KVM: MMU: Disable write access on clean large pages
[safe/jmp/linux-2.6] / drivers / kvm / paging_tmpl.h
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 /*
21  * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22  * so the code in this file is compiled twice, once per pte size.
23  */
24
25 #if PTTYPE == 64
26         #define pt_element_t u64
27         #define guest_walker guest_walker64
28         #define FNAME(name) paging##64_##name
29         #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30         #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31         #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32         #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
33         #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34         #define PT_LEVEL_BITS PT64_LEVEL_BITS
35         #ifdef CONFIG_X86_64
36         #define PT_MAX_FULL_LEVELS 4
37         #else
38         #define PT_MAX_FULL_LEVELS 2
39         #endif
40 #elif PTTYPE == 32
41         #define pt_element_t u32
42         #define guest_walker guest_walker32
43         #define FNAME(name) paging##32_##name
44         #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
45         #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
46         #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
47         #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
48         #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
49         #define PT_LEVEL_BITS PT32_LEVEL_BITS
50         #define PT_MAX_FULL_LEVELS 2
51 #else
52         #error Invalid PTTYPE value
53 #endif
54
55 /*
56  * The guest_walker structure emulates the behavior of the hardware page
57  * table walker.
58  */
59 struct guest_walker {
60         int level;
61         gfn_t table_gfn[PT_MAX_FULL_LEVELS];
62         pt_element_t *table;
63         pt_element_t pte;
64         pt_element_t *ptep;
65         struct page *page;
66         int index;
67         pt_element_t inherited_ar;
68         gfn_t gfn;
69         u32 error_code;
70 };
71
72 /*
73  * Fetch a guest pte for a guest virtual address
74  */
75 static int FNAME(walk_addr)(struct guest_walker *walker,
76                             struct kvm_vcpu *vcpu, gva_t addr,
77                             int write_fault, int user_fault, int fetch_fault)
78 {
79         hpa_t hpa;
80         struct kvm_memory_slot *slot;
81         pt_element_t *ptep;
82         pt_element_t root;
83         gfn_t table_gfn;
84
85         pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
86         walker->level = vcpu->mmu.root_level;
87         walker->table = NULL;
88         walker->page = NULL;
89         walker->ptep = NULL;
90         root = vcpu->cr3;
91 #if PTTYPE == 64
92         if (!is_long_mode(vcpu)) {
93                 walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
94                 root = *walker->ptep;
95                 walker->pte = root;
96                 if (!(root & PT_PRESENT_MASK))
97                         goto not_present;
98                 --walker->level;
99         }
100 #endif
101         table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
102         walker->table_gfn[walker->level - 1] = table_gfn;
103         pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
104                  walker->level - 1, table_gfn);
105         slot = gfn_to_memslot(vcpu->kvm, table_gfn);
106         hpa = safe_gpa_to_hpa(vcpu->kvm, root & PT64_BASE_ADDR_MASK);
107         walker->page = pfn_to_page(hpa >> PAGE_SHIFT);
108         walker->table = kmap_atomic(walker->page, KM_USER0);
109
110         ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
111                (vcpu->cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
112
113         walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
114
115         for (;;) {
116                 int index = PT_INDEX(addr, walker->level);
117                 hpa_t paddr;
118
119                 ptep = &walker->table[index];
120                 walker->index = index;
121                 ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
122                        ((unsigned long)ptep & PAGE_MASK));
123
124                 if (!is_present_pte(*ptep))
125                         goto not_present;
126
127                 if (write_fault && !is_writeble_pte(*ptep))
128                         if (user_fault || is_write_protection(vcpu))
129                                 goto access_error;
130
131                 if (user_fault && !(*ptep & PT_USER_MASK))
132                         goto access_error;
133
134 #if PTTYPE == 64
135                 if (fetch_fault && is_nx(vcpu) && (*ptep & PT64_NX_MASK))
136                         goto access_error;
137 #endif
138
139                 if (!(*ptep & PT_ACCESSED_MASK)) {
140                         mark_page_dirty(vcpu->kvm, table_gfn);
141                         *ptep |= PT_ACCESSED_MASK;
142                 }
143
144                 if (walker->level == PT_PAGE_TABLE_LEVEL) {
145                         walker->gfn = (*ptep & PT_BASE_ADDR_MASK)
146                                 >> PAGE_SHIFT;
147                         if (write_fault && !is_dirty_pte(*ptep)) {
148                                 mark_page_dirty(vcpu->kvm, table_gfn);
