KVM: Use generalized exception queue for injecting #UD
[safe/jmp/linux-2.6] / drivers / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16 #include "x86.h"
17 #include "kvm_svm.h"
18 #include "x86_emulate.h"
19 #include "irq.h"
20
21 #include <linux/module.h>
22 #include <linux/kernel.h>
23 #include <linux/vmalloc.h>
24 #include <linux/highmem.h>
25 #include <linux/sched.h>
26
27 #include <asm/desc.h>
28
29 MODULE_AUTHOR("Qumranet");
30 MODULE_LICENSE("GPL");
31
32 #define IOPM_ALLOC_ORDER 2
33 #define MSRPM_ALLOC_ORDER 1
34
35 #define DB_VECTOR 1
36 #define UD_VECTOR 6
37 #define GP_VECTOR 13
38
39 #define DR7_GD_MASK (1 << 13)
40 #define DR6_BD_MASK (1 << 13)
41
42 #define SEG_TYPE_LDT 2
43 #define SEG_TYPE_BUSY_TSS16 3
44
45 #define SVM_FEATURE_NPT  (1 << 0)
46 #define SVM_FEATURE_LBRV (1 << 1)
47 #define SVM_DEATURE_SVML (1 << 2)
48
49 static void kvm_reput_irq(struct vcpu_svm *svm);
50
51 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
52 {
53         return container_of(vcpu, struct vcpu_svm, vcpu);
54 }
55
56 unsigned long iopm_base;
57 unsigned long msrpm_base;
58
59 struct kvm_ldttss_desc {
60         u16 limit0;
61         u16 base0;
62         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
63         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
64         u32 base3;
65         u32 zero1;
66 } __attribute__((packed));
67
68 struct svm_cpu_data {
69         int cpu;
70
71         u64 asid_generation;
72         u32 max_asid;
73         u32 next_asid;
74         struct kvm_ldttss_desc *tss_desc;
75
76         struct page *save_area;
77 };
78
79 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
80 static uint32_t svm_features;
81
82 struct svm_init_data {
83         int cpu;
84         int r;
85 };
86
87 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
88
89 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
90 #define MSRS_RANGE_SIZE 2048
91 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
92
93 #define MAX_INST_SIZE 15
94
95 static inline u32 svm_has(u32 feat)
96 {
97         return svm_features & feat;
98 }
99
100 static inline u8 pop_irq(struct kvm_vcpu *vcpu)
101 {
102         int word_index = __ffs(vcpu->irq_summary);
103         int bit_index = __ffs(vcpu->irq_pending[word_index]);
104         int irq = word_index * BITS_PER_LONG + bit_index;
105
106         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
107         if (!vcpu->irq_pending[word_index])
108                 clear_bit(word_index, &vcpu->irq_summary);
109         return irq;
110 }
111
112 static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
113 {
114         set_bit(irq, vcpu->irq_pending);
115         set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
116 }
117
118 static inline void clgi(void)
119 {
120         asm volatile (SVM_CLGI);
121 }
122
123 static inline void stgi(void)
124 {
125         asm volatile (SVM_STGI);
126 }
127
128 static inline void invlpga(unsigned long addr, u32 asid)
129 {
130         asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid));
131 }
132
133 static inline unsigned long kvm_read_cr2(void)
134 {
135         unsigned long cr2;
136
137         asm volatile ("mov %%cr2, %0" : "=r" (cr2));
138         return cr2;
139 }
140
141 static inline void kvm_write_cr2(unsigned long val)
142 {
143         asm volatile ("mov %0, %%cr2" :: "r" (val));
144 }
145
146 static inline unsigned long read_dr6(void)
147 {
148         unsigned long dr6;
149
150         asm volatile ("mov %%dr6, %0" : "=r" (dr6));
151         return dr6;
152 }
153
154 static inline void write_dr6(unsigned long val)
155 {
156         asm volatile ("mov %0, %%dr6" :: "r" (val));
157 }
158
159 static inline unsigned long read_dr7(void)
160 {
161         unsigned long dr7;
162
163         asm volatile ("mov %%dr7, %0" : "=r" (dr7));
164         return dr7;
165 }
166
167 static inline void write_dr7(unsigned long val)
168 {
169         asm volatile ("mov %0, %%dr7" :: "r" (val));
170 }
171
172 static inline void force_new_asid(struct kvm_vcpu *vcpu)
173 {
174         to_svm(vcpu)->asid_generation--;
175 }
176
177 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
178 {
179         force_new_asid(vcpu);
180 }
181
182 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
183 {
184         if (!(efer & EFER_LMA))
185                 efer &= ~EFER_LME;
186
187         to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
188         vcpu->shadow_efer = efer;
189 }
190
191 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
192                                 bool has_error_code, u32 error_code)
193 {
194         struct vcpu_svm *svm = to_svm(vcpu);
195
196         svm->vmcb->control.event_inj = nr
197                 | SVM_EVTINJ_VALID
198                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
199                 | SVM_EVTINJ_TYPE_EXEPT;
200         svm->vmcb->control.event_inj_err = error_code;
201 }
202
203 static bool svm_exception_injected(struct kvm_vcpu *vcpu)
204 {
205         struct vcpu_svm *svm = to_svm(vcpu);
206
207         return !(svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID);
208 }
209
210 static int is_external_interrupt(u32 info)
211 {
212         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
213         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
214 }
215
216 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
217 {
218         struct vcpu_svm *svm = to_svm(vcpu);
219
220         if (!svm->next_rip) {
221                 printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__);
222                 return;
223         }
224         if (svm->next_rip - svm->vmcb->save.rip > MAX_INST_SIZE)
225                 printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
226                        __FUNCTION__,
227                        svm->vmcb->save.rip,
228                        svm->next_rip);
229
230         vcpu->rip = svm->vmcb->save.rip = svm->next_rip;
231         svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
232
233         vcpu->interrupt_window_open = 1;
234 }
235
236 static int has_svm(void)
237 {
238         uint32_t eax, ebx, ecx, edx;
239
240         if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
241                 printk(KERN_INFO "has_svm: not amd\n");
242                 return 0;
243         }
244
245         cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
246         if (eax < SVM_CPUID_FUNC) {
247                 printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
248                 return 0;
249         }
250
251         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
252         if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
253                 printk(KERN_DEBUG "has_svm: svm not available\n");
254                 return 0;
255         }
256         return 1;
257 }
258
259 static void svm_hardware_disable(void *garbage)
260 {
261         struct svm_cpu_data *svm_data
262                 = per_cpu(svm_data, raw_smp_processor_id());
263
264         if (svm_data) {
265                 uint64_t efer;
266
267                 wrmsrl(MSR_VM_HSAVE_PA, 0);
268                 rdmsrl(MSR_EFER, efer);
269                 wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
270                 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
271                 __free_page(svm_data->save_area);
