;
1950         ITERATE_RDEV(mddev,rdev,tmp) {
1951                 if (rdev != freshest)
1952                         if (super_types[mddev->major_version].
1953                             validate_super(mddev, rdev)) {
1954                                 printk(KERN_WARNING "md: kicking non-fresh %s"
1955                                         " from array!\n",
1956                                         bdevname(rdev->bdev,b));
1957                                 kick_rdev_from_array(rdev);
1958                                 continue;
1959                         }
1960                 if (mddev->level == LEVEL_MULTIPATH) {
1961                         rdev->desc_nr = i++;
1962                         rdev->raid_disk = rdev->desc_nr;
1963                         set_bit(In_sync, &rdev->flags);
1964                 }
1965         }
1966
1967
1968
1969         if (mddev->recovery_cp != MaxSector &&
1970             mddev->level >= 1)
1971                 printk(KERN_ERR "md: %s: raid array is not clean"
1972                        " -- starting background reconstruction\n",
1973                        mdname(mddev));
1974
1975 }
1976
1977 static ssize_t
1978 level_show(mddev_t *mddev, char *page)
1979 {
1980         struct mdk_personality *p = mddev->pers;
1981         if (p)
1982                 return sprintf(page, "%s\n", p->name);
1983         else if (mddev->clevel[0])
1984                 return sprintf(page, "%s\n", mddev->clevel);
1985         else if (mddev->level != LEVEL_NONE)
1986                 return sprintf(page, "%d\n", mddev->level);
1987         else
1988                 return 0;
1989 }
1990
1991 static ssize_t
1992 level_store(mddev_t *mddev, const char *buf, size_t len)
1993 {
1994         int rv = len;
1995         if (mddev->pers)
1996                 return -EBUSY;
1997         if (len == 0)
1998                 return 0;
1999         if (len >= sizeof(mddev->clevel))
2000                 return -ENOSPC;
2001         strncpy(mddev->clevel, buf, len);
2002         if (mddev->clevel[len-1] == '\n')
2003                 len--;
2004         mddev->clevel[len] = 0;
2005         mddev->level = LEVEL_NONE;
2006         return rv;
2007 }
2008
2009 static struct md_sysfs_entry md_level =
2010 __ATTR(level, 0644, level_show, level_store);
2011
2012 static ssize_t
2013 raid_disks_show(mddev_t *mddev, char *page)
2014 {
2015         if (mddev->raid_disks == 0)
2016                 return 0;
2017         return sprintf(page, "%d\n", mddev->raid_disks);
2018 }
2019
2020 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2021
2022 static ssize_t
2023 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2024 {
2025         /* can only set raid_disks if array is not yet active */
2026         char *e;
2027         int rv = 0;
2028         unsigned long n = simple_strtoul(buf, &e, 10);
2029
2030         if (!*buf || (*e && *e != '\n'))
2031                 return -EINVAL;
2032
2033         if (mddev->pers)
2034                 rv = update_raid_disks(mddev, n);
2035         else
2036                 mddev->raid_disks = n;
2037         return rv ? rv : len;
2038 }
2039 static struct md_sysfs_entry md_raid_disks =
2040 __ATTR(raid_disks, 0644, raid_disks_show, raid_disks_store);
2041
2042 static ssize_t
2043 chunk_size_show(mddev_t *mddev, char *page)
2044 {
2045         return sprintf(page, "%d\n", mddev->chunk_size);
2046 }
2047
2048 static ssize_t
2049 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2050 {
2051         /* can only set chunk_size if array is not yet active */
2052         char *e;
2053         unsigned long n = simple_strtoul(buf, &e, 10);
2054
2055         if (mddev->pers)
2056                 return -EBUSY;
2057         if (!*buf || (*e && *e != '\n'))
2058                 return -EINVAL;
2059
2060         mddev->chunk_size = n;
2061         return len;
2062 }
2063 static struct md_sysfs_entry md_chunk_size =
2064 __ATTR(chunk_size, 0644, chunk_size_show, chunk_size_store);
2065
2066 static ssize_t
2067 null_show(mddev_t *mddev, char *page)
2068 {
2069         return -EINVAL;
2070 }
2071
2072 static ssize_t
2073 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2074 {
2075         /* buf must be %d:%d\n? giving major and minor numbers */
2076         /* The new device is added to the array.
2077          * If the array has a persistent superblock, we read the
2078          * superblock to initialise info and check validity.
2079          * Otherwise, only checking done is that in bind_rdev_to_array,
2080          * which mainly checks size.
2081          */
2082         char *e;
2083         int major = simple_strtoul(buf, &e, 10);
2084         int minor;
2085         dev_t dev;
2086         mdk_rdev_t *rdev;
2087         int err;
2088
2089         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2090                 return -EINVAL;
2091         minor = simple_strtoul(e+1, &e, 10);
2092         if (*e && *e != '\n')
2093                 return -EINVAL;
2094         dev = MKDEV(major, minor);
2095         if (major != MAJOR(dev) ||
2096             minor != MINOR(dev))
2097                 return -EOVERFLOW;
2098
2099
2100         if (mddev->persistent) {
2101                 rdev = md_import_device(dev, mddev->major_version,
2102                                         mddev->minor_version);
2103                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2104                         mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2105                                                        mdk_rdev_t, same_set);
2106                         err = super_types[mddev->major_version]
2107                                 .load_super(rdev, rdev0, mddev->minor_version);
2108                         if (err < 0)
2109                                 goto out;
2110                 }
2111         } else
2112                 rdev = md_import_device(dev, -1, -1);
2113
2114         if (IS_ERR(rdev))
2115                 return PTR_ERR(rdev);
2116         err = bind_rdev_to_array(rdev, mddev);
2117  out:
2118         if (err)
2119                 export_rdev(rdev);
2120         return err ? err : len;
2121 }
2122
2123 static struct md_sysfs_entry md_new_device =
2124 __ATTR(new_dev, 0200, null_show, new_dev_store);
2125
2126 static ssize_t
2127 size_show(mddev_t *mddev, char *page)
2128 {
2129         return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2130 }
2131
2132 static int update_size(mddev_t *mddev, unsigned long size);
2133
2134 static ssize_t
2135 size_store(mddev_t *mddev, const char *buf, size_t len)
2136 {
2137         /* If array is inactive, we can reduce the component size, but
2138          * not increase it (except from 0).
2139          * If array is active, we can try an on-line resize
2140          */
2141         char *e;
2142         int err = 0;
2143         unsigned long long size = simple_strtoull(buf, &e, 10);
2144         if (!*buf || *buf == '\n' ||
2145             (*e && *e != '\n'))
2146                 return -EINVAL;
2147
2148         if (mddev->pers) {
2149                 err = update_size(mddev, size);
2150                 md_update_sb(mddev);
2151         } else {
2152                 if (mddev->size == 0 ||
2153                     mddev->size > size)
2154                         mddev->size = size;
2155                 else
2156                         err = -ENOSPC;
2157         }
2158         return err ? err : len;
2159 }
2160
2161 static struct md_sysfs_entry md_size =
2162 __ATTR(component_size, 0644, size_show, size_store);
2163
2164
2165 /* Metdata version.
2166  * This is either 'none' for arrays with externally managed metadata,
2167  * or N.M for internally known formats
2168  */
2169 static ssize_t
2170 metadata_show(mddev_t *mddev, char *page)
2171 {
2172         if (mddev->persistent)
2173                 return sprintf(page, "%d.%d\n",
2174                                mddev->major_version, mddev->minor_version);
2175         else
2176                 return sprintf(page, "none\n");
2177 }
2178
2179 static ssize_t
2180 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2181 {
2182         int major, minor;
2183         char *e;
2184         if (!list_empty(&mddev->disks))
2185                 return -EBUSY;
2186
2187         if (cmd_match(buf, "none")) {
2188                 mddev->persistent = 0;
2189                 mddev->major_version = 0;
2190                 mddev->minor_version = 90;
2191                 return len;
2192         }
2193         major = simple_strtoul(buf, &e, 10);
2194         if (e==buf || *e != '.')
2195                 return -EINVAL;
2196         buf = e+1;
2197         minor = simple_strtoul(buf, &e, 10);
2198         if (e==buf || *e != '\n')
2199                 return -EINVAL;
2200         if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
2201             super_types[major].name == NULL)
2202                 return -ENOENT;
2203         mddev->major_version = major;
2204         mddev->minor_version = minor;
2205         mddev->persistent = 1;
2206         return len;
2207 }
2208
2209 static struct md_sysfs_entry md_metadata =
2210 __ATTR(metadata_version, 0644, metadata_show, metadata_store);
2211
2212 static ssize_t
2213 action_show(mddev_t *mddev, char *page)
2214 {
2215         char *type = "idle";
2216         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2217             test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2218                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2219                         type = "reshape";
2220                 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2221                         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2222                                 type = "resync";
2223                         else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2224                                 type = "check";
2225                         else
2226                                 type = "repair";
2227                 } else
2228                         type = "recover";
2229         }
2230         return sprintf(page, "%s\n", type);
2231 }
2232
2233 static ssize_t
2234 action_store(mddev_t *mddev, const char *page, size_t len)
2235 {
2236         if (!mddev->pers || !mddev->pers->sync_request)
2237                 return -EINVAL;
2238
2239         if (cmd_match(page, "idle")) {
2240                 if (mddev->sync_thread) {
2241                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2242                         md_unregister_thread(mddev->sync_thread);
2243                         mddev->sync_thread = NULL;
2244                         mddev->recovery = 0;
2245                 }
2246         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2247                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2248                 return -EBUSY;
2249         else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2250                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2251         else if (cmd_match(page, "reshape")) {
2252                 int err;
2253                 if (mddev->pers->start_reshape == NULL)
2254                         return -EINVAL;
2255                 err = mddev->pers->start_reshape(mddev);
2256                 if (err)
2257                         return err;
2258         } else {
2259                 if (cmd_match(page, "check"))
2260                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2261                 else if (cmd_match(page, "repair"))
2262                         return -EINVAL;
2263                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2264                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2265         }
2266         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2267         md_wakeup_thread(mddev->thread);
2268         return len;
2269 }
2270
2271 static ssize_t
2272 mismatch_cnt_show(mddev_t *mddev, char *page)
2273 {
2274         return sprintf(page, "%llu\n",
2275                        (unsigned long long) mddev->resync_mismatches);
2276 }
2277
2278 static struct md_sysfs_entry
2279 md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2280
2281
2282 static struct md_sysfs_entry
2283 md_mismatches = __ATTR_RO(mismatch_cnt);
2284
2285 static ssize_t
2286 sync_min_show(mddev_t *mddev, char *page)
2287 {
2288         return sprintf(page, "%d (%s)\n", speed_min(mddev),
2289                        mddev->sync_speed_min ? "local": "system");
2290 }
2291
2292 static ssize_t
2293 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2294 {
2295         int min;
2296         char *e;
2297         if (strncmp(buf, "system", 6)==0) {
2298                 mddev->sync_speed_min = 0;
2299                 return len;
2300         }
2301         min = simple_strtoul(buf, &e, 10);
2302         if (buf == e || (*e && *e != '\n') || min <= 0)
2303                 return -EINVAL;
2304         mddev->sync_speed_min = min;
2305         return len;
2306 }
2307
2308 static struct md_sysfs_entry md_sync_min =
2309 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2310
2311 static ssize_t
2312 sync_max_show(mddev_t *mddev, char *page)
2313 {
2314         return sprintf(page, "%d (%s)\n", speed_max(mddev),
2315                        mddev->sync_speed_max ? "local": "system");
2316 }
2317
2318 static ssize_t
2319 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2320 {
2321         int max;
2322         char *e;
2323         if (strncmp(buf, "system", 6)==0) {
2324                 mddev->sync_speed_max = 0;
2325                 return len;
2326         }
2327         max = simple_strtoul(buf, &e, 10);
2328         if (buf == e || (*e && *e != '\n') || max <= 0)
2329                 return -EINVAL;
2330         mddev->sync_speed_max = max;
2331         return len;
2332 }
2333
2334 static struct md_sysfs_entry md_sync_max =
2335 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2336
2337
2338 static ssize_t
2339 sync_speed_show(mddev_t *mddev, char *page)
2340 {
2341         unsigned long resync, dt, db;
