bab1b7f8d7057789b4b31c7d8c93ecc6cf054c10
[safe/jmp/linux-2.6] / drivers / kvm / paging_tmpl.h
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 /*
21  * We need the mmu code to access both 32-bit and 64-bit guest ptes,
22  * so the code in this file is compiled twice, once per pte size.
23  */
24
25 #if PTTYPE == 64
26         #define pt_element_t u64
27         #define guest_walker guest_walker64
28         #define FNAME(name) paging##64_##name
29         #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
30         #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
31         #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
32         #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
33         #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
34         #define PT_LEVEL_BITS PT64_LEVEL_BITS
35         #ifdef CONFIG_X86_64
36         #define PT_MAX_FULL_LEVELS 4
37         #else
38         #define PT_MAX_FULL_LEVELS 2
39         #endif
40 #elif PTTYPE == 32
41         #define pt_element_t u32
42         #define guest_walker guest_walker32
43         #define FNAME(name) paging##32_##name
44         #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
45         #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
46         #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
47         #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
48         #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
49         #define PT_LEVEL_BITS PT32_LEVEL_BITS
50         #define PT_MAX_FULL_LEVELS 2
51 #else
52         #error Invalid PTTYPE value
53 #endif
54
55 /*
56  * The guest_walker structure emulates the behavior of the hardware page
57  * table walker.
58  */
59 struct guest_walker {
60         int level;
61         gfn_t table_gfn[PT_MAX_FULL_LEVELS];
62         pt_element_t pte;
63         pt_element_t inherited_ar;
64         gfn_t gfn;
65         u32 error_code;
66 };
67
68 /*
69  * Fetch a guest pte for a guest virtual address
70  */
71 static int FNAME(walk_addr)(struct guest_walker *walker,
72                             struct kvm_vcpu *vcpu, gva_t addr,
73                             int write_fault, int user_fault, int fetch_fault)
74 {
75         hpa_t hpa;
76         struct kvm_memory_slot *slot;
77         struct page *page;
78         pt_element_t *table;
79         pt_element_t pte;
80         gfn_t table_gfn;
81         unsigned index;
82         gpa_t pte_gpa;
83
84         pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
85         walker->level = vcpu->mmu.root_level;
86         pte = vcpu->cr3;
87 #if PTTYPE == 64
88         if (!is_long_mode(vcpu)) {
89                 pte = vcpu->pdptrs[(addr >> 30) & 3];
90                 if (!is_present_pte(pte))
91                         goto not_present;
92                 --walker->level;
93         }
94 #endif
95         ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
96                (vcpu->cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
97
98         walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
99
100         for (;;) {
101                 index = PT_INDEX(addr, walker->level);
102
103                 table_gfn = (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
104                 walker->table_gfn[walker->level - 1] = table_gfn;
105                 pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
106                          walker->level - 1, table_gfn);
107
108                 slot = gfn_to_memslot(vcpu->kvm, table_gfn);
109                 hpa = safe_gpa_to_hpa(vcpu->kvm, pte & PT64_BASE_ADDR_MASK);
110                 page = pfn_to_page(hpa >> PAGE_SHIFT);
111
112                 table = kmap_atomic(page, KM_USER0);
113                 pte = table[index];
114                 kunmap_atomic(table, KM_USER0);
115
116                 if (!is_present_pte(pte))
117                         goto not_present;
118
119                 if (write_fault && !is_writeble_pte(pte))
120                         if (user_fault || is_write_protection(vcpu))
121                                 goto access_error;
122
123                 if (user_fault && !(pte & PT_USER_MASK))
124                         goto access_error;
125
126 #if PTTYPE == 64
127                 if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
128                         goto access_error;
129 #endif
130
131                 if (!(pte & PT_ACCESSED_MASK)) {
132                         mark_page_dirty(vcpu->kvm, table_gfn);
133                         pte |= PT_ACCESSED_MASK;
134                         table = kmap_atomic(page, KM_USER0);
135                         table[index] = pte;
136                         kunmap_atomic(table, KM_USER0);
137                 }
138
139                 if (walker->level == PT_PAGE_TABLE_LEVEL) {
140                         walker->gfn = (pte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
141                         break;
142                 }
143
144                 if (walker->level == PT_DIRECTORY_LEVEL
145                     && (pte & PT_PAGE_SIZE_MASK)
146                     && (PTTYPE == 64 || is_pse(vcpu))) {
147                         walker->gfn = (pte & PT_DIR_BASE_ADDR_MASK)
148                                 >> PAGE_SHIFT;
149                         walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
150                         break;
151                 }
152
153                 walker->inherited_ar &= pte;
154                 --walker->level;
155         }
156
157         if (write_fault && !is_dirty_pte(pte)) {