272                 kfree(svm_data);
273         }
274 }
275
276 static void svm_hardware_enable(void *garbage)
277 {
278
279         struct svm_cpu_data *svm_data;
280         uint64_t efer;
281 #ifdef CONFIG_X86_64
282         struct desc_ptr gdt_descr;
283 #else
284         struct desc_ptr gdt_descr;
285 #endif
286         struct desc_struct *gdt;
287         int me = raw_smp_processor_id();
288
289         if (!has_svm()) {
290                 printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
291                 return;
292         }
293         svm_data = per_cpu(svm_data, me);
294
295         if (!svm_data) {
296                 printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
297                        me);
298                 return;
299         }
300
301         svm_data->asid_generation = 1;
302         svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
303         svm_data->next_asid = svm_data->max_asid + 1;
304         svm_features = cpuid_edx(SVM_CPUID_FUNC);
305
306         asm volatile ("sgdt %0" : "=m"(gdt_descr));
307         gdt = (struct desc_struct *)gdt_descr.address;
308         svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
309
310         rdmsrl(MSR_EFER, efer);
311         wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
312
313         wrmsrl(MSR_VM_HSAVE_PA,
314                page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
315 }
316
317 static int svm_cpu_init(int cpu)
318 {
319         struct svm_cpu_data *svm_data;
320         int r;
321
322         svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
323         if (!svm_data)
324                 return -ENOMEM;
325         svm_data->cpu = cpu;
326         svm_data->save_area = alloc_page(GFP_KERNEL);
327         r = -ENOMEM;
328         if (!svm_data->save_area)
329                 goto err_1;
330
331         per_cpu(svm_data, cpu) = svm_data;
332
333         return 0;
334
335 err_1:
336         kfree(svm_data);
337         return r;
338
339 }
340
341 static void set_msr_interception(u32 *msrpm, unsigned msr,
342                                  int read, int write)
343 {
344         int i;
345
346         for (i = 0; i < NUM_MSR_MAPS; i++) {
347                 if (msr >= msrpm_ranges[i] &&
348                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
349                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
350                                           msrpm_ranges[i]) * 2;
351
352                         u32 *base = msrpm + (msr_offset / 32);
353                         u32 msr_shift = msr_offset % 32;
354                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
355                         *base = (*base & ~(0x3 << msr_shift)) |
356                                 (mask << msr_shift);
357                         return;
358                 }
359         }
360         BUG();
361 }
362
363 static __init int svm_hardware_setup(void)
364 {
365         int cpu;
366         struct page *iopm_pages;
367         struct page *msrpm_pages;
368         void *iopm_va, *msrpm_va;
369         int r;
370
371         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
372
373         if (!iopm_pages)
374                 return -ENOMEM;
375
376         iopm_va = page_address(iopm_pages);
377         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
378         clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
379         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
380
381
382         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
383
384         r = -ENOMEM;
385         if (!msrpm_pages)
386                 goto err_1;
387
388         msrpm_va = page_address(msrpm_pages);
389         memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
390         msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT;
391
392 #ifdef CONFIG_X86_64
393         set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1);
394         set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1);
395         set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1);
396         set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1);
397         set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1);
398         set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1);
399 #endif
400         set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1);
401         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1);
402         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1);
403         set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1);
404
405         for_each_online_cpu(cpu) {
406                 r = svm_cpu_init(cpu);
407                 if (r)
408                         goto err_2;
409         }
410         return 0;
411
412 err_2:
413         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
414         msrpm_base = 0;
415 err_1:
416         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
417         iopm_base = 0;
418         return r;
419 }
420
421 static __exit void svm_hardware_unsetup(void)
422 {
423         __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER);
424         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
425         iopm_base = msrpm_base = 0;
426 }
427
428 static void init_seg(struct vmcb_seg *seg)
429 {
430         seg->selector = 0;
431         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
432                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
433         seg->limit = 0xffff;
434         seg->base = 0;
435 }
436
437 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
438 {
439         seg->selector = 0;
440         seg->attrib = SVM_SELECTOR_P_MASK | type;
441         seg->limit = 0xffff;
442         seg->base = 0;
443 }
444
445 static void init_vmcb(struct vmcb *vmcb)
446 {
447         struct vmcb_control_area *control = &vmcb->control;
448         struct vmcb_save_area *save = &vmcb->save;
449
450         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
451                                         INTERCEPT_CR3_MASK |
452                                         INTERCEPT_CR4_MASK;
453
454         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
455                                         INTERCEPT_CR3_MASK |
456                                         INTERCEPT_CR4_MASK;
457
458         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
459                                         INTERCEPT_DR1_MASK |
460                                         INTERCEPT_DR2_MASK |
461                                         INTERCEPT_DR3_MASK;
462
463         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
464                                         INTERCEPT_DR1_MASK |
465                                         INTERCEPT_DR2_MASK |
466                                         INTERCEPT_DR3_MASK |
467                                         INTERCEPT_DR5_MASK |
468                                         INTERCEPT_DR7_MASK;
469
470         control->intercept_exceptions = (1 << PF_VECTOR) |
471                                         (1 << UD_VECTOR);
472
473
474         control->intercept =    (1ULL << INTERCEPT_INTR) |
475                                 (1ULL << INTERCEPT_NMI) |
476                                 (1ULL << INTERCEPT_SMI) |
477                 /*
478                  * selective cr0 intercept bug?
