KVM: VMX: Avoid saving and restoring msrs on lightweight vmexit
[safe/jmp/linux-2.6] / drivers / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "vmx.h"
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/profile.h>
25 #include <linux/sched.h>
26 #include <asm/io.h>
27 #include <asm/desc.h>
28
29 #include "segment_descriptor.h"
30
31 MODULE_AUTHOR("Qumranet");
32 MODULE_LICENSE("GPL");
33
34 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
35 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
36
37 static struct page *vmx_io_bitmap_a;
38 static struct page *vmx_io_bitmap_b;
39
40 #ifdef CONFIG_X86_64
41 #define HOST_IS_64 1
42 #else
43 #define HOST_IS_64 0
44 #endif
45
46 static struct vmcs_descriptor {
47         int size;
48         int order;
49         u32 revision_id;
50 } vmcs_descriptor;
51
52 #define VMX_SEGMENT_FIELD(seg)                                  \
53         [VCPU_SREG_##seg] = {                                   \
54                 .selector = GUEST_##seg##_SELECTOR,             \
55                 .base = GUEST_##seg##_BASE,                     \
56                 .limit = GUEST_##seg##_LIMIT,                   \
57                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
58         }
59
60 static struct kvm_vmx_segment_field {
61         unsigned selector;
62         unsigned base;
63         unsigned limit;
64         unsigned ar_bytes;
65 } kvm_vmx_segment_fields[] = {
66         VMX_SEGMENT_FIELD(CS),
67         VMX_SEGMENT_FIELD(DS),
68         VMX_SEGMENT_FIELD(ES),
69         VMX_SEGMENT_FIELD(FS),
70         VMX_SEGMENT_FIELD(GS),
71         VMX_SEGMENT_FIELD(SS),
72         VMX_SEGMENT_FIELD(TR),
73         VMX_SEGMENT_FIELD(LDTR),
74 };
75
76 /*
77  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
78  * away by decrementing the array size.
79  */
80 static const u32 vmx_msr_index[] = {
81 #ifdef CONFIG_X86_64
82         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
83 #endif
84         MSR_EFER, MSR_K6_STAR,
85 };
86 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
87
88 static inline int is_page_fault(u32 intr_info)
89 {
90         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
91                              INTR_INFO_VALID_MASK)) ==
92                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
93 }
94
95 static inline int is_no_device(u32 intr_info)
96 {
97         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
98                              INTR_INFO_VALID_MASK)) ==
99                 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
100 }
101
102 static inline int is_external_interrupt(u32 intr_info)
103 {
104         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
105                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
106 }
107
108 static int __find_msr_index(struct kvm_vcpu *vcpu, u32 msr)
109 {
110         int i;
111
112         for (i = 0; i < vcpu->nmsrs; ++i)
113                 if (vcpu->guest_msrs[i].index == msr)
114                         return i;
115         return -1;
116 }
117
118 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
119 {
120         int i;
121
122         i = __find_msr_index(vcpu, msr);
123         if (i >= 0)
124                 return &vcpu->guest_msrs[i];
125         return NULL;
126 }
127
128 static void vmcs_clear(struct vmcs *vmcs)
129 {
130         u64 phys_addr = __pa(vmcs);
131         u8 error;
132
133         asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
134                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
135                       : "cc", "memory");
136         if (error)
137                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
138                        vmcs, phys_addr);
139 }
140
141 static void __vcpu_clear(void *arg)
142 {
143         struct kvm_vcpu *vcpu = arg;
144         int cpu = raw_smp_processor_id();
145
146         if (vcpu->cpu == cpu)
147                 vmcs_clear(vcpu->vmcs);
148         if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
149                 per_cpu(current_vmcs, cpu) = NULL;
150 }
151
152 static void vcpu_clear(struct kvm_vcpu *vcpu)
153 {
154         if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
155                 smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
156         else
157                 __vcpu_clear(vcpu);
158         vcpu->launched = 0;
159 }
160
161 static unsigned long vmcs_readl(unsigned long field)
162 {
163         unsigned long value;
164
165         asm volatile (ASM_VMX_VMREAD_RDX_RAX
166                       : "=a"(value) : "d"(field) : "cc");
167         return value;
168 }
169
170 static u16 vmcs_read16(unsigned long field)
171 {
172         return vmcs_readl(field);
173 }
174
175 static u32 vmcs_read32(unsigned long field)
176 {
177         return vmcs_readl(field);
178 }
179
180 static u64 vmcs_read64(unsigned long field)
181 {
182 #ifdef CONFIG_X86_64
183         return vmcs_readl(field);
184 #else
185         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
186 #endif
187 }
188
189 static noinline void vmwrite_error(unsigned long field, unsigned long value)
190 {
191         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
192                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
193         dump_stack();
194 }
195
196 static void vmcs_writel(unsigned long field, unsigned long value)
197 {
198         u8 error;
199
200         asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
201                        : "=q"(error) : "a"(value), "d"(field) : "cc" );
202         if (unlikely(error))
203                 vmwrite_error(field, value);
204 }
205
206 static void vmcs_write16(unsigned long field, u16 value)
207 {
208         vmcs_writel(field, value);
209 }
210
211 static void vmcs_write32(unsigned long field, u32 value)
212 {
213         vmcs_writel(field, value);
214 }
215
216 static void vmcs_write64(unsigned long field, u64 value)
217 {
218 #ifdef CONFIG_X86_64
219         vmcs_writel(field, value);
220 #else
221         vmcs_writel(field, value);
222         asm volatile ("");
223         vmcs_writel(field+1, value >> 32);
224 #endif
225 }
226
227 static void vmcs_clear_bits(unsigned long field, u32 mask)
228 {
229         vmcs_writel(field, vmcs_readl(field) & ~mask);
230 }
231
232 static void vmcs_set_bits(unsigned long field, u32 mask)
233 {
234         vmcs_writel(field, vmcs_readl(field) | mask);
235 }
236
237 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
238 {
239         u32 eb;
240
241         eb = 1u << PF_VECTOR;
242         if (!vcpu->fpu_active)
243                 eb |= 1u << NM_VECTOR;
244         if (vcpu->guest_debug.enabled)
245                 eb |= 1u << 1;
246         if (vcpu->rmode.active)
247                 eb = ~0;
248         vmcs_write32(EXCEPTION_BITMAP, eb);
249 }
250
251 static void reload_tss(void)
252 {
253 #ifndef CONFIG_X86_64
254
255         /*
256          * VT restores TR but not its size.  Useless.
257          */
258         struct descriptor_table gdt;
259         struct segment_descriptor *descs;
260
261         get_gdt(&gdt);
262         descs = (void *)gdt.base;
263         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
264         load_TR_desc();
265 #endif
266 }
267
268 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
269 {
270         struct vmx_host_state *hs = &vcpu->vmx_host_state;
271
272         if (hs->loaded)
273                 return;
274
275         hs->loaded = 1;
276         /*
277          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
278          * allow segment selectors with cpl > 0 or ti == 1.
279          */
280         hs->ldt_sel = read_ldt();
281         hs->fs_gs_ldt_reload_needed = hs->ldt_sel;
282         hs->fs_sel = read_fs();
283         if (!(hs->fs_sel & 7))
284                 vmcs_write16(HOST_FS_SELECTOR, hs->fs_sel);
285         else {
286                 vmcs_write16(HOST_FS_SELECTOR, 0);
287                 hs->fs_gs_ldt_reload_needed = 1;
288         }
289         hs->gs_sel = read_gs();
290         if (!(hs->gs_sel & 7))
291                 vmcs_write16(HOST_GS_SELECTOR, hs->gs_sel);
292         else {
293                 vmcs_write16(HOST_GS_SELECTOR, 0);
294                 hs->fs_gs_ldt_reload_needed = 1;
295         }
296
297 #ifdef CONFIG_X86_64
298         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
299         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
300 #else
301         vmcs_writel(HOST_FS_BASE, segment_base(hs->fs_sel));
302         vmcs_writel(HOST_GS_BASE, segment_base(hs->gs_sel));
303 #endif
304
305 #ifdef CONFIG_X86_64
306         if (is_long_mode(vcpu)) {
307                 save_msrs(vcpu->host_msrs + vcpu->msr_offset_kernel_gs_base, 1);
308         }
309 #endif
310         load_msrs(vcpu->guest_msrs, vcpu->save_nmsrs);
311 }
312
313 static void vmx_load_host_state(struct kvm_vcpu *vcpu)
314 {
315         struct vmx_host_state *hs = &vcpu->vmx_host_state;
316
317         if (!hs->loaded)
318                 return;
319
320         hs->loaded = 0;
321         if (hs->fs_gs_ldt_reload_needed) {
322                 load_ldt(hs->ldt_sel);
323                 load_fs(hs->fs_sel);
324                 /*
325                  * If we have to reload gs, we must take care to
326                  * preserve our gs base.
