dm: delay target
[safe/jmp/linux-2.6] / drivers / md / dm-delay.c
1 /*
2  * Copyright (C) 2005-2007 Red Hat GmbH
3  *
4  * A target that delays reads and/or writes and can send
5  * them to different devices.
6  *
7  * This file is released under the GPL.
8  */
9
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/blkdev.h>
13 #include <linux/bio.h>
14 #include <linux/slab.h>
15
16 #include "dm.h"
17 #include "dm-bio-list.h"
18
19 #define DM_MSG_PREFIX "delay"
20
21 struct delay_c {
22         struct timer_list delay_timer;
23         struct semaphore timer_lock;
24         struct work_struct flush_expired_bios;
25         struct list_head delayed_bios;
26         atomic_t may_delay;
27         mempool_t *delayed_pool;
28
29         struct dm_dev *dev_read;
30         sector_t start_read;
31         unsigned read_delay;
32         unsigned reads;
33
34         struct dm_dev *dev_write;
35         sector_t start_write;
36         unsigned write_delay;
37         unsigned writes;
38 };
39
40 struct delay_info {
41         struct delay_c *context;
42         struct list_head list;
43         struct bio *bio;
44         unsigned long expires;
45 };
46
47 static DEFINE_MUTEX(delayed_bios_lock);
48
49 static struct workqueue_struct *kdelayd_wq;
50 static struct kmem_cache *delayed_cache;
51
52 static void handle_delayed_timer(unsigned long data)
53 {
54         struct delay_c *dc = (struct delay_c *)data;
55
56         queue_work(kdelayd_wq, &dc->flush_expired_bios);
57 }
58
59 static void queue_timeout(struct delay_c *dc, unsigned long expires)
60 {
61         down(&dc->timer_lock);
62
63         if (!timer_pending(&dc->delay_timer) || expires < dc->delay_timer.expires)
64                 mod_timer(&dc->delay_timer, expires);
65
66         up(&dc->timer_lock);
67 }
68
69 static void flush_bios(struct bio *bio)
70 {
71         struct bio *n;
72
73         while (bio) {
74                 n = bio->bi_next;
75                 bio->bi_next = NULL;
76                 generic_make_request(bio);
77                 bio = n;
78         }
79 }
80
81 static struct bio *flush_delayed_bios(struct delay_c *dc, int flush_all)
82 {
83         struct delay_info *delayed, *next;
84         unsigned long next_expires = 0;
85         int start_timer = 0;
86         BIO_LIST(flush_bios);
87
88         mutex_lock(&delayed_bios_lock);
89         list_for_each_entry_safe(delayed, next, &dc->delayed_bios, list) {
90                 if (flush_all || time_after_eq(jiffies, delayed->expires)) {
91                         list_del(&delayed->list);
92                         bio_list_add(&flush_bios, delayed->bio);
93                         if ((bio_data_dir(delayed->bio) == WRITE))
94                                 delayed->context->writes--;
95                         else
96                                 delayed->context->reads--;
97                         mempool_free(delayed, dc->delayed_pool);
98                         continue;
99                 }
100
101                 if (!start_timer) {
102                         start_timer = 1;
103                         next_expires = delayed->expires;
104                 } else
105                         next_expires = min(next_expires, delayed->expires);
106         }
107
108         mutex_unlock(&delayed_bios_lock);
109
110         if (start_timer)
111                 queue_timeout(dc, next_expires);
112
113         return bio_list_get(&flush_bios);
114 }
115
116 static void flush_expired_bios(struct work_struct *work)
117 {
118         struct delay_c *dc;
119
120         dc = container_of(work, struct delay_c, flush_expired_bios);
121         flush_bios(flush_delayed_bios(dc, 0));
122 }
123
124 /*
125  * Mapping parameters:
126  *    <device> <offset> <delay> [<write_device> <write_offset> <write_delay>]
127  *
128  * With separate write parameters, the first set is only used for reads.
129  * Delays are specified in milliseconds.