479                  *      0:   0f 22 d8                mov    %eax,%cr3
480                  *      3:   0f 20 c0                mov    %cr0,%eax
481                  *      6:   0d 00 00 00 80          or     $0x80000000,%eax
482                  *      b:   0f 22 c0                mov    %eax,%cr0
483                  * set cr3 ->interception
484                  * get cr0 ->interception
485                  * set cr0 -> no interception
486                  */
487                 /*              (1ULL << INTERCEPT_SELECTIVE_CR0) | */
488                                 (1ULL << INTERCEPT_CPUID) |
489                                 (1ULL << INTERCEPT_INVD) |
490                                 (1ULL << INTERCEPT_HLT) |
491                                 (1ULL << INTERCEPT_INVLPGA) |
492                                 (1ULL << INTERCEPT_IOIO_PROT) |
493                                 (1ULL << INTERCEPT_MSR_PROT) |
494                                 (1ULL << INTERCEPT_TASK_SWITCH) |
495                                 (1ULL << INTERCEPT_SHUTDOWN) |
496                                 (1ULL << INTERCEPT_VMRUN) |
497                                 (1ULL << INTERCEPT_VMMCALL) |
498                                 (1ULL << INTERCEPT_VMLOAD) |
499                                 (1ULL << INTERCEPT_VMSAVE) |
500                                 (1ULL << INTERCEPT_STGI) |
501                                 (1ULL << INTERCEPT_CLGI) |
502                                 (1ULL << INTERCEPT_SKINIT) |
503                                 (1ULL << INTERCEPT_WBINVD) |
504                                 (1ULL << INTERCEPT_MONITOR) |
505                                 (1ULL << INTERCEPT_MWAIT);
506
507         control->iopm_base_pa = iopm_base;
508         control->msrpm_base_pa = msrpm_base;
509         control->tsc_offset = 0;
510         control->int_ctl = V_INTR_MASKING_MASK;
511
512         init_seg(&save->es);
513         init_seg(&save->ss);
514         init_seg(&save->ds);
515         init_seg(&save->fs);
516         init_seg(&save->gs);
517
518         save->cs.selector = 0xf000;
519         /* Executable/Readable Code Segment */
520         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
521                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
522         save->cs.limit = 0xffff;
523         /*
524          * cs.base should really be 0xffff0000, but vmx can't handle that, so
525          * be consistent with it.
526          *
527          * Replace when we have real mode working for vmx.
528          */
529         save->cs.base = 0xf0000;
530
531         save->gdtr.limit = 0xffff;
532         save->idtr.limit = 0xffff;
533
534         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
535         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
536
537         save->efer = MSR_EFER_SVME_MASK;
538         save->dr6 = 0xffff0ff0;
539         save->dr7 = 0x400;
540         save->rflags = 2;
541         save->rip = 0x0000fff0;
542
543         /*
544          * cr0 val on cpu init should be 0x60000010, we enable cpu
545          * cache by default. the orderly way is to enable cache in bios.
546          */
547         save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
548         save->cr4 = X86_CR4_PAE;
549         /* rdx = ?? */
550 }
551
552 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
553 {
554         struct vcpu_svm *svm = to_svm(vcpu);
555
556         init_vmcb(svm->vmcb);
557
558         if (vcpu->vcpu_id != 0) {
559                 svm->vmcb->save.rip = 0;
560                 svm->vmcb->save.cs.base = svm->vcpu.sipi_vector << 12;
561                 svm->vmcb->save.cs.selector = svm->vcpu.sipi_vector << 8;
562         }
563
564         return 0;
565 }
566
567 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
568 {
569         struct vcpu_svm *svm;
570         struct page *page;
571         int err;
572
573         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
574         if (!svm) {
575                 err = -ENOMEM;
576                 goto out;
577         }
578
579         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
580         if (err)
581                 goto free_svm;
582
583         page = alloc_page(GFP_KERNEL);
584         if (!page) {
585                 err = -ENOMEM;
586                 goto uninit;
587         }
588
589         svm->vmcb = page_address(page);
590         clear_page(svm->vmcb);
591         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
592         svm->asid_generation = 0;
593         memset(svm->db_regs, 0, sizeof(svm->db_regs));
594         init_vmcb(svm->vmcb);
595
596         fx_init(&svm->vcpu);
597         svm->vcpu.fpu_active = 1;
598         svm->vcpu.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
599         if (svm->vcpu.vcpu_id == 0)
600                 svm->vcpu.apic_base |= MSR_IA32_APICBASE_BSP;
601
602         return &svm->vcpu;
603
604 uninit:
605         kvm_vcpu_uninit(&svm->vcpu);
606 free_svm:
607         kmem_cache_free(kvm_vcpu_cache, svm);
608 out:
609         return ERR_PTR(err);
610 }
611
612 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
613 {
614         struct vcpu_svm *svm = to_svm(vcpu);
615
616         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
617         kvm_vcpu_uninit(vcpu);
618         kmem_cache_free(kvm_vcpu_cache, svm);
619 }
620
621 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
622 {
623         struct vcpu_svm *svm = to_svm(vcpu);
624         int i;
625
626         if (unlikely(cpu != vcpu->cpu)) {
627                 u64 tsc_this, delta;
628
629                 /*
630                  * Make sure that the guest sees a monotonically
631                  * increasing TSC.
