KVM: Move duplicate halt handling code into kvm_main.c
[safe/jmp/linux-2.6] / drivers / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "vmx.h"
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/profile.h>
25 #include <linux/sched.h>
26 #include <asm/io.h>
27 #include <asm/desc.h>
28
29 #include "segment_descriptor.h"
30
31 MODULE_AUTHOR("Qumranet");
32 MODULE_LICENSE("GPL");
33
34 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
35 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
36
37 static struct page *vmx_io_bitmap_a;
38 static struct page *vmx_io_bitmap_b;
39
40 #ifdef CONFIG_X86_64
41 #define HOST_IS_64 1
42 #else
43 #define HOST_IS_64 0
44 #endif
45 #define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
46
47 static struct vmcs_descriptor {
48         int size;
49         int order;
50         u32 revision_id;
51 } vmcs_descriptor;
52
53 #define VMX_SEGMENT_FIELD(seg)                                  \
54         [VCPU_SREG_##seg] = {                                   \
55                 .selector = GUEST_##seg##_SELECTOR,             \
56                 .base = GUEST_##seg##_BASE,                     \
57                 .limit = GUEST_##seg##_LIMIT,                   \
58                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
59         }
60
61 static struct kvm_vmx_segment_field {
62         unsigned selector;
63         unsigned base;
64         unsigned limit;
65         unsigned ar_bytes;
66 } kvm_vmx_segment_fields[] = {
67         VMX_SEGMENT_FIELD(CS),
68         VMX_SEGMENT_FIELD(DS),
69         VMX_SEGMENT_FIELD(ES),
70         VMX_SEGMENT_FIELD(FS),
71         VMX_SEGMENT_FIELD(GS),
72         VMX_SEGMENT_FIELD(SS),
73         VMX_SEGMENT_FIELD(TR),
74         VMX_SEGMENT_FIELD(LDTR),
75 };
76
77 /*
78  * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
79  * away by decrementing the array size.
80  */
81 static const u32 vmx_msr_index[] = {
82 #ifdef CONFIG_X86_64
83         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
84 #endif
85         MSR_EFER, MSR_K6_STAR,
86 };
87 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
88
89 static inline u64 msr_efer_save_restore_bits(struct vmx_msr_entry msr)
90 {
91         return (u64)msr.data & EFER_SAVE_RESTORE_BITS;
92 }
93
94 static inline int msr_efer_need_save_restore(struct kvm_vcpu *vcpu)
95 {
96         int efer_offset = vcpu->msr_offset_efer;
97         return msr_efer_save_restore_bits(vcpu->host_msrs[efer_offset]) !=
98                 msr_efer_save_restore_bits(vcpu->guest_msrs[efer_offset]);
99 }
100
101 static inline int is_page_fault(u32 intr_info)
102 {
103         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
104                              INTR_INFO_VALID_MASK)) ==
105                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
106 }
107
108 static inline int is_no_device(u32 intr_info)
109 {
110         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
111                              INTR_INFO_VALID_MASK)) ==
112                 (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
113 }
114
115 static inline int is_external_interrupt(u32 intr_info)
116 {
117         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
118                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
119 }
120
121 static int __find_msr_index(struct kvm_vcpu *vcpu, u32 msr)
122 {
123         int i;
124
125         for (i = 0; i < vcpu->nmsrs; ++i)
126                 if (vcpu->guest_msrs[i].index == msr)
127                         return i;
128         return -1;
129 }
130
131 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
132 {
133         int i;
134
135         i = __find_msr_index(vcpu, msr);
136         if (i >= 0)
137                 return &vcpu->guest_msrs[i];
138         return NULL;
139 }
140
141 static void vmcs_clear(struct vmcs *vmcs)
142 {
143         u64 phys_addr = __pa(vmcs);
144         u8 error;
145
146         asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
147                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
148                       : "cc", "memory");
149         if (error)
150                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
151                        vmcs, phys_addr);
152 }
153
154 static void __vcpu_clear(void *arg)
155 {
156         struct kvm_vcpu *vcpu = arg;
157         int cpu = raw_smp_processor_id();
158
159         if (vcpu->cpu == cpu)
160                 vmcs_clear(vcpu->vmcs);
161         if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
162                 per_cpu(current_vmcs, cpu) = NULL;
163 }
164
165 static void vcpu_clear(struct kvm_vcpu *vcpu)
166 {
167         if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
168                 smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
169         else
170                 __vcpu_clear(vcpu);
171         vcpu->launched = 0;
172 }
173
174 static unsigned long vmcs_readl(unsigned long field)
175 {
176         unsigned long value;
177
178         asm volatile (ASM_VMX_VMREAD_RDX_RAX
179                       : "=a"(value) : "d"(field) : "cc");
180         return value;
181 }
182
183 static u16 vmcs_read16(unsigned long field)
184 {
185         return vmcs_readl(field);
186 }
187
188 static u32 vmcs_read32(unsigned long field)
189 {
190         return vmcs_readl(field);
191 }
192
193 static u64 vmcs_read64(unsigned long field)
194 {
195 #ifdef CONFIG_X86_64
196         return vmcs_readl(field);
197 #else
198         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
199 #endif
200 }
201
202 static noinline void vmwrite_error(unsigned long field, unsigned long value)
203 {
204         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
205                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
206         dump_stack();
207 }
208
209 static void vmcs_writel(unsigned long field, unsigned long value)
210 {
211         u8 error;
212
213         asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
214                        : "=q"(error) : "a"(value), "d"(field) : "cc" );
215         if (unlikely(error))
216                 vmwrite_error(field, value);
217 }
218
219 static void vmcs_write16(unsigned long field, u16 value)
220 {
221         vmcs_writel(field, value);
222 }
223
224 static void vmcs_write32(unsigned long field, u32 value)
225 {
226         vmcs_writel(field, value);
227 }
228
229 static void vmcs_write64(unsigned long field, u64 value)
230 {
231 #ifdef CONFIG_X86_64
232         vmcs_writel(field, value);
233 #else
234         vmcs_writel(field, value);
235         asm volatile ("");
236         vmcs_writel(field+1, value >> 32);
237 #endif
238 }
239
240 static void vmcs_clear_bits(unsigned long field, u32 mask)
241 {
242         vmcs_writel(field, vmcs_readl(field) & ~mask);
243 }
244
245 static void vmcs_set_bits(unsigned long field, u32 mask)
246 {
247         vmcs_writel(field, vmcs_readl(field) | mask);
248 }
249
250 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
251 {
252         u32 eb;
253
254         eb = 1u << PF_VECTOR;
255         if (!vcpu->fpu_active)
256                 eb |= 1u << NM_VECTOR;
257         if (vcpu->guest_debug.enabled)
258                 eb |= 1u << 1;
259         if (vcpu->rmode.active)
260                 eb = ~0;
261         vmcs_write32(EXCEPTION_BITMAP, eb);
262 }
263
264 static void reload_tss(void)
265 {
266 #ifndef CONFIG_X86_64
267
268         /*
269          * VT restores TR but not its size.  Useless.
270          */
271         struct descriptor_table gdt;
272         struct segment_descriptor *descs;
273
274         get_gdt(&gdt);
275         descs = (void *)gdt.base;
276         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
277         load_TR_desc();
278 #endif
279 }
280
281 static void load_transition_efer(struct kvm_vcpu *vcpu)
282 {
283         u64 trans_efer;
284         int efer_offset = vcpu->msr_offset_efer;
285
286         trans_efer = vcpu->host_msrs[efer_offset].data;
287         trans_efer &= ~EFER_SAVE_RESTORE_BITS;
288         trans_efer |= msr_efer_save_restore_bits(
289                                 vcpu->guest_msrs[efer_offset]);
290         wrmsrl(MSR_EFER, trans_efer);
291         vcpu->stat.efer_reload++;
292 }
293
294 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
295 {
296         struct vmx_host_state *hs = &vcpu->vmx_host_state;
297
298         if (hs->loaded)
299                 return;
300
301         hs->loaded = 1;
302         /*
303          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
304          * allow segment selectors with cpl > 0 or ti == 1.