149                                 *ptep |= PT_DIRTY_MASK;
150                         }
151                         break;
152                 }
153
154                 if (walker->level == PT_DIRECTORY_LEVEL
155                     && (*ptep & PT_PAGE_SIZE_MASK)
156                     && (PTTYPE == 64 || is_pse(vcpu))) {
157                         walker->gfn = (*ptep & PT_DIR_BASE_ADDR_MASK)
158                                 >> PAGE_SHIFT;
159                         walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
160                         if (write_fault && !is_dirty_pte(*ptep)) {
161                                 mark_page_dirty(vcpu->kvm, table_gfn);
162                                 *ptep |= PT_DIRTY_MASK;
163                         }
164                         break;
165                 }
166
167                 walker->inherited_ar &= walker->table[index];
168                 table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
169                 kunmap_atomic(walker->table, KM_USER0);
170                 paddr = safe_gpa_to_hpa(vcpu->kvm, table_gfn << PAGE_SHIFT);
171                 walker->page = pfn_to_page(paddr >> PAGE_SHIFT);
172                 walker->table = kmap_atomic(walker->page, KM_USER0);
173                 --walker->level;
174                 walker->table_gfn[walker->level - 1] = table_gfn;
175                 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
176                          walker->level - 1, table_gfn);
177         }
178         walker->pte = *ptep;
179         if (walker->page)
180                 walker->ptep = NULL;
181         if (walker->table)
182                 kunmap_atomic(walker->table, KM_USER0);
183         pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)*ptep);
184         return 1;
185
186 not_present:
187         walker->error_code = 0;
188         goto err;
189
190 access_error:
191         walker->error_code = PFERR_PRESENT_MASK;
192
193 err:
194         if (write_fault)
195                 walker->error_code |= PFERR_WRITE_MASK;
196         if (user_fault)
197                 walker->error_code |= PFERR_USER_MASK;
198         if (fetch_fault)
199                 walker->error_code |= PFERR_FETCH_MASK;
200         if (walker->table)
201                 kunmap_atomic(walker->table, KM_USER0);
202         return 0;
203 }
204
205 static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
206                                   u64 *shadow_pte,
207                                   gpa_t gaddr,
208                                   pt_element_t gpte,
209                                   u64 access_bits,
210                                   int user_fault,
211                                   int write_fault,
212                                   int *ptwrite,
213                                   struct guest_walker *walker,
214                                   gfn_t gfn)
215 {
216         hpa_t paddr;
217         int dirty = gpte & PT_DIRTY_MASK;
218         u64 spte;
219         int was_rmapped = is_rmap_pte(*shadow_pte);
220
221         pgprintk("%s: spte %llx gpte %llx access %llx write_fault %d"
222                  " user_fault %d gfn %lx\n",
223                  __FUNCTION__, *shadow_pte, (u64)gpte, access_bits,
224                  write_fault, user_fault, gfn);
225
226         /*
227          * We don't set the accessed bit, since we sometimes want to see
228          * whether the guest actually used the pte (in order to detect
229          * demand paging).
230          */
231         spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
232         spte |= gpte & PT64_NX_MASK;
233         if (!dirty)
234                 access_bits &= ~PT_WRITABLE_MASK;
235
236         paddr = gpa_to_hpa(vcpu->kvm, gaddr & PT64_BASE_ADDR_MASK);
237
238         spte |= PT_PRESENT_MASK;
239         if (access_bits & PT_USER_MASK)
240                 spte |= PT_USER_MASK;
241
242         if (is_error_hpa(paddr)) {
243                 set_shadow_pte(shadow_pte,
244                                shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
245                 return;
246         }
247
248         spte |= paddr;
249
250         if ((access_bits & PT_WRITABLE_MASK)
251             || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
252                 struct kvm_mmu_page *shadow;
253
254                 spte |= PT_WRITABLE_MASK;
255                 if (user_fault) {
256                         mmu_unshadow(vcpu->kvm, gfn);
257                         goto unshadowed;
258                 }
259
260                 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
261                 if (shadow) {
262                         pgprintk("%s: found shadow page for %lx, marking ro\n",
263                                  __FUNCTION__, gfn);
264                         access_bits &= ~PT_WRITABLE_MASK;
265                         if (is_writeble_pte(spte)) {
266                                 spte &= ~PT_WRITABLE_MASK;
267                                 kvm_x86_ops->tlb_flush(vcpu);
268                         }
269                         if (write_fault)
270                                 *ptwrite = 1;
271                 }
272         }
273
274 unshadowed:
275