2342         resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2343         dt = ((jiffies - mddev->resync_mark) / HZ);
2344         if (!dt) dt++;
2345         db = resync - (mddev->resync_mark_cnt);
2346         return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2347 }
2348
2349 static struct md_sysfs_entry
2350 md_sync_speed = __ATTR_RO(sync_speed);
2351
2352 static ssize_t
2353 sync_completed_show(mddev_t *mddev, char *page)
2354 {
2355         unsigned long max_blocks, resync;
2356
2357         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2358                 max_blocks = mddev->resync_max_sectors;
2359         else
2360                 max_blocks = mddev->size << 1;
2361
2362         resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2363         return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2364 }
2365
2366 static struct md_sysfs_entry
2367 md_sync_completed = __ATTR_RO(sync_completed);
2368
2369 static ssize_t
2370 suspend_lo_show(mddev_t *mddev, char *page)
2371 {
2372         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2373 }
2374
2375 static ssize_t
2376 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2377 {
2378         char *e;
2379         unsigned long long new = simple_strtoull(buf, &e, 10);
2380
2381         if (mddev->pers->quiesce == NULL)
2382                 return -EINVAL;
2383         if (buf == e || (*e && *e != '\n'))
2384                 return -EINVAL;
2385         if (new >= mddev->suspend_hi ||
2386             (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2387                 mddev->suspend_lo = new;
2388                 mddev->pers->quiesce(mddev, 2);
2389                 return len;
2390         } else
2391                 return -EINVAL;
2392 }
2393 static struct md_sysfs_entry md_suspend_lo =
2394 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2395
2396
2397 static ssize_t
2398 suspend_hi_show(mddev_t *mddev, char *page)
2399 {
2400         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2401 }
2402
2403 static ssize_t
2404 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2405 {
2406         char *e;
2407         unsigned long long new = simple_strtoull(buf, &e, 10);
2408
2409         if (mddev->pers->quiesce == NULL)
2410                 return -EINVAL;
2411         if (buf == e || (*e && *e != '\n'))
2412                 return -EINVAL;
2413         if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2414             (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2415                 mddev->suspend_hi = new;
2416                 mddev->pers->quiesce(mddev, 1);
2417                 mddev->pers->quiesce(mddev, 0);
2418                 return len;
2419         } else
2420                 return -EINVAL;
2421 }
2422 static struct md_sysfs_entry md_suspend_hi =
2423 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2424
2425
2426 static struct attribute *md_default_attrs[] = {
2427         &md_level.attr,
2428         &md_raid_disks.attr,
2429         &md_chunk_size.attr,
2430         &md_size.attr,
2431         &md_metadata.attr,
2432         &md_new_device.attr,
2433         NULL,
2434 };
2435
2436 static struct attribute *md_redundancy_attrs[] = {
2437         &md_scan_mode.attr,
2438         &md_mismatches.attr,
2439         &md_sync_min.attr,
2440         &md_sync_max.attr,
2441         &md_sync_speed.attr,
2442         &md_sync_completed.attr,
2443         &md_suspend_lo.attr,
2444         &md_suspend_hi.attr,
2445         NULL,
2446 };
2447 static struct attribute_group md_redundancy_group = {
2448         .name = NULL,
2449         .attrs = md_redundancy_attrs,
2450 };
2451
2452
2453 static ssize_t
2454 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2455 {
2456         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2457         mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2458         ssize_t rv;
2459
2460         if (!entry->show)
2461                 return -EIO;
2462         mddev_lock(mddev);
2463         rv = entry->show(mddev, page);
2464         mddev_unlock(mddev);
2465         return rv;
2466 }
2467
2468 static ssize_t
2469 md_attr_store(struct kobject *kobj, struct attribute *attr,
2470               const char *page, size_t length)
2471 {
2472         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2473         mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2474         ssize_t rv;
2475
2476         if (!entry->store)
2477                 return -EIO;
2478         mddev_lock(mddev);
2479         rv = entry->store(mddev, page, length);
2480         mddev_unlock(mddev);
2481         return rv;
2482 }
2483
2484 static void md_free(struct kobject *ko)
2485 {
2486         mddev_t *mddev = container_of(ko, mddev_t, kobj);
2487         kfree(mddev);
2488 }
2489
2490 static struct sysfs_ops md_sysfs_ops = {
2491         .show   = md_attr_show,
2492         .store  = md_attr_store,
2493 };
2494 static struct kobj_type md_ktype = {
2495         .release        = md_free,
2496         .sysfs_ops      = &md_sysfs_ops,
2497         .default_attrs  = md_default_attrs,
2498 };
2499
2500 int mdp_major = 0;
2501
2502 static struct kobject *md_probe(dev_t dev, int *part, void *data)
2503 {
2504         static DEFINE_MUTEX(disks_mutex);
2505         mddev_t *mddev = mddev_find(dev);
2506         struct gendisk *disk;
2507         int partitioned = (MAJOR(dev) != MD_MAJOR);
2508         int shift = partitioned ? MdpMinorShift : 0;
2509         int unit = MINOR(dev) >> shift;
2510
2511         if (!mddev)
2512                 return NULL;
2513
2514         mutex_lock(&disks_mutex);
2515         if (mddev->gendisk) {
2516                 mutex_unlock(&disks_mutex);
2517                 mddev_put(mddev);
2518                 return NULL;
2519         }
2520         disk = alloc_disk(1 << shift);
2521         if (!disk) {
2522                 mutex_unlock(&disks_mutex);
2523                 mddev_put(mddev);
2524                 return NULL;
2525         }
2526         disk->major = MAJOR(dev);
2527         disk->first_minor = unit << shift;
2528         if (partitioned) {
2529                 sprintf(disk->disk_name, "md_d%d", unit);
2530                 sprintf(disk->devfs_name, "md/d%d", unit);
2531         } else {
2532                 sprintf(disk->disk_name, "md%d", unit);
2533                 sprintf(disk->devfs_name, "md/%d", unit);
2534         }
2535         disk->fops = &md_fops;
2536         disk->private_data = mddev;
2537         disk->queue = mddev->queue;
2538         add_disk(disk);
2539         mddev->gendisk = disk;
2540         mutex_unlock(&disks_mutex);
2541         mddev->kobj.parent = &disk->kobj;
2542         mddev->kobj.k_name = NULL;
2543         snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
2544         mddev->kobj.ktype = &md_ktype;
2545         kobject_register(&mddev->kobj);
2546         return NULL;
2547 }
2548
2549 void md_wakeup_thread(mdk_thread_t *thread);
2550
2551 static void md_safemode_timeout(unsigned long data)
2552 {
2553         mddev_t *mddev = (mddev_t *) data;
2554
2555         mddev->safemode = 1;
2556         md_wakeup_thread(mddev->thread);
2557 }
2558
2559 static int start_dirty_degraded;
2560
2561 static int do_md_run(mddev_t * mddev)
2562 {
2563         int err;
2564         int chunk_size;
2565         struct list_head *tmp;
2566         mdk_rdev_t *rdev;
2567         struct gendisk *disk;
2568         struct mdk_personality *pers;
2569         char b[BDEVNAME_SIZE];
2570
2571         if (list_empty(&mddev->disks))
2572                 /* cannot run an array with no devices.. */
2573                 return -EINVAL;
2574
2575         if (mddev->pers)
2576                 return -EBUSY;
2577
2578         /*
2579          * Analyze all RAID superblock(s)
2580          */
2581         if (!mddev->raid_disks)
2582                 analyze_sbs(mddev);
2583
2584         chunk_size = mddev->chunk_size;
2585
2586         if (chunk_size) {
2587                 if (chunk_size > MAX_CHUNK_SIZE) {
2588                         printk(KERN_ERR "too big chunk_size: %d > %d\n",
2589                                 chunk_size, MAX_CHUNK_SIZE);
2590                         return -EINVAL;
2591                 }
2592                 /*
2593                  * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
2594                  */
2595                 if ( (1 << ffz(~chunk_size)) != chunk_size) {
2596                         printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
2597                         return -EINVAL;
2598                 }
2599                 if (chunk_size < PAGE_SIZE) {
2600                         printk(KERN_ERR "too small chunk_size: %d < %ld\n",
2601                                 chunk_size, PAGE_SIZE);
2602                         return -EINVAL;
2603                 }
2604
2605                 /* devices must have minimum size of one chunk */
2606                 ITERATE_RDEV(mddev,rdev,tmp) {
2607                         if (test_bit(Faulty, &rdev->flags))
2608                                 continue;
2609                         if (rdev->size < chunk_size / 1024) {
2610                                 printk(KERN_WARNING
2611                                         "md: Dev %s smaller than chunk_size:"
2612                                         " %lluk < %dk\n",
2613                                         bdevname(rdev->bdev,b),
2614                                         (unsigned long long)rdev->size,
2615                                         chunk_size / 1024);
2616                                 return -EINVAL;
2617                         }
2618                 }
2619         }
2620
2621 #ifdef CONFIG_KMOD
2622         if (mddev->level != LEVEL_NONE)
2623                 request_module("md-level-%d", mddev->level);
2624         else if (mddev->clevel[0])
2625                 request_module("md-%s", mddev->clevel);
2626 #endif
2627
2628         /*
2629          * Drop all container device buffers, from now on
2630          * the only valid external interface is through the md
2631          * device.
2632          * Also find largest hardsector size
2633          */
2634         ITERATE_RDEV(mddev,rdev,tmp) {
2635                 if (test_bit(Faulty, &rdev->flags))
2636                         continue;
2637                 sync_blockdev(rdev->bdev);
2638                 invalidate_bdev(rdev->bdev, 0);
2639         }
2640
2641         md_probe(mddev->unit, NULL, NULL);
2642         disk = mddev->gendisk;
2643         if (!disk)
2644                 return -ENOMEM;
2645
2646         spin_lock(&pers_lock);
2647         pers = find_pers(mddev->level, mddev->clevel);
2648         if (!pers || !try_module_get(pers->owner)) {
2649                 spin_unlock(&pers_lock);
2650                 if (mddev->level != LEVEL_NONE)
2651                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
2652                                mddev->level);
2653                 else
2654                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
2655                                mddev->clevel);
2656                 return -EINVAL;
2657         }
2658         mddev->pers = pers;
2659         spin_unlock(&pers_lock);
2660         mddev->level = pers->level;
2661         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
2662
2663         if (mddev->reshape_position != MaxSector &&
2664             pers->start_reshape == NULL) {
2665                 /* This personality cannot handle reshaping... */
2666                 mddev->pers = NULL;
2667                 module_put(pers->owner);
2668                 return -EINVAL;
2669         }
2670
2671         mddev->recovery = 0;
2672         mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
2673         mddev->barriers_work = 1;
2674         mddev->ok_start_degraded = start_dirty_degraded;
2675
2676         if (start_readonly)
2677                 mddev->ro = 2; /* read-only, but switch on first write */
2678
2679         err = mddev->pers->run(mddev);
2680         if (!err && mddev->pers->sync_request) {
2681                 err = bitmap_create(mddev);
2682                 if (err) {
2683                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
2684                                mdname(mddev), err);
2685                         mddev->pers->stop(mddev);
2686                 }
2687         }
2688         if (err) {
2689                 printk(KERN_ERR "md: pers->run() failed ...\n");
2690                 module_put(mddev->pers->owner);
2691                 mddev->pers = NULL;
2692                 bitmap_destroy(mddev);
2693                 return err;
2694         }
2695         if (mddev->pers->sync_request)
2696                 sysfs_create_group(&mddev->kobj, &md_redundancy_group);
2697         else if (mddev->ro == 2) /* auto-readonly not meaningful */
2698                 mddev->ro = 0;
2699
2700         atomic_set(&mddev->writes_pending,0);
2701         mddev->safemode = 0;
2702         mddev->safemode_timer.function = md_safemode_timeout;
2703         mddev->safemode_timer.data = (unsigned long) mddev;
2704         mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
2705         mddev->in_sync = 1;
2706
2707         ITERATE_RDEV(mddev,rdev,tmp)
2708                 if (rdev->raid_disk >= 0) {
2709                         char nm[20];
2710                         sprintf(nm, "rd%d", rdev->raid_disk);
2711                         sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
2712                 }
2713         
2714         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2715         md_wakeup_thread(mddev->thread);
2716         
2717         if (mddev->sb_dirty)
2718                 md_update_sb(mddev);
2719
2720         set_capacity(disk, mddev->array_size<<1);
2721
2722         /* If we call blk_queue_make_request here, it will
2723          * re-initialise max_sectors etc which may have been
2724          * refined inside -> run.  So just set the bits we need to set.
2725          * Most initialisation happended when we called
2726          * blk_queue_make_request(..., md_fail_request)
2727          * earlier.
