[PATCH] via-pmu: compile without Power Management support
[safe/jmp/linux-2.6] / drivers / macintosh / via-pmu.c
1 /*
2  * Device driver for the via-pmu on Apple Powermacs.
3  *
4  * The VIA (versatile interface adapter) interfaces to the PMU,
5  * a 6805 microprocessor core whose primary function is to control
6  * battery charging and system power on the PowerBook 3400 and 2400.
7  * The PMU also controls the ADB (Apple Desktop Bus) which connects
8  * to the keyboard and mouse, as well as the non-volatile RAM
9  * and the RTC (real time clock) chip.
10  *
11  * Copyright (C) 1998 Paul Mackerras and Fabio Riccardi.
12  * Copyright (C) 2001-2002 Benjamin Herrenschmidt
13  *
14  * THIS DRIVER IS BECOMING A TOTAL MESS !
15  *  - Cleanup atomically disabling reply to PMU events after
16  *    a sleep or a freq. switch
17  *  - Move sleep code out of here to pmac_pm, merge into new
18  *    common PM infrastructure
19  *  - Move backlight code out as well
20  *  - Save/Restore PCI space properly
21  *
22  */
23 #include <stdarg.h>
24 #include <linux/config.h>
25 #include <linux/types.h>
26 #include <linux/errno.h>
27 #include <linux/kernel.h>
28 #include <linux/delay.h>
29 #include <linux/sched.h>
30 #include <linux/miscdevice.h>
31 #include <linux/blkdev.h>
32 #include <linux/pci.h>
33 #include <linux/slab.h>
34 #include <linux/poll.h>
35 #include <linux/adb.h>
36 #include <linux/pmu.h>
37 #include <linux/cuda.h>
38 #include <linux/smp_lock.h>
39 #include <linux/module.h>
40 #include <linux/spinlock.h>
41 #include <linux/pm.h>
42 #include <linux/proc_fs.h>
43 #include <linux/init.h>
44 #include <linux/interrupt.h>
45 #include <linux/device.h>
46 #include <linux/sysdev.h>
47 #include <linux/suspend.h>
48 #include <linux/syscalls.h>
49 #include <linux/cpu.h>
50 #include <asm/prom.h>
51 #include <asm/machdep.h>
52 #include <asm/io.h>
53 #include <asm/pgtable.h>
54 #include <asm/system.h>
55 #include <asm/sections.h>
56 #include <asm/irq.h>
57 #include <asm/pmac_feature.h>
58 #include <asm/uaccess.h>
59 #include <asm/mmu_context.h>
60 #include <asm/cputable.h>
61 #include <asm/time.h>
62 #ifdef CONFIG_PMAC_BACKLIGHT
63 #include <asm/backlight.h>
64 #endif
65
66 #ifdef CONFIG_PPC32
67 #include <asm/open_pic.h>
68 #endif
69
70 /* Some compile options */
71 #undef SUSPEND_USES_PMU
72 #define DEBUG_SLEEP
73 #undef HACKED_PCI_SAVE
74
75 /* Misc minor number allocated for /dev/pmu */
76 #define PMU_MINOR               154
77
78 /* How many iterations between battery polls */
79 #define BATTERY_POLLING_COUNT   2
80
81 static volatile unsigned char __iomem *via;
82
83 /* VIA registers - spaced 0x200 bytes apart */
84 #define RS              0x200           /* skip between registers */
85 #define B               0               /* B-side data */
86 #define A               RS              /* A-side data */
87 #define DIRB            (2*RS)          /* B-side direction (1=output) */
88 #define DIRA            (3*RS)          /* A-side direction (1=output) */
89 #define T1CL            (4*RS)          /* Timer 1 ctr/latch (low 8 bits) */
90 #define T1CH            (5*RS)          /* Timer 1 counter (high 8 bits) */
91 #define T1LL            (6*RS)          /* Timer 1 latch (low 8 bits) */
92 #define T1LH            (7*RS)          /* Timer 1 latch (high 8 bits) */
93 #define T2CL            (8*RS)          /* Timer 2 ctr/latch (low 8 bits) */
94 #define T2CH            (9*RS)          /* Timer 2 counter (high 8 bits) */
95 #define SR              (10*RS)         /* Shift register */
96 #define ACR             (11*RS)         /* Auxiliary control register */
97 #define PCR             (12*RS)         /* Peripheral control register */
98 #define IFR             (13*RS)         /* Interrupt flag register */
99 #define IER             (14*RS)         /* Interrupt enable register */
100 #define ANH             (15*RS)         /* A-side data, no handshake */
101
102 /* Bits in B data register: both active low */
103 #define TACK            0x08            /* Transfer acknowledge (input) */
104 #define TREQ            0x10            /* Transfer request (output) */
105
106 /* Bits in ACR */
107 #define SR_CTRL         0x1c            /* Shift register control bits */
108 #define SR_EXT          0x0c            /* Shift on external clock */
109 #define SR_OUT          0x10            /* Shift out if 1 */
110
111 /* Bits in IFR and IER */
112 #define IER_SET         0x80            /* set bits in IER */
113 #define IER_CLR         0               /* clear bits in IER */
114 #define SR_INT          0x04            /* Shift register full/empty */
115 #define CB2_INT         0x08
116 #define CB1_INT         0x10            /* transition on CB1 input */
117
118 static volatile enum pmu_state {
119         idle,
120         sending,
121         intack,
122         reading,
123         reading_intr,
124         locked,
125 } pmu_state;
126
127 static volatile enum int_data_state {
128         int_data_empty,
129         int_data_fill,
130         int_data_ready,
131         int_data_flush
132 } int_data_state[2] = { int_data_empty, int_data_empty };
133
134 static struct adb_request *current_req;
135 static struct adb_request *last_req;
136 static struct adb_request *req_awaiting_reply;
137 static unsigned char interrupt_data[2][32];
138 static int interrupt_data_len[2];
139 static int int_data_last;
140 static unsigned char *reply_ptr;
141 static int data_index;
142 static int data_len;
143 static volatile int adb_int_pending;
144 static volatile int disable_poll;
145 static struct adb_request bright_req_1, bright_req_2;
146 static struct device_node *vias;
147 static int pmu_kind = PMU_UNKNOWN;
148 static int pmu_fully_inited = 0;
149 static int pmu_has_adb;
150 static struct device_node *gpio_node;
151 static unsigned char __iomem *gpio_reg = NULL;
152 static int gpio_irq = -1;
153 static int gpio_irq_enabled = -1;
154 static volatile int pmu_suspended = 0;
155 static spinlock_t pmu_lock;
156 static u8 pmu_intr_mask;
157 static int pmu_version;
158 static int drop_interrupts;
159 #if defined(CONFIG_PM) && defined(CONFIG_PPC32)
160 static int option_lid_wakeup = 1;
161 #endif /* CONFIG_PM && CONFIG_PPC32 */
162 static int sleep_in_progress;
163 static unsigned long async_req_locks;
164 static unsigned int pmu_irq_stats[11];
165
166 static struct proc_dir_entry *proc_pmu_root;
167 static struct proc_dir_entry *proc_pmu_info;
168 static struct proc_dir_entry *proc_pmu_irqstats;
169 static struct proc_dir_entry *proc_pmu_options;
170 static int option_server_mode;
171
172 int pmu_battery_count;
173 int pmu_cur_battery;
174 unsigned int pmu_power_flags;
175 struct pmu_battery_info pmu_batteries[PMU_MAX_BATTERIES];
176 static int query_batt_timer = BATTERY_POLLING_COUNT;
177 static struct adb_request batt_req;
178 static struct proc_dir_entry *proc_pmu_batt[PMU_MAX_BATTERIES];
179
180 #if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT)
181 extern int disable_kernel_backlight;
182 #endif /* defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT) */
183
184 int __fake_sleep;
185 int asleep;
186 struct notifier_block *sleep_notifier_list;
187
188 #ifdef CONFIG_ADB
189 static int adb_dev_map = 0;
190 static int pmu_adb_flags;
191
192 static int pmu_probe(void);
193 static int pmu_init(void);
194 static int pmu_send_request(struct adb_request *req, int sync);
195 static int pmu_adb_autopoll(int devs);
196 static int pmu_adb_reset_bus(void);
197 #endif /* CONFIG_ADB */
198
199 static int init_pmu(void);
200 static int pmu_queue_request(struct adb_request *req);
201 static void pmu_start(void);
202 static irqreturn_t via_pmu_interrupt(int irq, void *arg, struct pt_regs *regs);
203 static irqreturn_t gpio1_interrupt(int irq, void *arg, struct pt_regs *regs);
204 static int proc_get_info(char *page, char **start, off_t off,
205                           int count, int *eof, void *data);
206 static int proc_get_irqstats(char *page, char **start, off_t off,
207                           int count, int *eof, void *data);
208 #ifdef CONFIG_PMAC_BACKLIGHT
209 static int pmu_set_backlight_level(int level, void* data);
210 static int pmu_set_backlight_enable(int on, int level, void* data);
211 #endif /* CONFIG_PMAC_BACKLIGHT */
212 static void pmu_pass_intr(unsigned char *data, int len);
213 static int proc_get_batt(char *page, char **start, off_t off,
214                         int count, int *eof, void *data);
215 static int proc_read_options(char *page, char **start, off_t off,
216                         int count, int *eof, void *data);
217 static int proc_write_options(struct file *file, const char __user *buffer,
218                         unsigned long count, void *data);
219
220 #ifdef CONFIG_ADB
221 struct adb_driver via_pmu_driver = {
222         "PMU",
223         pmu_probe,
224         pmu_init,
225         pmu_send_request,
226         pmu_adb_autopoll,
227         pmu_poll_adb,
228         pmu_adb_reset_bus
229 };
230 #endif /* CONFIG_ADB */
231
232 extern void low_sleep_handler(void);
233 extern void enable_kernel_altivec(void);
234 extern void enable_kernel_fp(void);
235
236 #ifdef DEBUG_SLEEP
237 int pmu_polled_request(struct adb_request *req);
238 int pmu_wink(struct adb_request *req);
239 #endif
240
241 /*
242  * This table indicates for each PMU opcode:
243  * - the number of data bytes to be sent with the command, or -1
244  *   if a length byte should be sent,
245  * - the number of response bytes which the PMU will return, or
246  *   -1 if it will send a length byte.
247  */
248 static const s8 pmu_data_len[256][2] = {
249 /*         0       1       2       3       4       5       6       7  */
250 /*00*/  {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
251 /*08*/  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
252 /*10*/  { 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
253 /*18*/  { 0, 1},{ 0, 1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{ 0, 0},
254 /*20*/  {-1, 0},{ 0, 0},{ 2, 0},{ 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},
255 /*28*/  { 0,-1},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{ 0,-1},
256 /*30*/  { 4, 0},{20, 0},{-1, 0},{ 3, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
257 /*38*/  { 0, 4},{ 0,20},{ 2,-1},{ 2, 1},{ 3,-1},{-1,-1},{-1,-1},{ 4, 0},
258 /*40*/  { 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
259 /*48*/  { 0, 1},{ 0, 1},{-1,-1},{ 1, 0},{ 1, 0},{-1,-1},{-1,-1},{-1,-1},
260 /*50*/  { 1, 0},{ 0, 0},{ 2, 0},{ 2, 0},{-1, 0},{ 1, 0},{ 3, 0},{ 1, 0},
261 /*58*/  { 0, 1},{ 1, 0},{ 0, 2},{ 0, 2},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},
262 /*60*/  { 2, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
263 /*68*/  { 0, 3},{ 0, 3},{ 0, 2},{ 0, 8},{ 0,-1},{ 0,-1},{-1,-1},{-1,-1},
264 /*70*/  { 1, 0},{ 1, 0},{ 1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
265 /*78*/  { 0,-1},{ 0,-1},{-1,-1},{-1,-1},{-1,-1},{ 5, 1},{ 4, 1},{ 4, 1},
266 /*80*/  { 4, 0},{-1, 0},{ 0, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
267 /*88*/  { 0, 5},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
268 /*90*/  { 1, 0},{ 2, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
269 /*98*/  { 0, 1},{ 0, 1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
270 /*a0*/  { 2, 0},{ 2, 0},{ 2, 0},{ 4, 0},{-1, 0},{ 0, 0},{-1, 0},{-1, 0},
271 /*a8*/  { 1, 1},{ 1, 0},{ 3, 0},{ 2, 0},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
272 /*b0*/  {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
273 /*b8*/  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
274 /*c0*/  {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
275 /*c8*/  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
276 /*d0*/  { 0, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
277 /*d8*/  { 1, 1},{ 1, 1},{-1,-1},{-1,-1},{ 0, 1},{ 0,-1},{-1,-1},{-1,-1},
278 /*e0*/  {-1, 0},{ 4, 0},{ 0, 1},{-1, 0},{-1, 0},{ 4, 0},{-1, 0},{-1, 0},
279 /*e8*/  { 3,-1},{-1,-1},{ 0, 1},{-1,-1},{ 0,-1},{-1,-1},{-1,-1},{ 0, 0},
280 /*f0*/  {-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},{-1, 0},
281 /*f8*/  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
282 };
283
284 static char *pbook_type[] = {
285         "Unknown PowerBook",
286         "PowerBook 2400/3400/3500(G3)",
287         "PowerBook G3 Series",
288         "1999 PowerBook G3",
289         "Core99"
290 };
291
292 #ifdef CONFIG_PMAC_BACKLIGHT
293 static struct backlight_controller pmu_backlight_controller = {
294         pmu_set_backlight_enable,
295         pmu_set_backlight_level
296 };
297 #endif /* CONFIG_PMAC_BACKLIGHT */
298
299 int __init find_via_pmu(void)
300 {
301         u64 taddr;
302         u32 *reg;
303
304         if (via != 0)
305                 return 1;
306         vias = of_find_node_by_name(NULL, "via-pmu");
307         if (vias == NULL)
308                 return 0;
309
310         reg = (u32 *)get_property(vias, "reg", NULL);
311         if (reg == NULL) {
312                 printk(KERN_ERR "via-pmu: No \"reg\" property !\n");
313                 goto fail;
314         }
315         taddr = of_translate_address(vias, reg);
316         if (taddr == OF_BAD_ADDR) {
317                 printk(KERN_ERR "via-pmu: Can't translate address !\n");
318                 goto fail;
319         }
320
321         spin_lock_init(&pmu_lock);
322
323         pmu_has_adb = 1;
324
325         pmu_intr_mask = PMU_INT_PCEJECT |
326                         PMU_INT_SNDBRT |
327                         PMU_INT_ADB |
328                         PMU_INT_TICK;
329         
330         if (vias->parent->name && ((strcmp(vias->parent->name, "ohare") == 0)
331             || device_is_compatible(vias->parent, "ohare")))
332                 pmu_kind = PMU_OHARE_BASED;
333         else if (device_is_compatible(vias->parent, "paddington"))
334                 pmu_kind = PMU_PADDINGTON_BASED;
335         else if (device_is_compatible(vias->parent, "heathrow"))
336                 pmu_kind = PMU_HEATHROW_BASED;
337         else if (device_is_compatible(vias->parent, "Keylargo")
338                  || device_is_compatible(vias->parent, "K2-Keylargo")) {
339                 struct device_node *gpiop;
340                 u64 gaddr = OF_BAD_ADDR;
341
342                 pmu_kind = PMU_KEYLARGO_BASED;
343                 pmu_has_adb = (find_type_devices("adb") != NULL);
344                 pmu_intr_mask = PMU_INT_PCEJECT |
345                                 PMU_INT_SNDBRT |
346                                 PMU_INT_ADB |
347                                 PMU_INT_TICK |
348                                 PMU_INT_ENVIRONMENT;
349                 
350                 gpiop = of_find_node_by_name(NULL, "gpio");
351                 if (gpiop) {
352                         reg = (u32 *)get_property(gpiop, "reg", NULL);
353                         if (reg)
354                                 gaddr = of_translate_address(gpiop, reg);
355                         if (gaddr != OF_BAD_ADDR)
356                                 gpio_reg = ioremap(gaddr, 0x10);
357                 }
358                 if (gpio_reg == NULL)
359                         printk(KERN_ERR "via-pmu: Can't find GPIO reg !\n");
360         } else
361                 pmu_kind = PMU_UNKNOWN;
362
363         via = ioremap(taddr, 0x2000);
364         if (via == NULL) {
365                 printk(KERN_ERR "via-pmu: Can't map address !\n");
366                 goto fail;
367         }
368         
369         out_8(&via[IER], IER_CLR | 0x7f);       /* disable all intrs */
370         out_8(&via[IFR], 0x7f);                 /* clear IFR */
371
372         pmu_state = idle;
373
374         if (!init_pmu()) {
375                 via = NULL;
376                 return 0;
377         }
378
379         printk(KERN_INFO "PMU driver v%d initialized for %s, firmware: %02x\n",
380                PMU_DRIVER_VERSION, pbook_type[pmu_kind], pmu_version);
381                
382         sys_ctrler = SYS_CTRLER_PMU;
383         
384         return 1;
385  fail:
386         of_node_put(vias);
387         vias = NULL;
388         return 0;
389 }
390
391 #ifdef CONFIG_ADB
392 static int pmu_probe(void)
393 {
394         return vias == NULL? -ENODEV: 0;
395 }
396
397 static int __init pmu_init(void)
398 {
399         if (vias == NULL)
400                 return -ENODEV;
401         return 0;
402 }
403 #endif /* CONFIG_ADB */
404
405 /*
406  * We can't wait until pmu_init gets called, that happens too late.