632                  */
633                 rdtscll(tsc_this);
634                 delta = vcpu->host_tsc - tsc_this;
635                 svm->vmcb->control.tsc_offset += delta;
636                 vcpu->cpu = cpu;
637                 kvm_migrate_apic_timer(vcpu);
638         }
639
640         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
641                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
642 }
643
644 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
645 {
646         struct vcpu_svm *svm = to_svm(vcpu);
647         int i;
648
649         ++vcpu->stat.host_state_reload;
650         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
651                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
652
653         rdtscll(vcpu->host_tsc);
654 }
655
656 static void svm_vcpu_decache(struct kvm_vcpu *vcpu)
657 {
658 }
659
660 static void svm_cache_regs(struct kvm_vcpu *vcpu)
661 {
662         struct vcpu_svm *svm = to_svm(vcpu);
663
664         vcpu->regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
665         vcpu->regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
666         vcpu->rip = svm->vmcb->save.rip;
667 }
668
669 static void svm_decache_regs(struct kvm_vcpu *vcpu)
670 {
671         struct vcpu_svm *svm = to_svm(vcpu);
672         svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX];
673         svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP];
674         svm->vmcb->save.rip = vcpu->rip;
675 }
676
677 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
678 {
679         return to_svm(vcpu)->vmcb->save.rflags;
680 }
681
682 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
683 {
684         to_svm(vcpu)->vmcb->save.rflags = rflags;
685 }
686
687 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
688 {
689         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
690
691         switch (seg) {
692         case VCPU_SREG_CS: return &save->cs;
693         case VCPU_SREG_DS: return &save->ds;
694         case VCPU_SREG_ES: return &save->es;
695         case VCPU_SREG_FS: return &save->fs;
696         case VCPU_SREG_GS: return &save->gs;
697         case VCPU_SREG_SS: return &save->ss;
698         case VCPU_SREG_TR: return &save->tr;
699         case VCPU_SREG_LDTR: return &save->ldtr;
700         }
701         BUG();
702         return NULL;
703 }
704
705 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
706 {
707         struct vmcb_seg *s = svm_seg(vcpu, seg);
708
709         return s->base;
710 }
711
712 static void svm_get_segment(struct kvm_vcpu *vcpu,
713                             struct kvm_segment *var, int seg)
714 {
715         struct vmcb_seg *s = svm_seg(vcpu, seg);
716
717         var->base = s->base;
718         var->limit = s->limit;
719         var->selector = s->selector;
720         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
721         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
722         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
723         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
724         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
725         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
726         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
727         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
728         var->unusable = !var->present;
729 }
730
731 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
732 {
733         struct vcpu_svm *svm = to_svm(vcpu);
734
735         dt->limit = svm->vmcb->save.idtr.limit;
736         dt->base = svm->vmcb->save.idtr.base;
737 }
738
739 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
740 {
741         struct vcpu_svm *svm = to_svm(vcpu);
742
743         svm->vmcb->save.idtr.limit = dt->limit;
744         svm->vmcb->save.idtr.base = dt->base ;
745 }
746
747 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
748 {
749         struct vcpu_svm *svm = to_svm(vcpu);
750
751         dt->limit = svm->vmcb->save.gdtr.limit;
752         dt->base = svm->vmcb->save.gdtr.base;
753 }
754
755 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
756 {
757         struct vcpu_svm *svm = to_svm(vcpu);
758
759         svm->vmcb->save.gdtr.limit = dt->limit;
760         svm->vmcb->save.gdtr.base = dt->base ;
761 }
762
763 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
764 {
765 }
766
767 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
768 {
769         struct vcpu_svm *svm = to_svm(vcpu);
770
771 #ifdef CONFIG_X86_64
772         if (vcpu->shadow_efer & EFER_LME) {
773                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
774                         vcpu->shadow_efer |= EFER_LMA;
775                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
776                 }
777
778                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
779                         vcpu->shadow_efer &= ~EFER_LMA;
780                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
781                 }
782         }
783 #endif
784         if ((vcpu->cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
785                 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
786                 vcpu->fpu_active = 1;
787         }
788
789         vcpu->cr0 = cr0;
790         cr0 |= X86_CR0_PG | X86_CR0_WP;
791         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
792         svm->vmcb->save.cr0 = cr0;
793 }
794
795 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
796 {
797        vcpu->cr4 = cr4;
798        to_svm(vcpu)->vmcb->save.cr4 = cr4 | X86_CR4_PAE;
799 }
800
801 static void svm_set_segment(struct kvm_vcpu *vcpu,
802                             struct kvm_segment *var, int seg)
803 {
804         struct vcpu_svm *svm = to_svm(vcpu);
805         struct vmcb_seg *s = svm_seg(vcpu, seg);
806
807         s->base = var->base;
808         s->limit = var->limit;
809         s->selector = var->selector;
810         if (var->unusable)
811                 s->attrib = 0;
812         else {
813                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
814                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
815                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
816                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
817                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
818                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
819                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
820                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
821         }
822         if (seg == VCPU_SREG_CS)
823                 svm->vmcb->save.cpl
824                         = (svm->vmcb->save.cs.attrib
825                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
826
827 }
828
829 /* FIXME:
830
831         svm(vcpu)->vmcb->control.int_ctl &= ~V_TPR_MASK;
832         svm(vcpu)->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK);
833
834 */
835
836 static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
837 {
838         return -EOPNOTSUPP;
839 }
840
841 static int svm_get_irq(struct kvm_vcpu *vcpu)
842 {
843         struct vcpu_svm *svm = to_svm(vcpu);
844         u32 exit_int_info = svm->vmcb->control.exit_int_info;
845
846         if (is_external_interrupt(exit_int_info))
847                 return exit_int_info & SVM_EVTINJ_VEC_MASK;
848         return -1;
849 }
850
851 static void load_host_msrs(struct kvm_vcpu *vcpu)
852 {
853 #ifdef CONFIG_X86_64
854         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
855 #endif
856 }
857
858 static void save_host_msrs(struct kvm_vcpu *vcpu)
859 {
860 #ifdef CONFIG_X86_64
861         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
862 #endif
863 }
864
865 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
866 {
867         if (svm_data->next_asid > svm_data->max_asid) {
868                 ++svm_data->asid_generation;
869                 svm_data->next_asid = 1;
870                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
871         }
872
873         svm->vcpu.cpu = svm_data->cpu;
874         svm->asid_generation = svm_data->asid_generation;
875         svm->vmcb->control.asid = svm_data->next_asid++;
876 }
877
878 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
879 {
880         return to_svm(vcpu)->db_regs[dr];
881 }
882
883 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
884                        int *exception)
885 {
886         struct vcpu_svm *svm = to_svm(vcpu);
887
888         *exception = 0;
889
890         if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
891                 svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
892                 svm->vmcb->save.dr6 |= DR6_BD_MASK;
893                 *exception = DB_VECTOR;
894                 return;
895         }
896
897         switch (dr) {
898         case 0 ... 3:
899                 svm->db_regs[dr] = value;
900                 return;
901         case 4 ... 5:
902                 if (vcpu->cr4 & X86_CR4_DE) {
903                         *exception = UD_VECTOR;
904                         return;
905                 }
906         case 7: {
907                 if (value & ~((1ULL << 32) - 1)) {
908                         *exception = GP_VECTOR;
909                         return;
910                 }
911                 svm->vmcb->save.dr7 = value;
912                 return;
913         }
914         default:
915                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
916                        __FUNCTION__, dr);
917                 *exception = UD_VECTOR;
918                 return;
919         }
920 }
921
922 static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
923 {
924         u32 exit_int_info = svm->vmcb->control.exit_int_info;
925         struct kvm *kvm = svm->vcpu.kvm;
926         u64 fault_address;
927         u32 error_code;
928
929         if (!irqchip_in_kernel(kvm) &&
930                 is_external_interrupt(exit_int_info))
931                 push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
932
933         fault_address  = svm->vmcb->control.exit_info_2;
934         error_code = svm->vmcb->control.exit_info_1;
935         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
936 }
937
938 static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
939 {
940         int er;
941
942         er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, 0);
943         if (er != EMULATE_DONE)
944                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
945         return 1;
946 }
947
948 static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
949 {
950         svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
951         if (!(svm->vcpu.cr0 & X86_CR0_TS))
952                 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
953         svm->vcpu.fpu_active = 1;
954
955         return 1;
956 }
957
958 static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
959 {
960         /*
961          * VMCB is undefined after a SHUTDOWN intercept
962          * so reinitialize it.
