KVM: Use slab caches to allocate mmu data structures
[safe/jmp/linux-2.6] / drivers / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19 #include <linux/types.h>
20 #include <linux/string.h>
21 #include <asm/page.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/module.h>
25
26 #include "vmx.h"
27 #include "kvm.h"
28
29 #undef MMU_DEBUG
30
31 #undef AUDIT
32
33 #ifdef AUDIT
34 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
35 #else
36 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
37 #endif
38
39 #ifdef MMU_DEBUG
40
41 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
42 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
43
44 #else
45
46 #define pgprintk(x...) do { } while (0)
47 #define rmap_printk(x...) do { } while (0)
48
49 #endif
50
51 #if defined(MMU_DEBUG) || defined(AUDIT)
52 static int dbg = 1;
53 #endif
54
55 #define ASSERT(x)                                                       \
56         if (!(x)) {                                                     \
57                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
58                        __FILE__, __LINE__, #x);                         \
59         }
60
61 #define PT64_PT_BITS 9
62 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
63 #define PT32_PT_BITS 10
64 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
65
66 #define PT_WRITABLE_SHIFT 1
67
68 #define PT_PRESENT_MASK (1ULL << 0)
69 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
70 #define PT_USER_MASK (1ULL << 2)
71 #define PT_PWT_MASK (1ULL << 3)
72 #define PT_PCD_MASK (1ULL << 4)
73 #define PT_ACCESSED_MASK (1ULL << 5)
74 #define PT_DIRTY_MASK (1ULL << 6)
75 #define PT_PAGE_SIZE_MASK (1ULL << 7)
76 #define PT_PAT_MASK (1ULL << 7)
77 #define PT_GLOBAL_MASK (1ULL << 8)
78 #define PT64_NX_MASK (1ULL << 63)
79
80 #define PT_PAT_SHIFT 7
81 #define PT_DIR_PAT_SHIFT 12
82 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
83
84 #define PT32_DIR_PSE36_SIZE 4
85 #define PT32_DIR_PSE36_SHIFT 13
86 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
87
88
89 #define PT32_PTE_COPY_MASK \
90         (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
91
92 #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
93
94 #define PT_FIRST_AVAIL_BITS_SHIFT 9
95 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
96
97 #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
98 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
99
100 #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
101 #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
102
103 #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
104 #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
105
106 #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
107
108 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
109
110 #define PT64_LEVEL_BITS 9
111
112 #define PT64_LEVEL_SHIFT(level) \
113                 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
114
115 #define PT64_LEVEL_MASK(level) \
116                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
117
118 #define PT64_INDEX(address, level)\
119         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
120
121
122 #define PT32_LEVEL_BITS 10
123
124 #define PT32_LEVEL_SHIFT(level) \
125                 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
126
127 #define PT32_LEVEL_MASK(level) \
128                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
129
130 #define PT32_INDEX(address, level)\
131         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
132
133
134 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
135 #define PT64_DIR_BASE_ADDR_MASK \
136         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
137
138 #define PT32_BASE_ADDR_MASK PAGE_MASK
139 #define PT32_DIR_BASE_ADDR_MASK \
140         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
141
142
143 #define PFERR_PRESENT_MASK (1U << 0)
144 #define PFERR_WRITE_MASK (1U << 1)
145 #define PFERR_USER_MASK (1U << 2)
146 #define PFERR_FETCH_MASK (1U << 4)
147
148 #define PT64_ROOT_LEVEL 4
149 #define PT32_ROOT_LEVEL 2
150 #define PT32E_ROOT_LEVEL 3
151
152 #define PT_DIRECTORY_LEVEL 2
153 #define PT_PAGE_TABLE_LEVEL 1
154
155 #define RMAP_EXT 4
156
157 struct kvm_rmap_desc {
158         u64 *shadow_ptes[RMAP_EXT];
159         struct kvm_rmap_desc *more;
160 };
161
162 static struct kmem_cache *pte_chain_cache;
163 static struct kmem_cache *rmap_desc_cache;
164
165 static int is_write_protection(struct kvm_vcpu *vcpu)
166 {
167         return vcpu->cr0 & CR0_WP_MASK;
168 }
169
170 static int is_cpuid_PSE36(void)
171 {
172         return 1;
173 }
174
175 static int is_nx(struct kvm_vcpu *vcpu)
176 {
177         return vcpu->shadow_efer & EFER_NX;
178 }
179
180 static int is_present_pte(unsigned long pte)
181 {
182         return pte & PT_PRESENT_MASK;
183 }
184
185 static int is_writeble_pte(unsigned long pte)
186 {
187         return pte & PT_WRITABLE_MASK;
188 }
189
190 static int is_io_pte(unsigned long pte)
191 {
192         return pte & PT_SHADOW_IO_MARK;
193 }
194
195 static int is_rmap_pte(u64 pte)
196 {
197         return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
198                 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
199 }
200
201 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
202                                   struct kmem_cache *base_cache, int min)
203 {
204         void *obj;
205
206         if (cache->nobjs >= min)
207                 return 0;
208         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
209                 obj = kmem_cache_zalloc(base_cache, GFP_NOWAIT);
210                 if (!obj)
211                         return -ENOMEM;
212                 cache->objects[cache->nobjs++] = obj;
213         }
214         return 0;
215 }
216
217 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
218 {
219         while (mc->nobjs)
220                 kfree(mc->objects[--mc->nobjs]);
221 }
222
223 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
224 {
225         int r;
226
227         r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
228                                    pte_chain_cache, 4);
229         if (r)
230                 goto out;
231         r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
232                                    rmap_desc_cache, 1);
233 out:
234         return r;
235 }
236
237 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
238 {
239         mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
240         mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
241 }
242
243 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
244                                     size_t size)
245 {
246         void *p;
247
248         BUG_ON(!mc->nobjs);
249         p = mc->objects[--mc->nobjs];
250         memset(p, 0, size);
251         return p;
252 }
253
254 static void mmu_memory_cache_free(struct kvm_mmu_memory_cache *mc, void *obj)
255 {
256         if (mc->nobjs < KVM_NR_MEM_OBJS)
257                 mc->objects[mc->nobjs++] = obj;
258         else
259                 kfree(obj);
260 }
261
262 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
263 {
264         return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
265                                       sizeof(struct kvm_pte_chain));
266 }
267
268 static void mmu_free_pte_chain(struct kvm_vcpu *vcpu,
269                                struct kvm_pte_chain *pc)
270 {
271         mmu_memory_cache_free(&vcpu->mmu_pte_chain_cache, pc);
272 }
273
274 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
275 {
276         return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
277                                       sizeof(struct kvm_rmap_desc));
278 }
279
280 static void mmu_free_rmap_desc(struct kvm_vcpu *vcpu,
281                                struct kvm_rmap_desc *rd)
282 {
283         mmu_memory_cache_free(&vcpu->mmu_rmap_desc_cache, rd);
284 }
285
286 /*
287  * Reverse mapping data structures:
288  *
289  * If page->private bit zero is zero, then page->private points to the
290  * shadow page table entry that points to page_address(page).