407  * It happens after IDE and SCSI initialization, which can take a few
408  * seconds, and by that time the PMU could have given up on us and
409  * turned us off.
410  * Thus this is called with arch_initcall rather than device_initcall.
411  */
412 static int __init via_pmu_start(void)
413 {
414         if (vias == NULL)
415                 return -ENODEV;
416
417         bright_req_1.complete = 1;
418         bright_req_2.complete = 1;
419         batt_req.complete = 1;
420
421 #ifndef CONFIG_PPC_MERGE
422         if (pmu_kind == PMU_KEYLARGO_BASED)
423                 openpic_set_irq_priority(vias->intrs[0].line,
424                                          OPENPIC_PRIORITY_DEFAULT + 1);
425 #endif
426
427         if (request_irq(vias->intrs[0].line, via_pmu_interrupt, 0, "VIA-PMU",
428                         (void *)0)) {
429                 printk(KERN_ERR "VIA-PMU: can't get irq %d\n",
430                        vias->intrs[0].line);
431                 return -EAGAIN;
432         }
433
434         if (pmu_kind == PMU_KEYLARGO_BASED) {
435                 gpio_node = of_find_node_by_name(NULL, "extint-gpio1");
436                 if (gpio_node == NULL)
437                         gpio_node = of_find_node_by_name(NULL,
438                                                          "pmu-interrupt");
439                 if (gpio_node && gpio_node->n_intrs > 0)
440                         gpio_irq = gpio_node->intrs[0].line;
441
442                 if (gpio_irq != -1) {
443                         if (request_irq(gpio_irq, gpio1_interrupt, 0,
444                                         "GPIO1 ADB", (void *)0))
445                                 printk(KERN_ERR "pmu: can't get irq %d"
446                                        " (GPIO1)\n", gpio_irq);
447                         else
448                                 gpio_irq_enabled = 1;
449                 }
450         }
451
452         /* Enable interrupts */
453         out_8(&via[IER], IER_SET | SR_INT | CB1_INT);
454
455         pmu_fully_inited = 1;
456
457         /* Make sure PMU settle down before continuing. This is _very_ important
458          * since the IDE probe may shut interrupts down for quite a bit of time. If
459          * a PMU communication is pending while this happens, the PMU may timeout
460          * Not that on Core99 machines, the PMU keeps sending us environement
461          * messages, we should find a way to either fix IDE or make it call
462          * pmu_suspend() before masking interrupts. This can also happens while
463          * scolling with some fbdevs.
464          */
465         do {
466                 pmu_poll();
467         } while (pmu_state != idle);
468
469         return 0;
470 }
471
472 arch_initcall(via_pmu_start);
473
474 /*
475  * This has to be done after pci_init, which is a subsys_initcall.
476  */
477 static int __init via_pmu_dev_init(void)
478 {
479         if (vias == NULL)
480                 return -ENODEV;
481
482 #ifdef CONFIG_PMAC_BACKLIGHT
483         /* Enable backlight */
484         register_backlight_controller(&pmu_backlight_controller, NULL, "pmu");
485 #endif /* CONFIG_PMAC_BACKLIGHT */
486
487 #ifdef CONFIG_PPC32
488         if (machine_is_compatible("AAPL,3400/2400") ||
489                 machine_is_compatible("AAPL,3500")) {
490                 int mb = pmac_call_feature(PMAC_FTR_GET_MB_INFO,
491                         NULL, PMAC_MB_INFO_MODEL, 0);
492                 pmu_battery_count = 1;
493                 if (mb == PMAC_TYPE_COMET)
494                         pmu_batteries[0].flags |= PMU_BATT_TYPE_COMET;
495                 else
496                         pmu_batteries[0].flags |= PMU_BATT_TYPE_HOOPER;
497         } else if (machine_is_compatible("AAPL,PowerBook1998") ||
498                 machine_is_compatible("PowerBook1,1")) {
499                 pmu_battery_count = 2;
500                 pmu_batteries[0].flags |= PMU_BATT_TYPE_SMART;
501                 pmu_batteries[1].flags |= PMU_BATT_TYPE_SMART;
502         } else {
503                 struct device_node* prim = find_devices("power-mgt");
504                 u32 *prim_info = NULL;
505                 if (prim)
506                         prim_info = (u32 *)get_property(prim, "prim-info", NULL);
507                 if (prim_info) {
508                         /* Other stuffs here yet unknown */
509                         pmu_battery_count = (prim_info[6] >> 16) & 0xff;
510                         pmu_batteries[0].flags |= PMU_BATT_TYPE_SMART;
511                         if (pmu_battery_count > 1)
512                                 pmu_batteries[1].flags |= PMU_BATT_TYPE_SMART;
513                 }
514         }
515 #endif /* CONFIG_PPC32 */
516
517         /* Create /proc/pmu */
518         proc_pmu_root = proc_mkdir("pmu", NULL);
519         if (proc_pmu_root) {
520                 long i;
521
522                 for (i=0; i<pmu_battery_count; i++) {
523                         char title[16];
524                         sprintf(title, "battery_%ld", i);
525                         proc_pmu_batt[i] = create_proc_read_entry(title, 0, proc_pmu_root,
526                                                 proc_get_batt, (void *)i);
527                 }
528
529                 proc_pmu_info = create_proc_read_entry("info", 0, proc_pmu_root,
530                                         proc_get_info, NULL);
531                 proc_pmu_irqstats = create_proc_read_entry("interrupts", 0, proc_pmu_root,
532                                         proc_get_irqstats, NULL);
533                 proc_pmu_options = create_proc_entry("options", 0600, proc_pmu_root);
534                 if (proc_pmu_options) {
535                         proc_pmu_options->nlink = 1;
536                         proc_pmu_options->read_proc = proc_read_options;
537                         proc_pmu_options->write_proc = proc_write_options;
538                 }
539         }
540         return 0;
541 }
542
543 device_initcall(via_pmu_dev_init);
544
545 static int
546 init_pmu(void)
547 {
548         int timeout;
549         struct adb_request req;
550
551         out_8(&via[B], via[B] | TREQ);                  /* negate TREQ */
552         out_8(&via[DIRB], (via[DIRB] | TREQ) & ~TACK);  /* TACK in, TREQ out */
553
554         pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask);
555         timeout =  100000;
556         while (!req.complete) {
557                 if (--timeout < 0) {
558                         printk(KERN_ERR "init_pmu: no response from PMU\n");
559                         return 0;
560                 }
561                 udelay(10);
562                 pmu_poll();
563         }
564
565         /* ack all pending interrupts */
566         timeout = 100000;
567         interrupt_data[0][0] = 1;
568         while (interrupt_data[0][0] || pmu_state != idle) {
569                 if (--timeout < 0) {
570                         printk(KERN_ERR "init_pmu: timed out acking intrs\n");
571                         return 0;
572                 }
573                 if (pmu_state == idle)
574                         adb_int_pending = 1;
575                 via_pmu_interrupt(0, NULL, NULL);
576                 udelay(10);
577         }
578
579         /* Tell PMU we are ready.  */
580         if (pmu_kind == PMU_KEYLARGO_BASED) {
581                 pmu_request(&req, NULL, 2, PMU_SYSTEM_READY, 2);
582                 while (!req.complete)
583                         pmu_poll();
584         }
585
586         /* Read PMU version */
587         pmu_request(&req, NULL, 1, PMU_GET_VERSION);
588         pmu_wait_complete(&req);
589         if (req.reply_len > 0)
590                 pmu_version = req.reply[0];
591         
592         /* Read server mode setting */
593         if (pmu_kind == PMU_KEYLARGO_BASED) {
594                 pmu_request(&req, NULL, 2, PMU_POWER_EVENTS,
595                             PMU_PWR_GET_POWERUP_EVENTS);
596                 pmu_wait_complete(&req);
597                 if (req.reply_len == 2) {
598                         if (req.reply[1] & PMU_PWR_WAKEUP_AC_INSERT)
599                                 option_server_mode = 1;
600                         printk(KERN_INFO "via-pmu: Server Mode is %s\n",
601                                option_server_mode ? "enabled" : "disabled");
602                 }
603         }
604         return 1;
605 }
606
607 int
608 pmu_get_model(void)
609 {
610         return pmu_kind;
611 }
612
613 static void pmu_set_server_mode(int server_mode)
614 {
615         struct adb_request req;
616
617         if (pmu_kind != PMU_KEYLARGO_BASED)
618                 return;
619
620         option_server_mode = server_mode;
621         pmu_request(&req, NULL, 2, PMU_POWER_EVENTS, PMU_PWR_GET_POWERUP_EVENTS);
622         pmu_wait_complete(&req);
623         if (req.reply_len < 2)
624                 return;
625         if (server_mode)
626                 pmu_request(&req, NULL, 4, PMU_POWER_EVENTS,
627                             PMU_PWR_SET_POWERUP_EVENTS,
628                             req.reply[0], PMU_PWR_WAKEUP_AC_INSERT); 
629         else
630                 pmu_request(&req, NULL, 4, PMU_POWER_EVENTS,
631                             PMU_PWR_CLR_POWERUP_EVENTS,
632                             req.reply[0], PMU_PWR_WAKEUP_AC_INSERT); 
633         pmu_wait_complete(&req);
634 }
635
636 /* This new version of the code for 2400/3400/3500 powerbooks
637  * is inspired from the implementation in gkrellm-pmu
638  */
639 static void
640 done_battery_state_ohare(struct adb_request* req)
641 {
642         /* format:
643          *  [0]    :  flags
644          *    0x01 :  AC indicator
645          *    0x02 :  charging
646          *    0x04 :  battery exist
647          *    0x08 :  
648          *    0x10 :  
649          *    0x20 :  full charged
650          *    0x40 :  pcharge reset
651          *    0x80 :  battery exist
652          *
653          *  [1][2] :  battery voltage
654          *  [3]    :  CPU temperature
655          *  [4]    :  battery temperature
656          *  [5]    :  current
657          *  [6][7] :  pcharge
658          *              --tkoba
659          */
660         unsigned int bat_flags = PMU_BATT_TYPE_HOOPER;
661         long pcharge, charge, vb, vmax, lmax;
662         long vmax_charging, vmax_charged;
663         long amperage, voltage, time, max;
664         int mb = pmac_call_feature(PMAC_FTR_GET_MB_INFO,
665                         NULL, PMAC_MB_INFO_MODEL, 0);
666
667         if (req->reply[0] & 0x01)
668                 pmu_power_flags |= PMU_PWR_AC_PRESENT;
669         else
670                 pmu_power_flags &= ~PMU_PWR_AC_PRESENT;
671         
672         if (mb == PMAC_TYPE_COMET) {
673                 vmax_charged = 189;
674                 vmax_charging = 213;
675                 lmax = 6500;
676         } else {
677                 vmax_charged = 330;
678                 vmax_charging = 330;
679                 lmax = 6500;
680         }
681         vmax = vmax_charged;
682
683         /* If battery installed */
684         if (req->reply[0] & 0x04) {
685                 bat_flags |= PMU_BATT_PRESENT;
686                 if (req->reply[0] & 0x02)
687                         bat_flags |= PMU_BATT_CHARGING;
688                 vb = (req->reply[1] << 8) | req->reply[2];
689                 voltage = (vb * 265 + 72665) / 10;
690                 amperage = req->reply[5];
691                 if ((req->reply[0] & 0x01) == 0) {
692                         if (amperage > 200)
693                                 vb += ((amperage - 200) * 15)/100;
694                 } else if (req->reply[0] & 0x02) {
695                         vb = (vb * 97) / 100;
696                         vmax = vmax_charging;
697                 }
698                 charge = (100 * vb) / vmax;
699                 if (req->reply[0] & 0x40) {
700                         pcharge = (req->reply[6] << 8) + req->reply[7];
701                         if (pcharge > lmax)
702                                 pcharge = lmax;
703                         pcharge *= 100;
704                         pcharge = 100 - pcharge / lmax;
705                         if (pcharge < charge)
706                                 charge = pcharge;
707                 }
708                 if (amperage > 0)
709                         time = (charge * 16440) / amperage;
710                 else
711                         time = 0;
712                 max = 100;
713                 amperage = -amperage;
714         } else
715                 charge = max = amperage = voltage = time = 0;
716
717         pmu_batteries[pmu_cur_battery].flags = bat_flags;
718         pmu_batteries[pmu_cur_battery].charge = charge;
719         pmu_batteries[pmu_cur_battery].max_charge = max;
720         pmu_batteries[pmu_cur_battery].amperage = amperage;
721         pmu_batteries[pmu_cur_battery].voltage = voltage;
722         pmu_batteries[pmu_cur_battery].time_remaining = time;
723
724         clear_bit(0, &async_req_locks);
725 }
726
727 static void
728 done_battery_state_smart(struct adb_request* req)
729 {
730         /* format:
731          *  [0] : format of this structure (known: 3,4,5)