963          */
964         clear_page(svm->vmcb);
965         init_vmcb(svm->vmcb);
966
967         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
968         return 0;
969 }
970
971 static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
972 {
973         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
974         int size, down, in, string, rep;
975         unsigned port;
976
977         ++svm->vcpu.stat.io_exits;
978
979         svm->next_rip = svm->vmcb->control.exit_info_2;
980
981         string = (io_info & SVM_IOIO_STR_MASK) != 0;
982
983         if (string) {
984                 if (emulate_instruction(&svm->vcpu,
985                                         kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
986                         return 0;
987                 return 1;
988         }
989
990         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
991         port = io_info >> 16;
992         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
993         rep = (io_info & SVM_IOIO_REP_MASK) != 0;
994         down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
995
996         return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
997 }
998
999 static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1000 {
1001         return 1;
1002 }
1003
1004 static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1005 {
1006         svm->next_rip = svm->vmcb->save.rip + 1;
1007         skip_emulated_instruction(&svm->vcpu);
1008         return kvm_emulate_halt(&svm->vcpu);
1009 }
1010
1011 static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1012 {
1013         svm->next_rip = svm->vmcb->save.rip + 3;
1014         skip_emulated_instruction(&svm->vcpu);
1015         kvm_emulate_hypercall(&svm->vcpu);
1016         return 1;
1017 }
1018
1019 static int invalid_op_interception(struct vcpu_svm *svm,
1020                                    struct kvm_run *kvm_run)
1021 {
1022         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1023         return 1;
1024 }
1025
1026 static int task_switch_interception(struct vcpu_svm *svm,
1027                                     struct kvm_run *kvm_run)
1028 {
1029         pr_unimpl(&svm->vcpu, "%s: task switch is unsupported\n", __FUNCTION__);
1030         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1031         return 0;
1032 }
1033
1034 static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1035 {
1036         svm->next_rip = svm->vmcb->save.rip + 2;
1037         kvm_emulate_cpuid(&svm->vcpu);
1038         return 1;
1039 }
1040
1041 static int emulate_on_interception(struct vcpu_svm *svm,
1042                                    struct kvm_run *kvm_run)
1043 {
1044         if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
1045                 pr_unimpl(&svm->vcpu, "%s: failed\n", __FUNCTION__);
1046         return 1;
1047 }
1048
1049 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
1050 {
1051         struct vcpu_svm *svm = to_svm(vcpu);
1052
1053         switch (ecx) {
1054         case MSR_IA32_TIME_STAMP_COUNTER: {
1055                 u64 tsc;
1056
1057                 rdtscll(tsc);
1058                 *data = svm->vmcb->control.tsc_offset + tsc;
1059                 break;
1060         }
1061         case MSR_K6_STAR:
1062                 *data = svm->vmcb->save.star;
1063                 break;
1064 #ifdef CONFIG_X86_64
1065         case MSR_LSTAR:
1066                 *data = svm->vmcb->save.lstar;
1067                 break;
1068         case MSR_CSTAR:
1069                 *data = svm->vmcb->save.cstar;
1070                 break;
1071         case MSR_KERNEL_GS_BASE:
1072                 *data = svm->vmcb->save.kernel_gs_base;
1073                 break;
1074         case MSR_SYSCALL_MASK:
1075                 *data = svm->vmcb->save.sfmask;
1076                 break;
1077 #endif
1078         case MSR_IA32_SYSENTER_CS:
1079                 *data = svm->vmcb->save.sysenter_cs;
1080                 break;
1081         case MSR_IA32_SYSENTER_EIP:
1082                 *data = svm->vmcb->save.sysenter_eip;
1083                 break;
1084         case MSR_IA32_SYSENTER_ESP:
1085                 *data = svm->vmcb->save.sysenter_esp;
1086                 break;
1087         default:
1088                 return kvm_get_msr_common(vcpu, ecx, data);
1089         }
1090         return 0;
1091 }
1092
1093 static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1094 {
1095         u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1096         u64 data;
1097
1098         if (svm_get_msr(&svm->vcpu, ecx, &data))
1099                 kvm_inject_gp(&svm->vcpu, 0);
1100         else {
1101                 svm->vmcb->save.rax = data & 0xffffffff;
1102                 svm->vcpu.regs[VCPU_REGS_RDX] = data >> 32;
1103                 svm->next_rip = svm->vmcb->save.rip + 2;
1104                 skip_emulated_instruction(&svm->vcpu);
1105         }
1106         return 1;
1107 }
1108
1109 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
1110 {
1111         struct vcpu_svm *svm = to_svm(vcpu);
1112
1113         switch (ecx) {
1114         case MSR_IA32_TIME_STAMP_COUNTER: {
1115                 u64 tsc;
1116
1117                 rdtscll(tsc);
1118                 svm->vmcb->control.tsc_offset = data - tsc;
1119                 break;
1120         }
1121         case MSR_K6_STAR:
1122                 svm->vmcb->save.star = data;
1123                 break;
1124 #ifdef CONFIG_X86_64
1125         case MSR_LSTAR:
1126                 svm->vmcb->save.lstar = data;
1127                 break;
1128         case MSR_CSTAR:
1129                 svm->vmcb->save.cstar = data;
1130                 break;
1131         case MSR_KERNEL_GS_BASE:
1132                 svm->vmcb->save.kernel_gs_base = data;
1133                 break;
1134         case MSR_SYSCALL_MASK:
1135                 svm->vmcb->save.sfmask = data;
1136                 break;
1137 #endif
1138         case MSR_IA32_SYSENTER_CS:
1139                 svm->vmcb->save.sysenter_cs = data;
1140                 break;
1141         case MSR_IA32_SYSENTER_EIP:
1142                 svm->vmcb->save.sysenter_eip = data;
1143                 break;
1144         case MSR_IA32_SYSENTER_ESP:
1145                 svm->vmcb->save.sysenter_esp = data;
1146                 break;
1147         default:
1148                 return kvm_set_msr_common(vcpu, ecx, data);
1149         }
1150         return 0;
1151 }
1152
1153 static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1154 {
1155         u32 ecx = svm->vcpu.regs[VCPU_REGS_RCX];
1156         u64 data = (svm->vmcb->save.rax & -1u)
1157                 | ((u64)(svm->vcpu.regs[VCPU_REGS_RDX] & -1u) << 32);
1158         svm->next_rip = svm->vmcb->save.rip + 2;
1159         if (svm_set_msr(&svm->vcpu, ecx, data))
1160                 kvm_inject_gp(&svm->vcpu, 0);
1161         else
1162                 skip_emulated_instruction(&svm->vcpu);
1163         return 1;
1164 }
1165
1166 static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
1167 {
1168         if (svm->vmcb->control.exit_info_1)
1169                 return wrmsr_interception(svm, kvm_run);
1170         else
1171                 return rdmsr_interception(svm, kvm_run);
1172 }
1173
1174 static int interrupt_window_interception(struct vcpu_svm *svm,
1175                                    struct kvm_run *kvm_run)
1176 {
1177         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1178         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1179         /*
1180          * If the user space waits to inject interrupts, exit as soon as
1181          * possible
1182          */
1183         if (kvm_run->request_interrupt_window &&
1184             !svm->vcpu.irq_summary) {
1185                 ++svm->vcpu.stat.irq_window_exits;
1186                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1187                 return 0;
1188         }
1189
1190         return 1;
1191 }
1192
1193 static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
1194                                       struct kvm_run *kvm_run) = {
1195         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
1196         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
1197         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
1198         /* for now: */
1199         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
1200         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
1201         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
1202         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