291  *
292  * If page->private bit zero is one, (then page->private & ~1) points
293  * to a struct kvm_rmap_desc containing more mappings.
294  */
295 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
296 {
297         struct page *page;
298         struct kvm_rmap_desc *desc;
299         int i;
300
301         if (!is_rmap_pte(*spte))
302                 return;
303         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
304         if (!page_private(page)) {
305                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
306                 set_page_private(page,(unsigned long)spte);
307         } else if (!(page_private(page) & 1)) {
308                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
309                 desc = mmu_alloc_rmap_desc(vcpu);
310                 desc->shadow_ptes[0] = (u64 *)page_private(page);
311                 desc->shadow_ptes[1] = spte;
312                 set_page_private(page,(unsigned long)desc | 1);
313         } else {
314                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
315                 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
316                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
317                         desc = desc->more;
318                 if (desc->shadow_ptes[RMAP_EXT-1]) {
319                         desc->more = mmu_alloc_rmap_desc(vcpu);
320                         desc = desc->more;
321                 }
322                 for (i = 0; desc->shadow_ptes[i]; ++i)
323                         ;
324                 desc->shadow_ptes[i] = spte;
325         }
326 }
327
328 static void rmap_desc_remove_entry(struct kvm_vcpu *vcpu,
329                                    struct page *page,
330                                    struct kvm_rmap_desc *desc,
331                                    int i,
332                                    struct kvm_rmap_desc *prev_desc)
333 {
334         int j;
335
336         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
337                 ;
338         desc->shadow_ptes[i] = desc->shadow_ptes[j];
339         desc->shadow_ptes[j] = NULL;
340         if (j != 0)
341                 return;
342         if (!prev_desc && !desc->more)
343                 set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
344         else
345                 if (prev_desc)
346                         prev_desc->more = desc->more;
347                 else
348                         set_page_private(page,(unsigned long)desc->more | 1);
349         mmu_free_rmap_desc(vcpu, desc);
350 }
351
352 static void rmap_remove(struct kvm_vcpu *vcpu, u64 *spte)
353 {
354         struct page *page;
355         struct kvm_rmap_desc *desc;
356         struct kvm_rmap_desc *prev_desc;
357         int i;
358
359         if (!is_rmap_pte(*spte))
360                 return;
361         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
362         if (!page_private(page)) {
363                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
364                 BUG();
365         } else if (!(page_private(page) & 1)) {
366                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
367                 if ((u64 *)page_private(page) != spte) {
368                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
369                                spte, *spte);
370                         BUG();
371                 }
372                 set_page_private(page,0);
373         } else {
374                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
375                 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
376                 prev_desc = NULL;
377                 while (desc) {
378                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
379                                 if (desc->shadow_ptes[i] == spte) {
380                                         rmap_desc_remove_entry(vcpu, page,
381                                                                desc, i,
382                                                                prev_desc);
383                                         return;
384                                 }
385                         prev_desc = desc;
386                         desc = desc->more;
387                 }
388                 BUG();
389         }
390 }
391
392 static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
393 {
394         struct kvm *kvm = vcpu->kvm;
395         struct page *page;
396         struct kvm_rmap_desc *desc;
397         u64 *spte;
398
399         page = gfn_to_page(kvm, gfn);
400         BUG_ON(!page);
401
402         while (page_private(page)) {
403                 if (!(page_private(page) & 1))
404                         spte = (u64 *)page_private(page);
405                 else {
406                         desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
407                         spte = desc->shadow_ptes[0];
408                 }
409                 BUG_ON(!spte);
410                 BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
411                        != page_to_pfn(page));
412                 BUG_ON(!(*spte & PT_PRESENT_MASK));
413                 BUG_ON(!(*spte & PT_WRITABLE_MASK));
414                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
415                 rmap_remove(vcpu, spte);
416                 kvm_arch_ops->tlb_flush(vcpu);
417                 *spte &= ~(u64)PT_WRITABLE_MASK;
418         }
419 }
420
421 static int is_empty_shadow_page(hpa_t page_hpa)
422 {
423         u64 *pos;
424         u64 *end;
425
426         for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u64);
427                       pos != end; pos++)
428                 if (*pos != 0) {
429                         printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
430                                pos, *pos);
431                         return 0;
432                 }
433         return 1;
434 }
435
436 static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
437 {
438         struct kvm_mmu_page *page_head = page_header(page_hpa);
439
440         ASSERT(is_empty_shadow_page(page_hpa));
441         page_head->page_hpa = page_hpa;
442         list_move(&page_head->link, &vcpu->free_pages);
443         ++vcpu->kvm->n_free_mmu_pages;
444 }
445
446 static unsigned kvm_page_table_hashfn(gfn_t gfn)
447 {
448         return gfn;
449 }
450
451 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
452                                                u64 *parent_pte)
453 {
454         struct kvm_mmu_page *page;
455
456         if (list_empty(&vcpu->free_pages))
457                 return NULL;
458
459         page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
460         list_move(&page->link, &vcpu->kvm->active_mmu_pages);
461         ASSERT(is_empty_shadow_page(page->page_hpa));
