KVM: Allow dynamic allocation of the mmu shadow cache size
[safe/jmp/linux-2.6] / drivers / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 #include "vmx.h"
21 #include "kvm.h"
22
23 #include <linux/types.h>
24 #include <linux/string.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/module.h>
28
29 #include <asm/page.h>
30 #include <asm/cmpxchg.h>
31
32 #undef MMU_DEBUG
33
34 #undef AUDIT
35
36 #ifdef AUDIT
37 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
38 #else
39 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
40 #endif
41
42 #ifdef MMU_DEBUG
43
44 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
45 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
46
47 #else
48
49 #define pgprintk(x...) do { } while (0)
50 #define rmap_printk(x...) do { } while (0)
51
52 #endif
53
54 #if defined(MMU_DEBUG) || defined(AUDIT)
55 static int dbg = 1;
56 #endif
57
58 #ifndef MMU_DEBUG
59 #define ASSERT(x) do { } while (0)
60 #else
61 #define ASSERT(x)                                                       \
62         if (!(x)) {                                                     \
63                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
64                        __FILE__, __LINE__, #x);                         \
65         }
66 #endif
67
68 #define PT64_PT_BITS 9
69 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
70 #define PT32_PT_BITS 10
71 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
72
73 #define PT_WRITABLE_SHIFT 1
74
75 #define PT_PRESENT_MASK (1ULL << 0)
76 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
77 #define PT_USER_MASK (1ULL << 2)
78 #define PT_PWT_MASK (1ULL << 3)
79 #define PT_PCD_MASK (1ULL << 4)
80 #define PT_ACCESSED_MASK (1ULL << 5)
81 #define PT_DIRTY_MASK (1ULL << 6)
82 #define PT_PAGE_SIZE_MASK (1ULL << 7)
83 #define PT_PAT_MASK (1ULL << 7)
84 #define PT_GLOBAL_MASK (1ULL << 8)
85 #define PT64_NX_MASK (1ULL << 63)
86
87 #define PT_PAT_SHIFT 7
88 #define PT_DIR_PAT_SHIFT 12
89 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
90
91 #define PT32_DIR_PSE36_SIZE 4
92 #define PT32_DIR_PSE36_SHIFT 13
93 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
94
95
96 #define PT_FIRST_AVAIL_BITS_SHIFT 9
97 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
98
99 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
100
101 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
102
103 #define PT64_LEVEL_BITS 9
104
105 #define PT64_LEVEL_SHIFT(level) \
106                 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
107
108 #define PT64_LEVEL_MASK(level) \
109                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
110
111 #define PT64_INDEX(address, level)\
112         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
113
114
115 #define PT32_LEVEL_BITS 10
116
117 #define PT32_LEVEL_SHIFT(level) \
118                 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
119
120 #define PT32_LEVEL_MASK(level) \
121                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
122
123 #define PT32_INDEX(address, level)\
124         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
125
126
127 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
128 #define PT64_DIR_BASE_ADDR_MASK \
129         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
130
131 #define PT32_BASE_ADDR_MASK PAGE_MASK
132 #define PT32_DIR_BASE_ADDR_MASK \
133         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
134
135
136 #define PFERR_PRESENT_MASK (1U << 0)
137 #define PFERR_WRITE_MASK (1U << 1)
138 #define PFERR_USER_MASK (1U << 2)
139 #define PFERR_FETCH_MASK (1U << 4)
140
141 #define PT64_ROOT_LEVEL 4
142 #define PT32_ROOT_LEVEL 2
143 #define PT32E_ROOT_LEVEL 3
144
145 #define PT_DIRECTORY_LEVEL 2
146 #define PT_PAGE_TABLE_LEVEL 1
147
148 #define RMAP_EXT 4
149
150 struct kvm_rmap_desc {
151         u64 *shadow_ptes[RMAP_EXT];
152         struct kvm_rmap_desc *more;
153 };
154
155 static struct kmem_cache *pte_chain_cache;
156 static struct kmem_cache *rmap_desc_cache;
157 static struct kmem_cache *mmu_page_header_cache;
158
159 static u64 __read_mostly shadow_trap_nonpresent_pte;
160 static u64 __read_mostly shadow_notrap_nonpresent_pte;
161
162 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
163 {
164         shadow_trap_nonpresent_pte = trap_pte;
165         shadow_notrap_nonpresent_pte = notrap_pte;
166 }
167 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
168
169 static int is_write_protection(struct kvm_vcpu *vcpu)
170 {
171         return vcpu->cr0 & X86_CR0_WP;
172 }
173
174 static int is_cpuid_PSE36(void)
175 {
176         return 1;
177 }
178
179 static int is_nx(struct kvm_vcpu *vcpu)
180 {
181         return vcpu->shadow_efer & EFER_NX;
182 }
183
184 static int is_present_pte(unsigned long pte)
185 {
186         return pte & PT_PRESENT_MASK;
187 }
188