732          *  [1] : flags
733          *  
734          *  format 3 & 4:
735          *  
736          *  [2] : charge
737          *  [3] : max charge
738          *  [4] : current
739          *  [5] : voltage
740          *  
741          *  format 5:
742          *  
743          *  [2][3] : charge
744          *  [4][5] : max charge
745          *  [6][7] : current
746          *  [8][9] : voltage
747          */
748          
749         unsigned int bat_flags = PMU_BATT_TYPE_SMART;
750         int amperage;
751         unsigned int capa, max, voltage;
752         
753         if (req->reply[1] & 0x01)
754                 pmu_power_flags |= PMU_PWR_AC_PRESENT;
755         else
756                 pmu_power_flags &= ~PMU_PWR_AC_PRESENT;
757
758
759         capa = max = amperage = voltage = 0;
760         
761         if (req->reply[1] & 0x04) {
762                 bat_flags |= PMU_BATT_PRESENT;
763                 switch(req->reply[0]) {
764                         case 3:
765                         case 4: capa = req->reply[2];
766                                 max = req->reply[3];
767                                 amperage = *((signed char *)&req->reply[4]);
768                                 voltage = req->reply[5];
769                                 break;
770                         case 5: capa = (req->reply[2] << 8) | req->reply[3];
771                                 max = (req->reply[4] << 8) | req->reply[5];
772                                 amperage = *((signed short *)&req->reply[6]);
773                                 voltage = (req->reply[8] << 8) | req->reply[9];
774                                 break;
775                         default:
776                                 printk(KERN_WARNING "pmu.c : unrecognized battery info, len: %d, %02x %02x %02x %02x\n",
777                                         req->reply_len, req->reply[0], req->reply[1], req->reply[2], req->reply[3]);
778                                 break;
779                 }
780         }
781
782         if ((req->reply[1] & 0x01) && (amperage > 0))
783                 bat_flags |= PMU_BATT_CHARGING;
784
785         pmu_batteries[pmu_cur_battery].flags = bat_flags;
786         pmu_batteries[pmu_cur_battery].charge = capa;
787         pmu_batteries[pmu_cur_battery].max_charge = max;
788         pmu_batteries[pmu_cur_battery].amperage = amperage;
789         pmu_batteries[pmu_cur_battery].voltage = voltage;
790         if (amperage) {
791                 if ((req->reply[1] & 0x01) && (amperage > 0))
792                         pmu_batteries[pmu_cur_battery].time_remaining
793                                 = ((max-capa) * 3600) / amperage;
794                 else
795                         pmu_batteries[pmu_cur_battery].time_remaining
796                                 = (capa * 3600) / (-amperage);
797         } else
798                 pmu_batteries[pmu_cur_battery].time_remaining = 0;
799
800         pmu_cur_battery = (pmu_cur_battery + 1) % pmu_battery_count;
801
802         clear_bit(0, &async_req_locks);
803 }
804
805 static void
806 query_battery_state(void)
807 {
808         if (test_and_set_bit(0, &async_req_locks))
809                 return;
810         if (pmu_kind == PMU_OHARE_BASED)
811                 pmu_request(&batt_req, done_battery_state_ohare,
812                         1, PMU_BATTERY_STATE);
813         else
814                 pmu_request(&batt_req, done_battery_state_smart,
815                         2, PMU_SMART_BATTERY_STATE, pmu_cur_battery+1);
816 }
817
818 static int
819 proc_get_info(char *page, char **start, off_t off,
820                 int count, int *eof, void *data)
821 {
822         char* p = page;
823
824         p += sprintf(p, "PMU driver version     : %d\n", PMU_DRIVER_VERSION);
825         p += sprintf(p, "PMU firmware version   : %02x\n", pmu_version);
826         p += sprintf(p, "AC Power               : %d\n",
827                 ((pmu_power_flags & PMU_PWR_AC_PRESENT) != 0));
828         p += sprintf(p, "Battery count          : %d\n", pmu_battery_count);
829
830         return p - page;
831 }
832
833 static int
834 proc_get_irqstats(char *page, char **start, off_t off,
835                   int count, int *eof, void *data)
836 {
837         int i;
838         char* p = page;
839         static const char *irq_names[] = {
840                 "Total CB1 triggered events",
841                 "Total GPIO1 triggered events",
842                 "PC-Card eject button",
843                 "Sound/Brightness button",
844                 "ADB message",
845                 "Battery state change",
846                 "Environment interrupt",
847                 "Tick timer",
848                 "Ghost interrupt (zero len)",
849                 "Empty interrupt (empty mask)",
850                 "Max irqs in a row"
851         };
852
853         for (i=0; i<11; i++) {
854                 p += sprintf(p, " %2u: %10u (%s)\n",
855                              i, pmu_irq_stats[i], irq_names[i]);
856         }
857         return p - page;
858 }
859
860 static int
861 proc_get_batt(char *page, char **start, off_t off,
862                 int count, int *eof, void *data)
863 {
864         long batnum = (long)data;
865         char *p = page;
866         
867         p += sprintf(p, "\n");
868         p += sprintf(p, "flags      : %08x\n",
869                 pmu_batteries[batnum].flags);
870         p += sprintf(p, "charge     : %d\n",
871                 pmu_batteries[batnum].charge);
872         p += sprintf(p, "max_charge : %d\n",
873                 pmu_batteries[batnum].max_charge);
874         p += sprintf(p, "current    : %d\n",
875                 pmu_batteries[batnum].amperage);
876         p += sprintf(p, "voltage    : %d\n",
877                 pmu_batteries[batnum].voltage);
878         p += sprintf(p, "time rem.  : %d\n",
879                 pmu_batteries[batnum].time_remaining);
880
881         return p - page;
882 }
883
884 static int
885 proc_read_options(char *page, char **start, off_t off,
886                         int count, int *eof, void *data)
887 {
888         char *p = page;
889
890 #if defined(CONFIG_PM) && defined(CONFIG_PPC32)
891         if (pmu_kind == PMU_KEYLARGO_BASED &&
892             pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) >= 0)
893                 p += sprintf(p, "lid_wakeup=%d\n", option_lid_wakeup);
894 #endif
895         if (pmu_kind == PMU_KEYLARGO_BASED)
896                 p += sprintf(p, "server_mode=%d\n", option_server_mode);
897
898         return p - page;
899 }
900                         
901 static int
902 proc_write_options(struct file *file, const char __user *buffer,
903                         unsigned long count, void *data)
904 {
905         char tmp[33];
906         char *label, *val;
907         unsigned long fcount = count;
908         
909         if (!count)
910                 return -EINVAL;
911         if (count > 32)
912                 count = 32;
913         if (copy_from_user(tmp, buffer, count))
914                 return -EFAULT;
915         tmp[count] = 0;
916
917         label = tmp;
918         while(*label == ' ')
919                 label++;
920         val = label;
921         while(*val && (*val != '=')) {
922                 if (*val == ' ')
923                         *val = 0;
924                 val++;
925         }
926         if ((*val) == 0)
927                 return -EINVAL;
928         *(val++) = 0;
929         while(*val == ' ')
930                 val++;
931 #if defined(CONFIG_PM) && defined(CONFIG_PPC32)
932         if (pmu_kind == PMU_KEYLARGO_BASED &&
933             pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) >= 0)
934                 if (!strcmp(label, "lid_wakeup"))
935                         option_lid_wakeup = ((*val) == '1');
936 #endif
937         if (pmu_kind == PMU_KEYLARGO_BASED && !strcmp(label, "server_mode")) {
938                 int new_value;
939                 new_value = ((*val) == '1');
940                 if (new_value != option_server_mode)
941                         pmu_set_server_mode(new_value);
942         }
943         return fcount;
944 }
945
946 #ifdef CONFIG_ADB
947 /* Send an ADB command */
948 static int
949 pmu_send_request(struct adb_request *req, int sync)
950 {
951         int i, ret;
952
953         if ((vias == NULL) || (!pmu_fully_inited)) {
954                 req->complete = 1;
955                 return -ENXIO;
956         }
957
958         ret = -EINVAL;
959
960         switch (req->data[0]) {
961         case PMU_PACKET:
962                 for (i = 0; i < req->nbytes - 1; ++i)
963                         req->data[i] = req->data[i+1];
964                 --req->nbytes;
965                 if (pmu_data_len[req->data[0]][1] != 0) {
966                         req->reply[0] = ADB_RET_OK;
967                         req->reply_len = 1;
968                 } else
969                         req->reply_len = 0;
970                 ret = pmu_queue_request(req);
971                 break;
972         case CUDA_PACKET:
973                 switch (req->data[1]) {
974                 case CUDA_GET_TIME:
975                         if (req->nbytes != 2)
976                                 break;
977                         req->data[0] = PMU_READ_RTC;
978                         req->nbytes = 1;
979                         req->reply_len = 3;
980                         req->reply[0] = CUDA_PACKET;
981                         req->reply[1] = 0;
982                         req->reply[2] = CUDA_GET_TIME;
983                         ret = pmu_queue_request(req);
984                         break;
985                 case CUDA_SET_TIME:
986                         if (req->nbytes != 6)
987                                 break;
988                         req->data[0] = PMU_SET_RTC;
989                         req->nbytes = 5;
990                         for (i = 1; i <= 4; ++i)
991                                 req->data[i] = req->data[i+1];
992                         req->reply_len = 3;
993                         req->reply[0] = CUDA_PACKET;
994                         req->reply[1] = 0;
995                         req->reply[2] = CUDA_SET_TIME;
996                         ret = pmu_queue_request(req);
997                         break;
998                 }
999                 break;
1000         case ADB_PACKET:
1001                 if (!pmu_has_adb)
1002                         return -ENXIO;
1003                 for (i = req->nbytes - 1; i > 1; --i)
1004                         req->data[i+2] = req->data[i];
1005                 req->data[3] = req->nbytes - 2;
1006                 req->data[2] = pmu_adb_flags;
1007                 /*req->data[1] = req->data[1];*/
1008                 req->data[0] = PMU_ADB_CMD;
1009                 req->nbytes += 2;
1010                 req->reply_expected = 1;
1011                 req->reply_len = 0;
1012                 ret = pmu_queue_request(req);
1013                 break;
1014         }
1015         if (ret) {
1016                 req->complete = 1;
1017                 return ret;
1018         }
1019
1020         if (sync)
1021                 while (!req->complete)
1022                         pmu_poll();
1023
1024         return 0;
1025 }
1026
1027 /* Enable/disable autopolling */
1028 static int
1029 pmu_adb_autopoll(int devs)
1030 {
1031         struct adb_request req;
1032
1033         if ((vias == NULL) || (!pmu_fully_inited) || !pmu_has_adb)
1034                 return -ENXIO;
1035
1036         if (devs) {
1037                 adb_dev_map = devs;
1038                 pmu_request(&req, NULL, 5, PMU_ADB_CMD, 0, 0x86,
1039                             adb_dev_map >> 8, adb_dev_map);
1040                 pmu_adb_flags = 2;
1041         } else {
1042                 pmu_request(&req, NULL, 1, PMU_ADB_POLL_OFF);
1043                 pmu_adb_flags = 0;
1044         }
1045         while (!req.complete)
1046                 pmu_poll();
1047         return 0;
1048 }
1049
1050 /* Reset the ADB bus */
1051 static int
1052 pmu_adb_reset_bus(void)
1053 {
1054         struct adb_request req;
1055         int save_autopoll = adb_dev_map;
1056
1057         if ((vias == NULL) || (!pmu_fully_inited) || !pmu_has_adb)
1058                 return -ENXIO;
1059
1060         /* anyone got a better idea?? */
1061         pmu_adb_autopoll(0);
1062
1063         req.nbytes = 5;
1064         req.done = NULL;
1065         req.data[0] = PMU_ADB_CMD;
1066         req.data[1] = 0;
1067         req.data[2] = ADB_BUSRESET;
1068         req.data[3] = 0;
1069         req.data[4] = 0;
1070         req.reply_len = 0;
1071         req.reply_expected = 1;
1072         if (pmu_queue_request(&req) != 0) {
1073                 printk(KERN_ERR "pmu_adb_reset_bus: pmu_queue_request failed\n");
1074                 return -EIO;
1075         }
1076         pmu_wait_complete(&req);
1077
1078         if (save_autopoll != 0)
1079                 pmu_adb_autopoll(save_autopoll);
1080
1081         return 0;
1082 }
1083 #endif /* CONFIG_ADB */
1084
1085 /* Construct and send a pmu request */
1086 int
1087 pmu_request(struct adb_request *req, void (*done)(struct adb_request *),
1088             int nbytes, ...)