130  */
131 static int delay_ctr(struct dm_target *ti, unsigned int argc, char **argv)
132 {
133         struct delay_c *dc;
134         unsigned long long tmpll;
135
136         if (argc != 3 && argc != 6) {
137                 ti->error = "requires exactly 3 or 6 arguments";
138                 return -EINVAL;
139         }
140
141         dc = kmalloc(sizeof(*dc), GFP_KERNEL);
142         if (!dc) {
143                 ti->error = "Cannot allocate context";
144                 return -ENOMEM;
145         }
146
147         dc->reads = dc->writes = 0;
148
149         if (sscanf(argv[1], "%llu", &tmpll) != 1) {
150                 ti->error = "Invalid device sector";
151                 goto bad;
152         }
153         dc->start_read = tmpll;
154
155         if (sscanf(argv[2], "%u", &dc->read_delay) != 1) {
156                 ti->error = "Invalid delay";
157                 goto bad;
158         }
159
160         if (dm_get_device(ti, argv[0], dc->start_read, ti->len,
161                           dm_table_get_mode(ti->table), &dc->dev_read)) {
162                 ti->error = "Device lookup failed";
163                 goto bad;
164         }
165
166         if (argc == 3) {
167                 dc->dev_write = NULL;
168                 goto out;
169         }
170
171         if (sscanf(argv[4], "%llu", &tmpll) != 1) {
172                 ti->error = "Invalid write device sector";
173                 goto bad;
174         }
175         dc->start_write = tmpll;
176
177         if (sscanf(argv[5], "%u", &dc->write_delay) != 1) {
178                 ti->error = "Invalid write delay";
179                 goto bad;
180         }
181
182         if (dm_get_device(ti, argv[3], dc->start_write, ti->len,
183                           dm_table_get_mode(ti->table), &dc->dev_write)) {
184                 ti->error = "Write device lookup failed";
185                 dm_put_device(ti, dc->dev_read);
186                 goto bad;
187         }
188
189 out:
190         dc->delayed_pool = mempool_create_slab_pool(128, delayed_cache);
191         if (!dc->delayed_pool) {
192                 DMERR("Couldn't create delayed bio pool.");
193                 goto bad;
194         }
195
196         init_timer(&dc->delay_timer);
197         dc->delay_timer.function = handle_delayed_timer;
198         dc->delay_timer.data = (unsigned long)dc;
199
200         INIT_WORK(&dc->flush_expired_bios, flush_expired_bios);
201         INIT_LIST_HEAD(&dc->delayed_bios);
202         init_MUTEX(&dc->timer_lock);
203         atomic_set(&dc->may_delay, 1);
204
205         ti->private = dc;
206         return 0;
207
208 bad:
209         kfree(dc);
210         return -EINVAL;
211 }
212
213 static void delay_dtr(struct dm_target *ti)
214 {
215         struct delay_c *dc = ti->private;
216
217         flush_workqueue(kdelayd_wq);
218
219         dm_put_device(ti, dc->dev_read);
220
221         if (dc->dev_write)
222                 dm_put_device(ti, dc->dev_write);
223
224         mempool_destroy(dc->delayed_pool);
225         kfree(dc);
226 }
227
228 static int delay_bio(struct delay_c *dc, int delay, struct bio *bio)
229 {
230         struct delay_info *delayed;
231         unsigned long expires = 0;
232
233         if (!delay || !atomic_read(&dc->may_delay))
234                 return 1;
235
236         delayed = mempool_alloc(dc->delayed_pool, GFP_NOIO);
237
238         delayed->context = dc;
239         delayed->bio = bio;
240         delayed->expires = expires = jiffies + (delay * HZ / 1000);
241
242         mutex_lock(&delayed_bios_lock);
243
244         if (bio_data_dir(bio) == WRITE)
245                 dc->writes++;
246         else
247                 dc->reads++;
248
249         list_add_tail(&delayed->list, &dc->delayed_bios);
250
251         mutex_unlock(&delayed_bios_lock);
252
253         queue_timeout(dc, expires);
254
255         return 0;
256 }
257
258 static void delay_presuspend(struct dm_target *ti)
259 {