158                 mark_page_dirty(vcpu->kvm, table_gfn);
159                 pte |= PT_DIRTY_MASK;
160                 table = kmap_atomic(page, KM_USER0);
161                 table[index] = pte;
162                 kunmap_atomic(table, KM_USER0);
163                 pte_gpa = table_gfn << PAGE_SHIFT;
164                 pte_gpa += index * sizeof(pt_element_t);
165                 kvm_mmu_pte_write(vcpu, pte_gpa, (u8 *)&pte, sizeof(pte));
166         }
167
168         walker->pte = pte;
169         pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)pte);
170         return 1;
171
172 not_present:
173         walker->error_code = 0;
174         goto err;
175
176 access_error:
177         walker->error_code = PFERR_PRESENT_MASK;
178
179 err:
180         if (write_fault)
181                 walker->error_code |= PFERR_WRITE_MASK;
182         if (user_fault)
183                 walker->error_code |= PFERR_USER_MASK;
184         if (fetch_fault)
185                 walker->error_code |= PFERR_FETCH_MASK;
186         return 0;
187 }
188
189 static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
190                                   u64 *shadow_pte,
191                                   gpa_t gaddr,
192                                   pt_element_t gpte,
193                                   u64 access_bits,
194                                   int user_fault,
195                                   int write_fault,
196                                   int *ptwrite,
197                                   struct guest_walker *walker,
198                                   gfn_t gfn)
199 {
200         hpa_t paddr;
201         int dirty = gpte & PT_DIRTY_MASK;
202         u64 spte;
203         int was_rmapped = is_rmap_pte(*shadow_pte);
204
205         pgprintk("%s: spte %llx gpte %llx access %llx write_fault %d"
206                  " user_fault %d gfn %lx\n",
207                  __FUNCTION__, *shadow_pte, (u64)gpte, access_bits,
208                  write_fault, user_fault, gfn);
209
210         /*
211          * We don't set the accessed bit, since we sometimes want to see
212          * whether the guest actually used the pte (in order to detect
213          * demand paging).
214          */
215         spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
216         spte |= gpte & PT64_NX_MASK;
217         if (!dirty)
218                 access_bits &= ~PT_WRITABLE_MASK;
219
220         paddr = gpa_to_hpa(vcpu->kvm, gaddr & PT64_BASE_ADDR_MASK);
221
222         spte |= PT_PRESENT_MASK;
223         if (access_bits & PT_USER_MASK)
224                 spte |= PT_USER_MASK;
225
226         if (is_error_hpa(paddr)) {
227                 set_shadow_pte(shadow_pte,
228                                shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
229                 return;
230         }
231
232         spte |= paddr;
233
234         if ((access_bits & PT_WRITABLE_MASK)
235             || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
236                 struct kvm_mmu_page *shadow;
237
238                 spte |= PT_WRITABLE_MASK;
239                 if (user_fault) {
240                         mmu_unshadow(vcpu->kvm, gfn);
241                         goto unshadowed;
242                 }
243
244                 shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
245                 if (shadow) {
246                         pgprintk("%s: found shadow page for %lx, marking ro\n",
247                                  __FUNCTION__, gfn);
248                         access_bits &= ~PT_WRITABLE_MASK;
249                         if (is_writeble_pte(spte)) {
250                                 spte &= ~PT_WRITABLE_MASK;
251                                 kvm_x86_ops->tlb_flush(vcpu);
252                         }
253                         if (write_fault)
254                                 *ptwrite = 1;
255                 }
256         }
257
258 unshadowed:
259
260         if (access_bits & PT_WRITABLE_MASK)
261                 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
262
263         pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
264         set_shadow_pte(shadow_pte, spte);
265         page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
266         if (!was_rmapped)
267                 rmap_add(vcpu, shadow_pte, (gaddr & PT64_BASE_ADDR_MASK)
268                          >> PAGE_SHIFT);
269         if (!ptwrite || !*ptwrite)
270                 vcpu->last_pte_updated = shadow_pte;
271 }
272
273 static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t gpte,
274                            u64 *shadow_pte, u64 access_bits,
275                            int user_fault, int write_fault, int *ptwrite,
276                            struct guest_walker *walker, gfn_t gfn)
277 {
278         access_bits &= gpte;
279         FNAME(set_pte_common)(vcpu, shadow_pte, gpte & PT_BASE_ADDR_MASK,
280                               gpte, access_bits, user_fault, write_fault,
281                               ptwrite, walker, gfn);
282 }
283
284 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
285                               u64 *spte, const void *pte, int bytes,
286                               int offset_in_pte)
287 {
288         pt_element_t gpte;
289
290         gpte = *(const pt_element_t *)pte;
291         if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
292                 if (!offset_in_pte && !is_present_pte(gpte))
293                         set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
294                 return;