305          */
306         hs->ldt_sel = read_ldt();
307         hs->fs_gs_ldt_reload_needed = hs->ldt_sel;
308         hs->fs_sel = read_fs();
309         if (!(hs->fs_sel & 7))
310                 vmcs_write16(HOST_FS_SELECTOR, hs->fs_sel);
311         else {
312                 vmcs_write16(HOST_FS_SELECTOR, 0);
313                 hs->fs_gs_ldt_reload_needed = 1;
314         }
315         hs->gs_sel = read_gs();
316         if (!(hs->gs_sel & 7))
317                 vmcs_write16(HOST_GS_SELECTOR, hs->gs_sel);
318         else {
319                 vmcs_write16(HOST_GS_SELECTOR, 0);
320                 hs->fs_gs_ldt_reload_needed = 1;
321         }
322
323 #ifdef CONFIG_X86_64
324         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
325         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
326 #else
327         vmcs_writel(HOST_FS_BASE, segment_base(hs->fs_sel));
328         vmcs_writel(HOST_GS_BASE, segment_base(hs->gs_sel));
329 #endif
330
331 #ifdef CONFIG_X86_64
332         if (is_long_mode(vcpu)) {
333                 save_msrs(vcpu->host_msrs + vcpu->msr_offset_kernel_gs_base, 1);
334         }
335 #endif
336         load_msrs(vcpu->guest_msrs, vcpu->save_nmsrs);
337         if (msr_efer_need_save_restore(vcpu))
338                 load_transition_efer(vcpu);
339 }
340
341 static void vmx_load_host_state(struct kvm_vcpu *vcpu)
342 {
343         struct vmx_host_state *hs = &vcpu->vmx_host_state;
344
345         if (!hs->loaded)
346                 return;
347
348         hs->loaded = 0;
349         if (hs->fs_gs_ldt_reload_needed) {
350                 load_ldt(hs->ldt_sel);
351                 load_fs(hs->fs_sel);
352                 /*
353                  * If we have to reload gs, we must take care to
354                  * preserve our gs base.
355                  */
356                 local_irq_disable();
357                 load_gs(hs->gs_sel);
358 #ifdef CONFIG_X86_64
359                 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
360 #endif
361                 local_irq_enable();
362
363                 reload_tss();
364         }
365         save_msrs(vcpu->guest_msrs, vcpu->save_nmsrs);
366         load_msrs(vcpu->host_msrs, vcpu->save_nmsrs);
367         if (msr_efer_need_save_restore(vcpu))
368                 load_msrs(vcpu->host_msrs + vcpu->msr_offset_efer, 1);
369 }
370
371 /*
372  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
373  * vcpu mutex is already taken.
374  */
375 static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
376 {
377         u64 phys_addr = __pa(vcpu->vmcs);
378         int cpu;
379
380         cpu = get_cpu();
381
382         if (vcpu->cpu != cpu)
383                 vcpu_clear(vcpu);
384
385         if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
386                 u8 error;
387
388                 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
389                 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
390                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
391                               : "cc");
392                 if (error)
393                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
394                                vcpu->vmcs, phys_addr);
395         }
396
397         if (vcpu->cpu != cpu) {
398                 struct descriptor_table dt;
399                 unsigned long sysenter_esp;
400
401                 vcpu->cpu = cpu;
402                 /*
403                  * Linux uses per-cpu TSS and GDT, so set these when switching
404                  * processors.
405                  */
406                 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
407                 get_gdt(&dt);
408                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
409
410                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
411                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
412         }
413 }
414
415 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
416 {
417         vmx_load_host_state(vcpu);
418         kvm_put_guest_fpu(vcpu);
419         put_cpu();
420 }
421
422 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
423 {
424         if (vcpu->fpu_active)
425                 return;
426         vcpu->fpu_active = 1;
427         vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
428         if (vcpu->cr0 & CR0_TS_MASK)
429                 vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
430         update_exception_bitmap(vcpu);
431 }
432
433 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
434 {
435         if (!vcpu->fpu_active)
436                 return;
437         vcpu->fpu_active = 0;
438         vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
439         update_exception_bitmap(vcpu);
440 }
441
442 static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
443 {
444         vcpu_clear(vcpu);
445 }
446
447 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
448 {
449         return vmcs_readl(GUEST_RFLAGS);
450 }
451
452 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
453 {
454         vmcs_writel(GUEST_RFLAGS, rflags);
455 }
456
457 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
458 {
459         unsigned long rip;
460         u32 interruptibility;
461
462         rip = vmcs_readl(GUEST_RIP);
463         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
464         vmcs_writel(GUEST_RIP, rip);
465
466         /*
467          * We emulated an instruction, so temporary interrupt blocking
468          * should be removed, if set.
469          */
470         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
471         if (interruptibility & 3)
472                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
473                              interruptibility & ~3);
474         vcpu->interrupt_window_open = 1;
475 }
476
477 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
478 {
479         printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
480                vmcs_readl(GUEST_RIP));
481         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
482         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
483                      GP_VECTOR |
484                      INTR_TYPE_EXCEPTION |
485                      INTR_INFO_DELIEVER_CODE_MASK |
486                      INTR_INFO_VALID_MASK);
487 }
488
489 /*
490  * Swap MSR entry in host/guest MSR entry array.
491  */
492 void move_msr_up(struct kvm_vcpu *vcpu, int from, int to)
493 {
494         struct vmx_msr_entry tmp;
495         tmp = vcpu->guest_msrs[to];
496         vcpu->guest_msrs[to] = vcpu->guest_msrs[from];
497         vcpu->guest_msrs[from] = tmp;
498         tmp = vcpu->host_msrs[to];
499         vcpu->host_msrs[to] = vcpu->host_msrs[from];
500         vcpu->host_msrs[from] = tmp;
501 }
502
503 /*
504  * Set up the vmcs to automatically save and restore system
505  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
506  * mode, as fiddling with msrs is very expensive.
507  */
508 static void setup_msrs(struct kvm_vcpu *vcpu)
509 {
510         int save_nmsrs;
511
512         save_nmsrs = 0;
513 #ifdef CONFIG_X86_64
514         if (is_long_mode(vcpu)) {
515                 int index;
516
517                 index = __find_msr_index(vcpu, MSR_SYSCALL_MASK);
518                 if (index >= 0)
519                         move_msr_up(vcpu, index, save_nmsrs++);
520                 index = __find_msr_index(vcpu, MSR_LSTAR);
521                 if (index >= 0)
522                         move_msr_up(vcpu, index, save_nmsrs++);
523                 index = __find_msr_index(vcpu, MSR_CSTAR);
524                 if (index >= 0)
525                         move_msr_up(vcpu, index, save_nmsrs++);
526                 index = __find_msr_index(vcpu, MSR_KERNEL_GS_BASE);
527                 if (index >= 0)
528                         move_msr_up(vcpu, index, save_nmsrs++);
529                 /*
530                  * MSR_K6_STAR is only needed on long mode guests, and only
531                  * if efer.sce is enabled.
532                  */
533                 index = __find_msr_index(vcpu, MSR_K6_STAR);
534                 if ((index >= 0) && (vcpu->shadow_efer & EFER_SCE))
535                         move_msr_up(vcpu, index, save_nmsrs++);
536         }
537 #endif
538         vcpu->save_nmsrs = save_nmsrs;
539
540 #ifdef CONFIG_X86_64
541         vcpu->msr_offset_kernel_gs_base =
542                 __find_msr_index(vcpu, MSR_KERNEL_GS_BASE);
543 #endif
544         vcpu->msr_offset_efer = __find_msr_index(vcpu, MSR_EFER);
545 }
546
547 /*
548  * reads and returns guest's timestamp counter "register"
549  * guest_tsc = host_tsc + tsc_offset    -- 21.3
550  */
551 static u64 guest_read_tsc(void)
552 {
553         u64 host_tsc, tsc_offset;
554
555         rdtscll(host_tsc);
556         tsc_offset = vmcs_read64(TSC_OFFSET);
557         return host_tsc + tsc_offset;
558 }
559
560 /*
561  * writes 'guest_tsc' into guest's timestamp counter "register"
562  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
563  */
564 static void guest_write_tsc(u64 guest_tsc)
565 {
566         u64 host_tsc;
567
568         rdtscll(host_tsc);
569         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
570 }
571
572 /*
573  * Reads an msr value (of 'msr_index') into 'pdata'.
574  * Returns 0 on success, non-0 otherwise.
575  * Assumes vcpu_load() was already called.
576  */
577 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
578 {
579         u64 data;
580         struct vmx_msr_entry *msr;
581
582         if (!pdata) {
583                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
584                 return -EINVAL;
585         }
586
587         switch (msr_index) {
588 #ifdef CONFIG_X86_64
589         case MSR_FS_BASE:
590                 data = vmcs_readl(GUEST_FS_BASE);
591                 break;
592         case MSR_GS_BASE:
593                 data = vmcs_readl(GUEST_GS_BASE);
594                 break;
595         case MSR_EFER:
596                 return kvm_get_msr_common(vcpu, msr_index, pdata);
597 #endif
598         case MSR_IA32_TIME_STAMP_COUNTER:
599                 data = guest_read_tsc();
600                 break;
601         case MSR_IA32_SYSENTER_CS:
602                 data = vmcs_read32(GUEST_SYSENTER_CS);
603                 break;
604         case MSR_IA32_SYSENTER_EIP:
605                 data = vmcs_readl(GUEST_SYSENTER_EIP);
606                 break;
607         case MSR_IA32_SYSENTER_ESP:
608                 data = vmcs_readl(GUEST_SYSENTER_ESP);
609                 break;
610         default:
611                 msr = find_msr_entry(vcpu, msr_index);
612                 if (msr) {
613                         data = msr->data;
614                         break;
615                 }
616                 return kvm_get_msr_common(vcpu, msr_index, pdata);
617         }
618
619         *pdata = data;
620         return 0;
621 }
622
623 /*
624  * Writes msr value into into the appropriate "register".