327                  */
328                 local_irq_disable();
329                 load_gs(hs->gs_sel);
330 #ifdef CONFIG_X86_64
331                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
332 #endif
333                 local_irq_enable();
334
335                 reload_tss();
336         }
337         save_msrs(vcpu->guest_msrs, vcpu->save_nmsrs);
338         load_msrs(vcpu->host_msrs, vcpu->save_nmsrs);
339 }
340
341 /*
342  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
343  * vcpu mutex is already taken.
344  */
345 static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
346 {
347         u64 phys_addr = __pa(vcpu->vmcs);
348         int cpu;
349
350         cpu = get_cpu();
351
352         if (vcpu->cpu != cpu)
353                 vcpu_clear(vcpu);
354
355         if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
356                 u8 error;
357
358                 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
359                 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
360                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
361                               : "cc");
362                 if (error)
363                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
364                                vcpu->vmcs, phys_addr);
365         }
366
367         if (vcpu->cpu != cpu) {
368                 struct descriptor_table dt;
369                 unsigned long sysenter_esp;
370
371                 vcpu->cpu = cpu;
372                 /*
373                  * Linux uses per-cpu TSS and GDT, so set these when switching
374                  * processors.
375                  */
376                 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
377                 get_gdt(&dt);
378                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
379
380                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
381                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
382         }
383 }
384
385 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
386 {
387         vmx_load_host_state(vcpu);
388         kvm_put_guest_fpu(vcpu);
389         put_cpu();
390 }
391
392 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
393 {
394         if (vcpu->fpu_active)
395                 return;
396         vcpu->fpu_active = 1;
397         vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
398         if (vcpu->cr0 & CR0_TS_MASK)
399                 vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
400         update_exception_bitmap(vcpu);
401 }
402
403 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
404 {
405         if (!vcpu->fpu_active)
406                 return;
407         vcpu->fpu_active = 0;
408         vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
409         update_exception_bitmap(vcpu);
410 }
411
412 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
413 {
414         vcpu_clear(vcpu);
415 }
416
417 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
418 {
419         return vmcs_readl(GUEST_RFLAGS);
420 }
421
422 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
423 {
424         vmcs_writel(GUEST_RFLAGS, rflags);
425 }
426
427 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
428 {
429         unsigned long rip;
430         u32 interruptibility;
431
432         rip = vmcs_readl(GUEST_RIP);
433         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
434         vmcs_writel(GUEST_RIP, rip);
435
436         /*
437          * We emulated an instruction, so temporary interrupt blocking
438          * should be removed, if set.
439          */
440         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
441         if (interruptibility & 3)
442                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
443                              interruptibility & ~3);
444         vcpu->interrupt_window_open = 1;
445 }
446
447 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
448 {
449         printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
450                vmcs_readl(GUEST_RIP));
451         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
452         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
453                      GP_VECTOR |
454                      INTR_TYPE_EXCEPTION |
455                      INTR_INFO_DELIEVER_CODE_MASK |
456                      INTR_INFO_VALID_MASK);
457 }
458
459 /*
460  * Swap MSR entry in host/guest MSR entry array.
461  */
462 void move_msr_up(struct kvm_vcpu *vcpu, int from, int to)
463 {
464         struct vmx_msr_entry tmp;
465         tmp = vcpu->guest_msrs[to];
466         vcpu->guest_msrs[to] = vcpu->guest_msrs[from];
467         vcpu->guest_msrs[from] = tmp;
468         tmp = vcpu->host_msrs[to];
469         vcpu->host_msrs[to] = vcpu->host_msrs[from];
470         vcpu->host_msrs[from] = tmp;
471 }
472
473 /*
474  * Set up the vmcs to automatically save and restore system
475  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
476  * mode, as fiddling with msrs is very expensive.
477  */
478 static void setup_msrs(struct kvm_vcpu *vcpu)
479 {
480         int index, save_nmsrs;
481
482         save_nmsrs = 0;
483 #ifdef CONFIG_X86_64
484         if (is_long_mode(vcpu)) {
485                 index = __find_msr_index(vcpu, MSR_SYSCALL_MASK);
486                 if (index >= 0)
487                         move_msr_up(vcpu, index, save_nmsrs++);
488                 index = __find_msr_index(vcpu, MSR_LSTAR);
489                 if (index >= 0)
490                         move_msr_up(vcpu, index, save_nmsrs++);
491                 index = __find_msr_index(vcpu, MSR_CSTAR);
492                 if (index >= 0)
493                         move_msr_up(vcpu, index, save_nmsrs++);
494                 index = __find_msr_index(vcpu, MSR_KERNEL_GS_BASE);
495                 if (index >= 0)
496                         move_msr_up(vcpu, index, save_nmsrs++);
497                 /*
498                  * MSR_K6_STAR is only needed on long mode guests, and only
499                  * if efer.sce is enabled.
500                  */
501                 index = __find_msr_index(vcpu, MSR_K6_STAR);
502                 if ((index >= 0) && (vcpu->shadow_efer & EFER_SCE))
503                         move_msr_up(vcpu, index, save_nmsrs++);
504         }
505 #endif
506         vcpu->save_nmsrs = save_nmsrs;
507
508 #ifdef CONFIG_X86_64
509         vcpu->msr_offset_kernel_gs_base =
510                 __find_msr_index(vcpu, MSR_KERNEL_GS_BASE);
511 #endif
512         index = __find_msr_index(vcpu, MSR_EFER);
513         if (index >= 0)
514                 save_nmsrs = 1;
515         else {
516                 save_nmsrs = 0;
517                 index = 0;
518         }
519         vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
520                     virt_to_phys(vcpu->guest_msrs + index));
521         vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
522                     virt_to_phys(vcpu->guest_msrs + index));
523         vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
524                     virt_to_phys(vcpu->host_msrs + index));
525         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, save_nmsrs);
526         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, save_nmsrs);
527         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, save_nmsrs);
528 }
529
530 /*
531  * reads and returns guest's timestamp counter "register"
532  * guest_tsc = host_tsc + tsc_offset    -- 21.3
533  */
534 static u64 guest_read_tsc(void)
535 {
536         u64 host_tsc, tsc_offset;
537
538         rdtscll(host_tsc);
539         tsc_offset = vmcs_read64(TSC_OFFSET);
540         return host_tsc + tsc_offset;
541 }
542
543 /*
544  * writes 'guest_tsc' into guest's timestamp counter "register"
545  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
546  */
547 static void guest_write_tsc(u64 guest_tsc)
548 {
549         u64 host_tsc;
550
551         rdtscll(host_tsc);
552         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
553 }
554
555 /*
556  * Reads an msr value (of 'msr_index') into 'pdata'.
557  * Returns 0 on success, non-0 otherwise.
558  * Assumes vcpu_load() was already called.
559  */
560 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
561 {
562         u64 data;
563         struct vmx_msr_entry *msr;
564
565         if (!pdata) {
566                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
567                 return -EINVAL;
568         }
569
570         switch (msr_index) {
571 #ifdef CONFIG_X86_64
572         case MSR_FS_BASE:
573                 data = vmcs_readl(GUEST_FS_BASE);
574                 break;
575         case MSR_GS_BASE:
576                 data = vmcs_readl(GUEST_GS_BASE);
577                 break;
578         case MSR_EFER:
579                 return kvm_get_msr_common(vcpu, msr_index, pdata);
580 #endif
581         case MSR_IA32_TIME_STAMP_COUNTER:
582                 data = guest_read_tsc();
583                 break;
584         case MSR_IA32_SYSENTER_CS:
585                 data = vmcs_read32(GUEST_SYSENTER_CS);
586                 break;
587         case MSR_IA32_SYSENTER_EIP:
588                 data = vmcs_readl(GUEST_SYSENTER_EIP);
589                 break;
590         case MSR_IA32_SYSENTER_ESP:
591                 data = vmcs_readl(GUEST_SYSENTER_ESP);
592                 break;
593         default:
594                 msr = find_msr_entry(vcpu, msr_index);
595                 if (msr) {
596                         data = msr->data;
597                         break;
598                 }
599                 return kvm_get_msr_common(vcpu, msr_index, pdata);
600         }
601
602         *pdata = data;
603         return 0;
604 }
605
606 /*
607  * Writes msr value into into the appropriate "register".