295         }
296         if (bytes < sizeof(pt_element_t))
297                 return;
298         pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
299         FNAME(set_pte)(vcpu, gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
300                        0, NULL, NULL,
301                        (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT);
302 }
303
304 static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t gpde,
305                            u64 *shadow_pte, u64 access_bits,
306                            int user_fault, int write_fault, int *ptwrite,
307                            struct guest_walker *walker, gfn_t gfn)
308 {
309         gpa_t gaddr;
310
311         access_bits &= gpde;
312         gaddr = (gpa_t)gfn << PAGE_SHIFT;
313         if (PTTYPE == 32 && is_cpuid_PSE36())
314                 gaddr |= (gpde & PT32_DIR_PSE36_MASK) <<
315                         (32 - PT32_DIR_PSE36_SHIFT);
316         FNAME(set_pte_common)(vcpu, shadow_pte, gaddr,
317                               gpde, access_bits, user_fault, write_fault,
318                               ptwrite, walker, gfn);
319 }
320
321 /*
322  * Fetch a shadow pte for a specific level in the paging hierarchy.
323  */
324 static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
325                          struct guest_walker *walker,
326                          int user_fault, int write_fault, int *ptwrite)
327 {
328         hpa_t shadow_addr;
329         int level;
330         u64 *shadow_ent;
331         u64 *prev_shadow_ent = NULL;
332
333         if (!is_present_pte(walker->pte))
334                 return NULL;
335
336         shadow_addr = vcpu->mmu.root_hpa;
337         level = vcpu->mmu.shadow_root_level;
338         if (level == PT32E_ROOT_LEVEL) {
339                 shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
340                 shadow_addr &= PT64_BASE_ADDR_MASK;
341                 --level;
342         }
343
344         for (; ; level--) {
345                 u32 index = SHADOW_PT_INDEX(addr, level);
346                 struct kvm_mmu_page *shadow_page;
347                 u64 shadow_pte;
348                 int metaphysical;
349                 gfn_t table_gfn;
350                 unsigned hugepage_access = 0;
351
352                 shadow_ent = ((u64 *)__va(shadow_addr)) + index;
353                 if (is_shadow_present_pte(*shadow_ent)) {
354                         if (level == PT_PAGE_TABLE_LEVEL)
355                                 break;
356                         shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
357                         prev_shadow_ent = shadow_ent;
358                         continue;
359                 }
360
361                 if (level == PT_PAGE_TABLE_LEVEL)
362                         break;
363
364                 if (level - 1 == PT_PAGE_TABLE_LEVEL
365                     && walker->level == PT_DIRECTORY_LEVEL) {
366                         metaphysical = 1;
367                         hugepage_access = walker->pte;
368                         hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
369                         if (!is_dirty_pte(walker->pte))
370                                 hugepage_access &= ~PT_WRITABLE_MASK;
371                         hugepage_access >>= PT_WRITABLE_SHIFT;
372                         if (walker->pte & PT64_NX_MASK)
373                                 hugepage_access |= (1 << 2);
374                         table_gfn = (walker->pte & PT_BASE_ADDR_MASK)
375                                 >> PAGE_SHIFT;
376                 } else {
377                         metaphysical = 0;
378                         table_gfn = walker->table_gfn[level - 2];
379                 }
380                 shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
381                                                metaphysical, hugepage_access,
382                                                shadow_ent);
383                 shadow_addr = __pa(shadow_page->spt);
384                 shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
385                         | PT_WRITABLE_MASK | PT_USER_MASK;
386                 *shadow_ent = shadow_pte;
387                 prev_shadow_ent = shadow_ent;
388         }
389
390         if (walker->level == PT_DIRECTORY_LEVEL) {
391                 FNAME(set_pde)(vcpu, walker->pte, shadow_ent,
392                                walker->inherited_ar, user_fault, write_fault,
393                                ptwrite, walker, walker->gfn);
394         } else {
395                 ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
396                 FNAME(set_pte)(vcpu, walker->pte, shadow_ent,
397                                walker->inherited_ar, user_fault, write_fault,
398                                ptwrite, walker, walker->gfn);
399         }
400         return shadow_ent;
401 }
402
403 /*
404  * Page fault handler.  There are several causes for a page fault:
405  *   - there is no shadow pte for the guest pte
406  *   - write access through a shadow pte marked read only so that we can set
407  *     the dirty bit
408  *   - write access to a shadow pte marked read only so we can update the page
409  *     dirty bitmap, when userspace requests it
410  *   - mmio access; in this case we will never install a present shadow pte
411  *   - normal guest page fault due to the guest pte marked not present, not
412  *     writable, or not executable
413  *
414  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
415  *           a negative value on error.