625  * Returns 0 on success, non-0 otherwise.
626  * Assumes vcpu_load() was already called.
627  */
628 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
629 {
630         struct vmx_msr_entry *msr;
631         int ret = 0;
632
633         switch (msr_index) {
634 #ifdef CONFIG_X86_64
635         case MSR_EFER:
636                 ret = kvm_set_msr_common(vcpu, msr_index, data);
637                 if (vcpu->vmx_host_state.loaded)
638                         load_transition_efer(vcpu);
639                 break;
640         case MSR_FS_BASE:
641                 vmcs_writel(GUEST_FS_BASE, data);
642                 break;
643         case MSR_GS_BASE:
644                 vmcs_writel(GUEST_GS_BASE, data);
645                 break;
646 #endif
647         case MSR_IA32_SYSENTER_CS:
648                 vmcs_write32(GUEST_SYSENTER_CS, data);
649                 break;
650         case MSR_IA32_SYSENTER_EIP:
651                 vmcs_writel(GUEST_SYSENTER_EIP, data);
652                 break;
653         case MSR_IA32_SYSENTER_ESP:
654                 vmcs_writel(GUEST_SYSENTER_ESP, data);
655                 break;
656         case MSR_IA32_TIME_STAMP_COUNTER:
657                 guest_write_tsc(data);
658                 break;
659         default:
660                 msr = find_msr_entry(vcpu, msr_index);
661                 if (msr) {
662                         msr->data = data;
663                         if (vcpu->vmx_host_state.loaded)
664                                 load_msrs(vcpu->guest_msrs, vcpu->save_nmsrs);
665                         break;
666                 }
667                 ret = kvm_set_msr_common(vcpu, msr_index, data);
668         }
669
670         return ret;
671 }
672
673 /*
674  * Sync the rsp and rip registers into the vcpu structure.  This allows
675  * registers to be accessed by indexing vcpu->regs.
676  */
677 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
678 {
679         vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
680         vcpu->rip = vmcs_readl(GUEST_RIP);
681 }
682
683 /*
684  * Syncs rsp and rip back into the vmcs.  Should be called after possible
685  * modification.
686  */
687 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
688 {
689         vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
690         vmcs_writel(GUEST_RIP, vcpu->rip);
691 }
692
693 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
694 {
695         unsigned long dr7 = 0x400;
696         int old_singlestep;
697
698         old_singlestep = vcpu->guest_debug.singlestep;
699
700         vcpu->guest_debug.enabled = dbg->enabled;
701         if (vcpu->guest_debug.enabled) {
702                 int i;
703
704                 dr7 |= 0x200;  /* exact */
705                 for (i = 0; i < 4; ++i) {
706                         if (!dbg->breakpoints[i].enabled)
707                                 continue;
708                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
709                         dr7 |= 2 << (i*2);    /* global enable */
710                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
711                 }
712
713                 vcpu->guest_debug.singlestep = dbg->singlestep;
714         } else
715                 vcpu->guest_debug.singlestep = 0;
716
717         if (old_singlestep && !vcpu->guest_debug.singlestep) {
718                 unsigned long flags;
719
720                 flags = vmcs_readl(GUEST_RFLAGS);
721                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
722                 vmcs_writel(GUEST_RFLAGS, flags);
723         }
724
725         update_exception_bitmap(vcpu);
726         vmcs_writel(GUEST_DR7, dr7);
727
728         return 0;
729 }
730
731 static __init int cpu_has_kvm_support(void)
732 {
733         unsigned long ecx = cpuid_ecx(1);
734         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
735 }
736
737 static __init int vmx_disabled_by_bios(void)
738 {
739         u64 msr;
740
741         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
742         return (msr & 5) == 1; /* locked but not enabled */
743 }
744
745 static void hardware_enable(void *garbage)
746 {
747         int cpu = raw_smp_processor_id();
748         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
749         u64 old;
750
751         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
752         if ((old & 5) != 5)
753                 /* enable and lock */
754                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
755         write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
756         asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
757                       : "memory", "cc");
758 }
759
760 static void hardware_disable(void *garbage)
761 {
762         asm volatile (ASM_VMX_VMXOFF : : : "cc");
763 }
764
765 static __init void setup_vmcs_descriptor(void)
766 {
767         u32 vmx_msr_low, vmx_msr_high;
768
769         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
770         vmcs_descriptor.size = vmx_msr_high & 0x1fff;
771         vmcs_descriptor.order = get_order(vmcs_descriptor.size);
772         vmcs_descriptor.revision_id = vmx_msr_low;
773 }
774
775 static struct vmcs *alloc_vmcs_cpu(int cpu)
776 {
777         int node = cpu_to_node(cpu);
778         struct page *pages;
779         struct vmcs *vmcs;
780
781         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
782         if (!pages)
783                 return NULL;
784         vmcs = page_address(pages);
785         memset(vmcs, 0, vmcs_descriptor.size);
786         vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
787         return vmcs;
788 }
789
790 static struct vmcs *alloc_vmcs(void)
791 {
792         return alloc_vmcs_cpu(raw_smp_processor_id());
793 }
794
795 static void free_vmcs(struct vmcs *vmcs)
796 {
797         free_pages((unsigned long)vmcs, vmcs_descriptor.order);
798 }
799
800 static void free_kvm_area(void)
801 {
802         int cpu;
803
804         for_each_online_cpu(cpu)
805                 free_vmcs(per_cpu(vmxarea, cpu));
806 }
807
808 extern struct vmcs *alloc_vmcs_cpu(int cpu);
809
810 static __init int alloc_kvm_area(void)
811 {
812         int cpu;
813
814         for_each_online_cpu(cpu) {
815                 struct vmcs *vmcs;
816
817                 vmcs = alloc_vmcs_cpu(cpu);
818                 if (!vmcs) {
819                         free_kvm_area();
820                         return -ENOMEM;
821                 }
822
823                 per_cpu(vmxarea, cpu) = vmcs;
824         }
825         return 0;
826 }
827
828 static __init int hardware_setup(void)
829 {
830         setup_vmcs_descriptor();
831         return alloc_kvm_area();
832 }
833
834 static __exit void hardware_unsetup(void)
835 {
836         free_kvm_area();
837 }
838
839 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
840 {
841         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
842
843         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
844                 vmcs_write16(sf->selector, save->selector);
845                 vmcs_writel(sf->base, save->base);
846                 vmcs_write32(sf->limit, save->limit);
847                 vmcs_write32(sf->ar_bytes, save->ar);
848         } else {
849                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
850                         << AR_DPL_SHIFT;
851                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
852         }
853 }
854
855 static void enter_pmode(struct kvm_vcpu *vcpu)
856 {
857         unsigned long flags;
858
859         vcpu->rmode.active = 0;
860
861         vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
862         vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
863         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
864
865         flags = vmcs_readl(GUEST_RFLAGS);
866         flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
867         flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
868         vmcs_writel(GUEST_RFLAGS, flags);
869
870         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
871                         (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
872
873         update_exception_bitmap(vcpu);
874
875         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
876         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
877         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
878         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
879
880         vmcs_write16(GUEST_SS_SELECTOR, 0);
881         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
882
883         vmcs_write16(GUEST_CS_SELECTOR,
884                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
885         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
886 }
887
888 static int rmode_tss_base(struct kvm* kvm)
889 {
890         gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
891         return base_gfn << PAGE_SHIFT;
892 }
893
894 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
895 {
896         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
897
898         save->selector = vmcs_read16(sf->selector);
899         save->base = vmcs_readl(sf->base);
900         save->limit = vmcs_read32(sf->limit);
901         save->ar = vmcs_read32(sf->ar_bytes);
902         vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
903         vmcs_write32(sf->limit, 0xffff);
904         vmcs_write32(sf->ar_bytes, 0xf3);
905 }
906
907 static void enter_rmode(struct kvm_vcpu *vcpu)
908 {
909         unsigned long flags;
910
911         vcpu->rmode.active = 1;
912
913         vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
914         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
915
916         vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
917         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
918
919         vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
920         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
921
922         flags = vmcs_readl(GUEST_RFLAGS);
923         vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
924
925         flags |= IOPL_MASK | X86_EFLAGS_VM;
926
927         vmcs_writel(GUEST_RFLAGS, flags);