462         page->slot_bitmap = 0;
463         page->multimapped = 0;
464         page->parent_pte = parent_pte;
465         --vcpu->kvm->n_free_mmu_pages;
466         return page;
467 }
468
469 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
470                                     struct kvm_mmu_page *page, u64 *parent_pte)
471 {
472         struct kvm_pte_chain *pte_chain;
473         struct hlist_node *node;
474         int i;
475
476         if (!parent_pte)
477                 return;
478         if (!page->multimapped) {
479                 u64 *old = page->parent_pte;
480
481                 if (!old) {
482                         page->parent_pte = parent_pte;
483                         return;
484                 }
485                 page->multimapped = 1;
486                 pte_chain = mmu_alloc_pte_chain(vcpu);
487                 INIT_HLIST_HEAD(&page->parent_ptes);
488                 hlist_add_head(&pte_chain->link, &page->parent_ptes);
489                 pte_chain->parent_ptes[0] = old;
490         }
491         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
492                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
493                         continue;
494                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
495                         if (!pte_chain->parent_ptes[i]) {
496                                 pte_chain->parent_ptes[i] = parent_pte;
497                                 return;
498                         }
499         }
500         pte_chain = mmu_alloc_pte_chain(vcpu);
501         BUG_ON(!pte_chain);
502         hlist_add_head(&pte_chain->link, &page->parent_ptes);
503         pte_chain->parent_ptes[0] = parent_pte;
504 }
505
506 static void mmu_page_remove_parent_pte(struct kvm_vcpu *vcpu,
507                                        struct kvm_mmu_page *page,
508                                        u64 *parent_pte)
509 {
510         struct kvm_pte_chain *pte_chain;
511         struct hlist_node *node;
512         int i;
513
514         if (!page->multimapped) {
515                 BUG_ON(page->parent_pte != parent_pte);
516                 page->parent_pte = NULL;
517                 return;
518         }
519         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
520                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
521                         if (!pte_chain->parent_ptes[i])
522                                 break;
523                         if (pte_chain->parent_ptes[i] != parent_pte)
524                                 continue;
525                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
526                                 && pte_chain->parent_ptes[i + 1]) {
527                                 pte_chain->parent_ptes[i]
528                                         = pte_chain->parent_ptes[i + 1];
529                                 ++i;
530                         }
531                         pte_chain->parent_ptes[i] = NULL;
532                         if (i == 0) {
533                                 hlist_del(&pte_chain->link);
534                                 mmu_free_pte_chain(vcpu, pte_chain);
535                                 if (hlist_empty(&page->parent_ptes)) {
536                                         page->multimapped = 0;
537                                         page->parent_pte = NULL;
538                                 }
539                         }
540                         return;
541                 }
542         BUG();
543 }
544
545 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
546                                                 gfn_t gfn)
547 {
548         unsigned index;
549         struct hlist_head *bucket;
550         struct kvm_mmu_page *page;
551         struct hlist_node *node;
552
553         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
554         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
555         bucket = &vcpu->kvm->mmu_page_hash[index];
556         hlist_for_each_entry(page, node, bucket, hash_link)
557                 if (page->gfn == gfn && !page->role.metaphysical) {
558                         pgprintk("%s: found role %x\n",
559                                  __FUNCTION__, page->role.word);
560                         return page;
561                 }
562         return NULL;
563 }
564
565 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
566                                              gfn_t gfn,
567                                              gva_t gaddr,
568                                              unsigned level,
569                                              int metaphysical,
570                                              unsigned hugepage_access,
571                                              u64 *parent_pte)
572 {
573         union kvm_mmu_page_role role;
574         unsigned index;
575         unsigned quadrant;
576         struct hlist_head *bucket;
577         struct kvm_mmu_page *page;
578         struct hlist_node *node;
579
580         role.word = 0;
581         role.glevels = vcpu->mmu.root_level;
582         role.level = level;
583         role.metaphysical = metaphysical;
584         role.hugepage_access = hugepage_access;
585         if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
586                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
587                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
588                 role.quadrant = quadrant;
589         }
590         pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
591                  gfn, role.word);
592         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
593         bucket = &vcpu->kvm->mmu_page_hash[index];
594         hlist_for_each_entry(page, node, bucket, hash_link)
595                 if (page->gfn == gfn && page->role.word == role.word) {
596                         mmu_page_add_parent_pte(vcpu, page, parent_pte);
597                         pgprintk("%s: found\n", __FUNCTION__);
598                         return page;
599                 }
600         page = kvm_mmu_alloc_page(vcpu, parent_pte);
601         if (!page)
602                 return page;
603         pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
604         page->gfn = gfn;
605         page->role = role;
606         hlist_add_head(&page->hash_link, bucket);
607         if (!metaphysical)
608                 rmap_write_protect(vcpu, gfn);
609         return page;
610 }
611
612 static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
613                                          struct kvm_mmu_page *page)
614 {
615         unsigned i;
616         u64 *pt;
617         u64 ent;
618
619         pt = __va(page->page_hpa);
620
621         if (page->role.level == PT_PAGE_TABLE_LEVEL) {