1089 {
1090         va_list list;
1091         int i;
1092
1093         if (vias == NULL)
1094                 return -ENXIO;
1095
1096         if (nbytes < 0 || nbytes > 32) {
1097                 printk(KERN_ERR "pmu_request: bad nbytes (%d)\n", nbytes);
1098                 req->complete = 1;
1099                 return -EINVAL;
1100         }
1101         req->nbytes = nbytes;
1102         req->done = done;
1103         va_start(list, nbytes);
1104         for (i = 0; i < nbytes; ++i)
1105                 req->data[i] = va_arg(list, int);
1106         va_end(list);
1107         req->reply_len = 0;
1108         req->reply_expected = 0;
1109         return pmu_queue_request(req);
1110 }
1111
1112 int
1113 pmu_queue_request(struct adb_request *req)
1114 {
1115         unsigned long flags;
1116         int nsend;
1117
1118         if (via == NULL) {
1119                 req->complete = 1;
1120                 return -ENXIO;
1121         }
1122         if (req->nbytes <= 0) {
1123                 req->complete = 1;
1124                 return 0;
1125         }
1126         nsend = pmu_data_len[req->data[0]][0];
1127         if (nsend >= 0 && req->nbytes != nsend + 1) {
1128                 req->complete = 1;
1129                 return -EINVAL;
1130         }
1131
1132         req->next = NULL;
1133         req->sent = 0;
1134         req->complete = 0;
1135
1136         spin_lock_irqsave(&pmu_lock, flags);
1137         if (current_req != 0) {
1138                 last_req->next = req;
1139                 last_req = req;
1140         } else {
1141                 current_req = req;
1142                 last_req = req;
1143                 if (pmu_state == idle)
1144                         pmu_start();
1145         }
1146         spin_unlock_irqrestore(&pmu_lock, flags);
1147
1148         return 0;
1149 }
1150
1151 static inline void
1152 wait_for_ack(void)
1153 {
1154         /* Sightly increased the delay, I had one occurrence of the message
1155          * reported
1156          */
1157         int timeout = 4000;
1158         while ((in_8(&via[B]) & TACK) == 0) {
1159                 if (--timeout < 0) {
1160                         printk(KERN_ERR "PMU not responding (!ack)\n");
1161                         return;
1162                 }
1163                 udelay(10);
1164         }
1165 }
1166
1167 /* New PMU seems to be very sensitive to those timings, so we make sure
1168  * PCI is flushed immediately */
1169 static inline void
1170 send_byte(int x)
1171 {
1172         volatile unsigned char __iomem *v = via;
1173
1174         out_8(&v[ACR], in_8(&v[ACR]) | SR_OUT | SR_EXT);
1175         out_8(&v[SR], x);
1176         out_8(&v[B], in_8(&v[B]) & ~TREQ);              /* assert TREQ */
1177         (void)in_8(&v[B]);
1178 }
1179
1180 static inline void
1181 recv_byte(void)
1182 {
1183         volatile unsigned char __iomem *v = via;
1184
1185         out_8(&v[ACR], (in_8(&v[ACR]) & ~SR_OUT) | SR_EXT);
1186         in_8(&v[SR]);           /* resets SR */
1187         out_8(&v[B], in_8(&v[B]) & ~TREQ);
1188         (void)in_8(&v[B]);
1189 }
1190
1191 static inline void
1192 pmu_done(struct adb_request *req)
1193 {
1194         void (*done)(struct adb_request *) = req->done;
1195         mb();
1196         req->complete = 1;
1197         /* Here, we assume that if the request has a done member, the
1198          * struct request will survive to setting req->complete to 1
1199          */
1200         if (done)
1201                 (*done)(req);
1202 }
1203
1204 static void
1205 pmu_start(void)
1206 {
1207         struct adb_request *req;
1208
1209         /* assert pmu_state == idle */
1210         /* get the packet to send */
1211         req = current_req;
1212         if (req == 0 || pmu_state != idle
1213             || (/*req->reply_expected && */req_awaiting_reply))
1214                 return;
1215
1216         pmu_state = sending;
1217         data_index = 1;
1218         data_len = pmu_data_len[req->data[0]][0];
1219
1220         /* Sounds safer to make sure ACK is high before writing. This helped
1221          * kill a problem with ADB and some iBooks
1222          */
1223         wait_for_ack();
1224         /* set the shift register to shift out and send a byte */
1225         send_byte(req->data[0]);
1226 }
1227
1228 void
1229 pmu_poll(void)
1230 {
1231         if (!via)
1232                 return;
1233         if (disable_poll)
1234                 return;
1235         via_pmu_interrupt(0, NULL, NULL);
1236 }
1237
1238 void
1239 pmu_poll_adb(void)
1240 {
1241         if (!via)
1242                 return;
1243         if (disable_poll)
1244                 return;
1245         /* Kicks ADB read when PMU is suspended */
1246         adb_int_pending = 1;
1247         do {
1248                 via_pmu_interrupt(0, NULL, NULL);
1249         } while (pmu_suspended && (adb_int_pending || pmu_state != idle
1250                 || req_awaiting_reply));
1251 }
1252
1253 void
1254 pmu_wait_complete(struct adb_request *req)
1255 {
1256         if (!via)
1257                 return;
1258         while((pmu_state != idle && pmu_state != locked) || !req->complete)
1259                 via_pmu_interrupt(0, NULL, NULL);
1260 }
1261
1262 /* This function loops until the PMU is idle and prevents it from
1263  * anwsering to ADB interrupts. pmu_request can still be called.
1264  * This is done to avoid spurrious shutdowns when we know we'll have
1265  * interrupts switched off for a long time
1266  */
1267 void
1268 pmu_suspend(void)
1269 {
1270         unsigned long flags;
1271 #ifdef SUSPEND_USES_PMU
1272         struct adb_request *req;
1273 #endif
1274         if (!via)
1275                 return;
1276         
1277         spin_lock_irqsave(&pmu_lock, flags);
1278         pmu_suspended++;
1279         if (pmu_suspended > 1) {
1280                 spin_unlock_irqrestore(&pmu_lock, flags);
1281                 return;
1282         }
1283
1284         do {
1285                 spin_unlock_irqrestore(&pmu_lock, flags);
1286                 if (req_awaiting_reply)
1287                         adb_int_pending = 1;
1288                 via_pmu_interrupt(0, NULL, NULL);
1289                 spin_lock_irqsave(&pmu_lock, flags);
1290                 if (!adb_int_pending && pmu_state == idle && !req_awaiting_reply) {
1291 #ifdef SUSPEND_USES_PMU
1292                         pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, 0);
1293                         spin_unlock_irqrestore(&pmu_lock, flags);
1294                         while(!req.complete)
1295                                 pmu_poll();
1296 #else /* SUSPEND_USES_PMU */
1297                         if (gpio_irq >= 0)
1298                                 disable_irq_nosync(gpio_irq);
1299                         out_8(&via[IER], CB1_INT | IER_CLR);
1300                         spin_unlock_irqrestore(&pmu_lock, flags);
1301 #endif /* SUSPEND_USES_PMU */
1302                         break;
1303                 }
1304         } while (1);
1305 }
1306
1307 void
1308 pmu_resume(void)
1309 {
1310         unsigned long flags;
1311
1312         if (!via || (pmu_suspended < 1))
1313                 return;
1314
1315         spin_lock_irqsave(&pmu_lock, flags);
1316         pmu_suspended--;
1317         if (pmu_suspended > 0) {
1318                 spin_unlock_irqrestore(&pmu_lock, flags);
1319                 return;
1320         }
1321         adb_int_pending = 1;
1322 #ifdef SUSPEND_USES_PMU
1323         pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask);
1324         spin_unlock_irqrestore(&pmu_lock, flags);
1325         while(!req.complete)
1326                 pmu_poll();
1327 #else /* SUSPEND_USES_PMU */
1328         if (gpio_irq >= 0)
1329                 enable_irq(gpio_irq);
1330         out_8(&via[IER], CB1_INT | IER_SET);
1331         spin_unlock_irqrestore(&pmu_lock, flags);
1332         pmu_poll();
1333 #endif /* SUSPEND_USES_PMU */
1334 }
1335
1336 /* Interrupt data could be the result data from an ADB cmd */
1337 static void
1338 pmu_handle_data(unsigned char *data, int len, struct pt_regs *regs)
1339 {
1340         unsigned char ints, pirq;
1341         int i = 0;
1342
1343         asleep = 0;
1344         if (drop_interrupts || len < 1) {
1345                 adb_int_pending = 0;
1346                 pmu_irq_stats[8]++;
1347                 return;
1348         }
1349
1350         /* Get PMU interrupt mask */
1351         ints = data[0];
1352
1353         /* Record zero interrupts for stats */
1354         if (ints == 0)
1355                 pmu_irq_stats[9]++;
1356
1357         /* Hack to deal with ADB autopoll flag */
1358         if (ints & PMU_INT_ADB)
1359                 ints &= ~(PMU_INT_ADB_AUTO | PMU_INT_AUTO_SRQ_POLL);
1360
1361 next:
1362
1363         if (ints == 0) {
1364                 if (i > pmu_irq_stats[10])
1365                         pmu_irq_stats[10] = i;
1366                 return;
1367         }
1368
1369         for (pirq = 0; pirq < 8; pirq++)
1370                 if (ints & (1 << pirq))
1371                         break;
1372         pmu_irq_stats[pirq]++;
1373         i++;
1374         ints &= ~(1 << pirq);
1375
1376         /* Note: for some reason, we get an interrupt with len=1,
1377          * data[0]==0 after each normal ADB interrupt, at least
1378          * on the Pismo. Still investigating...  --BenH
1379          */
1380         if ((1 << pirq) & PMU_INT_ADB) {
1381                 if ((data[0] & PMU_INT_ADB_AUTO) == 0) {
1382                         struct adb_request *req = req_awaiting_reply;
1383                         if (req == 0) {
1384                                 printk(KERN_ERR "PMU: extra ADB reply\n");
1385                                 return;
1386                         }
1387                         req_awaiting_reply = NULL;
1388                         if (len <= 2)
1389                                 req->reply_len = 0;
1390                         else {
1391                                 memcpy(req->reply, data + 1, len - 1);
1392                                 req->reply_len = len - 1;
1393                         }
1394                         pmu_done(req);
1395                 } else {
1396                         if (len == 4 && data[1] == 0x2c) {
1397                                 extern int xmon_wants_key, xmon_adb_keycode;
1398                                 if (xmon_wants_key) {
1399                                         xmon_adb_keycode = data[2];
1400                                         return;
1401                                 }
1402                         }
1403 #ifdef CONFIG_ADB
1404                         /*
1405                          * XXX On the [23]400 the PMU gives us an up
1406                          * event for keycodes 0x74 or 0x75 when the PC
1407                          * card eject buttons are released, so we
1408                          * ignore those events.
1409                          */
1410                         if (!(pmu_kind == PMU_OHARE_BASED && len == 4
1411                               && data[1] == 0x2c && data[3] == 0xff
1412                               && (data[2] & ~1) == 0xf4))
1413                                 adb_input(data+1, len-1, regs, 1);
1414 #endif /* CONFIG_ADB */         
1415                 }
1416         }
1417         /* Sound/brightness button pressed */
1418         else if ((1 << pirq) & PMU_INT_SNDBRT) {
1419 #ifdef CONFIG_PMAC_BACKLIGHT
1420                 if (len == 3)
1421 #ifdef CONFIG_INPUT_ADBHID
1422                         if (!disable_kernel_backlight)
1423 #endif /* CONFIG_INPUT_ADBHID */
1424                                 set_backlight_level(data[1] >> 4);
1425 #endif /* CONFIG_PMAC_BACKLIGHT */
1426         }
1427         /* Tick interrupt */
1428         else if ((1 << pirq) & PMU_INT_TICK) {
1429                 /* Environement or tick interrupt, query batteries */
1430                 if (pmu_battery_count) {
1431                         if ((--query_batt_timer) == 0) {
1432                                 query_battery_state();
1433                                 query_batt_timer = BATTERY_POLLING_COUNT;
1434                         }
1435                 }
1436         }
1437         else if ((1 << pirq) & PMU_INT_ENVIRONMENT) {
1438                 if (pmu_battery_count)
1439                         query_battery_state();
1440                 pmu_pass_intr(data, len);
1441         } else {
1442                pmu_pass_intr(data, len);
1443         }
1444         goto next;
1445 }
1446
1447 static struct adb_request*
1448 pmu_sr_intr(struct pt_regs *regs)
1449 {
1450         struct adb_request *req;
1451         int bite = 0;
1452
1453         if (via[B] & TREQ) {
1454                 printk(KERN_ERR "PMU: spurious SR intr (%x)\n", via[B]);
1455                 out_8(&via[IFR], SR_INT);
1456                 return NULL;
1457         }
1458         /* The ack may not yet be low when we get the interrupt */
1459         while ((in_8(&via[B]) & TACK) != 0)
1460                         ;
1461
1462         /* if reading grab the byte, and reset the interrupt */
1463         if (pmu_state == reading || pmu_state == reading_intr)
1464                 bite = in_8(&via[SR]);
1465
1466         /* reset TREQ and wait for TACK to go high */
1467         out_8(&via[B], in_8(&via[B]) | TREQ);
1468         wait_for_ack();
1469
1470         switch (pmu_state) {
1471         case sending:
1472                 req = current_req;
1473                 if (data_len < 0) {
1474                         data_len = req->nbytes - 1;
1475                         send_byte(data_len);
1476                         break;
1477                 }
1478                 if (data_index <= data_len) {
1479                         send_byte(req->data[data_index++]);
1480                         break;
1481                 }
1482                 req->sent = 1;
1483                 data_len = pmu_data_len[req->data[0]][1];
1484                 if (data_len == 0) {
1485                         pmu_state = idle;
1486                         current_req = req->next;
1487                         if (req->reply_expected)
1488                                 req_awaiting_reply = req;
1489                         else
1490                                 return req;
1491                 } else {
1492                         pmu_state = reading;
1493                         data_index = 0;
1494                         reply_ptr = req->reply + req->reply_len;
1495                         recv_byte();
1496                 }
1497                 break;
1498
1499         case intack:
1500                 data_index = 0;
1501                 data_len = -1;
1502                 pmu_state = reading_intr;
1503                 reply_ptr = interrupt_data[int_data_last];
1504                 recv_byte();
1505                 if (gpio_irq >= 0 && !gpio_irq_enabled) {
1506                         enable_irq(gpio_irq);
1507                         gpio_irq_enabled = 1;
1508                 }
1509                 break;
1510
1511         case reading:
1512         case reading_intr:
1513                 if (data_len == -1) {
1514                         data_len = bite;
1515                         if (bite > 32)
1516                                 printk(KERN_ERR "PMU: bad reply len %d\n", bite);
1517                 } else if (data_index < 32) {
1518                         reply_ptr[data_index++] = bite;
1519                 }
1520                 if (data_index < data_len) {
1521                         recv_byte();
1522                         break;
1523                 }
1524
1525                 if (pmu_state == reading_intr) {
1526                         pmu_state = idle;
1527                         int_data_state[int_data_last] = int_data_ready;
1528                         interrupt_data_len[int_data_last] = data_len;
1529                 } else {
1530                         req = current_req;
1531                         /* 
1532                          * For PMU sleep and freq change requests, we lock the
1533                          * PMU until it's explicitely unlocked. This avoids any
1534                          * spurrious event polling getting in
1535                          */
1536                         current_req = req->next;
1537                         req->reply_len += data_index;
1538                         if (req->data[0] == PMU_SLEEP || req->data[0] == PMU_CPU_SPEED)
1539                                 pmu_state = locked;
1540                         else
1541                                 pmu_state = idle;
1542                         return req;
1543                 }
1544                 break;
1545
1546         default:
1547                 printk(KERN_ERR "via_pmu_interrupt: unknown state %d?\n",
1548                        pmu_state);
1549         }
1550         return NULL;
1551 }
1552
1553 static irqreturn_t
1554 via_pmu_interrupt(int irq, void *arg, struct pt_regs *regs)
1555 {
1556         unsigned long flags;
1557         int intr;
1558         int nloop = 0;
1559         int int_data = -1;
1560         struct adb_request *req = NULL;
1561         int handled = 0;
1562
1563         /* This is a bit brutal, we can probably do better */
1564         spin_lock_irqsave(&pmu_lock, flags);
1565         ++disable_poll;
1566         
1567         for (;;) {
1568                 intr = in_8(&via[IFR]) & (SR_INT | CB1_INT);
1569                 if (intr == 0)
1570                         break;
1571                 handled = 1;
1572                 if (++nloop > 1000) {
1573                         printk(KERN_DEBUG "PMU: stuck in intr loop, "
1574                                "intr=%x, ier=%x pmu_state=%d\n",
1575                                intr, in_8(&via[IER]), pmu_state);
1576                         break;
1577                 }
1578                 out_8(&via[IFR], intr);
1579                 if (intr & CB1_INT) {
1580                         adb_int_pending = 1;
1581                         pmu_irq_stats[0]++;
1582                 }
1583                 if (intr & SR_INT) {
1584                         req = pmu_sr_intr(regs);
1585                         if (req)
1586                                 break;
1587                 }
1588         }
1589
1590 recheck:
1591         if (pmu_state == idle) {
1592                 if (adb_int_pending) {
1593                         if (int_data_state[0] == int_data_empty)
1594                                 int_data_last = 0;
1595                         else if (int_data_state[1] == int_data_empty)
1596                                 int_data_last = 1;
1597                         else
1598                                 goto no_free_slot;
1599                         pmu_state = intack;
1600                         int_data_state[int_data_last] = int_data_fill;
1601                         /* Sounds safer to make sure ACK is high before writing.