608  * Returns 0 on success, non-0 otherwise.
609  * Assumes vcpu_load() was already called.
610  */
611 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
612 {
613         struct vmx_msr_entry *msr;
614         switch (msr_index) {
615 #ifdef CONFIG_X86_64
616         case MSR_EFER:
617                 return kvm_set_msr_common(vcpu, msr_index, data);
618         case MSR_FS_BASE:
619                 vmcs_writel(GUEST_FS_BASE, data);
620                 break;
621         case MSR_GS_BASE:
622                 vmcs_writel(GUEST_GS_BASE, data);
623                 break;
624 #endif
625         case MSR_IA32_SYSENTER_CS:
626                 vmcs_write32(GUEST_SYSENTER_CS, data);
627                 break;
628         case MSR_IA32_SYSENTER_EIP:
629                 vmcs_writel(GUEST_SYSENTER_EIP, data);
630                 break;
631         case MSR_IA32_SYSENTER_ESP:
632                 vmcs_writel(GUEST_SYSENTER_ESP, data);
633                 break;
634         case MSR_IA32_TIME_STAMP_COUNTER:
635                 guest_write_tsc(data);
636                 break;
637         default:
638                 msr = find_msr_entry(vcpu, msr_index);
639                 if (msr) {
640                         msr->data = data;
641                         if (vcpu->vmx_host_state.loaded)
642                                 load_msrs(vcpu->guest_msrs,vcpu->save_nmsrs);
643                         break;
644                 }
645                 return kvm_set_msr_common(vcpu, msr_index, data);
646                 msr->data = data;
647                 break;
648         }
649
650         return 0;
651 }
652
653 /*
654  * Sync the rsp and rip registers into the vcpu structure.  This allows
655  * registers to be accessed by indexing vcpu->regs.
656  */
657 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
658 {
659         vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
660         vcpu->rip = vmcs_readl(GUEST_RIP);
661 }
662
663 /*
664  * Syncs rsp and rip back into the vmcs.  Should be called after possible
665  * modification.
666  */
667 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
668 {
669         vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
670         vmcs_writel(GUEST_RIP, vcpu->rip);
671 }
672
673 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
674 {
675         unsigned long dr7 = 0x400;
676         int old_singlestep;
677
678         old_singlestep = vcpu->guest_debug.singlestep;
679
680         vcpu->guest_debug.enabled = dbg->enabled;
681         if (vcpu->guest_debug.enabled) {
682                 int i;
683
684                 dr7 |= 0x200;  /* exact */
685                 for (i = 0; i < 4; ++i) {
686                         if (!dbg->breakpoints[i].enabled)
687                                 continue;
688                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
689                         dr7 |= 2 << (i*2);    /* global enable */
690                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
691                 }
692
693                 vcpu->guest_debug.singlestep = dbg->singlestep;
694         } else
695                 vcpu->guest_debug.singlestep = 0;
696
697         if (old_singlestep && !vcpu->guest_debug.singlestep) {
698                 unsigned long flags;
699
700                 flags = vmcs_readl(GUEST_RFLAGS);
701                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
702                 vmcs_writel(GUEST_RFLAGS, flags);
703         }
704
705         update_exception_bitmap(vcpu);
706         vmcs_writel(GUEST_DR7, dr7);
707
708         return 0;
709 }
710
711 static __init int cpu_has_kvm_support(void)
712 {
713         unsigned long ecx = cpuid_ecx(1);
714         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
715 }
716
717 static __init int vmx_disabled_by_bios(void)
718 {
719         u64 msr;
720
721         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
722         return (msr & 5) == 1; /* locked but not enabled */
723 }
724
725 static void hardware_enable(void *garbage)
726 {
727         int cpu = raw_smp_processor_id();
728         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
729         u64 old;
730
731         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
732         if ((old & 5) != 5)
733                 /* enable and lock */
734                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
735         write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
736         asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
737                       : "memory", "cc");
738 }
739
740 static void hardware_disable(void *garbage)
741 {
742         asm volatile (ASM_VMX_VMXOFF : : : "cc");
743 }
744
745 static __init void setup_vmcs_descriptor(void)
746 {
747         u32 vmx_msr_low, vmx_msr_high;
748
749         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
750         vmcs_descriptor.size = vmx_msr_high & 0x1fff;
751         vmcs_descriptor.order = get_order(vmcs_descriptor.size);
752         vmcs_descriptor.revision_id = vmx_msr_low;
753 }
754
755 static struct vmcs *alloc_vmcs_cpu(int cpu)
756 {
757         int node = cpu_to_node(cpu);
758         struct page *pages;
759         struct vmcs *vmcs;
760
761         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
762         if (!pages)
763                 return NULL;
764         vmcs = page_address(pages);
765         memset(vmcs, 0, vmcs_descriptor.size);
766         vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
767         return vmcs;
768 }
769
770 static struct vmcs *alloc_vmcs(void)
771 {
772         return alloc_vmcs_cpu(raw_smp_processor_id());
773 }
774
775 static void free_vmcs(struct vmcs *vmcs)
776 {
777         free_pages((unsigned long)vmcs, vmcs_descriptor.order);
778 }
779
780 static void free_kvm_area(void)
781 {
782         int cpu;
783
784         for_each_online_cpu(cpu)
785                 free_vmcs(per_cpu(vmxarea, cpu));
786 }
787
788 extern struct vmcs *alloc_vmcs_cpu(int cpu);
789
790 static __init int alloc_kvm_area(void)
791 {
792         int cpu;
793
794         for_each_online_cpu(cpu) {
795                 struct vmcs *vmcs;
796
797                 vmcs = alloc_vmcs_cpu(cpu);
798                 if (!vmcs) {
799                         free_kvm_area();
800                         return -ENOMEM;
801                 }
802
803                 per_cpu(vmxarea, cpu) = vmcs;
804         }
805         return 0;
806 }
807
808 static __init int hardware_setup(void)
809 {
810         setup_vmcs_descriptor();
811         return alloc_kvm_area();
812 }
813
814 static __exit void hardware_unsetup(void)
815 {
816         free_kvm_area();
817 }
818
819 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
820 {
821         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
822
823         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
824                 vmcs_write16(sf->selector, save->selector);
825                 vmcs_writel(sf->base, save->base);
826                 vmcs_write32(sf->limit, save->limit);
827                 vmcs_write32(sf->ar_bytes, save->ar);
828         } else {
829                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
830                         << AR_DPL_SHIFT;
831                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
832         }
833 }
834
835 static void enter_pmode(struct kvm_vcpu *vcpu)
836 {
837         unsigned long flags;
838
839         vcpu->rmode.active = 0;
840
841         vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
842         vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
843         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
844
845         flags = vmcs_readl(GUEST_RFLAGS);
846         flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
847         flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
848         vmcs_writel(GUEST_RFLAGS, flags);
849
850         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
851                         (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
852
853         update_exception_bitmap(vcpu);
854
855         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
856         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
857         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
858         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
859
860         vmcs_write16(GUEST_SS_SELECTOR, 0);
861         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
862
863         vmcs_write16(GUEST_CS_SELECTOR,
864                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
865         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
866 }
867
868 static int rmode_tss_base(struct kvm* kvm)
869 {
870         gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
871         return base_gfn << PAGE_SHIFT;
872 }
873
874 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
875 {
876         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
877
878         save->selector = vmcs_read16(sf->selector);
879         save->base = vmcs_readl(sf->base);
880         save->limit = vmcs_read32(sf->limit);
881         save->ar = vmcs_read32(sf->ar_bytes);
882         vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
883         vmcs_write32(sf->limit, 0xffff);
884         vmcs_write32(sf->ar_bytes, 0xf3);
885 }
886
887 static void enter_rmode(struct kvm_vcpu *vcpu)
888 {
889         unsigned long flags;
890
891         vcpu->rmode.active = 1;
892
893         vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
894         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
895
896         vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
897         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
898
899         vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
900         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
901
902         flags = vmcs_readl(GUEST_RFLAGS);
903         vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
904
905         flags |= IOPL_MASK | X86_EFLAGS_VM;
906
907         vmcs_writel(GUEST_RFLAGS, flags);
908         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