622                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
623                         if (pt[i] & PT_PRESENT_MASK)
624                                 rmap_remove(vcpu, &pt[i]);
625                         pt[i] = 0;
626                 }
627                 kvm_arch_ops->tlb_flush(vcpu);
628                 return;
629         }
630
631         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
632                 ent = pt[i];
633
634                 pt[i] = 0;
635                 if (!(ent & PT_PRESENT_MASK))
636                         continue;
637                 ent &= PT64_BASE_ADDR_MASK;
638                 mmu_page_remove_parent_pte(vcpu, page_header(ent), &pt[i]);
639         }
640 }
641
642 static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
643                              struct kvm_mmu_page *page,
644                              u64 *parent_pte)
645 {
646         mmu_page_remove_parent_pte(vcpu, page, parent_pte);
647 }
648
649 static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
650                              struct kvm_mmu_page *page)
651 {
652         u64 *parent_pte;
653
654         while (page->multimapped || page->parent_pte) {
655                 if (!page->multimapped)
656                         parent_pte = page->parent_pte;
657                 else {
658                         struct kvm_pte_chain *chain;
659
660                         chain = container_of(page->parent_ptes.first,
661                                              struct kvm_pte_chain, link);
662                         parent_pte = chain->parent_ptes[0];
663                 }
664                 BUG_ON(!parent_pte);
665                 kvm_mmu_put_page(vcpu, page, parent_pte);
666                 *parent_pte = 0;
667         }
668         kvm_mmu_page_unlink_children(vcpu, page);
669         if (!page->root_count) {
670                 hlist_del(&page->hash_link);
671                 kvm_mmu_free_page(vcpu, page->page_hpa);
672         } else
673                 list_move(&page->link, &vcpu->kvm->active_mmu_pages);
674 }
675
676 static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
677 {
678         unsigned index;
679         struct hlist_head *bucket;
680         struct kvm_mmu_page *page;
681         struct hlist_node *node, *n;
682         int r;
683
684         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
685         r = 0;
686         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
687         bucket = &vcpu->kvm->mmu_page_hash[index];
688         hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
689                 if (page->gfn == gfn && !page->role.metaphysical) {
690                         pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
691                                  page->role.word);
692                         kvm_mmu_zap_page(vcpu, page);
693                         r = 1;
694                 }
695         return r;
696 }
697
698 static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
699 {
700         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
701         struct kvm_mmu_page *page_head = page_header(__pa(pte));
702
703         __set_bit(slot, &page_head->slot_bitmap);
704 }
705
706 hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
707 {
708         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
709
710         return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
711 }
712
713 hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
714 {
715         struct page *page;
716
717         ASSERT((gpa & HPA_ERR_MASK) == 0);
718         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
719         if (!page)
720                 return gpa | HPA_ERR_MASK;
721         return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
722                 | (gpa & (PAGE_SIZE-1));
723 }
724
725 hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
726 {
727         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
728
729         if (gpa == UNMAPPED_GVA)
730                 return UNMAPPED_GVA;
731         return gpa_to_hpa(vcpu, gpa);
732 }
733
734 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
735 {
736         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
737
738         if (gpa == UNMAPPED_GVA)
739                 return NULL;
740         return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
741 }
742
743 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
744 {
745 }
746
747 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
748 {
749         int level = PT32E_ROOT_LEVEL;
750         hpa_t table_addr = vcpu->mmu.root_hpa;
751
752         for (; ; level--) {
753                 u32 index = PT64_INDEX(v, level);
754                 u64 *table;
755                 u64 pte;
756
757                 ASSERT(VALID_PAGE(table_addr));
758                 table = __va(table_addr);
759
760                 if (level == 1) {
761                         pte = table[index];
762                         if (is_present_pte(pte) && is_writeble_pte(pte))
763                                 return 0;
764                         mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
765                         page_header_update_slot(vcpu->kvm, table, v);
766                         table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
767                                                                 PT_USER_MASK;
768                         rmap_add(vcpu, &table[index]);
769                         return 0;
770                 }
771
772                 if (table[index] == 0) {
773                         struct kvm_mmu_page *new_table;
774                         gfn_t pseudo_gfn;
775
776                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
777                                 >> PAGE_SHIFT;
778                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
779                                                      v, level - 1,
780                                                      1, 0, &table[index]);
781                         if (!new_table) {
782                                 pgprintk("nonpaging_map: ENOMEM\n");
783                                 return -ENOMEM;
784                         }
785
786                         table[index] = new_table->page_hpa | PT_PRESENT_MASK
787                                 | PT_WRITABLE_MASK | PT_USER_MASK;
788                 }
789                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
790         }
791 }
792
793 static void mmu_free_roots(struct kvm_vcpu *vcpu)
794 {
795         int i;
796         struct kvm_mmu_page *page;
797
798 #ifdef CONFIG_X86_64
799         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
800                 hpa_t root = vcpu->mmu.root_hpa;
801
802                 ASSERT(VALID_PAGE(root));
803                 page = page_header(root);