1602                          * This helped kill a problem with ADB and some iBooks
1603                          */
1604                         wait_for_ack();
1605                         send_byte(PMU_INT_ACK);
1606                         adb_int_pending = 0;
1607                 } else if (current_req)
1608                         pmu_start();
1609         }
1610 no_free_slot:                   
1611         /* Mark the oldest buffer for flushing */
1612         if (int_data_state[!int_data_last] == int_data_ready) {
1613                 int_data_state[!int_data_last] = int_data_flush;
1614                 int_data = !int_data_last;
1615         } else if (int_data_state[int_data_last] == int_data_ready) {
1616                 int_data_state[int_data_last] = int_data_flush;
1617                 int_data = int_data_last;
1618         }
1619         --disable_poll;
1620         spin_unlock_irqrestore(&pmu_lock, flags);
1621
1622         /* Deal with completed PMU requests outside of the lock */
1623         if (req) {
1624                 pmu_done(req);
1625                 req = NULL;
1626         }
1627                 
1628         /* Deal with interrupt datas outside of the lock */
1629         if (int_data >= 0) {
1630                 pmu_handle_data(interrupt_data[int_data], interrupt_data_len[int_data], regs);
1631                 spin_lock_irqsave(&pmu_lock, flags);
1632                 ++disable_poll;
1633                 int_data_state[int_data] = int_data_empty;
1634                 int_data = -1;
1635                 goto recheck;
1636         }
1637
1638         return IRQ_RETVAL(handled);
1639 }
1640
1641 void
1642 pmu_unlock(void)
1643 {
1644         unsigned long flags;
1645
1646         spin_lock_irqsave(&pmu_lock, flags);
1647         if (pmu_state == locked)
1648                 pmu_state = idle;
1649         adb_int_pending = 1;
1650         spin_unlock_irqrestore(&pmu_lock, flags);
1651 }
1652
1653
1654 static irqreturn_t
1655 gpio1_interrupt(int irq, void *arg, struct pt_regs *regs)
1656 {
1657         unsigned long flags;
1658
1659         if ((in_8(gpio_reg + 0x9) & 0x02) == 0) {
1660                 spin_lock_irqsave(&pmu_lock, flags);
1661                 if (gpio_irq_enabled > 0) {
1662                         disable_irq_nosync(gpio_irq);
1663                         gpio_irq_enabled = 0;
1664                 }
1665                 pmu_irq_stats[1]++;
1666                 adb_int_pending = 1;
1667                 spin_unlock_irqrestore(&pmu_lock, flags);
1668                 via_pmu_interrupt(0, NULL, NULL);
1669                 return IRQ_HANDLED;
1670         }
1671         return IRQ_NONE;
1672 }
1673
1674 #ifdef CONFIG_PMAC_BACKLIGHT
1675 static int backlight_to_bright[] = {
1676         0x7f, 0x46, 0x42, 0x3e, 0x3a, 0x36, 0x32, 0x2e,
1677         0x2a, 0x26, 0x22, 0x1e, 0x1a, 0x16, 0x12, 0x0e
1678 };
1679  
1680 static int
1681 pmu_set_backlight_enable(int on, int level, void* data)
1682 {
1683         struct adb_request req;
1684         
1685         if (vias == NULL)
1686                 return -ENODEV;
1687
1688         if (on) {
1689                 pmu_request(&req, NULL, 2, PMU_BACKLIGHT_BRIGHT,
1690                             backlight_to_bright[level]);
1691                 pmu_wait_complete(&req);
1692         }
1693         pmu_request(&req, NULL, 2, PMU_POWER_CTRL,
1694                     PMU_POW_BACKLIGHT | (on ? PMU_POW_ON : PMU_POW_OFF));
1695         pmu_wait_complete(&req);
1696
1697         return 0;
1698 }
1699
1700 static void
1701 pmu_bright_complete(struct adb_request *req)
1702 {
1703         if (req == &bright_req_1)
1704                 clear_bit(1, &async_req_locks);
1705         if (req == &bright_req_2)
1706                 clear_bit(2, &async_req_locks);
1707 }
1708
1709 static int
1710 pmu_set_backlight_level(int level, void* data)
1711 {
1712         if (vias == NULL)
1713                 return -ENODEV;
1714
1715         if (test_and_set_bit(1, &async_req_locks))
1716                 return -EAGAIN;
1717         pmu_request(&bright_req_1, pmu_bright_complete, 2, PMU_BACKLIGHT_BRIGHT,
1718                 backlight_to_bright[level]);
1719         if (test_and_set_bit(2, &async_req_locks))
1720                 return -EAGAIN;
1721         pmu_request(&bright_req_2, pmu_bright_complete, 2, PMU_POWER_CTRL,
1722                     PMU_POW_BACKLIGHT | (level > BACKLIGHT_OFF ?
1723                                          PMU_POW_ON : PMU_POW_OFF));
1724
1725         return 0;
1726 }
1727 #endif /* CONFIG_PMAC_BACKLIGHT */
1728
1729 void
1730 pmu_enable_irled(int on)
1731 {
1732         struct adb_request req;
1733
1734         if (vias == NULL)
1735                 return ;
1736         if (pmu_kind == PMU_KEYLARGO_BASED)
1737                 return ;
1738
1739         pmu_request(&req, NULL, 2, PMU_POWER_CTRL, PMU_POW_IRLED |
1740             (on ? PMU_POW_ON : PMU_POW_OFF));
1741         pmu_wait_complete(&req);
1742 }
1743
1744 void
1745 pmu_restart(void)
1746 {
1747         struct adb_request req;
1748
1749         if (via == NULL)
1750                 return;
1751
1752         local_irq_disable();
1753
1754         drop_interrupts = 1;
1755         
1756         if (pmu_kind != PMU_KEYLARGO_BASED) {
1757                 pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, PMU_INT_ADB |
1758                                                 PMU_INT_TICK );
1759                 while(!req.complete)
1760                         pmu_poll();
1761         }
1762
1763         pmu_request(&req, NULL, 1, PMU_RESET);
1764         pmu_wait_complete(&req);
1765         for (;;)
1766                 ;
1767 }
1768
1769 void
1770 pmu_shutdown(void)
1771 {
1772         struct adb_request req;
1773
1774         if (via == NULL)
1775                 return;
1776
1777         local_irq_disable();
1778
1779         drop_interrupts = 1;
1780
1781         if (pmu_kind != PMU_KEYLARGO_BASED) {
1782                 pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, PMU_INT_ADB |
1783                                                 PMU_INT_TICK );
1784                 pmu_wait_complete(&req);
1785         } else {
1786                 /* Disable server mode on shutdown or we'll just
1787                  * wake up again
1788                  */
1789                 pmu_set_server_mode(0);
1790         }
1791
1792         pmu_request(&req, NULL, 5, PMU_SHUTDOWN,
1793                     'M', 'A', 'T', 'T');
1794         pmu_wait_complete(&req);
1795         for (;;)
1796                 ;
1797 }
1798
1799 int
1800 pmu_present(void)
1801 {
1802         return via != 0;
1803 }
1804
1805 struct pmu_i2c_hdr {
1806         u8      bus;
1807         u8      mode;
1808         u8      bus2;
1809         u8      address;
1810         u8      sub_addr;
1811         u8      comb_addr;
1812         u8      count;
1813 };
1814
1815 int
1816 pmu_i2c_combined_read(int bus, int addr, int subaddr,  u8* data, int len)
1817 {
1818         struct adb_request      req;
1819         struct pmu_i2c_hdr      *hdr = (struct pmu_i2c_hdr *)&req.data[1];
1820         int retry;
1821         int rc;
1822
1823         for (retry=0; retry<16; retry++) {
1824                 memset(&req, 0, sizeof(req));
1825
1826                 hdr->bus = bus;
1827                 hdr->address = addr & 0xfe;
1828                 hdr->mode = PMU_I2C_MODE_COMBINED;
1829                 hdr->bus2 = 0;
1830                 hdr->sub_addr = subaddr;
1831                 hdr->comb_addr = addr | 1;
1832                 hdr->count = len;
1833                 
1834                 req.nbytes = sizeof(struct pmu_i2c_hdr) + 1;
1835                 req.reply_expected = 0;
1836                 req.reply_len = 0;
1837                 req.data[0] = PMU_I2C_CMD;
1838                 req.reply[0] = 0xff;
1839                 rc = pmu_queue_request(&req);
1840                 if (rc)
1841                         return rc;
1842                 while(!req.complete)
1843                         pmu_poll();
1844                 if (req.reply[0] == PMU_I2C_STATUS_OK)
1845                         break;
1846                 mdelay(15);
1847         }
1848         if (req.reply[0] != PMU_I2C_STATUS_OK)
1849                 return -1;
1850
1851         for (retry=0; retry<16; retry++) {
1852                 memset(&req, 0, sizeof(req));
1853
1854                 mdelay(15);
1855
1856                 hdr->bus = PMU_I2C_BUS_STATUS;
1857                 req.reply[0] = 0xff;
1858                 
1859                 req.nbytes = 2;
1860                 req.reply_expected = 0;
1861                 req.reply_len = 0;
1862                 req.data[0] = PMU_I2C_CMD;
1863                 rc = pmu_queue_request(&req);
1864                 if (rc)
1865                         return rc;
1866                 while(!req.complete)
1867                         pmu_poll();
1868                 if (req.reply[0] == PMU_I2C_STATUS_DATAREAD) {
1869                         memcpy(data, &req.reply[1], req.reply_len - 1);
1870                         return req.reply_len - 1;
1871                 }
1872         }
1873         return -1;
1874 }
1875
1876 int
1877 pmu_i2c_stdsub_write(int bus, int addr, int subaddr,  u8* data, int len)
1878 {
1879         struct adb_request      req;
1880         struct pmu_i2c_hdr      *hdr = (struct pmu_i2c_hdr *)&req.data[1];
1881         int retry;
1882         int rc;
1883
1884         for (retry=0; retry<16; retry++) {
1885                 memset(&req, 0, sizeof(req));
1886
1887                 hdr->bus = bus;
1888                 hdr->address = addr & 0xfe;
1889                 hdr->mode = PMU_I2C_MODE_STDSUB;
1890                 hdr->bus2 = 0;
1891                 hdr->sub_addr = subaddr;
1892                 hdr->comb_addr = addr & 0xfe;
1893                 hdr->count = len;
1894
1895                 req.data[0] = PMU_I2C_CMD;
1896                 memcpy(&req.data[sizeof(struct pmu_i2c_hdr) + 1], data, len);
1897                 req.nbytes = sizeof(struct pmu_i2c_hdr) + len + 1;
1898                 req.reply_expected = 0;
1899                 req.reply_len = 0;
1900                 req.reply[0] = 0xff;
1901                 rc = pmu_queue_request(&req);
1902                 if (rc)
1903                         return rc;
1904                 while(!req.complete)
1905                         pmu_poll();
1906                 if (req.reply[0] == PMU_I2C_STATUS_OK)
1907                         break;
1908                 mdelay(15);
1909         }
1910         if (req.reply[0] != PMU_I2C_STATUS_OK)
1911                 return -1;
1912
1913         for (retry=0; retry<16; retry++) {
1914                 memset(&req, 0, sizeof(req));
1915
1916                 mdelay(15);
1917
1918                 hdr->bus = PMU_I2C_BUS_STATUS;
1919                 req.reply[0] = 0xff;
1920                 
1921                 req.nbytes = 2;
1922                 req.reply_expected = 0;
1923                 req.reply_len = 0;
1924                 req.data[0] = PMU_I2C_CMD;
1925                 rc = pmu_queue_request(&req);
1926                 if (rc)
1927                         return rc;
1928                 while(!req.complete)
1929                         pmu_poll();
1930                 if (req.reply[0] == PMU_I2C_STATUS_OK)
1931                         return len;
1932         }
1933         return -1;
1934 }
1935
1936 int
1937 pmu_i2c_simple_read(int bus, int addr,  u8* data, int len)
1938 {
1939         struct adb_request      req;
1940         struct pmu_i2c_hdr      *hdr = (struct pmu_i2c_hdr *)&req.data[1];
1941         int retry;
1942         int rc;
1943
1944         for (retry=0; retry<16; retry++) {
1945                 memset(&req, 0, sizeof(req));
1946
1947                 hdr->bus = bus;
1948                 hdr->address = addr | 1;
1949                 hdr->mode = PMU_I2C_MODE_SIMPLE;
1950                 hdr->bus2 = 0;
1951                 hdr->sub_addr = 0;
1952                 hdr->comb_addr = 0;
1953                 hdr->count = len;
1954
1955                 req.data[0] = PMU_I2C_CMD;
1956                 req.nbytes = sizeof(struct pmu_i2c_hdr) + 1;
1957                 req.reply_expected = 0;
1958                 req.reply_len = 0;
1959                 req.reply[0] = 0xff;
1960                 rc = pmu_queue_request(&req);
1961                 if (rc)
1962                         return rc;
1963                 while(!req.complete)
1964                         pmu_poll();
1965                 if (req.reply[0] == PMU_I2C_STATUS_OK)
1966                         break;
1967                 mdelay(15);
1968         }
1969         if (req.reply[0] != PMU_I2C_STATUS_OK)
1970                 return -1;
1971
1972         for (retry=0; retry<16; retry++) {
1973                 memset(&req, 0, sizeof(req));
1974
1975                 mdelay(15);
1976
1977                 hdr->bus = PMU_I2C_BUS_STATUS;
1978                 req.reply[0] = 0xff;
1979                 
1980                 req.nbytes = 2;
1981                 req.reply_expected = 0;
1982                 req.reply_len = 0;
1983                 req.data[0] = PMU_I2C_CMD;
1984                 rc = pmu_queue_request(&req);
1985                 if (rc)
1986                         return rc;
1987                 while(!req.complete)
1988                         pmu_poll();
1989                 if (req.reply[0] == PMU_I2C_STATUS_DATAREAD) {
1990                         memcpy(data, &req.reply[1], req.reply_len - 1);
1991                         return req.reply_len - 1;
1992                 }
1993         }
1994         return -1;
1995 }
1996
1997 int
1998 pmu_i2c_simple_write(int bus, int addr,  u8* data, int len)
1999 {