1203         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
1204         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
1205         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
1206         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
1207         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
1208         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
1209         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
1210         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
1211         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
1212         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
1213         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
1214         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
1215         [SVM_EXIT_INTR]                         = nop_on_interception,
1216         [SVM_EXIT_NMI]                          = nop_on_interception,
1217         [SVM_EXIT_SMI]                          = nop_on_interception,
1218         [SVM_EXIT_INIT]                         = nop_on_interception,
1219         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
1220         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
1221         [SVM_EXIT_CPUID]                        = cpuid_interception,
1222         [SVM_EXIT_INVD]                         = emulate_on_interception,
1223         [SVM_EXIT_HLT]                          = halt_interception,
1224         [SVM_EXIT_INVLPG]                       = emulate_on_interception,
1225         [SVM_EXIT_INVLPGA]                      = invalid_op_interception,
1226         [SVM_EXIT_IOIO]                         = io_interception,
1227         [SVM_EXIT_MSR]                          = msr_interception,
1228         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
1229         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
1230         [SVM_EXIT_VMRUN]                        = invalid_op_interception,
1231         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
1232         [SVM_EXIT_VMLOAD]                       = invalid_op_interception,
1233         [SVM_EXIT_VMSAVE]                       = invalid_op_interception,
1234         [SVM_EXIT_STGI]                         = invalid_op_interception,
1235         [SVM_EXIT_CLGI]                         = invalid_op_interception,
1236         [SVM_EXIT_SKINIT]                       = invalid_op_interception,
1237         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
1238         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
1239         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
1240 };
1241
1242
1243 static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1244 {
1245         struct vcpu_svm *svm = to_svm(vcpu);
1246         u32 exit_code = svm->vmcb->control.exit_code;
1247
1248         kvm_reput_irq(svm);
1249
1250         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
1251                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1252                 kvm_run->fail_entry.hardware_entry_failure_reason
1253                         = svm->vmcb->control.exit_code;
1254                 return 0;
1255         }
1256
1257         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
1258             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR)
1259                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
1260                        "exit_code 0x%x\n",
1261                        __FUNCTION__, svm->vmcb->control.exit_int_info,
1262                        exit_code);
1263
1264         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
1265             || !svm_exit_handlers[exit_code]) {
1266                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1267                 kvm_run->hw.hardware_exit_reason = exit_code;
1268                 return 0;
1269         }
1270
1271         return svm_exit_handlers[exit_code](svm, kvm_run);
1272 }
1273
1274 static void reload_tss(struct kvm_vcpu *vcpu)
1275 {
1276         int cpu = raw_smp_processor_id();
1277
1278         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1279         svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
1280         load_TR_desc();
1281 }
1282
1283 static void pre_svm_run(struct vcpu_svm *svm)
1284 {
1285         int cpu = raw_smp_processor_id();
1286
1287         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
1288
1289         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
1290         if (svm->vcpu.cpu != cpu ||
1291             svm->asid_generation != svm_data->asid_generation)
1292                 new_asid(svm, svm_data);
1293 }
1294
1295
1296 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
1297 {
1298         struct vmcb_control_area *control;
1299
1300         control = &svm->vmcb->control;
1301         control->int_vector = irq;
1302         control->int_ctl &= ~V_INTR_PRIO_MASK;
1303         control->int_ctl |= V_IRQ_MASK |
1304                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1305 }
1306
1307 static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
1308 {
1309         struct vcpu_svm *svm = to_svm(vcpu);
1310
1311         svm_inject_irq(svm, irq);
1312 }
1313
1314 static void svm_intr_assist(struct kvm_vcpu *vcpu)
1315 {
1316         struct vcpu_svm *svm = to_svm(vcpu);
1317         struct vmcb *vmcb = svm->vmcb;
1318         int intr_vector = -1;
1319
1320         if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
1321             ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
1322                 intr_vector = vmcb->control.exit_int_info &
1323                               SVM_EVTINJ_VEC_MASK;
1324                 vmcb->control.exit_int_info = 0;
1325                 svm_inject_irq(svm, intr_vector);
1326                 return;
1327         }
1328
1329         if (vmcb->control.int_ctl & V_IRQ_MASK)
1330                 return;
1331
1332         if (!kvm_cpu_has_interrupt(vcpu))
1333                 return;
1334
1335         if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
1336             (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
1337             (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
1338                 /* unable to deliver irq, set pending irq */
1339                 vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
1340                 svm_inject_irq(svm, 0x0);
1341                 return;
1342         }
1343         /* Okay, we can deliver the interrupt: grab it and update PIC state. */
1344         intr_vector = kvm_cpu_get_interrupt(vcpu);
1345         svm_inject_irq(svm, intr_vector);
1346         kvm_timer_intr_post(vcpu, intr_vector);
1347 }
1348
1349 static void kvm_reput_irq(struct vcpu_svm *svm)
1350 {
1351         struct vmcb_control_area *control = &svm->vmcb->control;
1352
1353         if ((control->int_ctl & V_IRQ_MASK)
1354             && !irqchip_in_kernel(svm->vcpu.kvm)) {
1355                 control->int_ctl &= ~V_IRQ_MASK;
1356                 push_irq(&svm->vcpu, control->int_vector);
1357         }
1358
1359         svm->vcpu.interrupt_window_open =
1360                 !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
1361 }
1362
1363 static void svm_do_inject_vector(struct vcpu_svm *svm)
1364 {
1365         struct kvm_vcpu *vcpu = &svm->vcpu;
1366         int word_index = __ffs(vcpu->irq_summary);
1367         int bit_index = __ffs(vcpu->irq_pending[word_index]);
1368         int irq = word_index * BITS_PER_LONG + bit_index;
1369
1370         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1371         if (!vcpu->irq_pending[word_index])
1372                 clear_bit(word_index, &vcpu->irq_summary);
1373         svm_inject_irq(svm, irq);
1374 }
1375
1376 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1377                                        struct kvm_run *kvm_run)
1378 {
1379         struct vcpu_svm *svm = to_svm(vcpu);
1380         struct vmcb_control_area *control = &svm->vmcb->control;
1381
1382         svm->vcpu.interrupt_window_open =
1383                 (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
1384                  (svm->vmcb->save.rflags & X86_EFLAGS_IF));
1385
1386         if (svm->vcpu.interrupt_window_open && svm->vcpu.irq_summary)
1387                 /*
1388                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1389                  */
1390                 svm_do_inject_vector(svm);
1391
1392         /*
1393          * Interrupts blocked.  Wait for unblock.