909         update_exception_bitmap(vcpu);
910
911         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
912         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
913         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
914
915         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
916         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
917         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
918                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
919         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
920
921         fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
922         fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
923         fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
924         fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
925 }
926
927 #ifdef CONFIG_X86_64
928
929 static void enter_lmode(struct kvm_vcpu *vcpu)
930 {
931         u32 guest_tr_ar;
932
933         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
934         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
935                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
936                        __FUNCTION__);
937                 vmcs_write32(GUEST_TR_AR_BYTES,
938                              (guest_tr_ar & ~AR_TYPE_MASK)
939                              | AR_TYPE_BUSY_64_TSS);
940         }
941
942         vcpu->shadow_efer |= EFER_LMA;
943
944         find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
945         vmcs_write32(VM_ENTRY_CONTROLS,
946                      vmcs_read32(VM_ENTRY_CONTROLS)
947                      | VM_ENTRY_CONTROLS_IA32E_MASK);
948 }
949
950 static void exit_lmode(struct kvm_vcpu *vcpu)
951 {
952         vcpu->shadow_efer &= ~EFER_LMA;
953
954         vmcs_write32(VM_ENTRY_CONTROLS,
955                      vmcs_read32(VM_ENTRY_CONTROLS)
956                      & ~VM_ENTRY_CONTROLS_IA32E_MASK);
957 }
958
959 #endif
960
961 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
962 {
963         vcpu->cr4 &= KVM_GUEST_CR4_MASK;
964         vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
965 }
966
967 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
968 {
969         vmx_fpu_deactivate(vcpu);
970
971         if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
972                 enter_pmode(vcpu);
973
974         if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
975                 enter_rmode(vcpu);
976
977 #ifdef CONFIG_X86_64
978         if (vcpu->shadow_efer & EFER_LME) {
979                 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
980                         enter_lmode(vcpu);
981                 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
982                         exit_lmode(vcpu);
983         }
984 #endif
985
986         vmcs_writel(CR0_READ_SHADOW, cr0);
987         vmcs_writel(GUEST_CR0,
988                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
989         vcpu->cr0 = cr0;
990
991         if (!(cr0 & CR0_TS_MASK) || !(cr0 & CR0_PE_MASK))
992                 vmx_fpu_activate(vcpu);
993 }
994
995 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
996 {
997         vmcs_writel(GUEST_CR3, cr3);
998         if (vcpu->cr0 & CR0_PE_MASK)
999                 vmx_fpu_deactivate(vcpu);
1000 }
1001
1002 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1003 {
1004         vmcs_writel(CR4_READ_SHADOW, cr4);
1005         vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
1006                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1007         vcpu->cr4 = cr4;
1008 }
1009
1010 #ifdef CONFIG_X86_64
1011
1012 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1013 {
1014         struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
1015
1016         vcpu->shadow_efer = efer;
1017         if (efer & EFER_LMA) {
1018                 vmcs_write32(VM_ENTRY_CONTROLS,
1019                                      vmcs_read32(VM_ENTRY_CONTROLS) |
1020                                      VM_ENTRY_CONTROLS_IA32E_MASK);
1021                 msr->data = efer;
1022
1023         } else {
1024                 vmcs_write32(VM_ENTRY_CONTROLS,
1025                                      vmcs_read32(VM_ENTRY_CONTROLS) &
1026                                      ~VM_ENTRY_CONTROLS_IA32E_MASK);
1027
1028                 msr->data = efer & ~EFER_LME;
1029         }
1030         setup_msrs(vcpu);
1031 }
1032
1033 #endif
1034
1035 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1036 {
1037         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1038
1039         return vmcs_readl(sf->base);
1040 }
1041
1042 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1043                             struct kvm_segment *var, int seg)
1044 {
1045         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1046         u32 ar;
1047
1048         var->base = vmcs_readl(sf->base);
1049         var->limit = vmcs_read32(sf->limit);
1050         var->selector = vmcs_read16(sf->selector);
1051         ar = vmcs_read32(sf->ar_bytes);
1052         if (ar & AR_UNUSABLE_MASK)
1053                 ar = 0;
1054         var->type = ar & 15;
1055         var->s = (ar >> 4) & 1;
1056         var->dpl = (ar >> 5) & 3;
1057         var->present = (ar >> 7) & 1;
1058         var->avl = (ar >> 12) & 1;
1059         var->l = (ar >> 13) & 1;
1060         var->db = (ar >> 14) & 1;
1061         var->g = (ar >> 15) & 1;
1062         var->unusable = (ar >> 16) & 1;
1063 }
1064
1065 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1066 {
1067         u32 ar;
1068
1069         if (var->unusable)
1070                 ar = 1 << 16;
1071         else {
1072                 ar = var->type & 15;
1073                 ar |= (var->s & 1) << 4;
1074                 ar |= (var->dpl & 3) << 5;
1075                 ar |= (var->present & 1) << 7;
1076                 ar |= (var->avl & 1) << 12;
1077                 ar |= (var->l & 1) << 13;
1078                 ar |= (var->db & 1) << 14;
1079                 ar |= (var->g & 1) << 15;
1080         }
1081         if (ar == 0) /* a 0 value means unusable */
1082                 ar = AR_UNUSABLE_MASK;
1083
1084         return ar;
1085 }
1086
1087 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1088                             struct kvm_segment *var, int seg)
1089 {
1090         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1091         u32 ar;
1092
1093         if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
1094                 vcpu->rmode.tr.selector = var->selector;
1095                 vcpu->rmode.tr.base = var->base;
1096                 vcpu->rmode.tr.limit = var->limit;
1097                 vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
1098                 return;
1099         }
1100         vmcs_writel(sf->base, var->base);
1101         vmcs_write32(sf->limit, var->limit);
1102         vmcs_write16(sf->selector, var->selector);
1103         if (vcpu->rmode.active && var->s) {
1104                 /*
1105                  * Hack real-mode segments into vm86 compatibility.
1106                  */
1107                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1108                         vmcs_writel(sf->base, 0xf0000);
1109                 ar = 0xf3;
1110         } else
1111                 ar = vmx_segment_access_rights(var);
1112         vmcs_write32(sf->ar_bytes, ar);
1113 }
1114
1115 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1116 {
1117         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1118
1119         *db = (ar >> 14) & 1;
1120         *l = (ar >> 13) & 1;
1121 }
1122
1123 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1124 {
1125         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1126         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1127 }
1128
1129 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1130 {
1131         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1132         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1133 }
1134
1135 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1136 {
1137         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1138         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1139 }
1140
1141 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1142 {
1143         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1144         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1145 }
1146
1147 static int init_rmode_tss(struct kvm* kvm)
1148 {
1149         struct page *p1, *p2, *p3;
1150         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1151         char *page;
1152
1153         p1 = gfn_to_page(kvm, fn++);
1154         p2 = gfn_to_page(kvm, fn++);
1155         p3 = gfn_to_page(kvm, fn);
1156
1157         if (!p1 || !p2 || !p3) {
1158                 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
1159                 return 0;
1160         }
1161
1162         page = kmap_atomic(p1, KM_USER0);
1163         memset(page, 0, PAGE_SIZE);
1164         *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1165         kunmap_atomic(page, KM_USER0);
1166
1167         page = kmap_atomic(p2, KM_USER0);
1168         memset(page, 0, PAGE_SIZE);
1169         kunmap_atomic(page, KM_USER0);
1170
1171         page = kmap_atomic(p3, KM_USER0);
1172         memset(page, 0, PAGE_SIZE);
1173         *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
1174         kunmap_atomic(page, KM_USER0);
1175
1176         return 1;
1177 }
1178
1179 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
1180 {
1181         u32 msr_high, msr_low;
1182
1183         rdmsr(msr, msr_low, msr_high);
1184
1185         val &= msr_high;
1186         val |= msr_low;
1187         vmcs_write32(vmcs_field, val);
1188 }
1189
1190 static void seg_setup(int seg)
1191 {
1192         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1193
1194         vmcs_write16(sf->selector, 0);
1195         vmcs_writel(sf->base, 0);
1196         vmcs_write32(sf->limit, 0xffff);
1197         vmcs_write32(sf->ar_bytes, 0x93);
1198 }
1199
1200 /*
1201  * Sets up the vmcs for emulated real mode.