2728          */
2729         mddev->queue->queuedata = mddev;
2730         mddev->queue->make_request_fn = mddev->pers->make_request;
2731
2732         mddev->changed = 1;
2733         md_new_event(mddev);
2734         return 0;
2735 }
2736
2737 static int restart_array(mddev_t *mddev)
2738 {
2739         struct gendisk *disk = mddev->gendisk;
2740         int err;
2741
2742         /*
2743          * Complain if it has no devices
2744          */
2745         err = -ENXIO;
2746         if (list_empty(&mddev->disks))
2747                 goto out;
2748
2749         if (mddev->pers) {
2750                 err = -EBUSY;
2751                 if (!mddev->ro)
2752                         goto out;
2753
2754                 mddev->safemode = 0;
2755                 mddev->ro = 0;
2756                 set_disk_ro(disk, 0);
2757
2758                 printk(KERN_INFO "md: %s switched to read-write mode.\n",
2759                         mdname(mddev));
2760                 /*
2761                  * Kick recovery or resync if necessary
2762                  */
2763                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2764                 md_wakeup_thread(mddev->thread);
2765                 err = 0;
2766         } else {
2767                 printk(KERN_ERR "md: %s has no personality assigned.\n",
2768                         mdname(mddev));
2769                 err = -EINVAL;
2770         }
2771
2772 out:
2773         return err;
2774 }
2775
2776 static int do_md_stop(mddev_t * mddev, int ro)
2777 {
2778         int err = 0;
2779         struct gendisk *disk = mddev->gendisk;
2780
2781         if (mddev->pers) {
2782                 if (atomic_read(&mddev->active)>2) {
2783                         printk("md: %s still in use.\n",mdname(mddev));
2784                         return -EBUSY;
2785                 }
2786
2787                 if (mddev->sync_thread) {
2788                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2789                         md_unregister_thread(mddev->sync_thread);
2790                         mddev->sync_thread = NULL;
2791                 }
2792
2793                 del_timer_sync(&mddev->safemode_timer);
2794
2795                 invalidate_partition(disk, 0);
2796
2797                 if (ro) {
2798                         err  = -ENXIO;
2799                         if (mddev->ro==1)
2800                                 goto out;
2801                         mddev->ro = 1;
2802                 } else {
2803                         bitmap_flush(mddev);
2804                         md_super_wait(mddev);
2805                         if (mddev->ro)
2806                                 set_disk_ro(disk, 0);
2807                         blk_queue_make_request(mddev->queue, md_fail_request);
2808                         mddev->pers->stop(mddev);
2809                         if (mddev->pers->sync_request)
2810                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
2811
2812                         module_put(mddev->pers->owner);
2813                         mddev->pers = NULL;
2814                         if (mddev->ro)
2815                                 mddev->ro = 0;
2816                 }
2817                 if (!mddev->in_sync) {
2818                         /* mark array as shutdown cleanly */
2819                         mddev->in_sync = 1;
2820                         md_update_sb(mddev);
2821                 }
2822                 if (ro)
2823                         set_disk_ro(disk, 1);
2824         }
2825
2826         /*
2827          * Free resources if final stop
2828          */
2829         if (!ro) {
2830                 mdk_rdev_t *rdev;
2831                 struct list_head *tmp;
2832                 struct gendisk *disk;
2833                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
2834
2835                 bitmap_destroy(mddev);
2836                 if (mddev->bitmap_file) {
2837                         atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
2838                         fput(mddev->bitmap_file);
2839                         mddev->bitmap_file = NULL;
2840                 }
2841                 mddev->bitmap_offset = 0;
2842
2843                 ITERATE_RDEV(mddev,rdev,tmp)
2844                         if (rdev->raid_disk >= 0) {
2845                                 char nm[20];
2846                                 sprintf(nm, "rd%d", rdev->raid_disk);
2847                                 sysfs_remove_link(&mddev->kobj, nm);
2848                         }
2849
2850                 export_array(mddev);
2851
2852                 mddev->array_size = 0;
2853                 disk = mddev->gendisk;
2854                 if (disk)
2855                         set_capacity(disk, 0);
2856                 mddev->changed = 1;
2857         } else
2858                 printk(KERN_INFO "md: %s switched to read-only mode.\n",
2859                         mdname(mddev));
2860         err = 0;
2861         md_new_event(mddev);
2862 out:
2863         return err;
2864 }
2865
2866 static void autorun_array(mddev_t *mddev)
2867 {
2868         mdk_rdev_t *rdev;
2869         struct list_head *tmp;
2870         int err;
2871
2872         if (list_empty(&mddev->disks))
2873                 return;
2874
2875         printk(KERN_INFO "md: running: ");
2876
2877         ITERATE_RDEV(mddev,rdev,tmp) {
2878                 char b[BDEVNAME_SIZE];
2879                 printk("<%s>", bdevname(rdev->bdev,b));
2880         }
2881         printk("\n");
2882
2883         err = do_md_run (mddev);
2884         if (err) {
2885                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
2886                 do_md_stop (mddev, 0);
2887         }
2888 }
2889
2890 /*
2891  * lets try to run arrays based on all disks that have arrived
2892  * until now. (those are in pending_raid_disks)
2893  *
2894  * the method: pick the first pending disk, collect all disks with
2895  * the same UUID, remove all from the pending list and put them into
2896  * the 'same_array' list. Then order this list based on superblock
2897  * update time (freshest comes first), kick out 'old' disks and
2898  * compare superblocks. If everything's fine then run it.
2899  *
2900  * If "unit" is allocated, then bump its reference count
2901  */
2902 static void autorun_devices(int part)
2903 {
2904         struct list_head *tmp;
2905         mdk_rdev_t *rdev0, *rdev;
2906         mddev_t *mddev;
2907         char b[BDEVNAME_SIZE];
2908
2909         printk(KERN_INFO "md: autorun ...\n");
2910         while (!list_empty(&pending_raid_disks)) {
2911                 dev_t dev;
2912                 LIST_HEAD(candidates);
2913                 rdev0 = list_entry(pending_raid_disks.next,
2914                                          mdk_rdev_t, same_set);
2915
2916                 printk(KERN_INFO "md: considering %s ...\n",
2917                         bdevname(rdev0->bdev,b));
2918                 INIT_LIST_HEAD(&candidates);
2919                 ITERATE_RDEV_PENDING(rdev,tmp)
2920                         if (super_90_load(rdev, rdev0, 0) >= 0) {
2921                                 printk(KERN_INFO "md:  adding %s ...\n",
2922                                         bdevname(rdev->bdev,b));
2923                                 list_move(&rdev->same_set, &candidates);
2924                         }
2925                 /*
2926                  * now we have a set of devices, with all of them having
2927                  * mostly sane superblocks. It's time to allocate the
2928                  * mddev.
2929                  */
2930                 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
2931                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
2932                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
2933                         break;
2934                 }
2935                 if (part)
2936                         dev = MKDEV(mdp_major,
2937                                     rdev0->preferred_minor << MdpMinorShift);
2938                 else
2939                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
2940
2941                 md_probe(dev, NULL, NULL);
2942                 mddev = mddev_find(dev);
2943                 if (!mddev) {
2944                         printk(KERN_ERR 
2945                                 "md: cannot allocate memory for md drive.\n");
2946                         break;
2947                 }
2948                 if (mddev_lock(mddev)) 
2949                         printk(KERN_WARNING "md: %s locked, cannot run\n",
2950                                mdname(mddev));
2951                 else if (mddev->raid_disks || mddev->major_version
2952                          || !list_empty(&mddev->disks)) {
2953                         printk(KERN_WARNING 
2954                                 "md: %s already running, cannot run %s\n",
2955                                 mdname(mddev), bdevname(rdev0->bdev,b));
2956                         mddev_unlock(mddev);
2957                 } else {
2958                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
2959                         ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
2960                                 list_del_init(&rdev->same_set);
2961                                 if (bind_rdev_to_array(rdev, mddev))
2962                                         export_rdev(rdev);
2963                         }
2964                         autorun_array(mddev);
2965                         mddev_unlock(mddev);
2966                 }
2967                 /* on success, candidates will be empty, on error
2968                  * it won't...
2969                  */
2970                 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
2971                         export_rdev(rdev);
2972                 mddev_put(mddev);
2973         }
2974         printk(KERN_INFO "md: ... autorun DONE.\n");
2975 }
2976
2977 /*
2978  * import RAID devices based on one partition
2979  * if possible, the array gets run as well.
2980  */
2981
2982 static int autostart_array(dev_t startdev)
2983 {
2984         char b[BDEVNAME_SIZE];
2985         int err = -EINVAL, i;
2986         mdp_super_t *sb = NULL;
2987         mdk_rdev_t *start_rdev = NULL, *rdev;
2988
2989         start_rdev = md_import_device(startdev, 0, 0);
2990         if (IS_ERR(start_rdev))
2991                 return err;
2992
2993
2994         /* NOTE: this can only work for 0.90.0 superblocks */
2995         sb = (mdp_super_t*)page_address(start_rdev->sb_page);
2996         if (sb->major_version != 0 ||
2997             sb->minor_version != 90 ) {
2998                 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
2999                 export_rdev(start_rdev);
3000                 return err;
3001         }
3002
3003         if (test_bit(Faulty, &start_rdev->flags)) {
3004                 printk(KERN_WARNING 
3005                         "md: can not autostart based on faulty %s!\n",
3006                         bdevname(start_rdev->bdev,b));
3007                 export_rdev(start_rdev);
3008                 return err;
3009         }
3010         list_add(&start_rdev->same_set, &pending_raid_disks);
3011
3012         for (i = 0; i < MD_SB_DISKS; i++) {
3013                 mdp_disk_t *desc = sb->disks + i;
3014                 dev_t dev = MKDEV(desc->major, desc->minor);
3015
3016                 if (!dev)
3017                         continue;
3018                 if (dev == startdev)
3019                         continue;
3020                 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
3021                         continue;
3022                 rdev = md_import_device(dev, 0, 0);
3023                 if (IS_ERR(rdev))
3024                         continue;
3025
3026                 list_add(&rdev->same_set, &pending_raid_disks);
3027         }
3028
3029         /*
3030          * possibly return codes
3031          */
3032         autorun_devices(0);
3033         return 0;
3034
3035 }
3036
3037
3038 static int get_version(void __user * arg)
3039 {
3040         mdu_version_t ver;
3041
3042         ver.major = MD_MAJOR_VERSION;
3043         ver.minor = MD_MINOR_VERSION;
3044         ver.patchlevel = MD_PATCHLEVEL_VERSION;
3045
3046         if (copy_to_user(arg, &ver, sizeof(ver)))
3047                 return -EFAULT;
3048
3049         return 0;
3050 }
3051
3052 static int get_array_info(mddev_t * mddev, void __user * arg)
3053 {
3054         mdu_array_info_t info;
3055         int nr,working,active,failed,spare;
3056         mdk_rdev_t *rdev;
3057         struct list_head *tmp;
3058
3059         nr=working=active=failed=spare=0;
3060         ITERATE_RDEV(mddev,rdev,tmp) {
3061                 nr++;
3062                 if (test_bit(Faulty, &rdev->flags))
3063                         failed++;
3064                 else {
3065                         working++;
3066                         if (test_bit(In_sync, &rdev->flags))
3067                                 active++;       
3068                         else
3069                                 spare++;
3070                 }
3071         }
3072
3073         info.major_version = mddev->major_version;
3074         info.minor_version = mddev->minor_version;
3075         info.patch_version = MD_PATCHLEVEL_VERSION;
3076         info.ctime         = mddev->ctime;
3077         info.level         = mddev->level;
3078         info.size          = mddev->size;
3079         if (info.size != mddev->size) /* overflow */
3080                 info.size = -1;
3081         info.nr_disks      = nr;
3082         info.raid_disks    = mddev->raid_disks;
3083         info.md_minor      = mddev->md_minor;
3084         info.not_persistent= !mddev->persistent;
3085
3086         info.utime         = mddev->utime;
3087         info.state         = 0;
3088         if (mddev->in_sync)
3089                 info.state = (1<<MD_SB_CLEAN);
3090         if (mddev->bitmap && mddev->bitmap_offset)
3091                 info.state = (1<<MD_SB_BITMAP_PRESENT);
3092         info.active_disks  = active;
3093         info.working_disks = working;
3094         info.failed_disks  = failed;
3095         info.spare_disks   = spare;
3096
3097         info.layout        = mddev->layout;
3098         info.chunk_size    = mddev->chunk_size;
3099
3100         if (copy_to_user(arg, &info, sizeof(info)))
3101                 return -EFAULT;
3102
3103         return 0;
3104 }
3105
3106 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3107 {
3108         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3109         char *ptr, *buf = NULL;
3110         int err = -ENOMEM;
3111
3112         file = kmalloc(sizeof(*file), GFP_KERNEL);
3113         if (!file)
3114                 goto out;
3115
3116         /* bitmap disabled, zero the first byte and copy out */
3117         if (!mddev->bitmap || !mddev->bitmap->file) {
3118                 file->pathname[0] = '\0';
3119                 goto copy_out;
3120         }
3121
3122         buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3123         if (!buf)
3124                 goto out;
3125
3126         ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3127         if (!ptr)
3128                 goto out;
3129
3130         strcpy(file->pathname, ptr);
3131
3132 copy_out:
3133         err = 0;
3134         if (copy_to_user(arg, file, sizeof(*file)))
3135                 err = -EFAULT;
3136 out:
3137         kfree(buf);
3138         kfree(file);
3139         return err;
3140 }
3141
3142 static int get_disk_info(mddev_t * mddev, void __user * arg)
3143 {
3144         mdu_disk_info_t info;
3145         unsigned int nr;
3146         mdk_rdev_t *rdev;
3147
3148         if (copy_from_user(&info, arg, sizeof(info)))
3149                 return -EFAULT;
3150
3151         nr = info.number;
3152
3153         rdev = find_rdev_nr(mddev, nr);
3154         if (rdev) {
3155                 info.major = MAJOR(rdev->bdev->bd_dev);
3156                 info.minor = MINOR(rdev->bdev->bd_dev);
3157                 info.raid_disk = rdev->raid_disk;
3158                 info.state = 0;
3159                 if (test_bit(Faulty, &rdev->flags))
3160                         info.state |= (1<<MD_DISK_FAULTY);
3161                 else if (test_bit(In_sync, &rdev->flags)) {
3162                         info.state |= (1<<MD_DISK_ACTIVE);
3163                         info.state |= (1<<MD_DISK_SYNC);
3164                 }
3165                 if (test_bit(WriteMostly, &rdev->flags))
3166                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
3167         } else {
3168                 info.major = info.minor = 0;
3169                 info.raid_disk = -1;
3170                 info.state = (1<<MD_DISK_REMOVED);
3171         }
3172
3173         if (copy_to_user(arg, &info, sizeof(info)))
3174                 return -EFAULT;
3175
3176         return 0;
3177 }
3178
3179 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3180 {
3181         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3182         mdk_rdev_t *rdev;
3183         dev_t dev = MKDEV(info->major,info->minor);
3184
3185         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3186                 return -EOVERFLOW;
3187
3188         if (!mddev->raid_disks) {
3189                 int err;
3190                 /* expecting a device which has a superblock */
3191                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3192                 if (IS_ERR(rdev)) {
3193                         printk(KERN_WARNING 
3194                                 "md: md_import_device returned %ld\n",
3195                                 PTR_ERR(rdev));
3196                         return PTR_ERR(rdev);
3197                 }
3198                 if (!list_empty(&mddev->disks)) {
3199                         mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3200                                                         mdk_rdev_t, same_set);
3201                         int err = super_types[mddev->major_version]
3202                                 .load_super(rdev, rdev0, mddev->minor_version);
3203                         if (err < 0) {
3204                                 printk(KERN_WARNING 
3205                                         "md: %s has different UUID to %s\n",
3206                                         bdevname(rdev->bdev,b), 
3207                                         bdevname(rdev0->bdev,b2));
3208                                 export_rdev(rdev);
3209                                 return -EINVAL;
3210                         }
3211                 }
3212                 err = bind_rdev_to_array(rdev, mddev);
3213                 if (err)
3214                         export_rdev(rdev);
3215                 return err;
3216         }
3217
3218         /*
3219          * add_new_disk can be used once the array is assembled
3220          * to add "hot spares".  They must already have a superblock
3221          * written
3222          */
3223         if (mddev->pers) {
3224                 int err;
3225                 if (!mddev->pers->hot_add_disk) {
3226                         printk(KERN_WARNING 
3227                                 "%s: personality does not support diskops!\n",
3228                                mdname(mddev));
3229                         return -EINVAL;
3230                 }
3231                 if (mddev->persistent)
3232                         rdev = md_import_device(dev, mddev->major_version,
3233                                                 mddev->minor_version);
3234                 else
3235                         rdev = md_import_device(dev, -1, -1);
3236                 if (IS_ERR(rdev)) {
3237                         printk(KERN_WARNING 
3238                                 "md: md_import_device returned %ld\n",
3239                                 PTR_ERR(rdev));
3240                         return PTR_ERR(rdev);
3241                 }
3242                 /* set save_raid_disk if appropriate */
3243                 if (!mddev->persistent) {
3244                         if (info->state & (1<<MD_DISK_SYNC)  &&
3245                             info->raid_disk < mddev->raid_disks)
3246                                 rdev->raid_disk = info->raid_disk;
3247                         else
3248                                 rdev->raid_disk = -1;
3249                 } else
3250                         super_types[mddev->major_version].