189 static int is_shadow_present_pte(u64 pte)
190 {
191         pte &= ~PT_SHADOW_IO_MARK;
192         return pte != shadow_trap_nonpresent_pte
193                 && pte != shadow_notrap_nonpresent_pte;
194 }
195
196 static int is_writeble_pte(unsigned long pte)
197 {
198         return pte & PT_WRITABLE_MASK;
199 }
200
201 static int is_io_pte(unsigned long pte)
202 {
203         return pte & PT_SHADOW_IO_MARK;
204 }
205
206 static int is_rmap_pte(u64 pte)
207 {
208         return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
209                 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
210 }
211
212 static void set_shadow_pte(u64 *sptep, u64 spte)
213 {
214 #ifdef CONFIG_X86_64
215         set_64bit((unsigned long *)sptep, spte);
216 #else
217         set_64bit((unsigned long long *)sptep, spte);
218 #endif
219 }
220
221 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
222                                   struct kmem_cache *base_cache, int min)
223 {
224         void *obj;
225
226         if (cache->nobjs >= min)
227                 return 0;
228         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
229                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
230                 if (!obj)
231                         return -ENOMEM;
232                 cache->objects[cache->nobjs++] = obj;
233         }
234         return 0;
235 }
236
237 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
238 {
239         while (mc->nobjs)
240                 kfree(mc->objects[--mc->nobjs]);
241 }
242
243 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
244                                        int min)
245 {
246         struct page *page;
247
248         if (cache->nobjs >= min)
249                 return 0;
250         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
251                 page = alloc_page(GFP_KERNEL);
252                 if (!page)
253                         return -ENOMEM;
254                 set_page_private(page, 0);
255                 cache->objects[cache->nobjs++] = page_address(page);
256         }
257         return 0;
258 }
259
260 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
261 {
262         while (mc->nobjs)
263                 free_page((unsigned long)mc->objects[--mc->nobjs]);
264 }
265
266 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
267 {
268         int r;
269
270         kvm_mmu_free_some_pages(vcpu);
271         r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
272                                    pte_chain_cache, 4);
273         if (r)
274                 goto out;
275         r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
276                                    rmap_desc_cache, 1);
277         if (r)
278                 goto out;
279         r = mmu_topup_memory_cache_page(&vcpu->mmu_page_cache, 8);
280         if (r)
281                 goto out;
282         r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache,
283                                    mmu_page_header_cache, 4);
284 out:
285         return r;
286 }
287
288 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
289 {
290         mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
291         mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
292         mmu_free_memory_cache_page(&vcpu->mmu_page_cache);
293         mmu_free_memory_cache(&vcpu->mmu_page_header_cache);
294 }
295
296 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
297                                     size_t size)
298 {
299         void *p;
300
301         BUG_ON(!mc->nobjs);
302         p = mc->objects[--mc->nobjs];
303         memset(p, 0, size);
304         return p;
305 }
306
307 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
308 {
309         return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
310                                       sizeof(struct kvm_pte_chain));
311 }
312
313 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
314 {
315         kfree(pc);
316 }
317
318 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
319 {
320         return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
321                                       sizeof(struct kvm_rmap_desc));
322 }
323
324 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
325 {
326         kfree(rd);
327 }
328
329 /*
330  * Take gfn and return the reverse mapping to it.
331  * Note: gfn must be unaliased before this function get called
332  */
333
334 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn)
335 {
336         struct kvm_memory_slot *slot;
337
338         slot = gfn_to_memslot(kvm, gfn);
339         return &slot->rmap[gfn - slot->base_gfn];
340 }
341
342 /*
343  * Reverse mapping data structures:
344  *
345  * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
346  * that points to page_address(page).