2000         struct adb_request      req;
2001         struct pmu_i2c_hdr      *hdr = (struct pmu_i2c_hdr *)&req.data[1];
2002         int retry;
2003         int rc;
2004
2005         for (retry=0; retry<16; retry++) {
2006                 memset(&req, 0, sizeof(req));
2007
2008                 hdr->bus = bus;
2009                 hdr->address = addr & 0xfe;
2010                 hdr->mode = PMU_I2C_MODE_SIMPLE;
2011                 hdr->bus2 = 0;
2012                 hdr->sub_addr = 0;
2013                 hdr->comb_addr = 0;
2014                 hdr->count = len;
2015
2016                 req.data[0] = PMU_I2C_CMD;
2017                 memcpy(&req.data[sizeof(struct pmu_i2c_hdr) + 1], data, len);
2018                 req.nbytes = sizeof(struct pmu_i2c_hdr) + len + 1;
2019                 req.reply_expected = 0;
2020                 req.reply_len = 0;
2021                 req.reply[0] = 0xff;
2022                 rc = pmu_queue_request(&req);
2023                 if (rc)
2024                         return rc;
2025                 while(!req.complete)
2026                         pmu_poll();
2027                 if (req.reply[0] == PMU_I2C_STATUS_OK)
2028                         break;
2029                 mdelay(15);
2030         }
2031         if (req.reply[0] != PMU_I2C_STATUS_OK)
2032                 return -1;
2033
2034         for (retry=0; retry<16; retry++) {
2035                 memset(&req, 0, sizeof(req));
2036
2037                 mdelay(15);
2038
2039                 hdr->bus = PMU_I2C_BUS_STATUS;
2040                 req.reply[0] = 0xff;
2041                 
2042                 req.nbytes = 2;
2043                 req.reply_expected = 0;
2044                 req.reply_len = 0;
2045                 req.data[0] = PMU_I2C_CMD;
2046                 rc = pmu_queue_request(&req);
2047                 if (rc)
2048                         return rc;
2049                 while(!req.complete)
2050                         pmu_poll();
2051                 if (req.reply[0] == PMU_I2C_STATUS_OK)
2052                         return len;
2053         }
2054         return -1;
2055 }
2056
2057 #ifdef CONFIG_PM
2058
2059 static LIST_HEAD(sleep_notifiers);
2060
2061 int
2062 pmu_register_sleep_notifier(struct pmu_sleep_notifier *n)
2063 {
2064         struct list_head *list;
2065         struct pmu_sleep_notifier *notifier;
2066
2067         for (list = sleep_notifiers.next; list != &sleep_notifiers;
2068              list = list->next) {
2069                 notifier = list_entry(list, struct pmu_sleep_notifier, list);
2070                 if (n->priority > notifier->priority)
2071                         break;
2072         }
2073         __list_add(&n->list, list->prev, list);
2074         return 0;
2075 }
2076 EXPORT_SYMBOL(pmu_register_sleep_notifier);
2077
2078 int
2079 pmu_unregister_sleep_notifier(struct pmu_sleep_notifier* n)
2080 {
2081         if (n->list.next == 0)
2082                 return -ENOENT;
2083         list_del(&n->list);
2084         n->list.next = NULL;
2085         return 0;
2086 }
2087 EXPORT_SYMBOL(pmu_unregister_sleep_notifier);
2088 #endif /* CONFIG_PM */
2089
2090 #if defined(CONFIG_PM) && defined(CONFIG_PPC32)
2091
2092 /* Sleep is broadcast last-to-first */
2093 static int
2094 broadcast_sleep(int when, int fallback)
2095 {
2096         int ret = PBOOK_SLEEP_OK;
2097         struct list_head *list;
2098         struct pmu_sleep_notifier *notifier;
2099
2100         for (list = sleep_notifiers.prev; list != &sleep_notifiers;
2101              list = list->prev) {
2102                 notifier = list_entry(list, struct pmu_sleep_notifier, list);
2103                 ret = notifier->notifier_call(notifier, when);
2104                 if (ret != PBOOK_SLEEP_OK) {
2105                         printk(KERN_DEBUG "sleep %d rejected by %p (%p)\n",
2106                                when, notifier, notifier->notifier_call);
2107                         for (; list != &sleep_notifiers; list = list->next) {
2108                                 notifier = list_entry(list, struct pmu_sleep_notifier, list);
2109                                 notifier->notifier_call(notifier, fallback);
2110                         }
2111                         return ret;
2112                 }
2113         }
2114         return ret;
2115 }
2116
2117 /* Wake is broadcast first-to-last */
2118 static int
2119 broadcast_wake(void)
2120 {
2121         int ret = PBOOK_SLEEP_OK;
2122         struct list_head *list;
2123         struct pmu_sleep_notifier *notifier;
2124
2125         for (list = sleep_notifiers.next; list != &sleep_notifiers;
2126              list = list->next) {
2127                 notifier = list_entry(list, struct pmu_sleep_notifier, list);
2128                 notifier->notifier_call(notifier, PBOOK_WAKE);
2129         }
2130         return ret;
2131 }
2132
2133 /*
2134  * This struct is used to store config register values for
2135  * PCI devices which may get powered off when we sleep.
2136  */
2137 static struct pci_save {
2138 #ifndef HACKED_PCI_SAVE
2139         u16     command;
2140         u16     cache_lat;
2141         u16     intr;
2142         u32     rom_address;
2143 #else
2144         u32     config[16];
2145 #endif  
2146 } *pbook_pci_saves;
2147 static int pbook_npci_saves;
2148
2149 static void
2150 pbook_alloc_pci_save(void)
2151 {
2152         int npci;
2153         struct pci_dev *pd = NULL;
2154
2155         npci = 0;
2156         while ((pd = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pd)) != NULL) {
2157                 ++npci;
2158         }
2159         if (npci == 0)
2160                 return;
2161         pbook_pci_saves = (struct pci_save *)
2162                 kmalloc(npci * sizeof(struct pci_save), GFP_KERNEL);
2163         pbook_npci_saves = npci;
2164 }
2165
2166 static void
2167 pbook_free_pci_save(void)
2168 {
2169         if (pbook_pci_saves == NULL)
2170                 return;
2171         kfree(pbook_pci_saves);
2172         pbook_pci_saves = NULL;
2173         pbook_npci_saves = 0;
2174 }
2175
2176 static void
2177 pbook_pci_save(void)
2178 {
2179         struct pci_save *ps = pbook_pci_saves;
2180         struct pci_dev *pd = NULL;
2181         int npci = pbook_npci_saves;
2182         
2183         if (ps == NULL)
2184                 return;
2185
2186         while ((pd = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pd)) != NULL) {
2187                 if (npci-- == 0)
2188                         return;
2189 #ifndef HACKED_PCI_SAVE
2190                 pci_read_config_word(pd, PCI_COMMAND, &ps->command);
2191                 pci_read_config_word(pd, PCI_CACHE_LINE_SIZE, &ps->cache_lat);
2192                 pci_read_config_word(pd, PCI_INTERRUPT_LINE, &ps->intr);
2193                 pci_read_config_dword(pd, PCI_ROM_ADDRESS, &ps->rom_address);
2194 #else
2195                 int i;
2196                 for (i=1;i<16;i++)
2197                         pci_read_config_dword(pd, i<<4, &ps->config[i]);
2198 #endif
2199                 ++ps;
2200         }
2201 }
2202
2203 /* For this to work, we must take care of a few things: If gmac was enabled
2204  * during boot, it will be in the pci dev list. If it's disabled at this point
2205  * (and it will probably be), then you can't access it's config space.
2206  */
2207 static void
2208 pbook_pci_restore(void)
2209 {
2210         u16 cmd;
2211         struct pci_save *ps = pbook_pci_saves - 1;
2212         struct pci_dev *pd = NULL;
2213         int npci = pbook_npci_saves;
2214         int j;
2215
2216         while ((pd = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pd)) != NULL) {
2217 #ifdef HACKED_PCI_SAVE
2218                 int i;
2219                 if (npci-- == 0)
2220                         return;
2221                 ps++;
2222                 for (i=2;i<16;i++)
2223                         pci_write_config_dword(pd, i<<4, ps->config[i]);
2224                 pci_write_config_dword(pd, 4, ps->config[1]);
2225 #else
2226                 if (npci-- == 0)
2227                         return;
2228                 ps++;
2229                 if (ps->command == 0)
2230                         continue;
2231                 pci_read_config_word(pd, PCI_COMMAND, &cmd);
2232                 if ((ps->command & ~cmd) == 0)
2233                         continue;
2234                 switch (pd->hdr_type) {
2235                 case PCI_HEADER_TYPE_NORMAL:
2236                         for (j = 0; j < 6; ++j)
2237                                 pci_write_config_dword(pd,
2238                                         PCI_BASE_ADDRESS_0 + j*4,
2239                                         pd->resource[j].start);
2240                         pci_write_config_dword(pd, PCI_ROM_ADDRESS,
2241                                 ps->rom_address);
2242                         pci_write_config_word(pd, PCI_CACHE_LINE_SIZE,
2243                                 ps->cache_lat);
2244                         pci_write_config_word(pd, PCI_INTERRUPT_LINE,
2245                                 ps->intr);
2246                         pci_write_config_word(pd, PCI_COMMAND, ps->command);
2247                         break;
2248                 }
2249 #endif  
2250         }
2251 }
2252
2253 #ifdef DEBUG_SLEEP
2254 /* N.B. This doesn't work on the 3400 */
2255 void 
2256 pmu_blink(int n)
2257 {
2258         struct adb_request req;
2259
2260         memset(&req, 0, sizeof(req));
2261
2262         for (; n > 0; --n) {
2263                 req.nbytes = 4;
2264                 req.done = NULL;
2265                 req.data[0] = 0xee;
2266                 req.data[1] = 4;
2267                 req.data[2] = 0;
2268                 req.data[3] = 1;
2269                 req.reply[0] = ADB_RET_OK;
2270                 req.reply_len = 1;
2271                 req.reply_expected = 0;
2272                 pmu_polled_request(&req);
2273                 mdelay(50);
2274                 req.nbytes = 4;
2275                 req.done = NULL;
2276                 req.data[0] = 0xee;
2277                 req.data[1] = 4;
2278                 req.data[2] = 0;
2279                 req.data[3] = 0;
2280                 req.reply[0] = ADB_RET_OK;
2281                 req.reply_len = 1;
2282                 req.reply_expected = 0;
2283                 pmu_polled_request(&req);
2284                 mdelay(50);
2285         }
2286         mdelay(50);
2287 }
2288 #endif
2289
2290 /*
2291  * Put the powerbook to sleep.
2292  */
2293  
2294 static u32 save_via[8];
2295
2296 static void
2297 save_via_state(void)
2298 {
2299         save_via[0] = in_8(&via[ANH]);
2300         save_via[1] = in_8(&via[DIRA]);
2301         save_via[2] = in_8(&via[B]);
2302         save_via[3] = in_8(&via[DIRB]);
2303         save_via[4] = in_8(&via[PCR]);
2304         save_via[5] = in_8(&via[ACR]);
2305         save_via[6] = in_8(&via[T1CL]);
2306         save_via[7] = in_8(&via[T1CH]);
2307 }
2308 static void
2309 restore_via_state(void)
2310 {
2311         out_8(&via[ANH], save_via[0]);
2312         out_8(&via[DIRA], save_via[1]);
2313         out_8(&via[B], save_via[2]);
2314         out_8(&via[DIRB], save_via[3]);
2315         out_8(&via[PCR], save_via[4]);
2316         out_8(&via[ACR], save_via[5]);
2317         out_8(&via[T1CL], save_via[6]);
2318         out_8(&via[T1CH], save_via[7]);
2319         out_8(&via[IER], IER_CLR | 0x7f);       /* disable all intrs */
2320         out_8(&via[IFR], 0x7f);                         /* clear IFR */
2321         out_8(&via[IER], IER_SET | SR_INT | CB1_INT);
2322 }
2323
2324 static int
2325 pmac_suspend_devices(void)
2326 {
2327         int ret;
2328
2329         pm_prepare_console();
2330         
2331         /* Notify old-style device drivers & userland */
2332         ret = broadcast_sleep(PBOOK_SLEEP_REQUEST, PBOOK_SLEEP_REJECT);
2333         if (ret != PBOOK_SLEEP_OK) {
2334                 printk(KERN_ERR "Sleep rejected by drivers\n");
2335                 return -EBUSY;
2336         }
2337
2338         /* Sync the disks. */
2339         /* XXX It would be nice to have some way to ensure that
2340          * nobody is dirtying any new buffers while we wait. That
2341          * could be achieved using the refrigerator for processes
2342          * that swsusp uses
2343          */
2344         sys_sync();
2345
2346         /* Sleep can fail now. May not be very robust but useful for debugging */
2347         ret = broadcast_sleep(PBOOK_SLEEP_NOW, PBOOK_WAKE);
2348         if (ret != PBOOK_SLEEP_OK) {
2349                 printk(KERN_ERR "Driver sleep failed\n");
2350                 return -EBUSY;
2351         }
2352
2353         /* Send suspend call to devices, hold the device core's dpm_sem */
2354         ret = device_suspend(PMSG_SUSPEND);
2355         if (ret) {
2356                 broadcast_wake();
2357                 printk(KERN_ERR "Driver sleep failed\n");
2358                 return -EBUSY;
2359         }
2360
2361         /* Disable clock spreading on some machines */
2362         pmac_tweak_clock_spreading(0);
2363
2364         /* Stop preemption */
2365         preempt_disable();
2366
2367         /* Make sure the decrementer won't interrupt us */
2368         asm volatile("mtdec %0" : : "r" (0x7fffffff));
2369         /* Make sure any pending DEC interrupt occurring while we did
2370          * the above didn't re-enable the DEC */
2371         mb();
2372         asm volatile("mtdec %0" : : "r" (0x7fffffff));
2373
2374         /* We can now disable MSR_EE. This code of course works properly only
2375          * on UP machines... For SMP, if we ever implement sleep, we'll have to
2376          * stop the "other" CPUs way before we do all that stuff.