928         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
929         update_exception_bitmap(vcpu);
930
931         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
932         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
933         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
934
935         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
936         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
937         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
938                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
939         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
940
941         fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
942         fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
943         fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
944         fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
945 }
946
947 #ifdef CONFIG_X86_64
948
949 static void enter_lmode(struct kvm_vcpu *vcpu)
950 {
951         u32 guest_tr_ar;
952
953         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
954         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
955                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
956                        __FUNCTION__);
957                 vmcs_write32(GUEST_TR_AR_BYTES,
958                              (guest_tr_ar & ~AR_TYPE_MASK)
959                              | AR_TYPE_BUSY_64_TSS);
960         }
961
962         vcpu->shadow_efer |= EFER_LMA;
963
964         find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
965         vmcs_write32(VM_ENTRY_CONTROLS,
966                      vmcs_read32(VM_ENTRY_CONTROLS)
967                      | VM_ENTRY_CONTROLS_IA32E_MASK);
968 }
969
970 static void exit_lmode(struct kvm_vcpu *vcpu)
971 {
972         vcpu->shadow_efer &= ~EFER_LMA;
973
974         vmcs_write32(VM_ENTRY_CONTROLS,
975                      vmcs_read32(VM_ENTRY_CONTROLS)
976                      & ~VM_ENTRY_CONTROLS_IA32E_MASK);
977 }
978
979 #endif
980
981 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
982 {
983         vcpu->cr4 &= KVM_GUEST_CR4_MASK;
984         vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
985 }
986
987 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
988 {
989         vmx_fpu_deactivate(vcpu);
990
991         if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
992                 enter_pmode(vcpu);
993
994         if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
995                 enter_rmode(vcpu);
996
997 #ifdef CONFIG_X86_64
998         if (vcpu->shadow_efer & EFER_LME) {
999                 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
1000                         enter_lmode(vcpu);
1001                 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
1002                         exit_lmode(vcpu);
1003         }
1004 #endif
1005
1006         vmcs_writel(CR0_READ_SHADOW, cr0);
1007         vmcs_writel(GUEST_CR0,
1008                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
1009         vcpu->cr0 = cr0;
1010
1011         if (!(cr0 & CR0_TS_MASK) || !(cr0 & CR0_PE_MASK))
1012                 vmx_fpu_activate(vcpu);
1013 }
1014
1015 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1016 {
1017         vmcs_writel(GUEST_CR3, cr3);
1018         if (vcpu->cr0 & CR0_PE_MASK)
1019                 vmx_fpu_deactivate(vcpu);
1020 }
1021
1022 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1023 {
1024         vmcs_writel(CR4_READ_SHADOW, cr4);
1025         vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
1026                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
1027         vcpu->cr4 = cr4;
1028 }
1029
1030 #ifdef CONFIG_X86_64
1031
1032 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1033 {
1034         struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
1035
1036         vcpu->shadow_efer = efer;
1037         if (efer & EFER_LMA) {
1038                 vmcs_write32(VM_ENTRY_CONTROLS,
1039                                      vmcs_read32(VM_ENTRY_CONTROLS) |
1040                                      VM_ENTRY_CONTROLS_IA32E_MASK);
1041                 msr->data = efer;
1042
1043         } else {
1044                 vmcs_write32(VM_ENTRY_CONTROLS,
1045                                      vmcs_read32(VM_ENTRY_CONTROLS) &
1046                                      ~VM_ENTRY_CONTROLS_IA32E_MASK);
1047
1048                 msr->data = efer & ~EFER_LME;
1049         }
1050         setup_msrs(vcpu);
1051 }
1052
1053 #endif
1054
1055 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1056 {
1057         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1058
1059         return vmcs_readl(sf->base);
1060 }
1061
1062 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1063                             struct kvm_segment *var, int seg)
1064 {
1065         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1066         u32 ar;
1067
1068         var->base = vmcs_readl(sf->base);
1069         var->limit = vmcs_read32(sf->limit);
1070         var->selector = vmcs_read16(sf->selector);
1071         ar = vmcs_read32(sf->ar_bytes);
1072         if (ar & AR_UNUSABLE_MASK)
1073                 ar = 0;
1074         var->type = ar & 15;
1075         var->s = (ar >> 4) & 1;
1076         var->dpl = (ar >> 5) & 3;
1077         var->present = (ar >> 7) & 1;
1078         var->avl = (ar >> 12) & 1;
1079         var->l = (ar >> 13) & 1;
1080         var->db = (ar >> 14) & 1;
1081         var->g = (ar >> 15) & 1;
1082         var->unusable = (ar >> 16) & 1;
1083 }
1084
1085 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1086 {
1087         u32 ar;
1088
1089         if (var->unusable)
1090                 ar = 1 << 16;
1091         else {
1092                 ar = var->type & 15;
1093                 ar |= (var->s & 1) << 4;
1094                 ar |= (var->dpl & 3) << 5;
1095                 ar |= (var->present & 1) << 7;
1096                 ar |= (var->avl & 1) << 12;
1097                 ar |= (var->l & 1) << 13;
1098                 ar |= (var->db & 1) << 14;
1099                 ar |= (var->g & 1) << 15;
1100         }
1101         if (ar == 0) /* a 0 value means unusable */
1102                 ar = AR_UNUSABLE_MASK;
1103
1104         return ar;
1105 }
1106
1107 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1108                             struct kvm_segment *var, int seg)
1109 {
1110         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1111         u32 ar;
1112
1113         if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
1114                 vcpu->rmode.tr.selector = var->selector;
1115                 vcpu->rmode.tr.base = var->base;
1116                 vcpu->rmode.tr.limit = var->limit;
1117                 vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
1118                 return;
1119         }
1120         vmcs_writel(sf->base, var->base);
1121         vmcs_write32(sf->limit, var->limit);
1122         vmcs_write16(sf->selector, var->selector);
1123         if (vcpu->rmode.active && var->s) {
1124                 /*
1125                  * Hack real-mode segments into vm86 compatibility.
1126                  */
1127                 if (var->base == 0xffff0000 && var->selector == 0xf000)
1128                         vmcs_writel(sf->base, 0xf0000);
1129                 ar = 0xf3;
1130         } else
1131                 ar = vmx_segment_access_rights(var);
1132         vmcs_write32(sf->ar_bytes, ar);
1133 }
1134
1135 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1136 {
1137         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1138
1139         *db = (ar >> 14) & 1;
1140         *l = (ar >> 13) & 1;
1141 }
1142
1143 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1144 {
1145         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
1146         dt->base = vmcs_readl(GUEST_IDTR_BASE);
1147 }
1148
1149 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1150 {
1151         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
1152         vmcs_writel(GUEST_IDTR_BASE, dt->base);
1153 }
1154
1155 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1156 {
1157         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
1158         dt->base = vmcs_readl(GUEST_GDTR_BASE);
1159 }
1160
1161 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
1162 {
1163         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
1164         vmcs_writel(GUEST_GDTR_BASE, dt->base);
1165 }
1166
1167 static int init_rmode_tss(struct kvm* kvm)
1168 {
1169         struct page *p1, *p2, *p3;
1170         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
1171         char *page;
1172
1173         p1 = gfn_to_page(kvm, fn++);
1174         p2 = gfn_to_page(kvm, fn++);
1175         p3 = gfn_to_page(kvm, fn);
1176
1177         if (!p1 || !p2 || !p3) {
1178                 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
1179                 return 0;
1180         }
1181
1182         page = kmap_atomic(p1, KM_USER0);
1183         memset(page, 0, PAGE_SIZE);
1184         *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
1185         kunmap_atomic(page, KM_USER0);
1186
1187         page = kmap_atomic(p2, KM_USER0);
1188         memset(page, 0, PAGE_SIZE);
1189         kunmap_atomic(page, KM_USER0);
1190
1191         page = kmap_atomic(p3, KM_USER0);
1192         memset(page, 0, PAGE_SIZE);
1193         *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
1194         kunmap_atomic(page, KM_USER0);
1195
1196         return 1;
1197 }
1198
1199 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
1200 {
1201         u32 msr_high, msr_low;
1202
1203         rdmsr(msr, msr_low, msr_high);
1204
1205         val &= msr_high;
1206         val |= msr_low;
1207         vmcs_write32(vmcs_field, val);
1208 }
1209
1210 static void seg_setup(int seg)
1211 {
1212         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1213
1214         vmcs_write16(sf->selector, 0);
1215         vmcs_writel(sf->base, 0);
1216         vmcs_write32(sf->limit, 0xffff);
1217         vmcs_write32(sf->ar_bytes, 0x93);
1218 }
1219
1220 /*
1221  * Sets up the vmcs for emulated real mode.