3251                                 validate_super(mddev, rdev);
3252                 rdev->saved_raid_disk = rdev->raid_disk;
3253
3254                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
3255                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3256                         set_bit(WriteMostly, &rdev->flags);
3257
3258                 rdev->raid_disk = -1;
3259                 err = bind_rdev_to_array(rdev, mddev);
3260                 if (err)
3261                         export_rdev(rdev);
3262
3263                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3264                 md_wakeup_thread(mddev->thread);
3265                 return err;
3266         }
3267
3268         /* otherwise, add_new_disk is only allowed
3269          * for major_version==0 superblocks
3270          */
3271         if (mddev->major_version != 0) {
3272                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3273                        mdname(mddev));
3274                 return -EINVAL;
3275         }
3276
3277         if (!(info->state & (1<<MD_DISK_FAULTY))) {
3278                 int err;
3279                 rdev = md_import_device (dev, -1, 0);
3280                 if (IS_ERR(rdev)) {
3281                         printk(KERN_WARNING 
3282                                 "md: error, md_import_device() returned %ld\n",
3283                                 PTR_ERR(rdev));
3284                         return PTR_ERR(rdev);
3285                 }
3286                 rdev->desc_nr = info->number;
3287                 if (info->raid_disk < mddev->raid_disks)
3288                         rdev->raid_disk = info->raid_disk;
3289                 else
3290                         rdev->raid_disk = -1;
3291
3292                 rdev->flags = 0;
3293
3294                 if (rdev->raid_disk < mddev->raid_disks)
3295                         if (info->state & (1<<MD_DISK_SYNC))
3296                                 set_bit(In_sync, &rdev->flags);
3297
3298                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3299                         set_bit(WriteMostly, &rdev->flags);
3300
3301                 if (!mddev->persistent) {
3302                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
3303                         rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3304                 } else 
3305                         rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3306                 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3307
3308                 err = bind_rdev_to_array(rdev, mddev);
3309                 if (err) {
3310                         export_rdev(rdev);
3311                         return err;
3312                 }
3313         }
3314
3315         return 0;
3316 }
3317
3318 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3319 {
3320         char b[BDEVNAME_SIZE];
3321         mdk_rdev_t *rdev;
3322
3323         if (!mddev->pers)
3324                 return -ENODEV;
3325
3326         rdev = find_rdev(mddev, dev);
3327         if (!rdev)
3328                 return -ENXIO;
3329
3330         if (rdev->raid_disk >= 0)
3331                 goto busy;
3332
3333         kick_rdev_from_array(rdev);
3334         md_update_sb(mddev);
3335         md_new_event(mddev);
3336
3337         return 0;
3338 busy:
3339         printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3340                 bdevname(rdev->bdev,b), mdname(mddev));
3341         return -EBUSY;
3342 }
3343
3344 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3345 {
3346         char b[BDEVNAME_SIZE];
3347         int err;
3348         unsigned int size;
3349         mdk_rdev_t *rdev;
3350
3351         if (!mddev->pers)
3352                 return -ENODEV;
3353
3354         if (mddev->major_version != 0) {
3355                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3356                         " version-0 superblocks.\n",
3357                         mdname(mddev));
3358                 return -EINVAL;
3359         }
3360         if (!mddev->pers->hot_add_disk) {
3361                 printk(KERN_WARNING 
3362                         "%s: personality does not support diskops!\n",
3363                         mdname(mddev));
3364                 return -EINVAL;
3365         }
3366
3367         rdev = md_import_device (dev, -1, 0);
3368         if (IS_ERR(rdev)) {
3369                 printk(KERN_WARNING 
3370                         "md: error, md_import_device() returned %ld\n",
3371                         PTR_ERR(rdev));
3372                 return -EINVAL;
3373         }
3374
3375         if (mddev->persistent)
3376                 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3377         else
3378                 rdev->sb_offset =
3379                         rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3380
3381         size = calc_dev_size(rdev, mddev->chunk_size);
3382         rdev->size = size;
3383
3384         if (test_bit(Faulty, &rdev->flags)) {
3385                 printk(KERN_WARNING 
3386                         "md: can not hot-add faulty %s disk to %s!\n",
3387                         bdevname(rdev->bdev,b), mdname(mddev));
3388                 err = -EINVAL;
3389                 goto abort_export;
3390         }
3391         clear_bit(In_sync, &rdev->flags);
3392         rdev->desc_nr = -1;
3393         err = bind_rdev_to_array(rdev, mddev);
3394         if (err)
3395                 goto abort_export;
3396
3397         /*
3398          * The rest should better be atomic, we can have disk failures
3399          * noticed in interrupt contexts ...
3400          */
3401
3402         if (rdev->desc_nr == mddev->max_disks) {
3403                 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
3404                         mdname(mddev));
3405                 err = -EBUSY;
3406                 goto abort_unbind_export;
3407         }
3408
3409         rdev->raid_disk = -1;
3410
3411         md_update_sb(mddev);
3412
3413         /*
3414          * Kick recovery, maybe this spare has to be added to the
3415          * array immediately.
3416          */
3417         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3418         md_wakeup_thread(mddev->thread);
3419         md_new_event(mddev);
3420         return 0;
3421
3422 abort_unbind_export:
3423         unbind_rdev_from_array(rdev);
3424
3425 abort_export:
3426         export_rdev(rdev);
3427         return err;
3428 }
3429
3430 /* similar to deny_write_access, but accounts for our holding a reference
3431  * to the file ourselves */
3432 static int deny_bitmap_write_access(struct file * file)
3433 {
3434         struct inode *inode = file->f_mapping->host;
3435
3436         spin_lock(&inode->i_lock);
3437         if (atomic_read(&inode->i_writecount) > 1) {
3438                 spin_unlock(&inode->i_lock);
3439                 return -ETXTBSY;
3440         }
3441         atomic_set(&inode->i_writecount, -1);
3442         spin_unlock(&inode->i_lock);
3443
3444         return 0;
3445 }
3446
3447 static int set_bitmap_file(mddev_t *mddev, int fd)
3448 {
3449         int err;
3450
3451         if (mddev->pers) {
3452                 if (!mddev->pers->quiesce)
3453                         return -EBUSY;
3454                 if (mddev->recovery || mddev->sync_thread)
3455                         return -EBUSY;
3456                 /* we should be able to change the bitmap.. */
3457         }
3458
3459
3460         if (fd >= 0) {
3461                 if (mddev->bitmap)
3462                         return -EEXIST; /* cannot add when bitmap is present */
3463                 mddev->bitmap_file = fget(fd);
3464
3465                 if (mddev->bitmap_file == NULL) {
3466                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
3467                                mdname(mddev));
3468                         return -EBADF;
3469                 }
3470
3471                 err = deny_bitmap_write_access(mddev->bitmap_file);
3472                 if (err) {
3473                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
3474                                mdname(mddev));
3475                         fput(mddev->bitmap_file);
3476                         mddev->bitmap_file = NULL;
3477                         return err;
3478                 }
3479                 mddev->bitmap_offset = 0; /* file overrides offset */
3480         } else if (mddev->bitmap == NULL)
3481                 return -ENOENT; /* cannot remove what isn't there */
3482         err = 0;
3483         if (mddev->pers) {
3484                 mddev->pers->quiesce(mddev, 1);
3485                 if (fd >= 0)
3486                         err = bitmap_create(mddev);
3487                 if (fd < 0 || err)
3488                         bitmap_destroy(mddev);
3489                 mddev->pers->quiesce(mddev, 0);
3490         } else if (fd < 0) {
3491                 if (mddev->bitmap_file)
3492                         fput(mddev->bitmap_file);
3493                 mddev->bitmap_file = NULL;
3494         }
3495
3496         return err;
3497 }
3498
3499 /*
3500  * set_array_info is used two different ways
3501  * The original usage is when creating a new array.
3502  * In this usage, raid_disks is > 0 and it together with
3503  *  level, size, not_persistent,layout,chunksize determine the
3504  *  shape of the array.
3505  *  This will always create an array with a type-0.90.0 superblock.
3506  * The newer usage is when assembling an array.
3507  *  In this case raid_disks will be 0, and the major_version field is
3508  *  use to determine which style super-blocks are to be found on the devices.
3509  *  The minor and patch _version numbers are also kept incase the
3510  *  super_block handler wishes to interpret them.
3511  */
3512 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
3513 {
3514
3515         if (info->raid_disks == 0) {
3516                 /* just setting version number for superblock loading */
3517                 if (info->major_version < 0 ||
3518                     info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
3519                     super_types[info->major_version].name == NULL) {
3520                         /* maybe try to auto-load a module? */
3521                         printk(KERN_INFO 
3522                                 "md: superblock version %d not known\n",
3523                                 info->major_version);
3524                         return -EINVAL;
3525                 }
3526                 mddev->major_version = info->major_version;
3527                 mddev->minor_version = info->minor_version;
3528                 mddev->patch_version = info->patch_version;
3529                 return 0;
3530         }
3531         mddev->major_version = MD_MAJOR_VERSION;
3532         mddev->minor_version = MD_MINOR_VERSION;
3533         mddev->patch_version = MD_PATCHLEVEL_VERSION;
3534         mddev->ctime         = get_seconds();
3535
3536         mddev->level         = info->level;
3537         mddev->clevel[0]     = 0;
3538         mddev->size          = info->size;
3539         mddev->raid_disks    = info->raid_disks;
3540         /* don't set md_minor, it is determined by which /dev/md* was
3541          * openned
3542          */
3543         if (info->state & (1<<MD_SB_CLEAN))
3544                 mddev->recovery_cp = MaxSector;
3545         else
3546                 mddev->recovery_cp = 0;
3547         mddev->persistent    = ! info->not_persistent;
3548
3549         mddev->layout        = info->layout;
3550         mddev->chunk_size    = info->chunk_size;
3551
3552         mddev->max_disks     = MD_SB_DISKS;
3553
3554         mddev->sb_dirty      = 1;
3555
3556         mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
3557         mddev->bitmap_offset = 0;
3558
3559         mddev->reshape_position = MaxSector;
3560
3561         /*
3562          * Generate a 128 bit UUID
3563          */
3564         get_random_bytes(mddev->uuid, 16);
3565
3566         mddev->new_level = mddev->level;
3567         mddev->new_chunk = mddev->chunk_size;
3568         mddev->new_layout = mddev->layout;
3569         mddev->delta_disks = 0;
3570
3571         return 0;
3572 }
3573
3574 static int update_size(mddev_t *mddev, unsigned long size)
3575 {
3576         mdk_rdev_t * rdev;
3577         int rv;
3578         struct list_head *tmp;
3579         int fit = (size == 0);
3580
3581         if (mddev->pers->resize == NULL)
3582                 return -EINVAL;
3583         /* The "size" is the amount of each device that is used.
3584          * This can only make sense for arrays with redundancy.