276         if (access_bits & PT_WRITABLE_MASK)
277                 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
278
279         pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
280         set_shadow_pte(shadow_pte, spte);
281         page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
282         if (!was_rmapped)
283                 rmap_add(vcpu, shadow_pte, (gaddr & PT64_BASE_ADDR_MASK)
284                          >> PAGE_SHIFT);
285         if (!ptwrite || !*ptwrite)
286                 vcpu->last_pte_updated = shadow_pte;
287 }
288
289 static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t gpte,
290                            u64 *shadow_pte, u64 access_bits,
291                            int user_fault, int write_fault, int *ptwrite,
292                            struct guest_walker *walker, gfn_t gfn)
293 {
294         access_bits &= gpte;
295         FNAME(set_pte_common)(vcpu, shadow_pte, gpte & PT_BASE_ADDR_MASK,
296                               gpte, access_bits, user_fault, write_fault,
297                               ptwrite, walker, gfn);
298 }
299
300 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
301                               u64 *spte, const void *pte, int bytes,
302                               int offset_in_pte)
303 {
304         pt_element_t gpte;
305
306         gpte = *(const pt_element_t *)pte;
307         if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
308                 if (!offset_in_pte && !is_present_pte(gpte))
309                         set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
310                 return;
311         }
312         if (bytes < sizeof(pt_element_t))
313                 return;
314         pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
315         FNAME(set_pte)(vcpu, gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
316                        0, NULL, NULL,
317                        (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT);
318 }
319
320 static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t gpde,
321                            u64 *shadow_pte, u64 access_bits,
322                            int user_fault, int write_fault, int *ptwrite,
323                            struct guest_walker *walker, gfn_t gfn)
324 {
325         gpa_t gaddr;
326
327         access_bits &= gpde;
328         gaddr = (gpa_t)gfn << PAGE_SHIFT;
329         if (PTTYPE == 32 && is_cpuid_PSE36())
330                 gaddr |= (gpde & PT32_DIR_PSE36_MASK) <<
331                         (32 - PT32_DIR_PSE36_SHIFT);
332         FNAME(set_pte_common)(vcpu, shadow_pte, gaddr,
333                               gpde, access_bits, user_fault, write_fault,
334                               ptwrite, walker, gfn);
335 }
336
337 /*
338  * Fetch a shadow pte for a specific level in the paging hierarchy.
339  */
340 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
341                          struct guest_walker *walker,
342                          int user_fault, int write_fault, int *ptwrite)
343 {
344         hpa_t shadow_addr;
345         int level;
346         u64 *shadow_ent;
347         u64 *prev_shadow_ent = NULL;
348
349         if (!is_present_pte(walker->pte))
350                 return NULL;
351
352         shadow_addr = vcpu->mmu.root_hpa;
353         level = vcpu->mmu.shadow_root_level;
354         if (level == PT32E_ROOT_LEVEL) {
355                 shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
356                 shadow_addr &= PT64_BASE_ADDR_MASK;
357                 --level;
358         }
359
360         for (; ; level--) {
361                 u32 index = SHADOW_PT_INDEX(addr, level);
362                 struct kvm_mmu_page *shadow_page;
363                 u64 shadow_pte;
364                 int metaphysical;
365                 gfn_t table_gfn;
366                 unsigned hugepage_access = 0;
367
368                 shadow_ent = ((u64 *)__va(shadow_addr)) + index;
369                 if (is_shadow_present_pte(*shadow_ent)) {
370                         if (level == PT_PAGE_TABLE_LEVEL)
371                                 break;
372                         shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
373                         prev_shadow_ent = shadow_ent;
374                         continue;
375                 }
376
377                 if (level == PT_PAGE_TABLE_LEVEL)
378                         break;
379
380                 if (level - 1 == PT_PAGE_TABLE_LEVEL
381                     && walker->level == PT_DIRECTORY_LEVEL) {
382                         metaphysical = 1;
383                         hugepage_access = walker->pte;
384                         hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
385                         if (!is_dirty_pte(walker->pte))
386                                 hugepage_access &= ~PT_WRITABLE_MASK;
387                         hugepage_access >>= PT_WRITABLE_SHIFT;
388                         if (walker->pte & PT64_NX_MASK)
389                                 hugepage_access |= (1 << 2);
390                         table_gfn = (walker->pte & PT_BASE_ADDR_MASK)
391                                 >> PAGE_SHIFT;
392                 } else {
393                         metaphysical = 0;