347  *
348  * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
349  * containing more mappings.
350  */
351 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
352 {
353         struct kvm_mmu_page *page;
354         struct kvm_rmap_desc *desc;
355         unsigned long *rmapp;
356         int i;
357
358         if (!is_rmap_pte(*spte))
359                 return;
360         gfn = unalias_gfn(vcpu->kvm, gfn);
361         page = page_header(__pa(spte));
362         page->gfns[spte - page->spt] = gfn;
363         rmapp = gfn_to_rmap(vcpu->kvm, gfn);
364         if (!*rmapp) {
365                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
366                 *rmapp = (unsigned long)spte;
367         } else if (!(*rmapp & 1)) {
368                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
369                 desc = mmu_alloc_rmap_desc(vcpu);
370                 desc->shadow_ptes[0] = (u64 *)*rmapp;
371                 desc->shadow_ptes[1] = spte;
372                 *rmapp = (unsigned long)desc | 1;
373         } else {
374                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
375                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
376                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
377                         desc = desc->more;
378                 if (desc->shadow_ptes[RMAP_EXT-1]) {
379                         desc->more = mmu_alloc_rmap_desc(vcpu);
380                         desc = desc->more;
381                 }
382                 for (i = 0; desc->shadow_ptes[i]; ++i)
383                         ;
384                 desc->shadow_ptes[i] = spte;
385         }
386 }
387
388 static void rmap_desc_remove_entry(unsigned long *rmapp,
389                                    struct kvm_rmap_desc *desc,
390                                    int i,
391                                    struct kvm_rmap_desc *prev_desc)
392 {
393         int j;
394
395         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
396                 ;
397         desc->shadow_ptes[i] = desc->shadow_ptes[j];
398         desc->shadow_ptes[j] = NULL;
399         if (j != 0)
400                 return;
401         if (!prev_desc && !desc->more)
402                 *rmapp = (unsigned long)desc->shadow_ptes[0];
403         else
404                 if (prev_desc)
405                         prev_desc->more = desc->more;
406                 else
407                         *rmapp = (unsigned long)desc->more | 1;
408         mmu_free_rmap_desc(desc);
409 }
410
411 static void rmap_remove(struct kvm *kvm, u64 *spte)
412 {
413         struct kvm_rmap_desc *desc;
414         struct kvm_rmap_desc *prev_desc;
415         struct kvm_mmu_page *page;
416         unsigned long *rmapp;
417         int i;
418
419         if (!is_rmap_pte(*spte))
420                 return;
421         page = page_header(__pa(spte));
422         rmapp = gfn_to_rmap(kvm, page->gfns[spte - page->spt]);
423         if (!*rmapp) {
424                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
425                 BUG();
426         } else if (!(*rmapp & 1)) {
427                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
428                 if ((u64 *)*rmapp != spte) {
429                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
430                                spte, *spte);
431                         BUG();
432                 }
433                 *rmapp = 0;
434         } else {
435                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
436                 desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
437                 prev_desc = NULL;
438                 while (desc) {
439                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
440                                 if (desc->shadow_ptes[i] == spte) {
441                                         rmap_desc_remove_entry(rmapp,
442                                                                desc, i,
443                                                                prev_desc);
444                                         return;
445                                 }
446                         prev_desc = desc;
447                         desc = desc->more;
448                 }
449                 BUG();
450         }
451 }
452
453 static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
454 {
455         struct kvm_rmap_desc *desc;
456         unsigned long *rmapp;
457         u64 *spte;
458
459         gfn = unalias_gfn(vcpu->kvm, gfn);
460         rmapp = gfn_to_rmap(vcpu->kvm, gfn);
461
462         while (*rmapp) {
463                 if (!(*rmapp & 1))
464                         spte = (u64 *)*rmapp;
465                 else {
466                         desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
467                         spte = desc->shadow_ptes[0];
468                 }
469                 BUG_ON(!spte);
470                 BUG_ON(!(*spte & PT_PRESENT_MASK));
471                 BUG_ON(!(*spte & PT_WRITABLE_MASK));
472                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
473                 rmap_remove(vcpu->kvm, spte);
474                 set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
475                 kvm_flush_remote_tlbs(vcpu->kvm);
476         }