804                 --page->root_count;
805                 vcpu->mmu.root_hpa = INVALID_PAGE;
806                 return;
807         }
808 #endif
809         for (i = 0; i < 4; ++i) {
810                 hpa_t root = vcpu->mmu.pae_root[i];
811
812                 if (root) {
813                         ASSERT(VALID_PAGE(root));
814                         root &= PT64_BASE_ADDR_MASK;
815                         page = page_header(root);
816                         --page->root_count;
817                 }
818                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
819         }
820         vcpu->mmu.root_hpa = INVALID_PAGE;
821 }
822
823 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
824 {
825         int i;
826         gfn_t root_gfn;
827         struct kvm_mmu_page *page;
828
829         root_gfn = vcpu->cr3 >> PAGE_SHIFT;
830
831 #ifdef CONFIG_X86_64
832         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
833                 hpa_t root = vcpu->mmu.root_hpa;
834
835                 ASSERT(!VALID_PAGE(root));
836                 page = kvm_mmu_get_page(vcpu, root_gfn, 0,
837                                         PT64_ROOT_LEVEL, 0, 0, NULL);
838                 root = page->page_hpa;
839                 ++page->root_count;
840                 vcpu->mmu.root_hpa = root;
841                 return;
842         }
843 #endif
844         for (i = 0; i < 4; ++i) {
845                 hpa_t root = vcpu->mmu.pae_root[i];
846
847                 ASSERT(!VALID_PAGE(root));
848                 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
849                         if (!is_present_pte(vcpu->pdptrs[i])) {
850                                 vcpu->mmu.pae_root[i] = 0;
851                                 continue;
852                         }
853                         root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
854                 } else if (vcpu->mmu.root_level == 0)
855                         root_gfn = 0;
856                 page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
857                                         PT32_ROOT_LEVEL, !is_paging(vcpu),
858                                         0, NULL);
859                 root = page->page_hpa;
860                 ++page->root_count;
861                 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
862         }
863         vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
864 }
865
866 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
867 {
868         return vaddr;
869 }
870
871 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
872                                u32 error_code)
873 {
874         gpa_t addr = gva;
875         hpa_t paddr;
876         int r;
877
878         r = mmu_topup_memory_caches(vcpu);
879         if (r)
880                 return r;
881
882         ASSERT(vcpu);
883         ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
884
885
886         paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
887
888         if (is_error_hpa(paddr))
889                 return 1;
890
891         return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
892 }
893
894 static void nonpaging_free(struct kvm_vcpu *vcpu)
895 {
896         mmu_free_roots(vcpu);
897 }
898
899 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
900 {
901         struct kvm_mmu *context = &vcpu->mmu;
902
903         context->new_cr3 = nonpaging_new_cr3;
904         context->page_fault = nonpaging_page_fault;
905         context->gva_to_gpa = nonpaging_gva_to_gpa;
906         context->free = nonpaging_free;
907         context->root_level = 0;
908         context->shadow_root_level = PT32E_ROOT_LEVEL;
909         mmu_alloc_roots(vcpu);
910         ASSERT(VALID_PAGE(context->root_hpa));
911         kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
912         return 0;
913 }
914
915 static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
916 {
917         ++kvm_stat.tlb_flush;
918         kvm_arch_ops->tlb_flush(vcpu);
919 }
920
921 static void paging_new_cr3(struct kvm_vcpu *vcpu)
922 {
923         pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
924         mmu_free_roots(vcpu);
925         if (unlikely(vcpu->kvm->n_free_mmu_pages < KVM_MIN_FREE_MMU_PAGES))
926                 kvm_mmu_free_some_pages(vcpu);
927         mmu_alloc_roots(vcpu);
928         kvm_mmu_flush_tlb(vcpu);
929         kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
930 }
931
932 static inline void set_pte_common(struct kvm_vcpu *vcpu,
933                              u64 *shadow_pte,
934                              gpa_t gaddr,
935                              int dirty,
936                              u64 access_bits,
937                              gfn_t gfn)
938 {
939         hpa_t paddr;
940
941         *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
942         if (!dirty)
943                 access_bits &= ~PT_WRITABLE_MASK;
944
945         paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
946
947         *shadow_pte |= access_bits;
948
949         if (is_error_hpa(paddr)) {
950                 *shadow_pte |= gaddr;
951                 *shadow_pte |= PT_SHADOW_IO_MARK;
952                 *shadow_pte &= ~PT_PRESENT_MASK;
953                 return;
954         }
955
956         *shadow_pte |= paddr;
957
958         if (access_bits & PT_WRITABLE_MASK) {
959                 struct kvm_mmu_page *shadow;
960
961                 shadow = kvm_mmu_lookup_page(vcpu, gfn);
962                 if (shadow) {
963                         pgprintk("%s: found shadow page for %lx, marking ro\n",
964                                  __FUNCTION__, gfn);
965                         access_bits &= ~PT_WRITABLE_MASK;
966                         if (is_writeble_pte(*shadow_pte)) {
967                                     *shadow_pte &= ~PT_WRITABLE_MASK;
968                                     kvm_arch_ops->tlb_flush(vcpu);
969                         }
970                 }
971         }
972
973         if (access_bits & PT_WRITABLE_MASK)
974                 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
975
976         page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
977         rmap_add(vcpu, shadow_pte);
978 }
979
980 static void inject_page_fault(struct kvm_vcpu *vcpu,
981                               u64 addr,
982                               u32 err_code)
983 {
984         kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
985 }
986
987 static inline int fix_read_pf(u64 *shadow_ent)
988 {
989         if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
990             !(*shadow_ent & PT_USER_MASK)) {
991                 /*
992                  * If supervisor write protect is disabled, we shadow kernel
993                  * pages as user pages so we can trap the write access.