3585          * linear and raid0 always use whatever space is available
3586          * We can only consider changing the size if no resync
3587          * or reconstruction is happening, and if the new size
3588          * is acceptable. It must fit before the sb_offset or,
3589          * if that is <data_offset, it must fit before the
3590          * size of each device.
3591          * If size is zero, we find the largest size that fits.
3592          */
3593         if (mddev->sync_thread)
3594                 return -EBUSY;
3595         ITERATE_RDEV(mddev,rdev,tmp) {
3596                 sector_t avail;
3597                 if (rdev->sb_offset > rdev->data_offset)
3598                         avail = (rdev->sb_offset*2) - rdev->data_offset;
3599                 else
3600                         avail = get_capacity(rdev->bdev->bd_disk)
3601                                 - rdev->data_offset;
3602                 if (fit && (size == 0 || size > avail/2))
3603                         size = avail/2;
3604                 if (avail < ((sector_t)size << 1))
3605                         return -ENOSPC;
3606         }
3607         rv = mddev->pers->resize(mddev, (sector_t)size *2);
3608         if (!rv) {
3609                 struct block_device *bdev;
3610
3611                 bdev = bdget_disk(mddev->gendisk, 0);
3612                 if (bdev) {
3613                         mutex_lock(&bdev->bd_inode->i_mutex);
3614                         i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
3615                         mutex_unlock(&bdev->bd_inode->i_mutex);
3616                         bdput(bdev);
3617                 }
3618         }
3619         return rv;
3620 }
3621
3622 static int update_raid_disks(mddev_t *mddev, int raid_disks)
3623 {
3624         int rv;
3625         /* change the number of raid disks */
3626         if (mddev->pers->check_reshape == NULL)
3627                 return -EINVAL;
3628         if (raid_disks <= 0 ||
3629             raid_disks >= mddev->max_disks)
3630                 return -EINVAL;
3631         if (mddev->sync_thread || mddev->reshape_position != MaxSector)
3632                 return -EBUSY;
3633         mddev->delta_disks = raid_disks - mddev->raid_disks;
3634
3635         rv = mddev->pers->check_reshape(mddev);
3636         return rv;
3637 }
3638
3639
3640 /*
3641  * update_array_info is used to change the configuration of an
3642  * on-line array.
3643  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
3644  * fields in the info are checked against the array.
3645  * Any differences that cannot be handled will cause an error.
3646  * Normally, only one change can be managed at a time.
3647  */
3648 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
3649 {
3650         int rv = 0;
3651         int cnt = 0;
3652         int state = 0;
3653
3654         /* calculate expected state,ignoring low bits */
3655         if (mddev->bitmap && mddev->bitmap_offset)
3656                 state |= (1 << MD_SB_BITMAP_PRESENT);
3657
3658         if (mddev->major_version != info->major_version ||
3659             mddev->minor_version != info->minor_version ||
3660 /*          mddev->patch_version != info->patch_version || */
3661             mddev->ctime         != info->ctime         ||
3662             mddev->level         != info->level         ||
3663 /*          mddev->layout        != info->layout        || */
3664             !mddev->persistent   != info->not_persistent||
3665             mddev->chunk_size    != info->chunk_size    ||
3666             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
3667             ((state^info->state) & 0xfffffe00)
3668                 )
3669                 return -EINVAL;
3670         /* Check there is only one change */
3671         if (info->size >= 0 && mddev->size != info->size) cnt++;
3672         if (mddev->raid_disks != info->raid_disks) cnt++;
3673         if (mddev->layout != info->layout) cnt++;
3674         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
3675         if (cnt == 0) return 0;
3676         if (cnt > 1) return -EINVAL;
3677
3678         if (mddev->layout != info->layout) {
3679                 /* Change layout
3680                  * we don't need to do anything at the md level, the
3681                  * personality will take care of it all.
3682                  */
3683                 if (mddev->pers->reconfig == NULL)
3684                         return -EINVAL;
3685                 else
3686                         return mddev->pers->reconfig(mddev, info->layout, -1);
3687         }
3688         if (info->size >= 0 && mddev->size != info->size)
3689                 rv = update_size(mddev, info->size);
3690
3691         if (mddev->raid_disks    != info->raid_disks)
3692                 rv = update_raid_disks(mddev, info->raid_disks);
3693
3694         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
3695                 if (mddev->pers->quiesce == NULL)
3696                         return -EINVAL;
3697                 if (mddev->recovery || mddev->sync_thread)
3698                         return -EBUSY;
3699                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
3700                         /* add the bitmap */
3701                         if (mddev->bitmap)
3702                                 return -EEXIST;
3703                         if (mddev->default_bitmap_offset == 0)
3704                                 return -EINVAL;
3705                         mddev->bitmap_offset = mddev->default_bitmap_offset;
3706                         mddev->pers->quiesce(mddev, 1);
3707                         rv = bitmap_create(mddev);
3708                         if (rv)
3709                                 bitmap_destroy(mddev);
3710                         mddev->pers->quiesce(mddev, 0);
3711                 } else {
3712                         /* remove the bitmap */
3713                         if (!mddev->bitmap)
3714                                 return -ENOENT;
3715                         if (mddev->bitmap->file)
3716                                 return -EINVAL;
3717                         mddev->pers->quiesce(mddev, 1);
3718                         bitmap_destroy(mddev);
3719                         mddev->pers->quiesce(mddev, 0);
3720                         mddev->bitmap_offset = 0;
3721                 }
3722         }
3723         md_update_sb(mddev);
3724         return rv;
3725 }
3726
3727 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
3728 {
3729         mdk_rdev_t *rdev;
3730
3731         if (mddev->pers == NULL)
3732                 return -ENODEV;
3733
3734         rdev = find_rdev(mddev, dev);
3735         if (!rdev)
3736                 return -ENODEV;
3737
3738         md_error(mddev, rdev);
3739         return 0;
3740 }
3741
3742 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3743 {
3744         mddev_t *mddev = bdev->bd_disk->private_data;
3745
3746         geo->heads = 2;
3747         geo->sectors = 4;
3748         geo->cylinders = get_capacity(mddev->gendisk) / 8;
3749         return 0;
3750 }
3751
3752 static int md_ioctl(struct inode *inode, struct file *file,
3753                         unsigned int cmd, unsigned long arg)
3754 {
3755         int err = 0;
3756         void __user *argp = (void __user *)arg;
3757         mddev_t *mddev = NULL;
3758
3759         if (!capable(CAP_SYS_ADMIN))
3760                 return -EACCES;
3761
3762         /*
3763          * Commands dealing with the RAID driver but not any
3764          * particular array:
3765          */
3766         switch (cmd)
3767         {
3768                 case RAID_VERSION:
3769                         err = get_version(argp);
3770                         goto done;
3771
3772                 case PRINT_RAID_DEBUG:
3773                         err = 0;
3774                         md_print_devices();
3775                         goto done;
3776
3777 #ifndef MODULE
3778                 case RAID_AUTORUN:
3779                         err = 0;
3780                         autostart_arrays(arg);
3781                         goto done;
3782 #endif
3783                 default:;
3784         }
3785
3786         /*
3787          * Commands creating/starting a new array:
3788          */
3789
3790         mddev = inode->i_bdev->bd_disk->private_data;
3791
3792         if (!mddev) {
3793                 BUG();
3794                 goto abort;
3795         }
3796
3797
3798         if (cmd == START_ARRAY) {
3799                 /* START_ARRAY doesn't need to lock the array as autostart_array
3800                  * does the locking, and it could even be a different array
3801                  */
3802                 static int cnt = 3;
3803                 if (cnt > 0 ) {
3804                         printk(KERN_WARNING
3805                                "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
3806                                "This will not be supported beyond July 2006\n",
3807                                current->comm, current->pid);
3808                         cnt--;
3809                 }
3810                 err = autostart_array(new_decode_dev(arg));
3811                 if (err) {
3812                         printk(KERN_WARNING "md: autostart failed!\n");
3813                         goto abort;
3814                 }
3815                 goto done;
3816         }
3817
3818         err = mddev_lock(mddev);
3819         if (err) {
3820                 printk(KERN_INFO 
3821                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
3822                         err, cmd);
3823                 goto abort;
3824         }
3825
3826         switch (cmd)
3827         {
3828                 case SET_ARRAY_INFO:
3829                         {
3830                                 mdu_array_info_t info;
3831                                 if (!arg)
3832                                         memset(&info, 0, sizeof(info));
3833                                 else if (copy_from_user(&info, argp, sizeof(info))) {
3834                                         err = -EFAULT;
3835                                         goto abort_unlock;
3836                                 }
3837                                 if (mddev->pers) {
3838                                         err = update_array_info(mddev, &info);
3839                                         if (err) {
3840                                                 printk(KERN_WARNING "md: couldn't update"
3841                                                        " array info. %d\n", err);
3842                                                 goto abort_unlock;
3843                                         }
3844                                         goto done_unlock;
3845                                 }
3846                                 if (!list_empty(&mddev->disks)) {
3847                                         printk(KERN_WARNING
3848                                                "md: array %s already has disks!\n",
3849                                                mdname(mddev));
3850                                         err = -EBUSY;
3851                                         goto abort_unlock;
3852                                 }
3853                                 if (mddev->raid_disks) {
3854                                         printk(KERN_WARNING
3855                                                "md: array %s already initialised!\n",
3856                                                mdname(mddev));
3857                                         err = -EBUSY;
3858                                         goto abort_unlock;
3859                                 }
3860                                 err = set_array_info(mddev, &info);
3861                                 if (err) {
3862                                         printk(KERN_WARNING "md: couldn't set"
3863                                                " array info. %d\n", err);
3864                                         goto abort_unlock;
3865                                 }
3866                         }
3867                         goto done_unlock;
3868
3869                 default:;
3870         }
3871
3872         /*
3873          * Commands querying/configuring an existing array:
3874          */
3875         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
3876          * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
3877         if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
3878                         && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
3879                 err = -ENODEV;
3880                 goto abort_unlock;
3881         }
3882
3883         /*
3884          * Commands even a read-only array can execute:
3885          */
3886         switch (cmd)
3887         {
3888                 case GET_ARRAY_INFO:
3889                         err = get_array_info(mddev, argp);
3890                         goto done_unlock;
3891
3892                 case GET_BITMAP_FILE:
3893                         err = get_bitmap_file(mddev, argp);
3894                         goto done_unlock;
3895
3896                 case GET_DISK_INFO:
3897                         err = get_disk_info(mddev, argp);
3898                         goto done_unlock;
3899
3900                 case RESTART_ARRAY_RW:
3901                         err = restart_array(mddev);
3902                         goto done_unlock;
3903
3904                 case STOP_ARRAY:
3905                         err = do_md_stop (mddev, 0);
3906                         goto done_unlock;
3907
3908                 case STOP_ARRAY_RO:
3909                         err = do_md_stop (mddev, 1);
3910                         goto done_unlock;
3911
3912         /*
3913          * We have a problem here : there is no easy way to give a CHS
3914          * virtual geometry. We currently pretend that we have a 2 heads
3915          * 4 sectors (with a BIG number of cylinders...). This drives
3916          * dosfs just mad... ;-)
3917          */
3918         }
3919
3920         /*
3921          * The remaining ioctls are changing the state of the
3922          * superblock, so we do not allow them on read-only arrays.
3923          * However non-MD ioctls (e.g. get-size) will still come through
3924          * here and hit the 'default' below, so only disallow
3925          * 'md' ioctls, and switch to rw mode if started auto-readonly.
3926          */
3927         if (_IOC_TYPE(cmd) == MD_MAJOR &&
3928             mddev->ro && mddev->pers) {
3929                 if (mddev->ro == 2) {
3930                         mddev->ro = 0;
3931                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3932                 md_wakeup_thread(mddev->thread);
3933
3934                 } else {
3935                         err = -EROFS;
3936                         goto abort_unlock;
3937                 }
3938         }
3939
3940         switch (cmd)
3941         {
3942                 case ADD_NEW_DISK:
3943                 {
3944                         mdu_disk_info_t info;
3945                         if (copy_from_user(&info, argp, sizeof(info)))
3946                                 err = -EFAULT;
3947                         else
3948                                 err = add_new_disk(mddev, &info);
3949                         goto done_unlock;
3950                 }
3951
3952                 case HOT_REMOVE_DISK:
3953                         err = hot_remove_disk(mddev, new_decode_dev(arg));
3954                         goto done_unlock;
3955
3956                 case HOT_ADD_DISK:
3957                         err = hot_add_disk(mddev, new_decode_dev(arg));
3958                         goto done_unlock;
3959
3960                 case SET_DISK_FAULTY:
3961                         err = set_disk_faulty(mddev, new_decode_dev(arg));
3962                         goto done_unlock;
3963
3964                 case RUN_ARRAY:
3965                         err = do_md_run (mddev);
3966                         goto done_unlock;
3967
3968                 case SET_BITMAP_FILE:
3969                         err = set_bitmap_file(mddev, (int)arg);
3970                         goto done_unlock;
3971
3972                 default:
3973                         if (_IOC_TYPE(cmd) == MD_MAJOR)
3974                                 printk(KERN_WARNING "md: %s(pid %d) used"
3975                                         " obsolete MD ioctl, upgrade your"
3976                                         " software to use new ictls.\n",
3977                                         current->comm, current->pid);
3978                         err = -EINVAL;
3979                         goto abort_unlock;
3980         }
3981
3982 done_unlock:
3983 abort_unlock:
3984         mddev_unlock(mddev);
3985
3986         return err;
3987 done:
3988         if (err)
3989                 MD_BUG();
3990 abort:
3991         return err;
3992 }
3993
3994 static int md_open(struct inode *inode, struct file *file)
3995 {
3996         /*
3997          * Succeed if we can lock the mddev, which confirms that
3998          * it isn't being stopped right now.