2377          */
2378         local_irq_disable();
2379
2380         /* Broadcast power down irq
2381          * This isn't that useful in most cases (only directly wired devices can
2382          * use this but still... This will take care of sysdev's as well, so
2383          * we exit from here with local irqs disabled and PIC off.
2384          */
2385         ret = device_power_down(PMSG_SUSPEND);
2386         if (ret) {
2387                 wakeup_decrementer();
2388                 local_irq_enable();
2389                 preempt_enable();
2390                 device_resume();
2391                 broadcast_wake();
2392                 printk(KERN_ERR "Driver powerdown failed\n");
2393                 return -EBUSY;
2394         }
2395
2396         /* Wait for completion of async backlight requests */
2397         while (!bright_req_1.complete || !bright_req_2.complete ||
2398                         !batt_req.complete)
2399                 pmu_poll();
2400
2401         /* Giveup the lazy FPU & vec so we don't have to back them
2402          * up from the low level code
2403          */
2404         enable_kernel_fp();
2405
2406 #ifdef CONFIG_ALTIVEC
2407         if (cpu_has_feature(CPU_FTR_ALTIVEC))
2408                 enable_kernel_altivec();
2409 #endif /* CONFIG_ALTIVEC */
2410
2411         return 0;
2412 }
2413
2414 static int
2415 pmac_wakeup_devices(void)
2416 {
2417         mdelay(100);
2418
2419         /* Power back up system devices (including the PIC) */
2420         device_power_up();
2421
2422         /* Force a poll of ADB interrupts */
2423         adb_int_pending = 1;
2424         via_pmu_interrupt(0, NULL, NULL);
2425
2426         /* Restart jiffies & scheduling */
2427         wakeup_decrementer();
2428
2429         /* Re-enable local CPU interrupts */
2430         local_irq_enable();
2431         mdelay(10);
2432         preempt_enable();
2433
2434         /* Re-enable clock spreading on some machines */
2435         pmac_tweak_clock_spreading(1);
2436
2437         /* Resume devices */
2438         device_resume();
2439
2440         /* Notify old style drivers */
2441         broadcast_wake();
2442
2443         pm_restore_console();
2444
2445         return 0;
2446 }
2447
2448 #define GRACKLE_PM      (1<<7)
2449 #define GRACKLE_DOZE    (1<<5)
2450 #define GRACKLE_NAP     (1<<4)
2451 #define GRACKLE_SLEEP   (1<<3)
2452
2453 int
2454 powerbook_sleep_grackle(void)
2455 {
2456         unsigned long save_l2cr;
2457         unsigned short pmcr1;
2458         struct adb_request req;
2459         int ret;
2460         struct pci_dev *grackle;
2461
2462         grackle = pci_find_slot(0, 0);
2463         if (!grackle)
2464                 return -ENODEV;
2465
2466         ret = pmac_suspend_devices();
2467         if (ret) {
2468                 printk(KERN_ERR "Sleep rejected by devices\n");
2469                 return ret;
2470         }
2471         
2472         /* Turn off various things. Darwin does some retry tests here... */
2473         pmu_request(&req, NULL, 2, PMU_POWER_CTRL0, PMU_POW0_OFF|PMU_POW0_HARD_DRIVE);
2474         pmu_wait_complete(&req);
2475         pmu_request(&req, NULL, 2, PMU_POWER_CTRL,
2476                 PMU_POW_OFF|PMU_POW_BACKLIGHT|PMU_POW_IRLED|PMU_POW_MEDIABAY);
2477         pmu_wait_complete(&req);
2478
2479         /* For 750, save backside cache setting and disable it */
2480         save_l2cr = _get_L2CR();        /* (returns -1 if not available) */
2481
2482         if (!__fake_sleep) {
2483                 /* Ask the PMU to put us to sleep */
2484                 pmu_request(&req, NULL, 5, PMU_SLEEP, 'M', 'A', 'T', 'T');
2485                 pmu_wait_complete(&req);
2486         }
2487
2488         /* The VIA is supposed not to be restored correctly*/
2489         save_via_state();
2490         /* We shut down some HW */
2491         pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,1);
2492
2493         pci_read_config_word(grackle, 0x70, &pmcr1);
2494         /* Apparently, MacOS uses NAP mode for Grackle ??? */
2495         pmcr1 &= ~(GRACKLE_DOZE|GRACKLE_SLEEP); 
2496         pmcr1 |= GRACKLE_PM|GRACKLE_NAP;
2497         pci_write_config_word(grackle, 0x70, pmcr1);
2498
2499         /* Call low-level ASM sleep handler */
2500         if (__fake_sleep)
2501                 mdelay(5000);
2502         else
2503                 low_sleep_handler();
2504
2505         /* We're awake again, stop grackle PM */
2506         pci_read_config_word(grackle, 0x70, &pmcr1);
2507         pmcr1 &= ~(GRACKLE_PM|GRACKLE_DOZE|GRACKLE_SLEEP|GRACKLE_NAP); 
2508         pci_write_config_word(grackle, 0x70, pmcr1);
2509
2510         /* Make sure the PMU is idle */
2511         pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,0);
2512         restore_via_state();
2513         
2514         /* Restore L2 cache */
2515         if (save_l2cr != 0xffffffff && (save_l2cr & L2CR_L2E) != 0)
2516                 _set_L2CR(save_l2cr);
2517         
2518         /* Restore userland MMU context */
2519         set_context(current->active_mm->context, current->active_mm->pgd);
2520
2521         /* Power things up */
2522         pmu_unlock();
2523         pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask);
2524         pmu_wait_complete(&req);
2525         pmu_request(&req, NULL, 2, PMU_POWER_CTRL0,
2526                         PMU_POW0_ON|PMU_POW0_HARD_DRIVE);
2527         pmu_wait_complete(&req);
2528         pmu_request(&req, NULL, 2, PMU_POWER_CTRL,
2529                         PMU_POW_ON|PMU_POW_BACKLIGHT|PMU_POW_CHARGER|PMU_POW_IRLED|PMU_POW_MEDIABAY);
2530         pmu_wait_complete(&req);
2531
2532         pmac_wakeup_devices();
2533
2534         return 0;
2535 }
2536
2537 static int
2538 powerbook_sleep_Core99(void)
2539 {
2540         unsigned long save_l2cr;
2541         unsigned long save_l3cr;
2542         struct adb_request req;
2543         int ret;
2544         
2545         if (pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) < 0) {
2546                 printk(KERN_ERR "Sleep mode not supported on this machine\n");
2547                 return -ENOSYS;
2548         }
2549
2550         if (num_online_cpus() > 1 || cpu_is_offline(0))
2551                 return -EAGAIN;
2552
2553         ret = pmac_suspend_devices();
2554         if (ret) {
2555                 printk(KERN_ERR "Sleep rejected by devices\n");
2556                 return ret;
2557         }
2558
2559         /* Stop environment and ADB interrupts */
2560         pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, 0);
2561         pmu_wait_complete(&req);
2562
2563         /* Tell PMU what events will wake us up */
2564         pmu_request(&req, NULL, 4, PMU_POWER_EVENTS, PMU_PWR_CLR_WAKEUP_EVENTS,
2565                 0xff, 0xff);
2566         pmu_wait_complete(&req);
2567         pmu_request(&req, NULL, 4, PMU_POWER_EVENTS, PMU_PWR_SET_WAKEUP_EVENTS,
2568                 0, PMU_PWR_WAKEUP_KEY |
2569                 (option_lid_wakeup ? PMU_PWR_WAKEUP_LID_OPEN : 0));
2570         pmu_wait_complete(&req);
2571
2572         /* Save the state of the L2 and L3 caches */
2573         save_l3cr = _get_L3CR();        /* (returns -1 if not available) */
2574         save_l2cr = _get_L2CR();        /* (returns -1 if not available) */
2575
2576         if (!__fake_sleep) {
2577                 /* Ask the PMU to put us to sleep */
2578                 pmu_request(&req, NULL, 5, PMU_SLEEP, 'M', 'A', 'T', 'T');
2579                 pmu_wait_complete(&req);
2580         }
2581
2582         /* The VIA is supposed not to be restored correctly*/
2583         save_via_state();
2584
2585         /* Shut down various ASICs. There's a chance that we can no longer
2586          * talk to the PMU after this, so I moved it to _after_ sending the
2587          * sleep command to it. Still need to be checked.
2588          */
2589         pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, 1);
2590
2591         /* Call low-level ASM sleep handler */
2592         if (__fake_sleep)
2593                 mdelay(5000);
2594         else
2595                 low_sleep_handler();
2596
2597         /* Restore Apple core ASICs state */
2598         pmac_call_feature(PMAC_FTR_SLEEP_STATE, NULL, 0, 0);
2599
2600         /* Restore VIA */
2601         restore_via_state();
2602
2603         /* tweak LPJ before cpufreq is there */
2604         loops_per_jiffy *= 2;
2605
2606         /* Restore video */
2607         pmac_call_early_video_resume();
2608
2609         /* Restore L2 cache */
2610         if (save_l2cr != 0xffffffff && (save_l2cr & L2CR_L2E) != 0)
2611                 _set_L2CR(save_l2cr);
2612         /* Restore L3 cache */
2613         if (save_l3cr != 0xffffffff && (save_l3cr & L3CR_L3E) != 0)
2614                 _set_L3CR(save_l3cr);
2615         
2616         /* Restore userland MMU context */
2617         set_context(current->active_mm->context, current->active_mm->pgd);
2618
2619         /* Tell PMU we are ready */
2620         pmu_unlock();
2621         pmu_request(&req, NULL, 2, PMU_SYSTEM_READY, 2);
2622         pmu_wait_complete(&req);
2623         pmu_request(&req, NULL, 2, PMU_SET_INTR_MASK, pmu_intr_mask);
2624         pmu_wait_complete(&req);
2625
2626         /* Restore LPJ, cpufreq will adjust the cpu frequency */
2627         loops_per_jiffy /= 2;
2628
2629         pmac_wakeup_devices();
2630
2631         return 0;
2632 }
2633
2634 #define PB3400_MEM_CTRL         0xf8000000
2635 #define PB3400_MEM_CTRL_SLEEP   0x70
2636
2637 static int
2638 powerbook_sleep_3400(void)
2639 {
2640         int ret, i, x;
2641         unsigned int hid0;
2642         unsigned long p;
2643         struct adb_request sleep_req;
2644         void __iomem *mem_ctrl;
2645         unsigned int __iomem *mem_ctrl_sleep;
2646
2647         /* first map in the memory controller registers */
2648         mem_ctrl = ioremap(PB3400_MEM_CTRL, 0x100);
2649         if (mem_ctrl == NULL) {
2650                 printk("powerbook_sleep_3400: ioremap failed\n");
2651                 return -ENOMEM;
2652         }
2653         mem_ctrl_sleep = mem_ctrl + PB3400_MEM_CTRL_SLEEP;
2654
2655         /* Allocate room for PCI save */
2656         pbook_alloc_pci_save();
2657
2658         ret = pmac_suspend_devices();
2659         if (ret) {
2660                 pbook_free_pci_save();
2661                 printk(KERN_ERR "Sleep rejected by devices\n");
2662                 return ret;
2663         }
2664
2665         /* Save the state of PCI config space for some slots */
2666         pbook_pci_save();
2667
2668         /* Set the memory controller to keep the memory refreshed
2669            while we're asleep */
2670         for (i = 0x403f; i >= 0x4000; --i) {
2671                 out_be32(mem_ctrl_sleep, i);
2672                 do {
2673                         x = (in_be32(mem_ctrl_sleep) >> 16) & 0x3ff;
2674                 } while (x == 0);
2675                 if (x >= 0x100)
2676                         break;
2677         }
2678
2679         /* Ask the PMU to put us to sleep */
2680         pmu_request(&sleep_req, NULL, 5, PMU_SLEEP, 'M', 'A', 'T', 'T');
2681         while (!sleep_req.complete)
2682                 mb();
2683
2684         pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,1);
2685
2686         /* displacement-flush the L2 cache - necessary? */
2687         for (p = KERNELBASE; p < KERNELBASE + 0x100000; p += 0x1000)
2688                 i = *(volatile int *)p;
2689         asleep = 1;
2690
2691         /* Put the CPU into sleep mode */
2692         hid0 = mfspr(SPRN_HID0);
2693         hid0 = (hid0 & ~(HID0_NAP | HID0_DOZE)) | HID0_SLEEP;
2694         mtspr(SPRN_HID0, hid0);
2695         mtmsr(mfmsr() | MSR_POW | MSR_EE);
2696         udelay(10);
2697
2698         /* OK, we're awake again, start restoring things */
2699         out_be32(mem_ctrl_sleep, 0x3f);
2700         pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,0);
2701         pbook_pci_restore();
2702         pmu_unlock();
2703
2704         /* wait for the PMU interrupt sequence to complete */
2705         while (asleep)
2706                 mb();
2707
2708         pmac_wakeup_devices();
2709         pbook_free_pci_save();
2710         iounmap(mem_ctrl);
2711
2712         return 0;
2713 }
2714
2715 #endif /* CONFIG_PM && CONFIG_PPC32 */
2716
2717 /*
2718  * Support for /dev/pmu device
2719  */
2720 #define RB_SIZE         0x10
2721 struct pmu_private {
2722         struct list_head list;
2723         int     rb_get;
2724         int     rb_put;
2725         struct rb_entry {
2726                 unsigned short len;
2727                 unsigned char data[16];
2728         }       rb_buf[RB_SIZE];
2729         wait_queue_head_t wait;
2730         spinlock_t lock;
2731 #if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT)
2732         int     backlight_locker;
2733 #endif /* defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT) */     
2734 };
2735
2736 static LIST_HEAD(all_pmu_pvt);
2737 static DEFINE_SPINLOCK(all_pvt_lock);
2738
2739 static void
2740 pmu_pass_intr(unsigned char *data, int len)
2741 {
2742         struct pmu_private *pp;
2743         struct list_head *list;
2744         int i;
2745         unsigned long flags;
2746
2747         if (len > sizeof(pp->rb_buf[0].data))
2748                 len = sizeof(pp->rb_buf[0].data);
2749         spin_lock_irqsave(&all_pvt_lock, flags);
2750         for (list = &all_pmu_pvt; (list = list->next) != &all_pmu_pvt; ) {
2751                 pp = list_entry(list, struct pmu_private, list);
2752                 spin_lock(&pp->lock);
2753                 i = pp->rb_put + 1;
2754                 if (i >= RB_SIZE)
2755                         i = 0;
2756                 if (i != pp->rb_get) {
2757                         struct rb_entry *rp = &pp->rb_buf[pp->rb_put];
2758                         rp->len = len;
2759                         memcpy(rp->data, data, len);