1222  */
1223 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
1224 {
1225         u32 host_sysenter_cs;
1226         u32 junk;
1227         unsigned long a;
1228         struct descriptor_table dt;
1229         int i;
1230         int ret = 0;
1231         unsigned long kvm_vmx_return;
1232
1233         if (!init_rmode_tss(vcpu->kvm)) {
1234                 ret = -ENOMEM;
1235                 goto out;
1236         }
1237
1238         memset(vcpu->regs, 0, sizeof(vcpu->regs));
1239         vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
1240         vcpu->cr8 = 0;
1241         vcpu->apic_base = 0xfee00000 |
1242                         /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
1243                         MSR_IA32_APICBASE_ENABLE;
1244
1245         fx_init(vcpu);
1246
1247         /*
1248          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
1249          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
1250          */
1251         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
1252         vmcs_writel(GUEST_CS_BASE, 0x000f0000);
1253         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1254         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1255
1256         seg_setup(VCPU_SREG_DS);
1257         seg_setup(VCPU_SREG_ES);
1258         seg_setup(VCPU_SREG_FS);
1259         seg_setup(VCPU_SREG_GS);
1260         seg_setup(VCPU_SREG_SS);
1261
1262         vmcs_write16(GUEST_TR_SELECTOR, 0);
1263         vmcs_writel(GUEST_TR_BASE, 0);
1264         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1265         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1266
1267         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1268         vmcs_writel(GUEST_LDTR_BASE, 0);
1269         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1270         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1271
1272         vmcs_write32(GUEST_SYSENTER_CS, 0);
1273         vmcs_writel(GUEST_SYSENTER_ESP, 0);
1274         vmcs_writel(GUEST_SYSENTER_EIP, 0);
1275
1276         vmcs_writel(GUEST_RFLAGS, 0x02);
1277         vmcs_writel(GUEST_RIP, 0xfff0);
1278         vmcs_writel(GUEST_RSP, 0);
1279
1280         //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1281         vmcs_writel(GUEST_DR7, 0x400);
1282
1283         vmcs_writel(GUEST_GDTR_BASE, 0);
1284         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1285
1286         vmcs_writel(GUEST_IDTR_BASE, 0);
1287         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1288
1289         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1290         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1291         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1292
1293         /* I/O */
1294         vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
1295         vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
1296
1297         guest_write_tsc(0);
1298
1299         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1300
1301         /* Special registers */
1302         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1303
1304         /* Control */
1305         vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
1306                                PIN_BASED_VM_EXEC_CONTROL,
1307                                PIN_BASED_EXT_INTR_MASK   /* 20.6.1 */
1308                                | PIN_BASED_NMI_EXITING   /* 20.6.1 */
1309                         );
1310         vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
1311                                CPU_BASED_VM_EXEC_CONTROL,
1312                                CPU_BASED_HLT_EXITING         /* 20.6.2 */
1313                                | CPU_BASED_CR8_LOAD_EXITING    /* 20.6.2 */
1314                                | CPU_BASED_CR8_STORE_EXITING   /* 20.6.2 */
1315                                | CPU_BASED_ACTIVATE_IO_BITMAP  /* 20.6.2 */
1316                                | CPU_BASED_MOV_DR_EXITING
1317                                | CPU_BASED_USE_TSC_OFFSETING   /* 21.3 */
1318                         );
1319
1320         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1321         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1322         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1323
1324         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1325         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1326         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1327
1328         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1329         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1330         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1331         vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */
1332         vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */
1333         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1334 #ifdef CONFIG_X86_64
1335         rdmsrl(MSR_FS_BASE, a);
1336         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1337         rdmsrl(MSR_GS_BASE, a);
1338         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1339 #else
1340         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1341         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1342 #endif
1343
1344         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1345
1346         get_idt(&dt);
1347         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1348
1349         asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
1350         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
1351         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1352         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
1353         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
1354
1355         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1356         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1357         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1358         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1359         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1360         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1361
1362         for (i = 0; i < NR_VMX_MSR; ++i) {
1363                 u32 index = vmx_msr_index[i];
1364                 u32 data_low, data_high;
1365                 u64 data;
1366                 int j = vcpu->nmsrs;
1367
1368                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1369                         continue;
1370                 if (wrmsr_safe(index, data_low, data_high) < 0)
1371                         continue;
1372                 data = data_low | ((u64)data_high << 32);
1373                 vcpu->host_msrs[j].index = index;
1374                 vcpu->host_msrs[j].reserved = 0;
1375                 vcpu->host_msrs[j].data = data;
1376                 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1377                 ++vcpu->nmsrs;
1378         }
1379
1380         setup_msrs(vcpu);
1381
1382         vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
1383                                (HOST_IS_64 << 9));  /* 22.2,1, 20.7.1 */
1384
1385         /* 22.2.1, 20.8.1 */
1386         vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
1387                                VM_ENTRY_CONTROLS, 0);
1388         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
1389
1390 #ifdef CONFIG_X86_64
1391         vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1392         vmcs_writel(TPR_THRESHOLD, 0);
1393 #endif
1394
1395         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
1396         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1397
1398         vcpu->cr0 = 0x60000010;
1399         vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1400         vmx_set_cr4(vcpu, 0);
1401 #ifdef CONFIG_X86_64
1402         vmx_set_efer(vcpu, 0);
1403 #endif
1404         vmx_fpu_activate(vcpu);
1405         update_exception_bitmap(vcpu);
1406
1407         return 0;
1408
1409 out:
1410         return ret;
1411 }
1412
1413 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1414 {
1415         u16 ent[2];
1416         u16 cs;
1417         u16 ip;
1418         unsigned long flags;
1419         unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1420         u16 sp =  vmcs_readl(GUEST_RSP);
1421         u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1422
1423         if (sp > ss_limit || sp < 6 ) {
1424                 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1425                             __FUNCTION__,
1426                             vmcs_readl(GUEST_RSP),
1427                             vmcs_readl(GUEST_SS_BASE),
1428                             vmcs_read32(GUEST_SS_LIMIT));
1429                 return;
1430         }
1431
1432         if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1433                                                                 sizeof(ent)) {
1434                 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1435                 return;
1436         }
1437
1438         flags =  vmcs_readl(GUEST_RFLAGS);
1439         cs =  vmcs_readl(GUEST_CS_BASE) >> 4;
1440         ip =  vmcs_readl(GUEST_RIP);
1441
1442
1443         if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1444             kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1445             kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1446                 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1447                 return;
1448         }
1449
1450         vmcs_writel(GUEST_RFLAGS, flags &
1451                     ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1452         vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1453         vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1454         vmcs_writel(GUEST_RIP, ent[0]);
1455         vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1456 }
1457
1458 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1459 {
1460         int word_index = __ffs(vcpu->irq_summary);
1461         int bit_index = __ffs(vcpu->irq_pending[word_index]);
1462         int irq = word_index * BITS_PER_LONG + bit_index;
1463
1464         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1465         if (!vcpu->irq_pending[word_index])
1466                 clear_bit(word_index, &vcpu->irq_summary);
1467
1468         if (vcpu->rmode.active) {
1469                 inject_rmode_irq(vcpu, irq);
1470                 return;
1471         }
1472         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1473                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1474 }
1475
1476
1477 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1478                                        struct kvm_run *kvm_run)
1479 {
1480         u32 cpu_based_vm_exec_control;
1481
1482         vcpu->interrupt_window_open =
1483                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1484                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1485
1486         if (vcpu->interrupt_window_open &&
1487             vcpu->irq_summary &&
1488             !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1489                 /*
1490                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1491                  */
1492                 kvm_do_inject_irq(vcpu);
1493
1494         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1495         if (!vcpu->interrupt_window_open &&
1496             (vcpu->irq_summary || kvm_run->request_interrupt_window))
1497                 /*
1498                  * Interrupts blocked.  Wait for unblock.
1499                  */
1500                 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1501         else
1502                 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1503         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1504 }
1505
1506 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1507 {
1508         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1509
1510         set_debugreg(dbg->bp[0], 0);
1511         set_debugreg(dbg->bp[1], 1);
1512         set_debugreg(dbg->bp[2], 2);
1513         set_debugreg(dbg->bp[3], 3);
1514
1515         if (dbg->singlestep) {
1516                 unsigned long flags;
1517
1518                 flags = vmcs_readl(GUEST_RFLAGS);
1519                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1520                 vmcs_writel(GUEST_RFLAGS, flags);
1521         }
1522 }
1523
1524 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1525                                   int vec, u32 err_code)
1526 {
1527         if (!vcpu->rmode.active)
1528                 return 0;
1529
1530         /*
1531          * Instruction with address size override prefix opcode 0x67
1532          * Cause the #SS fault with 0 error code in VM86 mode.