3999          */
4000         mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4001         int err;
4002
4003         if ((err = mddev_lock(mddev)))
4004                 goto out;
4005
4006         err = 0;
4007         mddev_get(mddev);
4008         mddev_unlock(mddev);
4009
4010         check_disk_change(inode->i_bdev);
4011  out:
4012         return err;
4013 }
4014
4015 static int md_release(struct inode *inode, struct file * file)
4016 {
4017         mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4018
4019         if (!mddev)
4020                 BUG();
4021         mddev_put(mddev);
4022
4023         return 0;
4024 }
4025
4026 static int md_media_changed(struct gendisk *disk)
4027 {
4028         mddev_t *mddev = disk->private_data;
4029
4030         return mddev->changed;
4031 }
4032
4033 static int md_revalidate(struct gendisk *disk)
4034 {
4035         mddev_t *mddev = disk->private_data;
4036
4037         mddev->changed = 0;
4038         return 0;
4039 }
4040 static struct block_device_operations md_fops =
4041 {
4042         .owner          = THIS_MODULE,
4043         .open           = md_open,
4044         .release        = md_release,
4045         .ioctl          = md_ioctl,
4046         .getgeo         = md_getgeo,
4047         .media_changed  = md_media_changed,
4048         .revalidate_disk= md_revalidate,
4049 };
4050
4051 static int md_thread(void * arg)
4052 {
4053         mdk_thread_t *thread = arg;
4054
4055         /*
4056          * md_thread is a 'system-thread', it's priority should be very
4057          * high. We avoid resource deadlocks individually in each
4058          * raid personality. (RAID5 does preallocation) We also use RR and
4059          * the very same RT priority as kswapd, thus we will never get
4060          * into a priority inversion deadlock.
4061          *
4062          * we definitely have to have equal or higher priority than
4063          * bdflush, otherwise bdflush will deadlock if there are too
4064          * many dirty RAID5 blocks.
4065          */
4066
4067         allow_signal(SIGKILL);
4068         while (!kthread_should_stop()) {
4069
4070                 /* We need to wait INTERRUPTIBLE so that
4071                  * we don't add to the load-average.
4072                  * That means we need to be sure no signals are
4073                  * pending
4074                  */
4075                 if (signal_pending(current))
4076                         flush_signals(current);
4077
4078                 wait_event_interruptible_timeout
4079                         (thread->wqueue,
4080                          test_bit(THREAD_WAKEUP, &thread->flags)
4081                          || kthread_should_stop(),
4082                          thread->timeout);
4083                 try_to_freeze();
4084
4085                 clear_bit(THREAD_WAKEUP, &thread->flags);
4086
4087                 thread->run(thread->mddev);
4088         }
4089
4090         return 0;
4091 }
4092
4093 void md_wakeup_thread(mdk_thread_t *thread)
4094 {
4095         if (thread) {
4096                 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4097                 set_bit(THREAD_WAKEUP, &thread->flags);
4098                 wake_up(&thread->wqueue);
4099         }
4100 }
4101
4102 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4103                                  const char *name)
4104 {
4105         mdk_thread_t *thread;
4106
4107         thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4108         if (!thread)
4109                 return NULL;
4110
4111         init_waitqueue_head(&thread->wqueue);
4112
4113         thread->run = run;
4114         thread->mddev = mddev;
4115         thread->timeout = MAX_SCHEDULE_TIMEOUT;
4116         thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4117         if (IS_ERR(thread->tsk)) {
4118                 kfree(thread);
4119                 return NULL;
4120         }
4121         return thread;
4122 }
4123
4124 void md_unregister_thread(mdk_thread_t *thread)
4125 {
4126         dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
4127
4128         kthread_stop(thread->tsk);
4129         kfree(thread);
4130 }
4131
4132 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4133 {
4134         if (!mddev) {
4135                 MD_BUG();
4136                 return;
4137         }
4138
4139         if (!rdev || test_bit(Faulty, &rdev->flags))
4140                 return;
4141 /*
4142         dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4143                 mdname(mddev),
4144                 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4145                 __builtin_return_address(0),__builtin_return_address(1),
4146                 __builtin_return_address(2),__builtin_return_address(3));
4147 */
4148         if (!mddev->pers->error_handler)
4149                 return;
4150         mddev->pers->error_handler(mddev,rdev);
4151         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4152         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4153         md_wakeup_thread(mddev->thread);
4154         md_new_event(mddev);
4155 }
4156
4157 /* seq_file implementation /proc/mdstat */
4158
4159 static void status_unused(struct seq_file *seq)
4160 {
4161         int i = 0;
4162         mdk_rdev_t *rdev;
4163         struct list_head *tmp;
4164
4165         seq_printf(seq, "unused devices: ");
4166
4167         ITERATE_RDEV_PENDING(rdev,tmp) {
4168                 char b[BDEVNAME_SIZE];
4169                 i++;
4170                 seq_printf(seq, "%s ",
4171                               bdevname(rdev->bdev,b));
4172         }
4173         if (!i)
4174                 seq_printf(seq, "<none>");
4175
4176         seq_printf(seq, "\n");
4177 }
4178
4179
4180 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4181 {
4182         sector_t max_blocks, resync, res;
4183         unsigned long dt, db, rt;
4184         int scale;
4185         unsigned int per_milli;
4186
4187         resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4188
4189         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4190                 max_blocks = mddev->resync_max_sectors >> 1;
4191         else
4192                 max_blocks = mddev->size;
4193
4194         /*
4195          * Should not happen.
4196          */
4197         if (!max_blocks) {
4198                 MD_BUG();
4199                 return;
4200         }
4201         /* Pick 'scale' such that (resync>>scale)*1000 will fit
4202          * in a sector_t, and (max_blocks>>scale) will fit in a
4203          * u32, as those are the requirements for sector_div.
4204          * Thus 'scale' must be at least 10
4205          */
4206         scale = 10;
4207         if (sizeof(sector_t) > sizeof(unsigned long)) {
4208                 while ( max_blocks/2 > (1ULL<<(scale+32)))
4209                         scale++;
4210         }
4211         res = (resync>>scale)*1000;
4212         sector_div(res, (u32)((max_blocks>>scale)+1));
4213
4214         per_milli = res;
4215         {
4216                 int i, x = per_milli/50, y = 20-x;
4217                 seq_printf(seq, "[");
4218                 for (i = 0; i < x; i++)
4219                         seq_printf(seq, "=");
4220                 seq_printf(seq, ">");
4221                 for (i = 0; i < y; i++)
4222                         seq_printf(seq, ".");
4223                 seq_printf(seq, "] ");
4224         }
4225         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4226                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4227                     "reshape" :
4228                       (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4229                        "resync" : "recovery")),
4230                       per_milli/10, per_milli % 10,
4231                    (unsigned long long) resync,
4232                    (unsigned long long) max_blocks);
4233
4234         /*
4235          * We do not want to overflow, so the order of operands and
4236          * the * 100 / 100 trick are important. We do a +1 to be
4237          * safe against division by zero. We only estimate anyway.
4238          *
4239          * dt: time from mark until now
4240          * db: blocks written from mark until now
4241          * rt: remaining time
4242          */
4243         dt = ((jiffies - mddev->resync_mark) / HZ);
4244         if (!dt) dt++;
4245         db = resync - (mddev->resync_mark_cnt/2);
4246         rt = (dt * ((unsigned long)(max_blocks-resync) / (db/100+1)))/100;
4247
4248         seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4249
4250         seq_printf(seq, " speed=%ldK/sec", db/dt);
4251 }
4252
4253 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4254 {
4255         struct list_head *tmp;
4256         loff_t l = *pos;
4257         mddev_t *mddev;
4258
4259         if (l >= 0x10000)
4260                 return NULL;
4261         if (!l--)
4262                 /* header */
4263                 return (void*)1;
4264
4265         spin_lock(&all_mddevs_lock);
4266         list_for_each(tmp,&all_mddevs)
4267                 if (!l--) {
4268                         mddev = list_entry(tmp, mddev_t, all_mddevs);
4269                         mddev_get(mddev);
4270                         spin_unlock(&all_mddevs_lock);
4271                         return mddev;
4272                 }
4273         spin_unlock(&all_mddevs_lock);
4274         if (!l--)
4275                 return (void*)2;/* tail */
4276         return NULL;
4277 }
4278
4279 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4280 {
4281         struct list_head *tmp;
4282         mddev_t *next_mddev, *mddev = v;
4283         
4284         ++*pos;
4285         if (v == (void*)2)
4286                 return NULL;
4287
4288         spin_lock(&all_mddevs_lock);
4289         if (v == (void*)1)
4290                 tmp = all_mddevs.next;
4291         else
4292                 tmp = mddev->all_mddevs.next;
4293         if (tmp != &all_mddevs)
4294                 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4295         else {
4296                 next_mddev = (void*)2;
4297                 *pos = 0x10000;
4298         }               
4299         spin_unlock(&all_mddevs_lock);
4300
4301         if (v != (void*)1)
4302                 mddev_put(mddev);
4303         return next_mddev;
4304
4305 }
4306
4307 static void md_seq_stop(struct seq_file *seq, void *v)
4308 {
4309         mddev_t *mddev = v;
4310
4311         if (mddev && v != (void*)1 && v != (void*)2)
4312                 mddev_put(mddev);
4313 }
4314
4315 struct mdstat_info {
4316         int event;
4317 };
4318
4319 static int md_seq_show(struct seq_file *seq, void *v)
4320 {
4321         mddev_t *mddev = v;
4322         sector_t size;
4323         struct list_head *tmp2;
4324         mdk_rdev_t *rdev;
4325         struct mdstat_info *mi = seq->private;
4326         struct bitmap *bitmap;
4327
4328         if (v == (void*)1) {
4329                 struct mdk_personality *pers;
4330                 seq_printf(seq, "Personalities : ");
4331                 spin_lock(&pers_lock);
4332                 list_for_each_entry(pers, &pers_list, list)
4333                         seq_printf(seq, "[%s] ", pers->name);
4334
4335                 spin_unlock(&pers_lock);
4336                 seq_printf(seq, "\n");
4337                 mi->event = atomic_read(&md_event_count);
4338                 return 0;
4339         }
4340         if (v == (void*)2) {
4341                 status_unused(seq);
4342                 return 0;
4343         }
4344
4345         if (mddev_lock(mddev)!=0) 
4346                 return -EINTR;
4347         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4348                 seq_printf(seq, "%s : %sactive", mdname(mddev),
4349                                                 mddev->pers ? "" : "in");
4350                 if (mddev->pers) {
4351                         if (mddev->ro==1)
4352                                 seq_printf(seq, " (read-only)");
4353                         if (mddev->ro==2)
4354                                 seq_printf(seq, "(auto-read-only)");
4355                         seq_printf(seq, " %s", mddev->pers->name);
4356                 }
4357
4358                 size = 0;
4359                 ITERATE_RDEV(mddev,rdev,tmp2) {
4360                         char b[BDEVNAME_SIZE];
4361                         seq_printf(seq, " %s[%d]",
4362                                 bdevname(rdev->bdev,b), rdev->desc_nr);
4363                         if (test_bit(WriteMostly, &rdev->flags))
4364                                 seq_printf(seq, "(W)");
4365                         if (test_bit(Faulty, &rdev->flags)) {
4366                                 seq_printf(seq, "(F)");
4367                                 continue;
4368                         } else if (rdev->raid_disk < 0)
4369                                 seq_printf(seq, "(S)"); /* spare */
4370                         size += rdev->size;
4371                 }
4372
4373                 if (!list_empty(&mddev->disks)) {
4374                         if (mddev->pers)
4375                                 seq_printf(seq, "\n      %llu blocks",
4376                                         (unsigned long long)mddev->array_size);
4377                         else
4378                                 seq_printf(seq, "\n      %llu blocks",
4379                                         (unsigned long long)size);
4380                 }
4381                 if (mddev->persistent) {
4382                         if (mddev->major_version != 0 ||
4383                             mddev->minor_version != 90) {
4384                                 seq_printf(seq," super %d.%d",
4385                                            mddev->major_version,
4386                                            mddev->minor_version);
4387                         }
4388                 } else
4389                         seq_printf(seq, " super non-persistent");
4390
4391                 if (mddev->pers) {
4392                         mddev->pers->status (seq, mddev);
4393                         seq_printf(seq, "\n      ");
4394                         if (mddev->pers->sync_request) {
4395                                 if (mddev->curr_resync > 2) {
4396                                         status_resync (seq, mddev);
4397                                         seq_printf(seq, "\n      ");
4398                                 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4399                                         seq_printf(seq, "\tresync=DELAYED\n      ");
4400                                 else if (mddev->recovery_cp < MaxSector)
4401                                         seq_printf(seq, "\tresync=PENDING\n      ");
4402                         }
4403                 } else
4404                         seq_printf(seq, "\n       ");
4405
4406                 if ((bitmap = mddev->bitmap)) {
4407                         unsigned long chunk_kb;
4408                         unsigned long flags;
4409                         spin_lock_irqsave(&bitmap->lock, flags);
4410                         chunk_kb = bitmap->chunksize >> 10;
4411                         seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
4412                                 "%lu%s chunk",
4413                                 bitmap->pages - bitmap->missing_pages,
4414                                 bitmap->pages,
4415                                 (bitmap->pages - bitmap->missing_pages)
4416                                         << (PAGE_SHIFT - 10),