2760                         pp->rb_put = i;
2761                         wake_up_interruptible(&pp->wait);
2762                 }
2763                 spin_unlock(&pp->lock);
2764         }
2765         spin_unlock_irqrestore(&all_pvt_lock, flags);
2766 }
2767
2768 static int
2769 pmu_open(struct inode *inode, struct file *file)
2770 {
2771         struct pmu_private *pp;
2772         unsigned long flags;
2773
2774         pp = kmalloc(sizeof(struct pmu_private), GFP_KERNEL);
2775         if (pp == 0)
2776                 return -ENOMEM;
2777         pp->rb_get = pp->rb_put = 0;
2778         spin_lock_init(&pp->lock);
2779         init_waitqueue_head(&pp->wait);
2780         spin_lock_irqsave(&all_pvt_lock, flags);
2781 #if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT)
2782         pp->backlight_locker = 0;
2783 #endif /* defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT) */     
2784         list_add(&pp->list, &all_pmu_pvt);
2785         spin_unlock_irqrestore(&all_pvt_lock, flags);
2786         file->private_data = pp;
2787         return 0;
2788 }
2789
2790 static ssize_t 
2791 pmu_read(struct file *file, char __user *buf,
2792                         size_t count, loff_t *ppos)
2793 {
2794         struct pmu_private *pp = file->private_data;
2795         DECLARE_WAITQUEUE(wait, current);
2796         unsigned long flags;
2797         int ret = 0;
2798
2799         if (count < 1 || pp == 0)
2800                 return -EINVAL;
2801         if (!access_ok(VERIFY_WRITE, buf, count))
2802                 return -EFAULT;
2803
2804         spin_lock_irqsave(&pp->lock, flags);
2805         add_wait_queue(&pp->wait, &wait);
2806         current->state = TASK_INTERRUPTIBLE;
2807
2808         for (;;) {
2809                 ret = -EAGAIN;
2810                 if (pp->rb_get != pp->rb_put) {
2811                         int i = pp->rb_get;
2812                         struct rb_entry *rp = &pp->rb_buf[i];
2813                         ret = rp->len;
2814                         spin_unlock_irqrestore(&pp->lock, flags);
2815                         if (ret > count)
2816                                 ret = count;
2817                         if (ret > 0 && copy_to_user(buf, rp->data, ret))
2818                                 ret = -EFAULT;
2819                         if (++i >= RB_SIZE)
2820                                 i = 0;
2821                         spin_lock_irqsave(&pp->lock, flags);
2822                         pp->rb_get = i;
2823                 }
2824                 if (ret >= 0)
2825                         break;
2826                 if (file->f_flags & O_NONBLOCK)
2827                         break;
2828                 ret = -ERESTARTSYS;
2829                 if (signal_pending(current))
2830                         break;
2831                 spin_unlock_irqrestore(&pp->lock, flags);
2832                 schedule();
2833                 spin_lock_irqsave(&pp->lock, flags);
2834         }
2835         current->state = TASK_RUNNING;
2836         remove_wait_queue(&pp->wait, &wait);
2837         spin_unlock_irqrestore(&pp->lock, flags);
2838         
2839         return ret;
2840 }
2841
2842 static ssize_t
2843 pmu_write(struct file *file, const char __user *buf,
2844                          size_t count, loff_t *ppos)
2845 {
2846         return 0;
2847 }
2848
2849 static unsigned int
2850 pmu_fpoll(struct file *filp, poll_table *wait)
2851 {
2852         struct pmu_private *pp = filp->private_data;
2853         unsigned int mask = 0;
2854         unsigned long flags;
2855         
2856         if (pp == 0)
2857                 return 0;
2858         poll_wait(filp, &pp->wait, wait);
2859         spin_lock_irqsave(&pp->lock, flags);
2860         if (pp->rb_get != pp->rb_put)
2861                 mask |= POLLIN;
2862         spin_unlock_irqrestore(&pp->lock, flags);
2863         return mask;
2864 }
2865
2866 static int
2867 pmu_release(struct inode *inode, struct file *file)
2868 {
2869         struct pmu_private *pp = file->private_data;
2870         unsigned long flags;
2871
2872         lock_kernel();
2873         if (pp != 0) {
2874                 file->private_data = NULL;
2875                 spin_lock_irqsave(&all_pvt_lock, flags);
2876                 list_del(&pp->list);
2877                 spin_unlock_irqrestore(&all_pvt_lock, flags);
2878 #if defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT)
2879                 if (pp->backlight_locker) {
2880                         spin_lock_irqsave(&pmu_lock, flags);
2881                         disable_kernel_backlight--;
2882                         spin_unlock_irqrestore(&pmu_lock, flags);
2883                 }
2884 #endif /* defined(CONFIG_INPUT_ADBHID) && defined(CONFIG_PMAC_BACKLIGHT) */
2885                 kfree(pp);
2886         }
2887         unlock_kernel();
2888         return 0;
2889 }
2890
2891 static int
2892 pmu_ioctl(struct inode * inode, struct file *filp,
2893                      u_int cmd, u_long arg)
2894 {
2895         __u32 __user *argp = (__u32 __user *)arg;
2896         int error = -EINVAL;
2897
2898         switch (cmd) {
2899 #if defined(CONFIG_PM) && defined(CONFIG_PPC32)
2900         case PMU_IOC_SLEEP:
2901                 if (!capable(CAP_SYS_ADMIN))
2902                         return -EACCES;
2903                 if (sleep_in_progress)
2904                         return -EBUSY;
2905                 sleep_in_progress = 1;
2906                 switch (pmu_kind) {
2907                 case PMU_OHARE_BASED:
2908                         error = powerbook_sleep_3400();
2909                         break;
2910                 case PMU_HEATHROW_BASED:
2911                 case PMU_PADDINGTON_BASED:
2912                         error = powerbook_sleep_grackle();
2913                         break;
2914                 case PMU_KEYLARGO_BASED:
2915                         error = powerbook_sleep_Core99();
2916                         break;
2917                 default:
2918                         error = -ENOSYS;
2919                 }
2920                 sleep_in_progress = 0;
2921                 break;
2922         case PMU_IOC_CAN_SLEEP:
2923                 if (pmac_call_feature(PMAC_FTR_SLEEP_STATE,NULL,0,-1) < 0)
2924                         return put_user(0, argp);
2925                 else
2926                         return put_user(1, argp);
2927 #endif /* CONFIG_PM && CONFIG_PPC32 */
2928
2929 #ifdef CONFIG_PMAC_BACKLIGHT
2930         /* Backlight should have its own device or go via
2931          * the fbdev
2932          */
2933         case PMU_IOC_GET_BACKLIGHT:
2934                 if (sleep_in_progress)
2935                         return -EBUSY;
2936                 error = get_backlight_level();
2937                 if (error < 0)
2938                         return error;
2939                 return put_user(error, argp);
2940         case PMU_IOC_SET_BACKLIGHT:
2941         {
2942                 __u32 value;
2943                 if (sleep_in_progress)
2944                         return -EBUSY;
2945                 error = get_user(value, argp);
2946                 if (!error)
2947                         error = set_backlight_level(value);
2948                 break;
2949         }
2950 #ifdef CONFIG_INPUT_ADBHID
2951         case PMU_IOC_GRAB_BACKLIGHT: {
2952                 struct pmu_private *pp = filp->private_data;
2953                 unsigned long flags;
2954
2955                 if (pp->backlight_locker)
2956                         return 0;
2957                 pp->backlight_locker = 1;
2958                 spin_lock_irqsave(&pmu_lock, flags);
2959                 disable_kernel_backlight++;
2960                 spin_unlock_irqrestore(&pmu_lock, flags);
2961                 return 0;
2962         }
2963 #endif /* CONFIG_INPUT_ADBHID */
2964 #endif /* CONFIG_PMAC_BACKLIGHT */
2965         case PMU_IOC_GET_MODEL:
2966                 return put_user(pmu_kind, argp);
2967         case PMU_IOC_HAS_ADB:
2968                 return put_user(pmu_has_adb, argp);
2969         }
2970         return error;
2971 }
2972
2973 static struct file_operations pmu_device_fops = {
2974         .read           = pmu_read,
2975         .write          = pmu_write,
2976         .poll           = pmu_fpoll,
2977         .ioctl          = pmu_ioctl,
2978         .open           = pmu_open,
2979         .release        = pmu_release,
2980 };
2981
2982 static struct miscdevice pmu_device = {
2983         PMU_MINOR, "pmu", &pmu_device_fops
2984 };
2985
2986 static int pmu_device_init(void)
2987 {
2988         if (!via)
2989                 return 0;
2990         if (misc_register(&pmu_device) < 0)
2991                 printk(KERN_ERR "via-pmu: cannot register misc device.\n");
2992         return 0;
2993 }
2994 device_initcall(pmu_device_init);
2995
2996
2997 #ifdef DEBUG_SLEEP
2998 static inline void 
2999 polled_handshake(volatile unsigned char __iomem *via)
3000 {
3001         via[B] &= ~TREQ; eieio();
3002         while ((via[B] & TACK) != 0)
3003                 ;
3004         via[B] |= TREQ; eieio();
3005         while ((via[B] & TACK) == 0)
3006                 ;
3007 }
3008
3009 static inline void 
3010 polled_send_byte(volatile unsigned char __iomem *via, int x)
3011 {
3012         via[ACR] |= SR_OUT | SR_EXT; eieio();
3013         via[SR] = x; eieio();
3014         polled_handshake(via);
3015 }
3016
3017 static inline int
3018 polled_recv_byte(volatile unsigned char __iomem *via)
3019 {
3020         int x;
3021
3022         via[ACR] = (via[ACR] & ~SR_OUT) | SR_EXT; eieio();
3023         x = via[SR]; eieio();
3024         polled_handshake(via);
3025         x = via[SR]; eieio();
3026         return x;
3027 }
3028
3029 int
3030 pmu_polled_request(struct adb_request *req)
3031 {
3032         unsigned long flags;
3033         int i, l, c;
3034         volatile unsigned char __iomem *v = via;
3035
3036         req->complete = 1;
3037         c = req->data[0];
3038         l = pmu_data_len[c][0];
3039         if (l >= 0 && req->nbytes != l + 1)
3040                 return -EINVAL;
3041
3042         local_irq_save(flags);
3043         while (pmu_state != idle)
3044                 pmu_poll();
3045
3046         while ((via[B] & TACK) == 0)
3047                 ;
3048         polled_send_byte(v, c);
3049         if (l < 0) {
3050                 l = req->nbytes - 1;
3051                 polled_send_byte(v, l);
3052         }
3053         for (i = 1; i <= l; ++i)
3054                 polled_send_byte(v, req->data[i]);
3055
3056         l = pmu_data_len[c][1];
3057         if (l < 0)
3058                 l = polled_recv_byte(v);
3059         for (i = 0; i < l; ++i)
3060                 req->reply[i + req->reply_len] = polled_recv_byte(v);
3061
3062         if (req->done)
3063                 (*req->done)(req);
3064
3065         local_irq_restore(flags);
3066         return 0;
3067 }
3068 #endif /* DEBUG_SLEEP */
3069
3070
3071 /* FIXME: This is a temporary set of callbacks to enable us
3072  * to do suspend-to-disk.
3073  */
3074
3075 #if defined(CONFIG_PM) && defined(CONFIG_PPC32)
3076
3077 static int pmu_sys_suspended = 0;
3078
3079 static int pmu_sys_suspend(struct sys_device *sysdev, pm_message_t state)
3080 {
3081         if (state.event != PM_EVENT_SUSPEND || pmu_sys_suspended)
3082                 return 0;
3083
3084         /* Suspend PMU event interrupts */
3085         pmu_suspend();
3086
3087         pmu_sys_suspended = 1;
3088         return 0;
3089 }
3090
3091 static int pmu_sys_resume(struct sys_device *sysdev)
3092 {
3093         struct adb_request req;
3094
3095         if (!pmu_sys_suspended)
3096                 return 0;
3097
3098         /* Tell PMU we are ready */
3099         pmu_request(&req, NULL, 2, PMU_SYSTEM_READY, 2);
3100         pmu_wait_complete(&req);
3101
3102         /* Resume PMU event interrupts */
3103         pmu_resume();
3104
3105         pmu_sys_suspended = 0;
3106
3107         return 0;
3108 }
3109
3110 #endif /* CONFIG_PM && CONFIG_PPC32 */
3111
3112 static struct sysdev_class pmu_sysclass = {
3113         set_kset_name("pmu"),
3114 };
3115
3116 static struct sys_device device_pmu = {
3117         .id             = 0,
3118         .cls            = &pmu_sysclass,
3119 };
3120
3121 static struct sysdev_driver driver_pmu = {
3122 #if defined(CONFIG_PM) && defined(CONFIG_PPC32)
3123         .suspend        = &pmu_sys_suspend,
3124         .resume         = &pmu_sys_resume,
3125 #endif /* CONFIG_PM && CONFIG_PPC32 */
3126 };
3127
3128 static int __init init_pmu_sysfs(void)
3129 {
3130         int rc;
3131
3132         rc = sysdev_class_register(&pmu_sysclass);
3133         if (rc) {
3134                 printk(KERN_ERR "Failed registering PMU sys class\n");
3135                 return -ENODEV;
3136         }
3137         rc = sysdev_register(&device_pmu);
3138         if (rc) {
3139                 printk(KERN_ERR "Failed registering PMU sys device\n");
3140                 return -ENODEV;
3141         }
3142         rc = sysdev_driver_register(&pmu_sysclass, &driver_pmu);
3143         if (rc) {
3144                 printk(KERN_ERR "Failed registering PMU sys driver\n");
3145                 return -ENODEV;
3146         }
3147         return 0;
3148 }
3149
3150 subsys_initcall(init_pmu_sysfs);
3151
3152 EXPORT_SYMBOL(pmu_request);
3153 EXPORT_SYMBOL(pmu_poll);
3154 EXPORT_SYMBOL(pmu_poll_adb);
3155 EXPORT_SYMBOL(pmu_wait_complete);
3156 EXPORT_SYMBOL(pmu_suspend);
3157 EXPORT_SYMBOL(pmu_resume);
3158 EXPORT_SYMBOL(pmu_unlock);
3159 EXPORT_SYMBOL(pmu_i2c_combined_read);
3160 EXPORT_SYMBOL(pmu_i2c_stdsub_write);
3161 EXPORT_SYMBOL(pmu_i2c_simple_read);
3162 EXPORT_SYMBOL(pmu_i2c_simple_write);
3163 #if defined(CONFIG_PM) && defined(CONFIG_PPC32)
3164 EXPORT_SYMBOL(pmu_enable_irled);
3165 EXPORT_SYMBOL(pmu_battery_count);
3166 EXPORT_SYMBOL(pmu_batteries);
3167 EXPORT_SYMBOL(pmu_power_flags);
3168 #endif /* CONFIG_PM && CONFIG_PPC32 */
3169