1202  */
1203 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
1204 {
1205         u32 host_sysenter_cs;
1206         u32 junk;
1207         unsigned long a;
1208         struct descriptor_table dt;
1209         int i;
1210         int ret = 0;
1211         unsigned long kvm_vmx_return;
1212
1213         if (!init_rmode_tss(vcpu->kvm)) {
1214                 ret = -ENOMEM;
1215                 goto out;
1216         }
1217
1218         memset(vcpu->regs, 0, sizeof(vcpu->regs));
1219         vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
1220         vcpu->cr8 = 0;
1221         vcpu->apic_base = 0xfee00000 |
1222                         /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
1223                         MSR_IA32_APICBASE_ENABLE;
1224
1225         fx_init(vcpu);
1226
1227         /*
1228          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1229          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
1230          */
1231         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1232         vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1233         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1234         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1235
1236         seg_setup(VCPU_SREG_DS);
1237         seg_setup(VCPU_SREG_ES);
1238         seg_setup(VCPU_SREG_FS);
1239         seg_setup(VCPU_SREG_GS);
1240         seg_setup(VCPU_SREG_SS);
1241
1242         vmcs_write16(GUEST_TR_SELECTOR, 0);
1243         vmcs_writel(GUEST_TR_BASE, 0);
1244         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1245         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1246
1247         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1248         vmcs_writel(GUEST_LDTR_BASE, 0);
1249         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1250         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1251
1252         vmcs_write32(GUEST_SYSENTER_CS, 0);
1253         vmcs_writel(GUEST_SYSENTER_ESP, 0);
1254         vmcs_writel(GUEST_SYSENTER_EIP, 0);
1255
1256         vmcs_writel(GUEST_RFLAGS, 0x02);
1257         vmcs_writel(GUEST_RIP, 0xfff0);
1258         vmcs_writel(GUEST_RSP, 0);
1259
1260         //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1261         vmcs_writel(GUEST_DR7, 0x400);
1262
1263         vmcs_writel(GUEST_GDTR_BASE, 0);
1264         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1265
1266         vmcs_writel(GUEST_IDTR_BASE, 0);
1267         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1268
1269         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1270         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1271         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1272
1273         /* I/O */
1274         vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1275         vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1276
1277         guest_write_tsc(0);
1278
1279         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1280
1281         /* Special registers */
1282         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1283
1284         /* Control */
1285         vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
1286                                PIN_BASED_VM_EXEC_CONTROL,
1287                                PIN_BASED_EXT_INTR_MASK   /* 20.6.1 */
1288                                | PIN_BASED_NMI_EXITING   /* 20.6.1 */
1289                         );
1290         vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
1291                                CPU_BASED_VM_EXEC_CONTROL,
1292                                CPU_BASED_HLT_EXITING         /* 20.6.2 */
1293                                | CPU_BASED_CR8_LOAD_EXITING    /* 20.6.2 */
1294                                | CPU_BASED_CR8_STORE_EXITING   /* 20.6.2 */
1295                                | CPU_BASED_ACTIVATE_IO_BITMAP  /* 20.6.2 */
1296                                | CPU_BASED_MOV_DR_EXITING
1297                                | CPU_BASED_USE_TSC_OFFSETING   /* 21.3 */
1298                         );
1299
1300         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1301         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1302         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1303
1304         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1305         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1306         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1307
1308         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1309         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1310         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1311         vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */
1312         vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */
1313         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1314 #ifdef CONFIG_X86_64
1315         rdmsrl(MSR_FS_BASE, a);
1316         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1317         rdmsrl(MSR_GS_BASE, a);
1318         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1319 #else
1320         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1321         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1322 #endif
1323
1324         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1325
1326         get_idt(&dt);
1327         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1328
1329         asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1330         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1331
1332         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1333         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1334         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1335         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1336         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1337         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1338
1339         for (i = 0; i < NR_VMX_MSR; ++i) {
1340                 u32 index = vmx_msr_index[i];
1341                 u32 data_low, data_high;
1342                 u64 data;
1343                 int j = vcpu->nmsrs;
1344
1345                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1346                         continue;
1347                 if (wrmsr_safe(index, data_low, data_high) < 0)
1348                         continue;
1349                 data = data_low | ((u64)data_high << 32);
1350                 vcpu->host_msrs[j].index = index;
1351                 vcpu->host_msrs[j].reserved = 0;
1352                 vcpu->host_msrs[j].data = data;
1353                 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1354                 ++vcpu->nmsrs;
1355         }
1356
1357         setup_msrs(vcpu);
1358
1359         vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
1360                                (HOST_IS_64 << 9));  /* 22.2,1, 20.7.1 */
1361
1362         /* 22.2.1, 20.8.1 */
1363         vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
1364                                VM_ENTRY_CONTROLS, 0);
1365         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
1366
1367 #ifdef CONFIG_X86_64
1368         vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1369         vmcs_writel(TPR_THRESHOLD, 0);
1370 #endif
1371
1372         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1373         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1374
1375         vcpu->cr0 = 0x60000010;
1376         vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1377         vmx_set_cr4(vcpu, 0);
1378 #ifdef CONFIG_X86_64
1379         vmx_set_efer(vcpu, 0);
1380 #endif
1381         vmx_fpu_activate(vcpu);
1382         update_exception_bitmap(vcpu);
1383
1384         return 0;
1385
1386 out:
1387         return ret;
1388 }
1389
1390 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1391 {
1392         u16 ent[2];
1393         u16 cs;
1394         u16 ip;
1395         unsigned long flags;
1396         unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1397         u16 sp =  vmcs_readl(GUEST_RSP);
1398         u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1399
1400         if (sp > ss_limit || sp < 6 ) {
1401                 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1402                             __FUNCTION__,
1403                             vmcs_readl(GUEST_RSP),
1404                             vmcs_readl(GUEST_SS_BASE),
1405                             vmcs_read32(GUEST_SS_LIMIT));
1406                 return;
1407         }
1408
1409         if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1410                                                                 sizeof(ent)) {
1411                 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1412                 return;
1413         }
1414
1415         flags =  vmcs_readl(GUEST_RFLAGS);
1416         cs =  vmcs_readl(GUEST_CS_BASE) >> 4;
1417         ip =  vmcs_readl(GUEST_RIP);
1418
1419
1420         if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1421             kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1422             kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1423                 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1424                 return;
1425         }
1426
1427         vmcs_writel(GUEST_RFLAGS, flags &
1428                     ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1429         vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1430         vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1431         vmcs_writel(GUEST_RIP, ent[0]);
1432         vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1433 }
1434
1435 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1436 {
1437         int word_index = __ffs(vcpu->irq_summary);
1438         int bit_index = __ffs(vcpu->irq_pending[word_index]);
1439         int irq = word_index * BITS_PER_LONG + bit_index;
1440
1441         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1442         if (!vcpu->irq_pending[word_index])
1443                 clear_bit(word_index, &vcpu->irq_summary);
1444
1445         if (vcpu->rmode.active) {
1446                 inject_rmode_irq(vcpu, irq);
1447                 return;
1448         }
1449         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1450                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1451 }
1452
1453
1454 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1455                                        struct kvm_run *kvm_run)
1456 {
1457         u32 cpu_based_vm_exec_control;
1458
1459         vcpu->interrupt_window_open =
1460                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1461                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1462
1463         if (vcpu->interrupt_window_open &&
1464             vcpu->irq_summary &&
1465             !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1466                 /*
1467                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1468                  */
1469                 kvm_do_inject_irq(vcpu);
1470
1471         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1472         if (!vcpu->interrupt_window_open &&
1473             (vcpu->irq_summary || kvm_run->request_interrupt_window))
1474                 /*
1475                  * Interrupts blocked.  Wait for unblock.
1476                  */
1477                 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1478         else
1479                 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1480         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1481 }
1482
1483 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1484 {
1485         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1486
1487         set_debugreg(dbg->bp[0], 0);
1488         set_debugreg(dbg->bp[1], 1);
1489         set_debugreg(dbg->bp[2], 2);
1490         set_debugreg(dbg->bp[3], 3);
1491
1492         if (dbg->singlestep) {
1493                 unsigned long flags;
1494
1495                 flags = vmcs_readl(GUEST_RFLAGS);
1496                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1497                 vmcs_writel(GUEST_RFLAGS, flags);
1498         }
1499 }
1500
1501 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1502                                   int vec, u32 err_code)
1503 {
1504         if (!vcpu->rmode.active)
1505                 return 0;
1506
1507         /*
1508          * Instruction with address size override prefix opcode 0x67
1509          * Cause the #SS fault with 0 error code in VM86 mode.