4417                                 chunk_kb ? chunk_kb : bitmap->chunksize,
4418                                 chunk_kb ? "KB" : "B");
4419                         if (bitmap->file) {
4420                                 seq_printf(seq, ", file: ");
4421                                 seq_path(seq, bitmap->file->f_vfsmnt,
4422                                          bitmap->file->f_dentry," \t\n");
4423                         }
4424
4425                         seq_printf(seq, "\n");
4426                         spin_unlock_irqrestore(&bitmap->lock, flags);
4427                 }
4428
4429                 seq_printf(seq, "\n");
4430         }
4431         mddev_unlock(mddev);
4432         
4433         return 0;
4434 }
4435
4436 static struct seq_operations md_seq_ops = {
4437         .start  = md_seq_start,
4438         .next   = md_seq_next,
4439         .stop   = md_seq_stop,
4440         .show   = md_seq_show,
4441 };
4442
4443 static int md_seq_open(struct inode *inode, struct file *file)
4444 {
4445         int error;
4446         struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
4447         if (mi == NULL)
4448                 return -ENOMEM;
4449
4450         error = seq_open(file, &md_seq_ops);
4451         if (error)
4452                 kfree(mi);
4453         else {
4454                 struct seq_file *p = file->private_data;
4455                 p->private = mi;
4456                 mi->event = atomic_read(&md_event_count);
4457         }
4458         return error;
4459 }
4460
4461 static int md_seq_release(struct inode *inode, struct file *file)
4462 {
4463         struct seq_file *m = file->private_data;
4464         struct mdstat_info *mi = m->private;
4465         m->private = NULL;
4466         kfree(mi);
4467         return seq_release(inode, file);
4468 }
4469
4470 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
4471 {
4472         struct seq_file *m = filp->private_data;
4473         struct mdstat_info *mi = m->private;
4474         int mask;
4475
4476         poll_wait(filp, &md_event_waiters, wait);
4477
4478         /* always allow read */
4479         mask = POLLIN | POLLRDNORM;
4480
4481         if (mi->event != atomic_read(&md_event_count))
4482                 mask |= POLLERR | POLLPRI;
4483         return mask;
4484 }
4485
4486 static struct file_operations md_seq_fops = {
4487         .open           = md_seq_open,
4488         .read           = seq_read,
4489         .llseek         = seq_lseek,
4490         .release        = md_seq_release,
4491         .poll           = mdstat_poll,
4492 };
4493
4494 int register_md_personality(struct mdk_personality *p)
4495 {
4496         spin_lock(&pers_lock);
4497         list_add_tail(&p->list, &pers_list);
4498         printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
4499         spin_unlock(&pers_lock);
4500         return 0;
4501 }
4502
4503 int unregister_md_personality(struct mdk_personality *p)
4504 {
4505         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
4506         spin_lock(&pers_lock);
4507         list_del_init(&p->list);
4508         spin_unlock(&pers_lock);
4509         return 0;
4510 }
4511
4512 static int is_mddev_idle(mddev_t *mddev)
4513 {
4514         mdk_rdev_t * rdev;
4515         struct list_head *tmp;
4516         int idle;
4517         unsigned long curr_events;
4518
4519         idle = 1;
4520         ITERATE_RDEV(mddev,rdev,tmp) {
4521                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
4522                 curr_events = disk_stat_read(disk, sectors[0]) + 
4523                                 disk_stat_read(disk, sectors[1]) - 
4524                                 atomic_read(&disk->sync_io);
4525                 /* The difference between curr_events and last_events
4526                  * will be affected by any new non-sync IO (making
4527                  * curr_events bigger) and any difference in the amount of
4528                  * in-flight syncio (making current_events bigger or smaller)
4529                  * The amount in-flight is currently limited to
4530                  * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
4531                  * which is at most 4096 sectors.
4532                  * These numbers are fairly fragile and should be made
4533                  * more robust, probably by enforcing the
4534                  * 'window size' that md_do_sync sort-of uses.
4535                  *
4536                  * Note: the following is an unsigned comparison.
4537                  */
4538                 if ((curr_events - rdev->last_events + 4096) > 8192) {
4539                         rdev->last_events = curr_events;
4540                         idle = 0;
4541                 }
4542         }
4543         return idle;
4544 }
4545
4546 void md_done_sync(mddev_t *mddev, int blocks, int ok)
4547 {
4548         /* another "blocks" (512byte) blocks have been synced */
4549         atomic_sub(blocks, &mddev->recovery_active);
4550         wake_up(&mddev->recovery_wait);
4551         if (!ok) {
4552                 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4553                 md_wakeup_thread(mddev->thread);
4554                 // stop recovery, signal do_sync ....
4555         }
4556 }
4557
4558
4559 /* md_write_start(mddev, bi)
4560  * If we need to update some array metadata (e.g. 'active' flag
4561  * in superblock) before writing, schedule a superblock update
4562  * and wait for it to complete.
4563  */
4564 void md_write_start(mddev_t *mddev, struct bio *bi)
4565 {
4566         if (bio_data_dir(bi) != WRITE)
4567                 return;
4568
4569         BUG_ON(mddev->ro == 1);
4570         if (mddev->ro == 2) {
4571                 /* need to switch to read/write */
4572                 mddev->ro = 0;
4573                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4574                 md_wakeup_thread(mddev->thread);
4575         }
4576         atomic_inc(&mddev->writes_pending);
4577         if (mddev->in_sync) {
4578                 spin_lock_irq(&mddev->write_lock);
4579                 if (mddev->in_sync) {
4580                         mddev->in_sync = 0;
4581                         mddev->sb_dirty = 1;
4582                         md_wakeup_thread(mddev->thread);
4583                 }
4584                 spin_unlock_irq(&mddev->write_lock);
4585         }
4586         wait_event(mddev->sb_wait, mddev->sb_dirty==0);
4587 }
4588
4589 void md_write_end(mddev_t *mddev)
4590 {
4591         if (atomic_dec_and_test(&mddev->writes_pending)) {
4592                 if (mddev->safemode == 2)
4593                         md_wakeup_thread(mddev->thread);
4594                 else
4595                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
4596         }
4597 }
4598
4599 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
4600
4601 #define SYNC_MARKS      10
4602 #define SYNC_MARK_STEP  (3*HZ)
4603 void md_do_sync(mddev_t *mddev)
4604 {
4605         mddev_t *mddev2;
4606         unsigned int currspeed = 0,
4607                  window;
4608         sector_t max_sectors,j, io_sectors;
4609         unsigned long mark[SYNC_MARKS];
4610         sector_t mark_cnt[SYNC_MARKS];
4611         int last_mark,m;
4612         struct list_head *tmp;
4613         sector_t last_check;
4614         int skipped = 0;
4615
4616         /* just incase thread restarts... */
4617         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
4618                 return;
4619
4620         /* we overload curr_resync somewhat here.
4621          * 0 == not engaged in resync at all
4622          * 2 == checking that there is no conflict with another sync
4623          * 1 == like 2, but have yielded to allow conflicting resync to
4624          *              commense
4625          * other == active in resync - this many blocks
4626          *
4627          * Before starting a resync we must have set curr_resync to
4628          * 2, and then checked that every "conflicting" array has curr_resync
4629          * less than ours.  When we find one that is the same or higher
4630          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
4631          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
4632          * This will mean we have to start checking from the beginning again.
4633          *
4634          */
4635
4636         do {
4637                 mddev->curr_resync = 2;
4638
4639         try_again:
4640                 if (kthread_should_stop()) {
4641                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4642                         goto skip;
4643                 }
4644                 ITERATE_MDDEV(mddev2,tmp) {
4645                         if (mddev2 == mddev)
4646                                 continue;
4647                         if (mddev2->curr_resync && 
4648                             match_mddev_units(mddev,mddev2)) {
4649                                 DEFINE_WAIT(wq);
4650                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
4651                                         /* arbitrarily yield */
4652                                         mddev->curr_resync = 1;
4653                                         wake_up(&resync_wait);
4654                                 }
4655                                 if (mddev > mddev2 && mddev->curr_resync == 1)
4656                                         /* no need to wait here, we can wait the next
4657                                          * time 'round when curr_resync == 2
4658                                          */
4659                                         continue;
4660                                 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
4661                                 if (!kthread_should_stop() &&
4662                                     mddev2->curr_resync >= mddev->curr_resync) {
4663                                         printk(KERN_INFO "md: delaying resync of %s"
4664                                                " until %s has finished resync (they"
4665                                                " share one or more physical units)\n",
4666                                                mdname(mddev), mdname(mddev2));
4667                                         mddev_put(mddev2);
4668                                         schedule();
4669                                         finish_wait(&resync_wait, &wq);
4670                                         goto try_again;
4671                                 }
4672                                 finish_wait(&resync_wait, &wq);
4673                         }
4674                 }
4675         } while (mddev->curr_resync < 2);
4676
4677         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4678                 /* resync follows the size requested by the personality,
4679                  * which defaults to physical size, but can be virtual size
4680                  */
4681                 max_sectors = mddev->resync_max_sectors;
4682                 mddev->resync_mismatches = 0;
4683         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4684                 max_sectors = mddev->size << 1;
4685         else
4686                 /* recovery follows the physical size of devices */
4687                 max_sectors = mddev->size << 1;
4688
4689         printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
4690         printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
4691                 " %d KB/sec/disc.\n", speed_min(mddev));
4692         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
4693                "(but not more than %d KB/sec) for reconstruction.\n",
4694                speed_max(mddev));
4695
4696         is_mddev_idle(mddev); /* this also initializes IO event counters */
4697         /* we don't use the checkpoint if there's a bitmap */
4698         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
4699             && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4700                 j = mddev->recovery_cp;
4701         else
4702                 j = 0;
4703         io_sectors = 0;
4704         for (m = 0; m < SYNC_MARKS; m++) {
4705                 mark[m] = jiffies;
4706                 mark_cnt[m] = io_sectors;
4707         }
4708         last_mark = 0;
4709         mddev->resync_mark = mark[last_mark];
4710         mddev->resync_mark_cnt = mark_cnt[last_mark];
4711
4712         /*
4713          * Tune reconstruction:
4714          */
4715         window = 32*(PAGE_SIZE/512);
4716         printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
4717                 window/2,(unsigned long long) max_sectors/2);
4718
4719         atomic_set(&mddev->recovery_active, 0);
4720         init_waitqueue_head(&mddev->recovery_wait);
4721         last_check = 0;
4722
4723         if (j>2) {
4724                 printk(KERN_INFO 
4725                         "md: resuming recovery of %s from checkpoint.\n",
4726                         mdname(mddev));
4727                 mddev->curr_resync = j;
4728         }
4729
4730         while (j < max_sectors) {
4731                 sector_t sectors;
4732
4733                 skipped = 0;
4734                 sectors = mddev->pers->sync_request(mddev, j, &skipped,
4735                                             currspeed < speed_min(mddev));
4736                 if (sectors == 0) {
4737                         set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4738                         goto out;
4739                 }
4740
4741                 if (!skipped) { /* actual IO requested */
4742                         io_sectors += sectors;
4743                         atomic_add(sectors, &mddev->recovery_active);
4744                 }
4745
4746                 j += sectors;
4747                 if (j>1) mddev->curr_resync = j;
4748                 if (last_check == 0)
4749                         /* this is the earliers that rebuilt will be
4750                          * visible in /proc/mdstat
4751                          */
4752                         md_new_event(mddev);
4753
4754                 if (last_check + window > io_sectors || j == max_sectors)
4755                         continue;
4756
4757                 last_check = io_sectors;
4758
4759                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
4760                     test_bit(MD_RECOVERY_ERR, &mddev->recovery))
4761                         break;
4762
4763         repeat:
4764                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
4765                         /* step marks */
4766                         int next = (last_mark+1) % SYNC_MARKS;
4767
4768                         mddev->resync_mark = mark[next];
4769                         mddev->resync_mark_cnt = mark_cnt[next];
4770                         mark[next] = jiffies;
4771                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
4772                         last_mark = next;
4773                 }
4774
4775
4776                 if (kthread_should_stop()) {
4777                         /*
4778                          * got a signal, exit.
4779                          */
4780                         printk(KERN_INFO 
4781                                 "md: md_do_sync() got signal ... exiting\n");
4782                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4783                         goto out;
4784                 }
4785
4786                 /*
4787                  * this loop exits only if either when we are slower than
4788                  * the 'hard' speed limit, or the system was IO-idle for
4789                  * a jiffy.