416  */
417 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
418                                u32 error_code)
419 {
420         int write_fault = error_code & PFERR_WRITE_MASK;
421         int user_fault = error_code & PFERR_USER_MASK;
422         int fetch_fault = error_code & PFERR_FETCH_MASK;
423         struct guest_walker walker;
424         u64 *shadow_pte;
425         int write_pt = 0;
426         int r;
427
428         pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
429         kvm_mmu_audit(vcpu, "pre page fault");
430
431         r = mmu_topup_memory_caches(vcpu);
432         if (r)
433                 return r;
434
435         /*
436          * Look up the shadow pte for the faulting address.
437          */
438         r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
439                              fetch_fault);
440
441         /*
442          * The page is not mapped by the guest.  Let the guest handle it.
443          */
444         if (!r) {
445                 pgprintk("%s: guest page fault\n", __FUNCTION__);
446                 inject_page_fault(vcpu, addr, walker.error_code);
447                 vcpu->last_pt_write_count = 0; /* reset fork detector */
448                 return 0;
449         }
450
451         shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
452                                   &write_pt);
453         pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
454                  shadow_pte, *shadow_pte, write_pt);
455
456         if (!write_pt)
457                 vcpu->last_pt_write_count = 0; /* reset fork detector */
458
459         /*
460          * mmio: emulate if accessible, otherwise its a guest fault.
461          */
462         if (is_io_pte(*shadow_pte))
463                 return 1;
464
465         ++vcpu->stat.pf_fixed;
466         kvm_mmu_audit(vcpu, "post page fault (fixed)");
467
468         return write_pt;
469 }
470
471 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
472 {
473         struct guest_walker walker;
474         gpa_t gpa = UNMAPPED_GVA;
475         int r;
476
477         r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
478
479         if (r) {
480                 gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
481                 gpa |= vaddr & ~PAGE_MASK;
482         }
483
484         return gpa;
485 }
486
487 static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
488                                  struct kvm_mmu_page *sp)
489 {
490         int i;
491         pt_element_t *gpt;
492
493         if (sp->role.metaphysical || PTTYPE == 32) {
494                 nonpaging_prefetch_page(vcpu, sp);
495                 return;
496         }
497
498         gpt = kmap_atomic(gfn_to_page(vcpu->kvm, sp->gfn), KM_USER0);
499         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
500                 if (is_present_pte(gpt[i]))
501                         sp->spt[i] = shadow_trap_nonpresent_pte;
502                 else
503                         sp->spt[i] = shadow_notrap_nonpresent_pte;
504         kunmap_atomic(gpt, KM_USER0);
505 }
506
507 #undef pt_element_t
508 #undef guest_walker
509 #undef FNAME
510 #undef PT_BASE_ADDR_MASK
511 #undef PT_INDEX
512 #undef SHADOW_PT_INDEX
513 #undef PT_LEVEL_MASK
514 #undef PT_DIR_BASE_ADDR_MASK
515 #undef PT_LEVEL_BITS
516 #undef PT_MAX_FULL_LEVELS