1510          */
1511         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1512                 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1513                         return 1;
1514         return 0;
1515 }
1516
1517 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1518 {
1519         u32 intr_info, error_code;
1520         unsigned long cr2, rip;
1521         u32 vect_info;
1522         enum emulation_result er;
1523         int r;
1524
1525         vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1526         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1527
1528         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1529                                                 !is_page_fault(intr_info)) {
1530                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1531                        "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1532         }
1533
1534         if (is_external_interrupt(vect_info)) {
1535                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1536                 set_bit(irq, vcpu->irq_pending);
1537                 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1538         }
1539
1540         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1541                 asm ("int $2");
1542                 return 1;
1543         }
1544
1545         if (is_no_device(intr_info)) {
1546                 vmx_fpu_activate(vcpu);
1547                 return 1;
1548         }
1549
1550         error_code = 0;
1551         rip = vmcs_readl(GUEST_RIP);
1552         if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1553                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1554         if (is_page_fault(intr_info)) {
1555                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1556
1557                 spin_lock(&vcpu->kvm->lock);
1558                 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1559                 if (r < 0) {
1560                         spin_unlock(&vcpu->kvm->lock);
1561                         return r;
1562                 }
1563                 if (!r) {
1564                         spin_unlock(&vcpu->kvm->lock);
1565                         return 1;
1566                 }
1567
1568                 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1569                 spin_unlock(&vcpu->kvm->lock);
1570
1571                 switch (er) {
1572                 case EMULATE_DONE:
1573                         return 1;
1574                 case EMULATE_DO_MMIO:
1575                         ++vcpu->stat.mmio_exits;
1576                         kvm_run->exit_reason = KVM_EXIT_MMIO;
1577                         return 0;
1578                  case EMULATE_FAIL:
1579                         vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1580                         break;
1581                 default:
1582                         BUG();
1583                 }
1584         }
1585
1586         if (vcpu->rmode.active &&
1587             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1588                                                                 error_code))
1589                 return 1;
1590
1591         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1592                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1593                 return 0;
1594         }
1595         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1596         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1597         kvm_run->ex.error_code = error_code;
1598         return 0;
1599 }
1600
1601 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1602                                      struct kvm_run *kvm_run)
1603 {
1604         ++vcpu->stat.irq_exits;
1605         return 1;
1606 }
1607
1608 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1609 {
1610         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1611         return 0;
1612 }
1613
1614 static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
1615 {
1616         u64 inst;
1617         gva_t rip;
1618         int countr_size;
1619         int i, n;
1620
1621         if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1622                 countr_size = 2;
1623         } else {
1624                 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1625
1626                 countr_size = (cs_ar & AR_L_MASK) ? 8:
1627                               (cs_ar & AR_DB_MASK) ? 4: 2;
1628         }
1629
1630         rip =  vmcs_readl(GUEST_RIP);
1631         if (countr_size != 8)
1632                 rip += vmcs_readl(GUEST_CS_BASE);
1633
1634         n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1635
1636         for (i = 0; i < n; i++) {
1637                 switch (((u8*)&inst)[i]) {
1638                 case 0xf0:
1639                 case 0xf2:
1640                 case 0xf3:
1641                 case 0x2e:
1642                 case 0x36:
1643                 case 0x3e:
1644                 case 0x26:
1645                 case 0x64:
1646                 case 0x65:
1647                 case 0x66:
1648                         break;
1649                 case 0x67:
1650                         countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1651                 default:
1652                         goto done;
1653                 }
1654         }
1655         return 0;
1656 done:
1657         countr_size *= 8;
1658         *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1659         //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
1660         return 1;
1661 }
1662
1663 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1664 {
1665         u64 exit_qualification;
1666         int size, down, in, string, rep;
1667         unsigned port;
1668         unsigned long count;
1669         gva_t address;
1670
1671         ++vcpu->stat.io_exits;
1672         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1673         in = (exit_qualification & 8) != 0;
1674         size = (exit_qualification & 7) + 1;
1675         string = (exit_qualification & 16) != 0;
1676         down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1677         count = 1;
1678         rep = (exit_qualification & 32) != 0;
1679         port = exit_qualification >> 16;
1680         address = 0;
1681         if (string) {
1682                 if (rep && !get_io_count(vcpu, &count))
1683                         return 1;
1684                 address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1685         }
1686         return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
1687                              address, rep, port);
1688 }
1689
1690 static void
1691 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1692 {
1693         /*
1694          * Patch in the VMCALL instruction:
1695          */
1696         hypercall[0] = 0x0f;
1697         hypercall[1] = 0x01;
1698         hypercall[2] = 0xc1;
1699         hypercall[3] = 0xc3;
1700 }
1701
1702 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1703 {
1704         u64 exit_qualification;
1705         int cr;
1706         int reg;
1707
1708         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1709         cr = exit_qualification & 15;
1710         reg = (exit_qualification >> 8) & 15;
1711         switch ((exit_qualification >> 4) & 3) {
1712         case 0: /* mov to cr */
1713                 switch (cr) {
1714                 case 0:
1715                         vcpu_load_rsp_rip(vcpu);
1716                         set_cr0(vcpu, vcpu->regs[reg]);
1717                         skip_emulated_instruction(vcpu);
1718                         return 1;
1719                 case 3:
1720                         vcpu_load_rsp_rip(vcpu);
1721                         set_cr3(vcpu, vcpu->regs[reg]);
1722                         skip_emulated_instruction(vcpu);
1723                         return 1;
1724                 case 4:
1725                         vcpu_load_rsp_rip(vcpu);
1726                         set_cr4(vcpu, vcpu->regs[reg]);
1727                         skip_emulated_instruction(vcpu);
1728                         return 1;
1729                 case 8:
1730                         vcpu_load_rsp_rip(vcpu);
1731                         set_cr8(vcpu, vcpu->regs[reg]);
1732                         skip_emulated_instruction(vcpu);
1733                         return 1;
1734                 };
1735                 break;
1736         case 2: /* clts */
1737                 vcpu_load_rsp_rip(vcpu);
1738                 vmx_fpu_deactivate(vcpu);
1739                 vcpu->cr0 &= ~CR0_TS_MASK;
1740                 vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
1741                 vmx_fpu_activate(vcpu);
1742                 skip_emulated_instruction(vcpu);
1743                 return 1;
1744         case 1: /*mov from cr*/
1745                 switch (cr) {
1746                 case 3:
1747                         vcpu_load_rsp_rip(vcpu);
1748                         vcpu->regs[reg] = vcpu->cr3;
1749                         vcpu_put_rsp_rip(vcpu);
1750                         skip_emulated_instruction(vcpu);
1751                         return 1;
1752                 case 8:
1753                         vcpu_load_rsp_rip(vcpu);
1754                         vcpu->regs[reg] = vcpu->cr8;
1755                         vcpu_put_rsp_rip(vcpu);
1756                         skip_emulated_instruction(vcpu);
1757                         return 1;
1758                 }
1759                 break;
1760         case 3: /* lmsw */
1761                 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1762
1763                 skip_emulated_instruction(vcpu);
1764                 return 1;
1765         default:
1766                 break;
1767         }
1768         kvm_run->exit_reason = 0;
1769         printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1770                (int)(exit_qualification >> 4) & 3, cr);
1771         return 0;
1772 }
1773
1774 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1775 {
1776         u64 exit_qualification;
1777         unsigned long val;
1778         int dr, reg;
1779
1780         /*
1781          * FIXME: this code assumes the host is debugging the guest.
1782          *        need to deal with guest debugging itself too.