4790                  * the system might be non-idle CPU-wise, but we only care
4791                  * about not overloading the IO subsystem. (things like an
4792                  * e2fsck being done on the RAID array should execute fast)
4793                  */
4794                 mddev->queue->unplug_fn(mddev->queue);
4795                 cond_resched();
4796
4797                 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
4798                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
4799
4800                 if (currspeed > speed_min(mddev)) {
4801                         if ((currspeed > speed_max(mddev)) ||
4802                                         !is_mddev_idle(mddev)) {
4803                                 msleep(500);
4804                                 goto repeat;
4805                         }
4806                 }
4807         }
4808         printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
4809         /*
4810          * this also signals 'finished resyncing' to md_stop
4811          */
4812  out:
4813         mddev->queue->unplug_fn(mddev->queue);
4814
4815         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
4816
4817         /* tell personality that we are finished */
4818         mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
4819
4820         if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4821             test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
4822             !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
4823             mddev->curr_resync > 2 &&
4824             mddev->curr_resync >= mddev->recovery_cp) {
4825                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4826                         printk(KERN_INFO 
4827                                 "md: checkpointing recovery of %s.\n",
4828                                 mdname(mddev));
4829                         mddev->recovery_cp = mddev->curr_resync;
4830                 } else
4831                         mddev->recovery_cp = MaxSector;
4832         }
4833
4834  skip:
4835         mddev->curr_resync = 0;
4836         wake_up(&resync_wait);
4837         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
4838         md_wakeup_thread(mddev->thread);
4839 }
4840 EXPORT_SYMBOL_GPL(md_do_sync);
4841
4842
4843 /*
4844  * This routine is regularly called by all per-raid-array threads to
4845  * deal with generic issues like resync and super-block update.
4846  * Raid personalities that don't have a thread (linear/raid0) do not
4847  * need this as they never do any recovery or update the superblock.
4848  *
4849  * It does not do any resync itself, but rather "forks" off other threads
4850  * to do that as needed.
4851  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
4852  * "->recovery" and create a thread at ->sync_thread.
4853  * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
4854  * and wakeups up this thread which will reap the thread and finish up.
4855  * This thread also removes any faulty devices (with nr_pending == 0).
4856  *
4857  * The overall approach is:
4858  *  1/ if the superblock needs updating, update it.
4859  *  2/ If a recovery thread is running, don't do anything else.
4860  *  3/ If recovery has finished, clean up, possibly marking spares active.
4861  *  4/ If there are any faulty devices, remove them.
4862  *  5/ If array is degraded, try to add spares devices
4863  *  6/ If array has spares or is not in-sync, start a resync thread.
4864  */
4865 void md_check_recovery(mddev_t *mddev)
4866 {
4867         mdk_rdev_t *rdev;
4868         struct list_head *rtmp;
4869
4870
4871         if (mddev->bitmap)
4872                 bitmap_daemon_work(mddev->bitmap);
4873
4874         if (mddev->ro)
4875                 return;
4876
4877         if (signal_pending(current)) {
4878                 if (mddev->pers->sync_request) {
4879                         printk(KERN_INFO "md: %s in immediate safe mode\n",
4880                                mdname(mddev));
4881                         mddev->safemode = 2;
4882                 }
4883                 flush_signals(current);
4884         }
4885
4886         if ( ! (
4887                 mddev->sb_dirty ||
4888                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
4889                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
4890                 (mddev->safemode == 1) ||
4891                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
4892                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
4893                 ))
4894                 return;
4895
4896         if (mddev_trylock(mddev)) {
4897                 int spares =0;
4898
4899                 spin_lock_irq(&mddev->write_lock);
4900                 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
4901                     !mddev->in_sync && mddev->recovery_cp == MaxSector) {
4902                         mddev->in_sync = 1;
4903                         mddev->sb_dirty = 1;
4904                 }
4905                 if (mddev->safemode == 1)
4906                         mddev->safemode = 0;
4907                 spin_unlock_irq(&mddev->write_lock);
4908
4909                 if (mddev->sb_dirty)
4910                         md_update_sb(mddev);
4911
4912
4913                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4914                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
4915                         /* resync/recovery still happening */
4916                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4917                         goto unlock;
4918                 }
4919                 if (mddev->sync_thread) {
4920                         /* resync has finished, collect result */
4921                         md_unregister_thread(mddev->sync_thread);
4922                         mddev->sync_thread = NULL;
4923                         if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
4924                             !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4925                                 /* success...*/
4926                                 /* activate any spares */
4927                                 mddev->pers->spare_active(mddev);
4928                         }
4929                         md_update_sb(mddev);
4930
4931                         /* if array is no-longer degraded, then any saved_raid_disk
4932                          * information must be scrapped
4933                          */
4934                         if (!mddev->degraded)
4935                                 ITERATE_RDEV(mddev,rdev,rtmp)
4936                                         rdev->saved_raid_disk = -1;
4937
4938                         mddev->recovery = 0;
4939                         /* flag recovery needed just to double check */
4940                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4941                         md_new_event(mddev);
4942                         goto unlock;
4943                 }
4944                 /* Clear some bits that don't mean anything, but
4945                  * might be left set
4946                  */
4947                 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4948                 clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
4949                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
4950                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4951
4952                 /* no recovery is running.
4953                  * remove any failed drives, then
4954                  * add spares if possible.
4955                  * Spare are also removed and re-added, to allow
4956                  * the personality to fail the re-add.
4957                  */
4958                 ITERATE_RDEV(mddev,rdev,rtmp)
4959                         if (rdev->raid_disk >= 0 &&
4960                             (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
4961                             atomic_read(&rdev->nr_pending)==0) {
4962                                 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
4963                                         char nm[20];
4964                                         sprintf(nm,"rd%d", rdev->raid_disk);
4965                                         sysfs_remove_link(&mddev->kobj, nm);
4966                                         rdev->raid_disk = -1;
4967                                 }
4968                         }
4969
4970                 if (mddev->degraded) {
4971                         ITERATE_RDEV(mddev,rdev,rtmp)
4972                                 if (rdev->raid_disk < 0
4973                                     && !test_bit(Faulty, &rdev->flags)) {
4974                                         if (mddev->pers->hot_add_disk(mddev,rdev)) {
4975                                                 char nm[20];
4976                                                 sprintf(nm, "rd%d", rdev->raid_disk);
4977                                                 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
4978                                                 spares++;
4979                                                 md_new_event(mddev);
4980                                         } else
4981                                                 break;
4982                                 }
4983                 }
4984
4985                 if (spares) {
4986                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4987                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4988                 } else if (mddev->recovery_cp < MaxSector) {
4989                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4990                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4991                         /* nothing to be done ... */
4992                         goto unlock;
4993
4994                 if (mddev->pers->sync_request) {
4995                         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4996                         if (spares && mddev->bitmap && ! mddev->bitmap->file) {
4997                                 /* We are adding a device or devices to an array
4998                                  * which has the bitmap stored on all devices.
4999                                  * So make sure all bitmap pages get written
5000                                  */
5001                                 bitmap_write_all(mddev->bitmap);
5002                         }
5003                         mddev->sync_thread = md_register_thread(md_do_sync,
5004                                                                 mddev,
5005                                                                 "%s_resync");
5006                         if (!mddev->sync_thread) {
5007                                 printk(KERN_ERR "%s: could not start resync"
5008                                         " thread...\n", 
5009                                         mdname(mddev));
5010                                 /* leave the spares where they are, it shouldn't hurt */
5011                                 mddev->recovery = 0;
5012                         } else
5013                                 md_wakeup_thread(mddev->sync_thread);
5014                         md_new_event(mddev);
5015                 }
5016         unlock:
5017                 mddev_unlock(mddev);
5018         }
5019 }
5020
5021 static int md_notify_reboot(struct notifier_block *this,
5022                             unsigned long code, void *x)
5023 {
5024         struct list_head *tmp;
5025         mddev_t *mddev;
5026
5027         if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5028
5029                 printk(KERN_INFO "md: stopping all md devices.\n");
5030
5031                 ITERATE_MDDEV(mddev,tmp)
5032                         if (mddev_trylock(mddev))
5033                                 do_md_stop (mddev, 1);
5034                 /*
5035                  * certain more exotic SCSI devices are known to be
5036                  * volatile wrt too early system reboots. While the
5037                  * right place to handle this issue is the given
5038                  * driver, we do want to have a safe RAID driver ...
5039                  */
5040                 mdelay(1000*1);
5041         }
5042         return NOTIFY_DONE;
5043 }
5044
5045 static struct notifier_block md_notifier = {
5046         .notifier_call  = md_notify_reboot,
5047         .next           = NULL,
5048         .priority       = INT_MAX, /* before any real devices */
5049 };
5050
5051 static void md_geninit(void)
5052 {
5053         struct proc_dir_entry *p;
5054
5055         dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5056
5057         p = create_proc_entry("mdstat", S_IRUGO, NULL);
5058         if (p)
5059                 p->proc_fops = &md_seq_fops;
5060 }
5061
5062 static int __init md_init(void)
5063 {
5064         int minor;
5065
5066         printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
5067                         " MD_SB_DISKS=%d\n",
5068                         MD_MAJOR_VERSION, MD_MINOR_VERSION,
5069                         MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
5070         printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
5071                         BITMAP_MINOR);
5072
5073         if (register_blkdev(MAJOR_NR, "md"))
5074                 return -1;
5075         if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5076                 unregister_blkdev(MAJOR_NR, "md");
5077                 return -1;
5078         }
5079         devfs_mk_dir("md");
5080         blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
5081                                 md_probe, NULL, NULL);
5082         blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
5083                             md_probe, NULL, NULL);
5084
5085         for (minor=0; minor < MAX_MD_DEVS; ++minor)
5086                 devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
5087                                 S_IFBLK|S_IRUSR|S_IWUSR,
5088                                 "md/%d", minor);
5089
5090         for (minor=0; minor < MAX_MD_DEVS; ++minor)
5091                 devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
5092                               S_IFBLK|S_IRUSR|S_IWUSR,
5093                               "md/mdp%d", minor);
5094
5095
5096         register_reboot_notifier(&md_notifier);
5097         raid_table_header = register_sysctl_table(raid_root_table, 1);
5098
5099         md_geninit();
5100         return (0);
5101 }
5102
5103
5104 #ifndef MODULE
5105
5106 /*
5107  * Searches all registered partitions for autorun RAID arrays
5108  * at boot time.
5109  */
5110 static dev_t detected_devices[128];
5111 static int dev_cnt;
5112
5113 void md_autodetect_dev(dev_t dev)
5114 {
5115         if (dev_cnt >= 0 && dev_cnt < 127)
5116                 detected_devices[dev_cnt++] = dev;
5117 }
5118
5119
5120 static void autostart_arrays(int part)
5121 {
5122         mdk_rdev_t *rdev;
5123         int i;
5124
5125         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5126
5127         for (i = 0; i < dev_cnt; i++) {
5128                 dev_t dev = detected_devices[i];
5129
5130                 rdev = md_import_device(dev,0, 0);
5131                 if (IS_ERR(rdev))
5132                         continue;
5133
5134                 if (test_bit(Faulty, &rdev->flags)) {
5135                         MD_BUG();
5136                         continue;
5137                 }
5138                 list_add(&rdev->same_set, &pending_raid_disks);
5139         }
5140         dev_cnt = 0;
5141
5142         autorun_devices(part);
5143 }
5144
5145 #endif
5146
5147 static __exit void md_exit(void)
5148 {
5149         mddev_t *mddev;
5150         struct list_head *tmp;
5151         int i;
5152         blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
5153         blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
5154         for (i=0; i < MAX_MD_DEVS; i++)
5155                 devfs_remove("md/%d", i);
5156         for (i=0; i < MAX_MD_DEVS; i++)
5157                 devfs_remove("md/d%d", i);
5158
5159         devfs_remove("md");
5160
5161         unregister_blkdev(MAJOR_NR,"md");
5162         unregister_blkdev(mdp_major, "mdp");
5163         unregister_reboot_notifier(&md_notifier);
5164         unregister_sysctl_table(raid_table_header);
5165         remove_proc_entry("mdstat", NULL);
5166         ITERATE_MDDEV(mddev,tmp) {
5167                 struct gendisk *disk = mddev->gendisk;
5168                 if (!disk)
5169                         continue;
5170                 export_array(mddev);
5171                 del_gendisk(disk);
5172                 put_disk(disk);
5173                 mddev->gendisk = NULL;
5174                 mddev_put(mddev);
5175         }
5176 }
5177
5178 module_init(md_init)
5179 module_exit(md_exit)
5180
5181 static int get_ro(char *buffer, struct kernel_param *kp)
5182 {
5183         return sprintf(buffer, "%d", start_readonly);
5184 }
5185 static int set_ro(const char *val, struct kernel_param *kp)
5186 {
5187         char *e;
5188         int num = simple_strtoul(val, &e, 10);
5189         if (*val && (*e == '\0' || *e == '\n')) {
5190                 start_readonly = num;
5191                 return 0;
5192         }
5193         return -EINVAL;
5194 }
5195
5196 module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
5197 module_param(start_dirty_degraded, int, 0644);
5198
5199
5200 EXPORT_SYMBOL(register_md_personality);
5201 EXPORT_SYMBOL(unregister_md_personality);
5202 EXPORT_SYMBOL(md_error);
5203 EXPORT_SYMBOL(md_done_sync);
5204 EXPORT_SYMBOL(md_write_start);
5205 EXPORT_SYMBOL(md_write_end);
5206 EXPORT_SYMBOL(md_register_thread);
5207 EXPORT_SYMBOL(md_unregister_thread);
5208 EXPORT_SYMBOL(md_wakeup_thread);
5209 EXPORT_SYMBOL(md_print_devices);
5210 EXPORT_SYMBOL(md_check_recovery);
5211 MODULE_LICENSE("GPL");
5212 MODULE_ALIAS("md");
5213 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);