1394          */
1395         if (!svm->vcpu.interrupt_window_open &&
1396             (svm->vcpu.irq_summary || kvm_run->request_interrupt_window))
1397                 control->intercept |= 1ULL << INTERCEPT_VINTR;
1398          else
1399                 control->intercept &= ~(1ULL << INTERCEPT_VINTR);
1400 }
1401
1402 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
1403 {
1404         return 0;
1405 }
1406
1407 static void save_db_regs(unsigned long *db_regs)
1408 {
1409         asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
1410         asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
1411         asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
1412         asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
1413 }
1414
1415 static void load_db_regs(unsigned long *db_regs)
1416 {
1417         asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
1418         asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
1419         asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
1420         asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
1421 }
1422
1423 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
1424 {
1425         force_new_asid(vcpu);
1426 }
1427
1428 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
1429 {
1430 }
1431
1432 static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1433 {
1434         struct vcpu_svm *svm = to_svm(vcpu);
1435         u16 fs_selector;
1436         u16 gs_selector;
1437         u16 ldt_selector;
1438
1439         pre_svm_run(svm);
1440
1441         save_host_msrs(vcpu);
1442         fs_selector = read_fs();
1443         gs_selector = read_gs();
1444         ldt_selector = read_ldt();
1445         svm->host_cr2 = kvm_read_cr2();
1446         svm->host_dr6 = read_dr6();
1447         svm->host_dr7 = read_dr7();
1448         svm->vmcb->save.cr2 = vcpu->cr2;
1449
1450         if (svm->vmcb->save.dr7 & 0xff) {
1451                 write_dr7(0);
1452                 save_db_regs(svm->host_db_regs);
1453                 load_db_regs(svm->db_regs);
1454         }
1455
1456         clgi();
1457
1458         local_irq_enable();
1459
1460         asm volatile (
1461 #ifdef CONFIG_X86_64
1462                 "push %%rbp; \n\t"
1463 #else
1464                 "push %%ebp; \n\t"
1465 #endif
1466
1467 #ifdef CONFIG_X86_64
1468                 "mov %c[rbx](%[svm]), %%rbx \n\t"
1469                 "mov %c[rcx](%[svm]), %%rcx \n\t"
1470                 "mov %c[rdx](%[svm]), %%rdx \n\t"
1471                 "mov %c[rsi](%[svm]), %%rsi \n\t"
1472                 "mov %c[rdi](%[svm]), %%rdi \n\t"
1473                 "mov %c[rbp](%[svm]), %%rbp \n\t"
1474                 "mov %c[r8](%[svm]),  %%r8  \n\t"
1475                 "mov %c[r9](%[svm]),  %%r9  \n\t"
1476                 "mov %c[r10](%[svm]), %%r10 \n\t"
1477                 "mov %c[r11](%[svm]), %%r11 \n\t"
1478                 "mov %c[r12](%[svm]), %%r12 \n\t"
1479                 "mov %c[r13](%[svm]), %%r13 \n\t"
1480                 "mov %c[r14](%[svm]), %%r14 \n\t"
1481                 "mov %c[r15](%[svm]), %%r15 \n\t"
1482 #else
1483                 "mov %c[rbx](%[svm]), %%ebx \n\t"
1484                 "mov %c[rcx](%[svm]), %%ecx \n\t"
1485                 "mov %c[rdx](%[svm]), %%edx \n\t"
1486                 "mov %c[rsi](%[svm]), %%esi \n\t"
1487                 "mov %c[rdi](%[svm]), %%edi \n\t"
1488                 "mov %c[rbp](%[svm]), %%ebp \n\t"
1489 #endif
1490
1491 #ifdef CONFIG_X86_64
1492                 /* Enter guest mode */
1493                 "push %%rax \n\t"
1494                 "mov %c[vmcb](%[svm]), %%rax \n\t"
1495                 SVM_VMLOAD "\n\t"
1496                 SVM_VMRUN "\n\t"
1497                 SVM_VMSAVE "\n\t"
1498                 "pop %%rax \n\t"
1499 #else
1500                 /* Enter guest mode */
1501                 "push %%eax \n\t"
1502                 "mov %c[vmcb](%[svm]), %%eax \n\t"
1503                 SVM_VMLOAD "\n\t"
1504                 SVM_VMRUN "\n\t"
1505                 SVM_VMSAVE "\n\t"
1506                 "pop %%eax \n\t"
1507 #endif
1508
1509                 /* Save guest registers, load host registers */
1510 #ifdef CONFIG_X86_64
1511                 "mov %%rbx, %c[rbx](%[svm]) \n\t"
1512                 "mov %%rcx, %c[rcx](%[svm]) \n\t"
1513                 "mov %%rdx, %c[rdx](%[svm]) \n\t"
1514                 "mov %%rsi, %c[rsi](%[svm]) \n\t"
1515                 "mov %%rdi, %c[rdi](%[svm]) \n\t"
1516                 "mov %%rbp, %c[rbp](%[svm]) \n\t"
1517                 "mov %%r8,  %c[r8](%[svm]) \n\t"
1518                 "mov %%r9,  %c[r9](%[svm]) \n\t"
1519                 "mov %%r10, %c[r10](%[svm]) \n\t"
1520                 "mov %%r11, %c[r11](%[svm]) \n\t"
1521                 "mov %%r12, %c[r12](%[svm]) \n\t"
1522                 "mov %%r13, %c[r13](%[svm]) \n\t"
1523                 "mov %%r14, %c[r14](%[svm]) \n\t"
1524                 "mov %%r15, %c[r15](%[svm]) \n\t"
1525
1526                 "pop  %%rbp; \n\t"
1527 #else
1528                 "mov %%ebx, %c[rbx](%[svm]) \n\t"
1529                 "mov %%ecx, %c[rcx](%[svm]) \n\t"
1530                 "mov %%edx, %c[rdx](%[svm]) \n\t"
1531                 "mov %%esi, %c[rsi](%[svm]) \n\t"
1532                 "mov %%edi, %c[rdi](%[svm]) \n\t"
1533                 "mov %%ebp, %c[rbp](%[svm]) \n\t"
1534
1535                 "pop  %%ebp; \n\t"
1536 #endif
1537                 :
1538                 : [svm]"a"(svm),
1539                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
1540                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RBX])),