994                  */
995                 *shadow_ent |= PT_USER_MASK;
996                 *shadow_ent &= ~PT_WRITABLE_MASK;
997
998                 return 1;
999
1000         }
1001         return 0;
1002 }
1003
1004 static void paging_free(struct kvm_vcpu *vcpu)
1005 {
1006         nonpaging_free(vcpu);
1007 }
1008
1009 #define PTTYPE 64
1010 #include "paging_tmpl.h"
1011 #undef PTTYPE
1012
1013 #define PTTYPE 32
1014 #include "paging_tmpl.h"
1015 #undef PTTYPE
1016
1017 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1018 {
1019         struct kvm_mmu *context = &vcpu->mmu;
1020
1021         ASSERT(is_pae(vcpu));
1022         context->new_cr3 = paging_new_cr3;
1023         context->page_fault = paging64_page_fault;
1024         context->gva_to_gpa = paging64_gva_to_gpa;
1025         context->free = paging_free;
1026         context->root_level = level;
1027         context->shadow_root_level = level;
1028         mmu_alloc_roots(vcpu);
1029         ASSERT(VALID_PAGE(context->root_hpa));
1030         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1031                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1032         return 0;
1033 }
1034
1035 static int paging64_init_context(struct kvm_vcpu *vcpu)
1036 {
1037         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1038 }
1039
1040 static int paging32_init_context(struct kvm_vcpu *vcpu)
1041 {
1042         struct kvm_mmu *context = &vcpu->mmu;
1043
1044         context->new_cr3 = paging_new_cr3;
1045         context->page_fault = paging32_page_fault;
1046         context->gva_to_gpa = paging32_gva_to_gpa;
1047         context->free = paging_free;
1048         context->root_level = PT32_ROOT_LEVEL;
1049         context->shadow_root_level = PT32E_ROOT_LEVEL;
1050         mmu_alloc_roots(vcpu);
1051         ASSERT(VALID_PAGE(context->root_hpa));
1052         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1053                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1054         return 0;
1055 }
1056
1057 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1058 {
1059         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1060 }
1061
1062 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1063 {
1064         ASSERT(vcpu);
1065         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1066
1067         if (!is_paging(vcpu))
1068                 return nonpaging_init_context(vcpu);
1069         else if (is_long_mode(vcpu))
1070                 return paging64_init_context(vcpu);
1071         else if (is_pae(vcpu))
1072                 return paging32E_init_context(vcpu);
1073         else
1074                 return paging32_init_context(vcpu);
1075 }
1076
1077 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1078 {
1079         ASSERT(vcpu);
1080         if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1081                 vcpu->mmu.free(vcpu);
1082                 vcpu->mmu.root_hpa = INVALID_PAGE;
1083         }
1084 }
1085
1086 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1087 {
1088         int r;
1089
1090         destroy_kvm_mmu(vcpu);
1091         r = init_kvm_mmu(vcpu);
1092         if (r < 0)
1093                 goto out;
1094         r = mmu_topup_memory_caches(vcpu);
1095 out:
1096         return r;
1097 }
1098
1099 static void mmu_pre_write_zap_pte(struct kvm_vcpu *vcpu,
1100                                   struct kvm_mmu_page *page,
1101                                   u64 *spte)
1102 {
1103         u64 pte;
1104         struct kvm_mmu_page *child;
1105
1106         pte = *spte;
1107         if (is_present_pte(pte)) {
1108                 if (page->role.level == PT_PAGE_TABLE_LEVEL)
1109                         rmap_remove(vcpu, spte);
1110                 else {
1111                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1112                         mmu_page_remove_parent_pte(vcpu, child, spte);
1113                 }
1114         }
1115         *spte = 0;
1116 }
1117
1118 void kvm_mmu_pre_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
1119 {
1120         gfn_t gfn = gpa >> PAGE_SHIFT;
1121         struct kvm_mmu_page *page;
1122         struct hlist_node *node, *n;
1123         struct hlist_head *bucket;
1124         unsigned index;
1125         u64 *spte;
1126         unsigned offset = offset_in_page(gpa);
1127         unsigned pte_size;
1128         unsigned page_offset;
1129         unsigned misaligned;
1130         int level;
1131         int flooded = 0;
1132         int npte;
1133
1134         pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1135         if (gfn == vcpu->last_pt_write_gfn) {
1136                 ++vcpu->last_pt_write_count;
1137                 if (vcpu->last_pt_write_count >= 3)
1138                         flooded = 1;
1139         } else {
1140                 vcpu->last_pt_write_gfn = gfn;
1141                 vcpu->last_pt_write_count = 1;
1142         }
1143         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1144         bucket = &vcpu->kvm->mmu_page_hash[index];
1145         hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
1146                 if (page->gfn != gfn || page->role.metaphysical)
1147                         continue;
1148                 pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1149                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1150                 if (misaligned || flooded) {
1151                         /*
1152                          * Misaligned accesses are too much trouble to fix
1153                          * up; also, they usually indicate a page is not used
1154                          * as a page table.