1533          */
1534         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
1535                 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1536                         return 1;
1537         return 0;
1538 }
1539
1540 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1541 {
1542         u32 intr_info, error_code;
1543         unsigned long cr2, rip;
1544         u32 vect_info;
1545         enum emulation_result er;
1546         int r;
1547
1548         vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1549         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1550
1551         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1552                                                 !is_page_fault(intr_info)) {
1553                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1554                        "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1555         }
1556
1557         if (is_external_interrupt(vect_info)) {
1558                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1559                 set_bit(irq, vcpu->irq_pending);
1560                 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1561         }
1562
1563         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1564                 asm ("int $2");
1565                 return 1;
1566         }
1567
1568         if (is_no_device(intr_info)) {
1569                 vmx_fpu_activate(vcpu);
1570                 return 1;
1571         }
1572
1573         error_code = 0;
1574         rip = vmcs_readl(GUEST_RIP);
1575         if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1576                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1577         if (is_page_fault(intr_info)) {
1578                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1579
1580                 spin_lock(&vcpu->kvm->lock);
1581                 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1582                 if (r < 0) {
1583                         spin_unlock(&vcpu->kvm->lock);
1584                         return r;
1585                 }
1586                 if (!r) {
1587                         spin_unlock(&vcpu->kvm->lock);
1588                         return 1;
1589                 }
1590
1591                 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1592                 spin_unlock(&vcpu->kvm->lock);
1593
1594                 switch (er) {
1595                 case EMULATE_DONE:
1596                         return 1;
1597                 case EMULATE_DO_MMIO:
1598                         ++vcpu->stat.mmio_exits;
1599                         kvm_run->exit_reason = KVM_EXIT_MMIO;
1600                         return 0;
1601                  case EMULATE_FAIL:
1602                         vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1603                         break;
1604                 default:
1605                         BUG();
1606                 }
1607         }
1608
1609         if (vcpu->rmode.active &&
1610             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1611                                                                 error_code))
1612                 return 1;
1613
1614         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1615                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1616                 return 0;
1617         }
1618         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1619         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1620         kvm_run->ex.error_code = error_code;
1621         return 0;
1622 }
1623
1624 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1625                                      struct kvm_run *kvm_run)
1626 {
1627         ++vcpu->stat.irq_exits;
1628         return 1;
1629 }
1630
1631 static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1632 {
1633         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1634         return 0;
1635 }
1636
1637 static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
1638 {
1639         u64 inst;
1640         gva_t rip;
1641         int countr_size;
1642         int i, n;
1643
1644         if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1645                 countr_size = 2;
1646         } else {
1647                 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1648
1649                 countr_size = (cs_ar & AR_L_MASK) ? 8:
1650                               (cs_ar & AR_DB_MASK) ? 4: 2;
1651         }
1652
1653         rip =  vmcs_readl(GUEST_RIP);
1654         if (countr_size != 8)
1655                 rip += vmcs_readl(GUEST_CS_BASE);
1656
1657         n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1658
1659         for (i = 0; i < n; i++) {
1660                 switch (((u8*)&inst)[i]) {
1661                 case 0xf0:
1662                 case 0xf2:
1663                 case 0xf3:
1664                 case 0x2e:
1665                 case 0x36:
1666                 case 0x3e:
1667                 case 0x26:
1668                 case 0x64:
1669                 case 0x65:
1670                 case 0x66:
1671                         break;
1672                 case 0x67:
1673                         countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1674                 default:
1675                         goto done;
1676                 }
1677         }
1678         return 0;
1679 done:
1680         countr_size *= 8;
1681         *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1682         //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
1683         return 1;
1684 }
1685
1686 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1687 {
1688         u64 exit_qualification;
1689         int size, down, in, string, rep;
1690         unsigned port;
1691         unsigned long count;
1692         gva_t address;
1693
1694         ++vcpu->stat.io_exits;
1695         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1696         in = (exit_qualification & 8) != 0;
1697         size = (exit_qualification & 7) + 1;
1698         string = (exit_qualification & 16) != 0;
1699         down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1700         count = 1;
1701         rep = (exit_qualification & 32) != 0;
1702         port = exit_qualification >> 16;
1703         address = 0;
1704         if (string) {
1705                 if (rep && !get_io_count(vcpu, &count))
1706                         return 1;
1707                 address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1708         }
1709         return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
1710                              address, rep, port);
1711 }
1712
1713 static void
1714 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1715 {
1716         /*
1717          * Patch in the VMCALL instruction:
1718          */
1719         hypercall[0] = 0x0f;
1720         hypercall[1] = 0x01;
1721         hypercall[2] = 0xc1;
1722         hypercall[3] = 0xc3;
1723 }
1724
1725 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1726 {
1727         u64 exit_qualification;
1728         int cr;
1729         int reg;
1730
1731         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1732         cr = exit_qualification & 15;
1733         reg = (exit_qualification >> 8) & 15;
1734         switch ((exit_qualification >> 4) & 3) {
1735         case 0: /* mov to cr */
1736                 switch (cr) {
1737                 case 0:
1738                         vcpu_load_rsp_rip(vcpu);
1739                         set_cr0(vcpu, vcpu->regs[reg]);
1740                         skip_emulated_instruction(vcpu);
1741                         return 1;
1742                 case 3:
1743                         vcpu_load_rsp_rip(vcpu);
1744                         set_cr3(vcpu, vcpu->regs[reg]);
1745                         skip_emulated_instruction(vcpu);
1746                         return 1;
1747                 case 4:
1748                         vcpu_load_rsp_rip(vcpu);
1749                         set_cr4(vcpu, vcpu->regs[reg]);
1750                         skip_emulated_instruction(vcpu);
1751                         return 1;
1752                 case 8:
1753                         vcpu_load_rsp_rip(vcpu);
1754                         set_cr8(vcpu, vcpu->regs[reg]);
1755                         skip_emulated_instruction(vcpu);
1756                         return 1;
1757                 };
1758                 break;
1759         case 2: /* clts */
1760                 vcpu_load_rsp_rip(vcpu);
1761                 vmx_fpu_deactivate(vcpu);
1762                 vcpu->cr0 &= ~CR0_TS_MASK;
1763                 vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
1764                 vmx_fpu_activate(vcpu);
1765                 skip_emulated_instruction(vcpu);
1766                 return 1;
1767         case 1: /*mov from cr*/
1768                 switch (cr) {
1769                 case 3:
1770                         vcpu_load_rsp_rip(vcpu);
1771                         vcpu->regs[reg] = vcpu->cr3;
1772                         vcpu_put_rsp_rip(vcpu);
1773                         skip_emulated_instruction(vcpu);
1774                         return 1;
1775                 case 8:
1776                         vcpu_load_rsp_rip(vcpu);
1777                         vcpu->regs[reg] = vcpu->cr8;
1778                         vcpu_put_rsp_rip(vcpu);
1779                         skip_emulated_instruction(vcpu);
1780                         return 1;
1781                 }
1782                 break;
1783         case 3: /* lmsw */
1784                 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1785
1786                 skip_emulated_instruction(vcpu);
1787                 return 1;
1788         default:
1789                 break;
1790         }
1791         kvm_run->exit_reason = 0;
1792         printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1793                (int)(exit_qualification >> 4) & 3, cr);
1794         return 0;
1795 }
1796
1797 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1798 {
1799         u64 exit_qualification;
1800         unsigned long val;
1801         int dr, reg;
1802
1803         /*
1804          * FIXME: this code assumes the host is debugging the guest.
1805          *        need to deal with guest debugging itself too.