1541                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RCX])),
1542                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RDX])),
1543                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RSI])),
1544                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RDI])),
1545                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_RBP]))
1546 #ifdef CONFIG_X86_64
1547                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R8])),
1548                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R9])),
1549                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R10])),
1550                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R11])),
1551                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R12])),
1552                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R13])),
1553                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R14])),
1554                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.regs[VCPU_REGS_R15]))
1555 #endif
1556                 : "cc", "memory"
1557 #ifdef CONFIG_X86_64
1558                 , "rbx", "rcx", "rdx", "rsi", "rdi"
1559                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
1560 #else
1561                 , "ebx", "ecx", "edx" , "esi", "edi"
1562 #endif
1563                 );
1564
1565         if ((svm->vmcb->save.dr7 & 0xff))
1566                 load_db_regs(svm->host_db_regs);
1567
1568         vcpu->cr2 = svm->vmcb->save.cr2;
1569
1570         write_dr6(svm->host_dr6);
1571         write_dr7(svm->host_dr7);
1572         kvm_write_cr2(svm->host_cr2);
1573
1574         load_fs(fs_selector);
1575         load_gs(gs_selector);
1576         load_ldt(ldt_selector);
1577         load_host_msrs(vcpu);
1578
1579         reload_tss(vcpu);
1580
1581         local_irq_disable();
1582
1583         stgi();
1584
1585         svm->next_rip = 0;
1586 }
1587
1588 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
1589 {
1590         struct vcpu_svm *svm = to_svm(vcpu);
1591
1592         svm->vmcb->save.cr3 = root;
1593         force_new_asid(vcpu);
1594
1595         if (vcpu->fpu_active) {
1596                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
1597                 svm->vmcb->save.cr0 |= X86_CR0_TS;
1598                 vcpu->fpu_active = 0;
1599         }
1600 }
1601
1602 static int is_disabled(void)
1603 {
1604         u64 vm_cr;
1605
1606         rdmsrl(MSR_VM_CR, vm_cr);
1607         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
1608                 return 1;
1609
1610         return 0;
1611 }
1612
1613 static void
1614 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
1615 {
1616         /*
1617          * Patch in the VMMCALL instruction:
1618          */
1619         hypercall[0] = 0x0f;
1620         hypercall[1] = 0x01;
1621         hypercall[2] = 0xd9;
1622 }
1623
1624 static void svm_check_processor_compat(void *rtn)
1625 {
1626         *(int *)rtn = 0;
1627 }
1628
1629 static struct kvm_x86_ops svm_x86_ops = {
1630         .cpu_has_kvm_support = has_svm,
1631         .disabled_by_bios = is_disabled,
1632         .hardware_setup = svm_hardware_setup,
1633         .hardware_unsetup = svm_hardware_unsetup,
1634         .check_processor_compatibility = svm_check_processor_compat,
1635         .hardware_enable = svm_hardware_enable,
1636         .hardware_disable = svm_hardware_disable,
1637
1638         .vcpu_create = svm_create_vcpu,
1639         .vcpu_free = svm_free_vcpu,
1640         .vcpu_reset = svm_vcpu_reset,
1641
1642         .prepare_guest_switch = svm_prepare_guest_switch,
1643         .vcpu_load = svm_vcpu_load,
1644         .vcpu_put = svm_vcpu_put,
1645         .vcpu_decache = svm_vcpu_decache,
1646
1647         .set_guest_debug = svm_guest_debug,
1648         .get_msr = svm_get_msr,
1649         .set_msr = svm_set_msr,
1650         .get_segment_base = svm_get_segment_base,
1651         .get_segment = svm_get_segment,
1652         .set_segment = svm_set_segment,
1653         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
1654         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
1655         .set_cr0 = svm_set_cr0,
1656         .set_cr3 = svm_set_cr3,
1657         .set_cr4 = svm_set_cr4,
1658         .set_efer = svm_set_efer,
1659         .get_idt = svm_get_idt,
1660         .set_idt = svm_set_idt,
1661         .get_gdt = svm_get_gdt,
1662         .set_gdt = svm_set_gdt,
1663         .get_dr = svm_get_dr,
1664         .set_dr = svm_set_dr,
1665         .cache_regs = svm_cache_regs,
1666         .decache_regs = svm_decache_regs,
1667         .get_rflags = svm_get_rflags,
1668         .set_rflags = svm_set_rflags,
1669
1670         .tlb_flush = svm_flush_tlb,
1671
1672         .run = svm_vcpu_run,
1673         .handle_exit = handle_exit,
1674         .skip_emulated_instruction = skip_emulated_instruction,
1675         .patch_hypercall = svm_patch_hypercall,
1676         .get_irq = svm_get_irq,
1677         .set_irq = svm_set_irq,
1678         .queue_exception = svm_queue_exception,
1679         .exception_injected = svm_exception_injected,
1680         .inject_pending_irq = svm_intr_assist,
1681         .inject_pending_vectors = do_interrupt_requests,
1682
1683         .set_tss_addr = svm_set_tss_addr,
1684 };
1685
1686 static int __init svm_init(void)
1687 {
1688         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
1689                               THIS_MODULE);
1690 }
1691
1692 static void __exit svm_exit(void)
1693 {
1694         kvm_exit();
1695 }
1696
1697 module_init(svm_init)
1698 module_exit(svm_exit)