260         struct delay_c *dc = ti->private;
261
262         atomic_set(&dc->may_delay, 0);
263         del_timer_sync(&dc->delay_timer);
264         flush_bios(flush_delayed_bios(dc, 1));
265 }
266
267 static void delay_resume(struct dm_target *ti)
268 {
269         struct delay_c *dc = ti->private;
270
271         atomic_set(&dc->may_delay, 1);
272 }
273
274 static int delay_map(struct dm_target *ti, struct bio *bio,
275                      union map_info *map_context)
276 {
277         struct delay_c *dc = ti->private;
278
279         if ((bio_data_dir(bio) == WRITE) && (dc->dev_write)) {
280                 bio->bi_bdev = dc->dev_write->bdev;
281                 bio->bi_sector = dc->start_write +
282                                  (bio->bi_sector - ti->begin);
283
284                 return delay_bio(dc, dc->write_delay, bio);
285         }
286
287         bio->bi_bdev = dc->dev_read->bdev;
288         bio->bi_sector = dc->start_read +
289                          (bio->bi_sector - ti->begin);
290
291         return delay_bio(dc, dc->read_delay, bio);
292 }
293
294 static int delay_status(struct dm_target *ti, status_type_t type,
295                         char *result, unsigned maxlen)
296 {
297         struct delay_c *dc = ti->private;
298         int sz = 0;
299
300         switch (type) {
301         case STATUSTYPE_INFO:
302                 DMEMIT("%u %u", dc->reads, dc->writes);
303                 break;
304
305         case STATUSTYPE_TABLE:
306                 DMEMIT("%s %llu %u", dc->dev_read->name,
307                        (unsigned long long) dc->start_read,
308                        dc->read_delay);
309                 if (dc->dev_write)
310                         DMEMIT("%s %llu %u", dc->dev_write->name,
311                                (unsigned long long) dc->start_write,
312                                dc->write_delay);
313                 break;
314         }
315
316         return 0;
317 }
318
319 static struct target_type delay_target = {
320         .name        = "delay",
321         .version     = {1, 0, 2},
322         .module      = THIS_MODULE,
323         .ctr         = delay_ctr,
324         .dtr         = delay_dtr,
325         .map         = delay_map,
326         .presuspend  = delay_presuspend,
327         .resume      = delay_resume,
328         .status      = delay_status,
329 };
330
331 static int __init dm_delay_init(void)
332 {
333         int r = -ENOMEM;
334
335         kdelayd_wq = create_workqueue("kdelayd");
336         if (!kdelayd_wq) {
337                 DMERR("Couldn't start kdelayd");
338                 goto bad_queue;
339         }
340
341         delayed_cache = kmem_cache_create("dm-delay",
342                                           sizeof(struct delay_info),
343                                           __alignof__(struct delay_info),
344                                           0, NULL, NULL);
345         if (!delayed_cache) {
346                 DMERR("Couldn't create delayed bio cache.");
347                 goto bad_memcache;
348         }
349
350         r = dm_register_target(&delay_target);
351         if (r < 0) {
352                 DMERR("register failed %d", r);
353                 goto bad_register;
354         }
355
356         return 0;
357
358 bad_register:
359         kmem_cache_destroy(delayed_cache);
360 bad_memcache:
361         destroy_workqueue(kdelayd_wq);
362 bad_queue:
363         return r;
364 }
365
366 static void __exit dm_delay_exit(void)
367 {
368         int r = dm_unregister_target(&delay_target);
369
370         if (r < 0)
371                 DMERR("unregister failed %d", r);
372
373         kmem_cache_destroy(delayed_cache);
374         destroy_workqueue(kdelayd_wq);
375 }
376
377 /* Module hooks */
378 module_init(dm_delay_init);
379 module_exit(dm_delay_exit);
380
381 MODULE_DESCRIPTION(DM_NAME " delay target");
382 MODULE_AUTHOR("Heinz Mauelshagen <mauelshagen@redhat.com>");
383 MODULE_LICENSE("GPL");