1806          */
1807         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1808         dr = exit_qualification & 7;
1809         reg = (exit_qualification >> 8) & 15;
1810         vcpu_load_rsp_rip(vcpu);
1811         if (exit_qualification & 16) {
1812                 /* mov from dr */
1813                 switch (dr) {
1814                 case 6:
1815                         val = 0xffff0ff0;
1816                         break;
1817                 case 7:
1818                         val = 0x400;
1819                         break;
1820                 default:
1821                         val = 0;
1822                 }
1823                 vcpu->regs[reg] = val;
1824         } else {
1825                 /* mov to dr */
1826         }
1827         vcpu_put_rsp_rip(vcpu);
1828         skip_emulated_instruction(vcpu);
1829         return 1;
1830 }
1831
1832 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1833 {
1834         kvm_emulate_cpuid(vcpu);
1835         return 1;
1836 }
1837
1838 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1839 {
1840         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1841         u64 data;
1842
1843         if (vmx_get_msr(vcpu, ecx, &data)) {
1844                 vmx_inject_gp(vcpu, 0);
1845                 return 1;
1846         }
1847
1848         /* FIXME: handling of bits 32:63 of rax, rdx */
1849         vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1850         vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1851         skip_emulated_instruction(vcpu);
1852         return 1;
1853 }
1854
1855 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1856 {
1857         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1858         u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1859                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1860
1861         if (vmx_set_msr(vcpu, ecx, data) != 0) {
1862                 vmx_inject_gp(vcpu, 0);
1863                 return 1;
1864         }
1865
1866         skip_emulated_instruction(vcpu);
1867         return 1;
1868 }
1869
1870 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1871                               struct kvm_run *kvm_run)
1872 {
1873         kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1874         kvm_run->cr8 = vcpu->cr8;
1875         kvm_run->apic_base = vcpu->apic_base;
1876         kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1877                                                   vcpu->irq_summary == 0);
1878 }
1879
1880 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1881                                    struct kvm_run *kvm_run)
1882 {
1883         /*
1884          * If the user space waits to inject interrupts, exit as soon as
1885          * possible
1886          */
1887         if (kvm_run->request_interrupt_window &&
1888             !vcpu->irq_summary) {
1889                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1890                 ++vcpu->stat.irq_window_exits;
1891                 return 0;
1892         }
1893         return 1;
1894 }
1895
1896 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1897 {
1898         skip_emulated_instruction(vcpu);
1899         return kvm_emulate_halt(vcpu);
1900 }
1901
1902 static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1903 {
1904         skip_emulated_instruction(vcpu);
1905         return kvm_hypercall(vcpu, kvm_run);
1906 }
1907
1908 /*
1909  * The exit handlers return 1 if the exit was handled fully and guest execution
1910  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
1911  * to be done to userspace and return 0.
1912  */
1913 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1914                                       struct kvm_run *kvm_run) = {
1915         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
1916         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
1917         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
1918         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
1919         [EXIT_REASON_CR_ACCESS]               = handle_cr,
1920         [EXIT_REASON_DR_ACCESS]               = handle_dr,
1921         [EXIT_REASON_CPUID]                   = handle_cpuid,
1922         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
1923         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
1924         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
1925         [EXIT_REASON_HLT]                     = handle_halt,
1926         [EXIT_REASON_VMCALL]                  = handle_vmcall,
1927 };
1928
1929 static const int kvm_vmx_max_exit_handlers =
1930         ARRAY_SIZE(kvm_vmx_exit_handlers);
1931
1932 /*
1933  * The guest has exited.  See if we can fix it or if we need userspace
1934  * assistance.
1935  */
1936 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1937 {
1938         u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1939         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1940
1941         if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1942                                 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1943                 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1944                        "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1945         if (exit_reason < kvm_vmx_max_exit_handlers
1946             && kvm_vmx_exit_handlers[exit_reason])
1947                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1948         else {
1949                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1950                 kvm_run->hw.hardware_exit_reason = exit_reason;
1951         }
1952         return 0;
1953 }
1954
1955 /*
1956  * Check if userspace requested an interrupt window, and that the
1957  * interrupt window is open.
1958  *
1959  * No need to exit to userspace if we already have an interrupt queued.
1960  */
1961 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1962                                           struct kvm_run *kvm_run)
1963 {
1964         return (!vcpu->irq_summary &&
1965                 kvm_run->request_interrupt_window &&
1966                 vcpu->interrupt_window_open &&
1967                 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
1968 }
1969
1970 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1971 {
1972         u8 fail;
1973         int r;
1974
1975 preempted:
1976         if (!vcpu->mmio_read_completed)
1977                 do_interrupt_requests(vcpu, kvm_run);
1978
1979         if (vcpu->guest_debug.enabled)
1980                 kvm_guest_debug_pre(vcpu);
1981
1982 again:
1983         vmx_save_host_state(vcpu);
1984         kvm_load_guest_fpu(vcpu);
1985
1986         r = kvm_mmu_reload(vcpu);
1987         if (unlikely(r))
1988                 goto out;
1989
1990         /*
1991          * Loading guest fpu may have cleared host cr0.ts
1992          */
1993         vmcs_writel(HOST_CR0, read_cr0());
1994
1995         asm (
1996                 /* Store host registers */
1997                 "pushf \n\t"
1998 #ifdef CONFIG_X86_64
1999                 "push %%rax; push %%rbx; push %%rdx;"
2000                 "push %%rsi; push %%rdi; push %%rbp;"
2001                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
2002                 "push %%r12; push %%r13; push %%r14; push %%r15;"
2003                 "push %%rcx \n\t"
2004                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2005 #else
2006                 "pusha; push %%ecx \n\t"
2007                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
2008 #endif
2009                 /* Check if vmlaunch of vmresume is needed */
2010                 "cmp $0, %1 \n\t"
2011                 /* Load guest registers.  Don't clobber flags. */
2012 #ifdef CONFIG_X86_64
2013                 "mov %c[cr2](%3), %%rax \n\t"
2014                 "mov %%rax, %%cr2 \n\t"
2015                 "mov %c[rax](%3), %%rax \n\t"
2016                 "mov %c[rbx](%3), %%rbx \n\t"
2017                 "mov %c[rdx](%3), %%rdx \n\t"
2018                 "mov %c[rsi](%3), %%rsi \n\t"
2019                 "mov %c[rdi](%3), %%rdi \n\t"
2020                 "mov %c[rbp](%3), %%rbp \n\t"
2021                 "mov %c[r8](%3),  %%r8  \n\t"
2022                 "mov %c[r9](%3),  %%r9  \n\t"
2023                 "mov %c[r10](%3), %%r10 \n\t"
2024                 "mov %c[r11](%3), %%r11 \n\t"
2025                 "mov %c[r12](%3), %%r12 \n\t"
2026                 "mov %c[r13](%3), %%r13 \n\t"
2027                 "mov %c[r14](%3), %%r14 \n\t"
2028                 "mov %c[r15](%3), %%r15 \n\t"
2029                 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
2030 #else
2031                 "mov %c[cr2](%3), %%eax \n\t"
2032                 "mov %%eax,   %%cr2 \n\t"
2033                 "mov %c[rax](%3), %%eax \n\t"
2034                 "mov %c[rbx](%3), %%ebx \n\t"
2035                 "mov %c[rdx](%3), %%edx \n\t"
2036                 "mov %c[rsi](%3), %%esi \n\t"
2037                 "mov %c[rdi](%3), %%edi \n\t"
2038                 "mov %c[rbp](%3), %%ebp \n\t"
2039                 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
2040 #endif
2041                 /* Enter guest mode */
2042                 "jne .Llaunched \n\t"
2043                 ASM_VMX_VMLAUNCH "\n\t"
2044                 "jmp .Lkvm_vmx_return \n\t"
2045                 ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
2046                 ".Lkvm_vmx_return: "
2047                 /* Save guest registers, load host registers, keep flags */
2048 #ifdef CONFIG_X86_64
2049                 "xchg %3,     (%%rsp) \n\t"
2050                 "mov %%rax, %c[rax](%3) \n\t"
2051                 "mov %%rbx, %c[rbx](%3) \n\t"
2052                 "pushq (%%rsp); popq %c[rcx](%3) \n\t"
2053                 "mov %%rdx, %c[rdx](%3) \n\t"
2054                 "mov %%rsi, %c[rsi](%3) \n\t"
2055                 "mov %%rdi, %c[rdi](%3) \n\t"
2056                 "mov %%rbp, %c[rbp](%3) \n\t"
2057                 "mov %%r8,  %c[r8](%3) \n\t"
2058                 "mov %%r9,  %c[r9](%3) \n\t"
2059                 "mov %%r10, %c[r10](%3) \n\t"
2060                 "mov %%r11, %c[r11](%3) \n\t"
2061                 "mov %%r12, %c[r12](%3) \n\t"
2062                 "mov %%r13, %c[r13](%3) \n\t"
2063                 "mov %%r14, %c[r14](%3) \n\t"
2064                 "mov %%r15, %c[r15](%3) \n\t"