1783          */
1784         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1785         dr = exit_qualification & 7;
1786         reg = (exit_qualification >> 8) & 15;
1787         vcpu_load_rsp_rip(vcpu);
1788         if (exit_qualification & 16) {
1789                 /* mov from dr */
1790                 switch (dr) {
1791                 case 6:
1792                         val = 0xffff0ff0;
1793                         break;
1794                 case 7:
1795                         val = 0x400;
1796                         break;
1797                 default:
1798                         val = 0;
1799                 }
1800                 vcpu->regs[reg] = val;
1801         } else {
1802                 /* mov to dr */
1803         }
1804         vcpu_put_rsp_rip(vcpu);
1805         skip_emulated_instruction(vcpu);
1806         return 1;
1807 }
1808
1809 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1810 {
1811         kvm_emulate_cpuid(vcpu);
1812         return 1;
1813 }
1814
1815 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1816 {
1817         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1818         u64 data;
1819
1820         if (vmx_get_msr(vcpu, ecx, &data)) {
1821                 vmx_inject_gp(vcpu, 0);
1822                 return 1;
1823         }
1824
1825         /* FIXME: handling of bits 32:63 of rax, rdx */
1826         vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1827         vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1828         skip_emulated_instruction(vcpu);
1829         return 1;
1830 }
1831
1832 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1833 {
1834         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1835         u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1836                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1837
1838         if (vmx_set_msr(vcpu, ecx, data) != 0) {
1839                 vmx_inject_gp(vcpu, 0);
1840                 return 1;
1841         }
1842
1843         skip_emulated_instruction(vcpu);
1844         return 1;
1845 }
1846
1847 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1848                               struct kvm_run *kvm_run)
1849 {
1850         kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1851         kvm_run->cr8 = vcpu->cr8;
1852         kvm_run->apic_base = vcpu->apic_base;
1853         kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1854                                                   vcpu->irq_summary == 0);
1855 }
1856
1857 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1858                                    struct kvm_run *kvm_run)
1859 {
1860         /*
1861          * If the user space waits to inject interrupts, exit as soon as
1862          * possible
1863          */
1864         if (kvm_run->request_interrupt_window &&
1865             !vcpu->irq_summary) {
1866                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1867                 ++vcpu->stat.irq_window_exits;
1868                 return 0;
1869         }
1870         return 1;
1871 }
1872
1873 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1874 {
1875         skip_emulated_instruction(vcpu);
1876         if (vcpu->irq_summary)
1877                 return 1;
1878
1879         kvm_run->exit_reason = KVM_EXIT_HLT;
1880         ++vcpu->stat.halt_exits;
1881         return 0;
1882 }
1883
1884 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1885 {
1886         skip_emulated_instruction(vcpu);
1887         return kvm_hypercall(vcpu, kvm_run);
1888 }
1889
1890 /*
1891  * The exit handlers return 1 if the exit was handled fully and guest execution
1892  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
1893  * to be done to userspace and return 0.
1894  */
1895 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1896                                       struct kvm_run *kvm_run) = {
1897         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
1898         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
1899         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
1900         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
1901         [EXIT_REASON_CR_ACCESS]               = handle_cr,
1902         [EXIT_REASON_DR_ACCESS]               = handle_dr,
1903         [EXIT_REASON_CPUID]                   = handle_cpuid,
1904         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
1905         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
1906         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
1907         [EXIT_REASON_HLT]                     = handle_halt,
1908         [EXIT_REASON_VMCALL]                  = handle_vmcall,
1909 };
1910
1911 static const int kvm_vmx_max_exit_handlers =
1912         sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1913
1914 /*
1915  * The guest has exited.  See if we can fix it or if we need userspace
1916  * assistance.
1917  */
1918 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1919 {
1920         u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1921         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1922
1923         if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1924                                 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1925                 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1926                        "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1927         if (exit_reason < kvm_vmx_max_exit_handlers
1928             && kvm_vmx_exit_handlers[exit_reason])
1929                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1930         else {
1931                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1932                 kvm_run->hw.hardware_exit_reason = exit_reason;
1933         }
1934         return 0;
1935 }
1936
1937 /*
1938  * Check if userspace requested an interrupt window, and that the
1939  * interrupt window is open.
1940  *
1941  * No need to exit to userspace if we already have an interrupt queued.
1942  */
1943 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1944                                           struct kvm_run *kvm_run)
1945 {
1946         return (!vcpu->irq_summary &&
1947                 kvm_run->request_interrupt_window &&
1948                 vcpu->interrupt_window_open &&
1949                 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
1950 }
1951
1952 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1953 {
1954         u8 fail;
1955         int r;
1956
1957 preempted:
1958         if (!vcpu->mmio_read_completed)
1959                 do_interrupt_requests(vcpu, kvm_run);
1960
1961         if (vcpu->guest_debug.enabled)
1962                 kvm_guest_debug_pre(vcpu);
1963
1964 again:
1965         vmx_save_host_state(vcpu);
1966         kvm_load_guest_fpu(vcpu);
1967
1968         /*
1969          * Loading guest fpu may have cleared host cr0.ts
1970          */
1971         vmcs_writel(HOST_CR0, read_cr0());
1972
1973         asm (
1974                 /* Store host registers */
1975                 "pushf \n\t"
1976 #ifdef CONFIG_X86_64
1977                 "push %%rax; push %%rbx; push %%rdx;"
1978                 "push %%rsi; push %%rdi; push %%rbp;"
1979                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1980                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1981                 "push %%rcx \n\t"
1982                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1983 #else
1984                 "pusha; push %%ecx \n\t"
1985                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1986 #endif
1987                 /* Check if vmlaunch of vmresume is needed */
1988                 "cmp $0, %1 \n\t"
1989                 /* Load guest registers.  Don't clobber flags. */
1990 #ifdef CONFIG_X86_64
1991                 "mov %c[cr2](%3), %%rax \n\t"
1992                 "mov %%rax, %%cr2 \n\t"
1993                 "mov %c[rax](%3), %%rax \n\t"
1994                 "mov %c[rbx](%3), %%rbx \n\t"
1995                 "mov %c[rdx](%3), %%rdx \n\t"
1996                 "mov %c[rsi](%3), %%rsi \n\t"
1997                 "mov %c[rdi](%3), %%rdi \n\t"
1998                 "mov %c[rbp](%3), %%rbp \n\t"
1999                 "mov %c[r8](%3),  %%r8  \n\t"
2000                 "mov %c[r9](%3),  %%r9  \n\t"
2001                 "mov %c[r10](%3), %%r10 \n\t"
2002                 "mov %c[r11](%3), %%r11 \n\t"
2003                 "mov %c[r12](%3), %%r12 \n\t"
2004                 "mov %c[r13](%3), %%r13 \n\t"
2005                 "mov %c[r14](%3), %%r14 \n\t"
2006                 "mov %c[r15](%3), %%r15 \n\t"
2007                 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
2008 #else
2009                 "mov %c[cr2](%3), %%eax \n\t"
2010                 "mov %%eax,   %%cr2 \n\t"
2011                 "mov %c[rax](%3), %%eax \n\t"
2012                 "mov %c[rbx](%3), %%ebx \n\t"
2013                 "mov %c[rdx](%3), %%edx \n\t"
2014                 "mov %c[rsi](%3), %%esi \n\t"
2015                 "mov %c[rdi](%3), %%edi \n\t"
2016                 "mov %c[rbp](%3), %%ebp \n\t"
2017                 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
2018 #endif
2019                 /* Enter guest mode */
2020                 "jne .Llaunched \n\t"
2021                 ASM_VMX_VMLAUNCH "\n\t"
2022                 "jmp .Lkvm_vmx_return \n\t"
2023                 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2024                 ".Lkvm_vmx_return: "
2025                 /* Save guest registers, load host registers, keep flags */
2026 #ifdef CONFIG_X86_64
2027                 "xchg %3,     (%%rsp) \n\t"
2028                 "mov %%rax, %c[rax](%3) \n\t"
2029                 "mov %%rbx, %c[rbx](%3) \n\t"
2030                 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
2031                 "mov %%rdx, %c[rdx](%3) \n\t"
2032                 "mov %%rsi, %c[rsi](%3) \n\t"
2033                 "mov %%rdi, %c[rdi](%3) \n\t"
2034                 "mov %%rbp, %c[rbp](%3) \n\t"
2035                 "mov %%r8,  %c[r8](%3) \n\t"
2036                 "mov %%r9,  %c[r9](%3) \n\t"
2037                 "mov %%r10, %c[r10](%3) \n\t"
2038                 "mov %%r11, %c[r11](%3) \n\t"
2039                 "mov %%r12, %c[r12](%3) \n\t"
2040                 "mov %%r13, %c[r13](%3) \n\t"
2041                 "mov %%r14, %c[r14](%3) \n\t"