1155                          *
1156                          * If we're seeing too many writes to a page,
1157                          * it may no longer be a page table, or we may be
1158                          * forking, in which case it is better to unmap the
1159                          * page.
1160                          */
1161                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1162                                  gpa, bytes, page->role.word);
1163                         kvm_mmu_zap_page(vcpu, page);
1164                         continue;
1165                 }
1166                 page_offset = offset;
1167                 level = page->role.level;
1168                 npte = 1;
1169                 if (page->role.glevels == PT32_ROOT_LEVEL) {
1170                         page_offset <<= 1;      /* 32->64 */
1171                         /*
1172                          * A 32-bit pde maps 4MB while the shadow pdes map
1173                          * only 2MB.  So we need to double the offset again
1174                          * and zap two pdes instead of one.
1175                          */
1176                         if (level == PT32_ROOT_LEVEL) {
1177                                 page_offset &= ~7; /* kill rounding error */
1178                                 page_offset <<= 1;
1179                                 npte = 2;
1180                         }
1181                         page_offset &= ~PAGE_MASK;
1182                 }
1183                 spte = __va(page->page_hpa);
1184                 spte += page_offset / sizeof(*spte);
1185                 while (npte--) {
1186                         mmu_pre_write_zap_pte(vcpu, page, spte);
1187                         ++spte;
1188                 }
1189         }
1190 }
1191
1192 void kvm_mmu_post_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
1193 {
1194 }
1195
1196 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1197 {
1198         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1199
1200         return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1201 }
1202
1203 void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1204 {
1205         while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1206                 struct kvm_mmu_page *page;
1207
1208                 page = container_of(vcpu->kvm->active_mmu_pages.prev,
1209                                     struct kvm_mmu_page, link);
1210                 kvm_mmu_zap_page(vcpu, page);
1211         }
1212 }
1213 EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
1214
1215 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1216 {
1217         struct kvm_mmu_page *page;
1218
1219         while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1220                 page = container_of(vcpu->kvm->active_mmu_pages.next,
1221                                     struct kvm_mmu_page, link);
1222                 kvm_mmu_zap_page(vcpu, page);
1223         }
1224         while (!list_empty(&vcpu->free_pages)) {
1225                 page = list_entry(vcpu->free_pages.next,
1226                                   struct kvm_mmu_page, link);
1227                 list_del(&page->link);
1228                 __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
1229                 page->page_hpa = INVALID_PAGE;
1230         }
1231         free_page((unsigned long)vcpu->mmu.pae_root);
1232 }
1233
1234 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1235 {
1236         struct page *page;
1237         int i;
1238
1239         ASSERT(vcpu);
1240
1241         for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
1242                 struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
1243
1244                 INIT_LIST_HEAD(&page_header->link);
1245                 if ((page = alloc_page(GFP_KERNEL)) == NULL)
1246                         goto error_1;
1247                 set_page_private(page, (unsigned long)page_header);
1248                 page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
1249                 memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
1250                 list_add(&page_header->link, &vcpu->free_pages);
1251                 ++vcpu->kvm->n_free_mmu_pages;
1252         }
1253
1254         /*
1255          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1256          * Therefore we need to allocate shadow page tables in the first
1257          * 4GB of memory, which happens to fit the DMA32 zone.
1258          */
1259         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1260         if (!page)
1261                 goto error_1;
1262         vcpu->mmu.pae_root = page_address(page);
1263         for (i = 0; i < 4; ++i)
1264                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1265
1266         return 0;
1267
1268 error_1:
1269         free_mmu_pages(vcpu);
1270         return -ENOMEM;
1271 }
1272
1273 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1274 {
1275         ASSERT(vcpu);
1276         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1277         ASSERT(list_empty(&vcpu->free_pages));
1278
1279         return alloc_mmu_pages(vcpu);
1280 }
1281
1282 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1283 {
1284         ASSERT(vcpu);
1285         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1286         ASSERT(!list_empty(&vcpu->free_pages));
1287
1288         return init_kvm_mmu(vcpu);
1289 }
1290
1291 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1292 {
1293         ASSERT(vcpu);
1294
1295         destroy_kvm_mmu(vcpu);
1296         free_mmu_pages(vcpu);
1297         mmu_free_memory_caches(vcpu);
1298 }
1299
1300 void kvm_mmu_slot_remove_write_access(struct kvm_vcpu *vcpu, int slot)
1301 {
1302         struct kvm *kvm = vcpu->kvm;
1303         struct kvm_mmu_page *page;
1304
1305         list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1306                 int i;
1307                 u64 *pt;
1308
1309                 if (!test_bit(slot, &page->slot_bitmap))
1310                         continue;
1311
1312                 pt = __va(page->page_hpa);
1313                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1314                         /* avoid RMW */
1315                         if (pt[i] & PT_WRITABLE_MASK) {
1316                                 rmap_remove(vcpu, &pt[i]);
1317                                 pt[i] &= ~PT_WRITABLE_MASK;
1318                         }
1319         }
1320 }
1321
1322 void kvm_mmu_zap_all(struct kvm_vcpu *vcpu)
1323 {
1324         destroy_kvm_mmu(vcpu);
1325
1326         while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1327                 struct kvm_mmu_page *page;
1328
1329                 page = container_of(vcpu->kvm->active_mmu_pages.next,
1330                                     struct kvm_mmu_page, link);
1331                 kvm_mmu_zap_page(vcpu, page);
1332         }
1333