2065                 "mov %%cr2, %%rax   \n\t"
2066                 "mov %%rax, %c[cr2](%3) \n\t"
2067                 "mov (%%rsp), %3 \n\t"
2068
2069                 "pop  %%rcx; pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
2070                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
2071                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
2072                 "pop  %%rdx; pop  %%rbx; pop  %%rax \n\t"
2073 #else
2074                 "xchg %3, (%%esp) \n\t"
2075                 "mov %%eax, %c[rax](%3) \n\t"
2076                 "mov %%ebx, %c[rbx](%3) \n\t"
2077                 "pushl (%%esp); popl %c[rcx](%3) \n\t"
2078                 "mov %%edx, %c[rdx](%3) \n\t"
2079                 "mov %%esi, %c[rsi](%3) \n\t"
2080                 "mov %%edi, %c[rdi](%3) \n\t"
2081                 "mov %%ebp, %c[rbp](%3) \n\t"
2082                 "mov %%cr2, %%eax  \n\t"
2083                 "mov %%eax, %c[cr2](%3) \n\t"
2084                 "mov (%%esp), %3 \n\t"
2085
2086                 "pop %%ecx; popa \n\t"
2087 #endif
2088                 "setbe %0 \n\t"
2089                 "popf \n\t"
2090               : "=q" (fail)
2091               : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
2092                 "c"(vcpu),
2093                 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
2094                 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
2095                 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
2096                 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
2097                 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
2098                 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
2099                 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
2100 #ifdef CONFIG_X86_64
2101                 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
2102                 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
2103                 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
2104                 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
2105                 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
2106                 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
2107                 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
2108                 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
2109 #endif
2110                 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
2111               : "cc", "memory" );
2112
2113         ++vcpu->stat.exits;
2114
2115         vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
2116
2117         asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
2118
2119         if (unlikely(fail)) {
2120                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2121                 kvm_run->fail_entry.hardware_entry_failure_reason
2122                         = vmcs_read32(VM_INSTRUCTION_ERROR);
2123                 r = 0;
2124                 goto out;
2125         }
2126         /*
2127          * Profile KVM exit RIPs:
2128          */
2129         if (unlikely(prof_on == KVM_PROFILING))
2130                 profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
2131
2132         vcpu->launched = 1;
2133         r = kvm_handle_exit(kvm_run, vcpu);
2134         if (r > 0) {
2135                 /* Give scheduler a change to reschedule. */
2136                 if (signal_pending(current)) {
2137                         r = -EINTR;
2138                         kvm_run->exit_reason = KVM_EXIT_INTR;
2139                         ++vcpu->stat.signal_exits;
2140                         goto out;
2141                 }
2142
2143                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
2144                         r = -EINTR;
2145                         kvm_run->exit_reason = KVM_EXIT_INTR;
2146                         ++vcpu->stat.request_irq_exits;
2147                         goto out;
2148                 }
2149                 if (!need_resched()) {
2150                         ++vcpu->stat.light_exits;
2151                         goto again;
2152                 }
2153         }
2154
2155 out:
2156         if (r > 0) {
2157                 kvm_resched(vcpu);
2158                 goto preempted;
2159         }
2160
2161         post_kvm_run_save(vcpu, kvm_run);
2162         return r;
2163 }
2164
2165 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2166 {
2167         vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
2168 }
2169
2170 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
2171                                   unsigned long addr,
2172                                   u32 err_code)
2173 {
2174         u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
2175
2176         ++vcpu->stat.pf_guest;
2177
2178         if (is_page_fault(vect_info)) {
2179                 printk(KERN_DEBUG "inject_page_fault: "
2180                        "double fault 0x%lx @ 0x%lx\n",
2181                        addr, vmcs_readl(GUEST_RIP));
2182                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
2183                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2184                              DF_VECTOR |
2185                              INTR_TYPE_EXCEPTION |
2186                              INTR_INFO_DELIEVER_CODE_MASK |
2187                              INTR_INFO_VALID_MASK);
2188                 return;
2189         }
2190         vcpu->cr2 = addr;
2191         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
2192         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2193                      PF_VECTOR |
2194                      INTR_TYPE_EXCEPTION |
2195                      INTR_INFO_DELIEVER_CODE_MASK |
2196                      INTR_INFO_VALID_MASK);
2197
2198 }
2199
2200 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
2201 {
2202         if (vcpu->vmcs) {
2203                 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
2204                 free_vmcs(vcpu->vmcs);
2205                 vcpu->vmcs = NULL;
2206         }
2207 }
2208
2209 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
2210 {
2211         vmx_free_vmcs(vcpu);
2212 }
2213
2214 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
2215 {
2216         struct vmcs *vmcs;
2217
2218         vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2219         if (!vcpu->guest_msrs)
2220                 return -ENOMEM;
2221
2222         vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
2223         if (!vcpu->host_msrs)
2224                 goto out_free_guest_msrs;
2225
2226         vmcs = alloc_vmcs();
2227         if (!vmcs)
2228                 goto out_free_msrs;
2229
2230         vmcs_clear(vmcs);
2231         vcpu->vmcs = vmcs;
2232         vcpu->launched = 0;
2233
2234         return 0;
2235
2236 out_free_msrs:
2237         kfree(vcpu->host_msrs);
2238         vcpu->host_msrs = NULL;
2239
2240 out_free_guest_msrs:
2241         kfree(vcpu->guest_msrs);
2242         vcpu->guest_msrs = NULL;
2243
2244         return -ENOMEM;
2245 }
2246
2247 static struct kvm_arch_ops vmx_arch_ops = {
2248         .cpu_has_kvm_support = cpu_has_kvm_support,
2249         .disabled_by_bios = vmx_disabled_by_bios,
2250         .hardware_setup = hardware_setup,
2251         .hardware_unsetup = hardware_unsetup,
2252         .hardware_enable = hardware_enable,
2253         .hardware_disable = hardware_disable,
2254
2255         .vcpu_create = vmx_create_vcpu,
2256         .vcpu_free = vmx_free_vcpu,
2257
2258         .vcpu_load = vmx_vcpu_load,
2259         .vcpu_put = vmx_vcpu_put,
2260         .vcpu_decache = vmx_vcpu_decache,
2261
2262         .set_guest_debug = set_guest_debug,
2263         .get_msr = vmx_get_msr,
2264         .set_msr = vmx_set_msr,
2265         .get_segment_base = vmx_get_segment_base,
2266         .get_segment = vmx_get_segment,
2267         .set_segment = vmx_set_segment,
2268         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2269         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
2270         .set_cr0 = vmx_set_cr0,
2271         .set_cr3 = vmx_set_cr3,
2272         .set_cr4 = vmx_set_cr4,
2273 #ifdef CONFIG_X86_64
2274         .set_efer = vmx_set_efer,
2275 #endif
2276         .get_idt = vmx_get_idt,
2277         .set_idt = vmx_set_idt,
2278         .get_gdt = vmx_get_gdt,
2279         .set_gdt = vmx_set_gdt,
2280         .cache_regs = vcpu_load_rsp_rip,
2281         .decache_regs = vcpu_put_rsp_rip,
2282         .get_rflags = vmx_get_rflags,
2283         .set_rflags = vmx_set_rflags,
2284
2285         .tlb_flush = vmx_flush_tlb,
2286         .inject_page_fault = vmx_inject_page_fault,
2287
2288         .inject_gp = vmx_inject_gp,
2289
2290         .run = vmx_vcpu_run,
2291         .skip_emulated_instruction = skip_emulated_instruction,
2292         .vcpu_setup = vmx_vcpu_setup,
2293         .patch_hypercall = vmx_patch_hypercall,
2294 };
2295
2296 static int __init vmx_init(void)
2297 {
2298         void *iova;
2299         int r;
2300
2301         vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2302         if (!vmx_io_bitmap_a)
2303                 return -ENOMEM;
2304
2305         vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2306         if (!vmx_io_bitmap_b) {
2307                 r = -ENOMEM;
2308                 goto out;
2309         }
2310
2311         /*
2312          * Allow direct access to the PC debug port (it is often used for I/O
2313          * delays, but the vmexits simply slow things down).
2314          */
2315         iova = kmap(vmx_io_bitmap_a);
2316         memset(iova, 0xff, PAGE_SIZE);
2317         clear_bit(0x80, iova);
2318         kunmap(vmx_io_bitmap_a);
2319
2320         iova = kmap(vmx_io_bitmap_b);
2321         memset(iova, 0xff, PAGE_SIZE);
2322         kunmap(vmx_io_bitmap_b);
2323
2324         r = kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
2325         if (r)
2326                 goto out1;
2327
2328         return 0;
2329
2330 out1:
2331         __free_page(vmx_io_bitmap_b);
2332 out:
2333         __free_page(vmx_io_bitmap_a);
2334         return r;
2335 }
2336
2337 static void __exit vmx_exit(void)
2338 {
2339         __free_page(vmx_io_bitmap_b);
2340         __free_page(vmx_io_bitmap_a);
2341
2342         kvm_exit_arch();
2343 }
2344
2345 module_init(vmx_init)
2346 module_exit(vmx_exit)