2042                 "mov %%r15, %c[r15](%3) \n\t"
2043                 "mov %%cr2, %%rax   \n\t"
2044                 "mov %%rax, %c[cr2](%3) \n\t"
2045                 "mov (%%rsp), %3 \n\t"
2046
2047                 "pop  %%rcx; pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
2048                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
2049                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
2050                 "pop  %%rdx; pop  %%rbx; pop  %%rax \n\t"
2051 #else
2052                 "xchg %3, (%%esp) \n\t"
2053                 "mov %%eax, %c[rax](%3) \n\t"
2054                 "mov %%ebx, %c[rbx](%3) \n\t"
2055                 "pushl (%%esp); popl %c[rcx](%3) \n\t"
2056                 "mov %%edx, %c[rdx](%3) \n\t"
2057                 "mov %%esi, %c[rsi](%3) \n\t"
2058                 "mov %%edi, %c[rdi](%3) \n\t"
2059                 "mov %%ebp, %c[rbp](%3) \n\t"
2060                 "mov %%cr2, %%eax  \n\t"
2061                 "mov %%eax, %c[cr2](%3) \n\t"
2062                 "mov (%%esp), %3 \n\t"
2063
2064                 "pop %%ecx; popa \n\t"
2065 #endif
2066                 "setbe %0 \n\t"
2067                 "popf \n\t"
2068               : "=q" (fail)
2069               : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
2070                 "c"(vcpu),
2071                 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
2072                 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
2073                 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
2074                 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
2075                 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
2076                 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
2077                 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
2078 #ifdef CONFIG_X86_64
2079                 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
2080                 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
2081                 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
2082                 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
2083                 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
2084                 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
2085                 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
2086                 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
2087 #endif
2088                 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
2089               : "cc", "memory" );
2090
2091         ++vcpu->stat.exits;
2092
2093         vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2094
2095         asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2096
2097         if (unlikely(fail)) {
2098                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2099                 kvm_run->fail_entry.hardware_entry_failure_reason
2100                         = vmcs_read32(VM_INSTRUCTION_ERROR);
2101                 r = 0;
2102                 goto out;
2103         }
2104         /*
2105          * Profile KVM exit RIPs:
2106          */
2107         if (unlikely(prof_on == KVM_PROFILING))
2108                 profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
2109
2110         vcpu->launched = 1;
2111         r = kvm_handle_exit(kvm_run, vcpu);
2112         if (r > 0) {
2113                 /* Give scheduler a change to reschedule. */
2114                 if (signal_pending(current)) {
2115                         r = -EINTR;
2116                         kvm_run->exit_reason = KVM_EXIT_INTR;
2117                         ++vcpu->stat.signal_exits;
2118                         goto out;
2119                 }
2120
2121                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2122                         r = -EINTR;
2123                         kvm_run->exit_reason = KVM_EXIT_INTR;
2124                         ++vcpu->stat.request_irq_exits;
2125                         goto out;
2126                 }
2127                 if (!need_resched()) {
2128                         ++vcpu->stat.light_exits;
2129                         goto again;
2130                 }
2131         }
2132
2133 out:
2134         if (r > 0) {
2135                 kvm_resched(vcpu);
2136                 goto preempted;
2137         }
2138
2139         post_kvm_run_save(vcpu, kvm_run);
2140         return r;
2141 }
2142
2143 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2144 {
2145         vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
2146 }
2147
2148 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
2149                                   unsigned long addr,
2150                                   u32 err_code)
2151 {
2152         u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2153
2154         ++vcpu->stat.pf_guest;
2155
2156         if (is_page_fault(vect_info)) {
2157                 printk(KERN_DEBUG "inject_page_fault: "
2158                        "double fault 0x%lx @ 0x%lx\n",
2159                        addr, vmcs_readl(GUEST_RIP));
2160                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2161                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2162                              DF_VECTOR |
2163                              INTR_TYPE_EXCEPTION |
2164                              INTR_INFO_DELIEVER_CODE_MASK |
2165                              INTR_INFO_VALID_MASK);
2166                 return;
2167         }
2168         vcpu->cr2 = addr;
2169         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2170         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2171                      PF_VECTOR |
2172                      INTR_TYPE_EXCEPTION |
2173                      INTR_INFO_DELIEVER_CODE_MASK |
2174                      INTR_INFO_VALID_MASK);
2175
2176 }
2177
2178 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2179 {
2180         if (vcpu->vmcs) {
2181                 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
2182                 free_vmcs(vcpu->vmcs);
2183                 vcpu->vmcs = NULL;
2184         }
2185 }
2186
2187 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2188 {
2189         vmx_free_vmcs(vcpu);
2190 }
2191
2192 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
2193 {
2194         struct vmcs *vmcs;
2195
2196         vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2197         if (!vcpu->guest_msrs)
2198                 return -ENOMEM;
2199
2200         vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2201         if (!vcpu->host_msrs)
2202                 goto out_free_guest_msrs;
2203
2204         vmcs = alloc_vmcs();
2205         if (!vmcs)
2206                 goto out_free_msrs;
2207
2208         vmcs_clear(vmcs);
2209         vcpu->vmcs = vmcs;
2210         vcpu->launched = 0;
2211
2212         return 0;
2213
2214 out_free_msrs:
2215         kfree(vcpu->host_msrs);
2216         vcpu->host_msrs = NULL;
2217
2218 out_free_guest_msrs:
2219         kfree(vcpu->guest_msrs);
2220         vcpu->guest_msrs = NULL;
2221
2222         return -ENOMEM;
2223 }
2224
2225 static struct kvm_arch_ops vmx_arch_ops = {
2226         .cpu_has_kvm_support = cpu_has_kvm_support,
2227         .disabled_by_bios = vmx_disabled_by_bios,
2228         .hardware_setup = hardware_setup,
2229         .hardware_unsetup = hardware_unsetup,
2230         .hardware_enable = hardware_enable,
2231         .hardware_disable = hardware_disable,
2232
2233         .vcpu_create = vmx_create_vcpu,
2234         .vcpu_free = vmx_free_vcpu,
2235
2236         .vcpu_load = vmx_vcpu_load,
2237         .vcpu_put = vmx_vcpu_put,
2238         .vcpu_decache = vmx_vcpu_decache,
2239
2240         .set_guest_debug = set_guest_debug,
2241         .get_msr = vmx_get_msr,
2242         .set_msr = vmx_set_msr,
2243         .get_segment_base = vmx_get_segment_base,
2244         .get_segment = vmx_get_segment,
2245         .set_segment = vmx_set_segment,
2246         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2247         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2248         .set_cr0 = vmx_set_cr0,
2249         .set_cr3 = vmx_set_cr3,
2250         .set_cr4 = vmx_set_cr4,
2251 #ifdef CONFIG_X86_64
2252         .set_efer = vmx_set_efer,
2253 #endif
2254         .get_idt = vmx_get_idt,
2255         .set_idt = vmx_set_idt,
2256         .get_gdt = vmx_get_gdt,
2257         .set_gdt = vmx_set_gdt,
2258         .cache_regs = vcpu_load_rsp_rip,
2259         .decache_regs = vcpu_put_rsp_rip,
2260         .get_rflags = vmx_get_rflags,
2261         .set_rflags = vmx_set_rflags,
2262
2263         .tlb_flush = vmx_flush_tlb,
2264         .inject_page_fault = vmx_inject_page_fault,
2265
2266         .inject_gp = vmx_inject_gp,
2267
2268         .run = vmx_vcpu_run,
2269         .skip_emulated_instruction = skip_emulated_instruction,
2270         .vcpu_setup = vmx_vcpu_setup,
2271         .patch_hypercall = vmx_patch_hypercall,
2272 };
2273
2274 static int __init vmx_init(void)
2275 {
2276         void *iova;
2277         int r;
2278
2279         vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2280         if (!vmx_io_bitmap_a)
2281                 return -ENOMEM;
2282
2283         vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2284         if (!vmx_io_bitmap_b) {
2285                 r = -ENOMEM;
2286                 goto out;
2287         }
2288
2289         /*
2290          * Allow direct access to the PC debug port (it is often used for I/O
2291          * delays, but the vmexits simply slow things down).
2292          */
2293         iova = kmap(vmx_io_bitmap_a);
2294         memset(iova, 0xff, PAGE_SIZE);
2295         clear_bit(0x80, iova);
2296         kunmap(vmx_io_bitmap_a);
2297
2298         iova = kmap(vmx_io_bitmap_b);
2299         memset(iova, 0xff, PAGE_SIZE);
2300         kunmap(vmx_io_bitmap_b);
2301
2302         r = kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
2303         if (r)
2304                 goto out1;
2305
2306         return 0;
2307
2308 out1:
2309         __free_page(vmx_io_bitmap_b);
2310 out:
2311         __free_page(vmx_io_bitmap_a);
2312         return r;
2313 }
2314
2315 static void __exit vmx_exit(void)
2316 {
2317         __free_page(vmx_io_bitmap_b);
2318         __free_page(vmx_io_bitmap_a);
2319
2320         kvm_exit_arch();
2321 }
2322
2323 module_init(vmx_init)
2324 module_exit(vmx_exit)