394                         table_gfn = walker->table_gfn[level - 2];
395                 }
396                 shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
397                                                metaphysical, hugepage_access,
398                                                shadow_ent);
399                 shadow_addr = __pa(shadow_page->spt);
400                 shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
401                         | PT_WRITABLE_MASK | PT_USER_MASK;
402                 *shadow_ent = shadow_pte;
403                 prev_shadow_ent = shadow_ent;
404         }
405
406         if (walker->level == PT_DIRECTORY_LEVEL) {
407                 FNAME(set_pde)(vcpu, walker->pte, shadow_ent,
408                                walker->inherited_ar, user_fault, write_fault,
409                                ptwrite, walker, walker->gfn);
410         } else {
411                 ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
412                 FNAME(set_pte)(vcpu, walker->pte, shadow_ent,
413                                walker->inherited_ar, user_fault, write_fault,
414                                ptwrite, walker, walker->gfn);
415         }
416         return shadow_ent;
417 }
418
419 /*
420  * Page fault handler.  There are several causes for a page fault:
421  *   - there is no shadow pte for the guest pte
422  *   - write access through a shadow pte marked read only so that we can set
423  *     the dirty bit
424  *   - write access to a shadow pte marked read only so we can update the page
425  *     dirty bitmap, when userspace requests it
426  *   - mmio access; in this case we will never install a present shadow pte
427  *   - normal guest page fault due to the guest pte marked not present, not
428  *     writable, or not executable
429  *
430  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
431  *           a negative value on error.
432  */
433 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
434                                u32 error_code)
435 {
436         int write_fault = error_code & PFERR_WRITE_MASK;
437         int user_fault = error_code & PFERR_USER_MASK;
438         int fetch_fault = error_code & PFERR_FETCH_MASK;
439         struct guest_walker walker;
440         u64 *shadow_pte;
441         int write_pt = 0;
442         int r;
443
444         pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
445         kvm_mmu_audit(vcpu, "pre page fault");
446
447         r = mmu_topup_memory_caches(vcpu);
448         if (r)
449                 return r;
450
451         /*
452          * Look up the shadow pte for the faulting address.
453          */
454         r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
455                              fetch_fault);
456
457         /*
458          * The page is not mapped by the guest.  Let the guest handle it.
459          */
460         if (!r) {
461                 pgprintk("%s: guest page fault\n", __FUNCTION__);
462                 inject_page_fault(vcpu, addr, walker.error_code);
463                 vcpu->last_pt_write_count = 0; /* reset fork detector */
464                 return 0;
465         }
466
467         shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
468                                   &write_pt);
469         pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
470                  shadow_pte, *shadow_pte, write_pt);
471
472         if (!write_pt)
473                 vcpu->last_pt_write_count = 0; /* reset fork detector */
474
475         /*
476          * mmio: emulate if accessible, otherwise its a guest fault.
477          */
478         if (is_io_pte(*shadow_pte))
479                 return 1;
480
481         ++vcpu->stat.pf_fixed;
482         kvm_mmu_audit(vcpu, "post page fault (fixed)");
483
484         return write_pt;
485 }
486
487 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
488 {
489         struct guest_walker walker;
490         gpa_t gpa = UNMAPPED_GVA;
491         int r;
492
493         r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
494
495         if (r) {
496                 gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
497                 gpa |= vaddr & ~PAGE_MASK;
498         }
499
500         return gpa;
501 }
502
503 static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
504                                  struct kvm_mmu_page *sp)
505 {
506         int i;
507         pt_element_t *gpt;
508
509         if (sp->role.metaphysical || PTTYPE == 32) {
510                 nonpaging_prefetch_page(vcpu, sp);
511                 return;
512         }
513
514         gpt = kmap_atomic(gfn_to_page(vcpu->kvm, sp->gfn), KM_USER0);
515         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
516                 if (is_present_pte(gpt[i]))
517                         sp->spt[i] = shadow_trap_nonpresent_pte;
518                 else
519                         sp->spt[i] = shadow_notrap_nonpresent_pte;
520         kunmap_atomic(gpt, KM_USER0);
521 }
522
523 #undef pt_element_t
524 #undef guest_walker
525 #undef FNAME
526 #undef PT_BASE_ADDR_MASK
527 #undef PT_INDEX
528 #undef SHADOW_PT_INDEX
529 #undef PT_LEVEL_MASK
530 #undef PT_DIR_BASE_ADDR_MASK
531 #undef PT_LEVEL_BITS
532 #undef PT_MAX_FULL_LEVELS