1334         mmu_free_memory_caches(vcpu);
1335         kvm_arch_ops->tlb_flush(vcpu);
1336         init_kvm_mmu(vcpu);
1337 }
1338
1339 void kvm_mmu_module_exit(void)
1340 {
1341         if (pte_chain_cache)
1342                 kmem_cache_destroy(pte_chain_cache);
1343         if (rmap_desc_cache)
1344                 kmem_cache_destroy(rmap_desc_cache);
1345 }
1346
1347 int kvm_mmu_module_init(void)
1348 {
1349         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1350                                             sizeof(struct kvm_pte_chain),
1351                                             0, 0, NULL, NULL);
1352         if (!pte_chain_cache)
1353                 goto nomem;
1354         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1355                                             sizeof(struct kvm_rmap_desc),
1356                                             0, 0, NULL, NULL);
1357         if (!rmap_desc_cache)
1358                 goto nomem;
1359
1360         return 0;
1361
1362 nomem:
1363         kvm_mmu_module_exit();
1364         return -ENOMEM;
1365 }
1366
1367 #ifdef AUDIT
1368
1369 static const char *audit_msg;
1370
1371 static gva_t canonicalize(gva_t gva)
1372 {
1373 #ifdef CONFIG_X86_64
1374         gva = (long long)(gva << 16) >> 16;
1375 #endif
1376         return gva;
1377 }
1378
1379 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1380                                 gva_t va, int level)
1381 {
1382         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1383         int i;
1384         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1385
1386         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1387                 u64 ent = pt[i];
1388
1389                 if (!ent & PT_PRESENT_MASK)
1390                         continue;
1391
1392                 va = canonicalize(va);
1393                 if (level > 1)
1394                         audit_mappings_page(vcpu, ent, va, level - 1);
1395                 else {
1396                         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
1397                         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
1398
1399                         if ((ent & PT_PRESENT_MASK)
1400                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
1401                                 printk(KERN_ERR "audit error: (%s) levels %d"
1402                                        " gva %lx gpa %llx hpa %llx ent %llx\n",
1403                                        audit_msg, vcpu->mmu.root_level,
1404                                        va, gpa, hpa, ent);
1405                 }
1406         }
1407 }
1408
1409 static void audit_mappings(struct kvm_vcpu *vcpu)
1410 {
1411         unsigned i;
1412
1413         if (vcpu->mmu.root_level == 4)
1414                 audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
1415         else
1416                 for (i = 0; i < 4; ++i)
1417                         if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
1418                                 audit_mappings_page(vcpu,
1419                                                     vcpu->mmu.pae_root[i],
1420                                                     i << 30,
1421                                                     2);
1422 }
1423
1424 static int count_rmaps(struct kvm_vcpu *vcpu)
1425 {
1426         int nmaps = 0;
1427         int i, j, k;
1428
1429         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1430                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1431                 struct kvm_rmap_desc *d;
1432
1433                 for (j = 0; j < m->npages; ++j) {
1434                         struct page *page = m->phys_mem[j];
1435
1436                         if (!page->private)
1437                                 continue;
1438                         if (!(page->private & 1)) {
1439                                 ++nmaps;
1440                                 continue;
1441                         }
1442                         d = (struct kvm_rmap_desc *)(page->private & ~1ul);
1443                         while (d) {
1444                                 for (k = 0; k < RMAP_EXT; ++k)
1445                                         if (d->shadow_ptes[k])
1446                                                 ++nmaps;
1447                                         else
1448                                                 break;
1449                                 d = d->more;
1450                         }
1451                 }
1452         }
1453         return nmaps;
1454 }
1455
1456 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1457 {
1458         int nmaps = 0;
1459         struct kvm_mmu_page *page;
1460         int i;
1461
1462         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1463                 u64 *pt = __va(page->page_hpa);
1464
1465                 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1466                         continue;
1467
1468                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1469                         u64 ent = pt[i];
1470
1471                         if (!(ent & PT_PRESENT_MASK))
1472                                 continue;
1473                         if (!(ent & PT_WRITABLE_MASK))
1474                                 continue;
1475                         ++nmaps;
1476                 }
1477         }
1478         return nmaps;
1479 }
1480
1481 static void audit_rmap(struct kvm_vcpu *vcpu)
1482 {
1483         int n_rmap = count_rmaps(vcpu);
1484         int n_actual = count_writable_mappings(vcpu);
1485
1486         if (n_rmap != n_actual)
1487                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1488                        __FUNCTION__, audit_msg, n_rmap, n_actual);
1489 }
1490
1491 static void audit_write_protection(struct kvm_vcpu *vcpu)
1492 {
1493         struct kvm_mmu_page *page;
1494
1495         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1496                 hfn_t hfn;
1497                 struct page *pg;
1498
1499                 if (page->role.metaphysical)
1500                         continue;
1501
1502                 hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
1503                         >> PAGE_SHIFT;
1504                 pg = pfn_to_page(hfn);
1505                 if (pg->private)
1506                         printk(KERN_ERR "%s: (%s) shadow page has writable"
1507                                " mappings: gfn %lx role %x\n",
1508                                __FUNCTION__, audit_msg, page->gfn,
1509                                page->role.word);
1510         }
1511 }
1512
1513 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1514 {
1515         int olddbg = dbg;
1516
1517         dbg = 0;
1518         audit_msg = msg;
1519         audit_rmap(vcpu);
1520         audit_write_protection(vcpu);
1521         audit_mappings(vcpu);
1522         dbg = olddbg;
1523 }
1524
1525 #endif