477 }
478
479 #ifdef MMU_DEBUG
480 static int is_empty_shadow_page(u64 *spt)
481 {
482         u64 *pos;
483         u64 *end;
484
485         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
486                 if ((*pos & ~PT_SHADOW_IO_MARK) != shadow_trap_nonpresent_pte) {
487                         printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
488                                pos, *pos);
489                         return 0;
490                 }
491         return 1;
492 }
493 #endif
494
495 static void kvm_mmu_free_page(struct kvm *kvm,
496                               struct kvm_mmu_page *page_head)
497 {
498         ASSERT(is_empty_shadow_page(page_head->spt));
499         list_del(&page_head->link);
500         __free_page(virt_to_page(page_head->spt));
501         __free_page(virt_to_page(page_head->gfns));
502         kfree(page_head);
503         ++kvm->n_free_mmu_pages;
504 }
505
506 static unsigned kvm_page_table_hashfn(gfn_t gfn)
507 {
508         return gfn;
509 }
510
511 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
512                                                u64 *parent_pte)
513 {
514         struct kvm_mmu_page *page;
515
516         if (!vcpu->kvm->n_free_mmu_pages)
517                 return NULL;
518
519         page = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache,
520                                       sizeof *page);
521         page->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
522         page->gfns = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
523         set_page_private(virt_to_page(page->spt), (unsigned long)page);
524         list_add(&page->link, &vcpu->kvm->active_mmu_pages);
525         ASSERT(is_empty_shadow_page(page->spt));
526         page->slot_bitmap = 0;
527         page->multimapped = 0;
528         page->parent_pte = parent_pte;
529         --vcpu->kvm->n_free_mmu_pages;
530         return page;
531 }
532
533 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
534                                     struct kvm_mmu_page *page, u64 *parent_pte)
535 {
536         struct kvm_pte_chain *pte_chain;
537         struct hlist_node *node;
538         int i;
539
540         if (!parent_pte)
541                 return;
542         if (!page->multimapped) {
543                 u64 *old = page->parent_pte;
544
545                 if (!old) {
546                         page->parent_pte = parent_pte;
547                         return;
548                 }
549                 page->multimapped = 1;
550                 pte_chain = mmu_alloc_pte_chain(vcpu);
551                 INIT_HLIST_HEAD(&page->parent_ptes);
552                 hlist_add_head(&pte_chain->link, &page->parent_ptes);
553                 pte_chain->parent_ptes[0] = old;
554         }
555         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
556                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
557                         continue;
558                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
559                         if (!pte_chain->parent_ptes[i]) {
560                                 pte_chain->parent_ptes[i] = parent_pte;
561                                 return;
562                         }
563         }
564         pte_chain = mmu_alloc_pte_chain(vcpu);
565         BUG_ON(!pte_chain);
566         hlist_add_head(&pte_chain->link, &page->parent_ptes);
567         pte_chain->parent_ptes[0] = parent_pte;
568 }
569
570 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
571                                        u64 *parent_pte)
572 {
573         struct kvm_pte_chain *pte_chain;
574         struct hlist_node *node;
575         int i;
576
577         if (!page->multimapped) {
578                 BUG_ON(page->parent_pte != parent_pte);
579                 page->parent_pte = NULL;
580                 return;
581         }
582         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
583                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
584                         if (!pte_chain->parent_ptes[i])
585                                 break;
586                         if (pte_chain->parent_ptes[i] != parent_pte)
587                                 continue;
588                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
589                                 && pte_chain->parent_ptes[i + 1]) {
590                                 pte_chain->parent_ptes[i]
591                                         = pte_chain->parent_ptes[i + 1];
592                                 ++i;
593                         }
594                         pte_chain->parent_ptes[i] = NULL;
595                         if (i == 0) {
596                                 hlist_del(&pte_chain->link);
597                                 mmu_free_pte_chain(pte_chain);
598                                 if (hlist_empty(&page->parent_ptes)) {
599                                         page->multimapped = 0;
600                                         page->parent_pte = NULL;
601                                 }
602                         }
603                         return;
604                 }
605         BUG();
606 }
607
608 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
609                                                 gfn_t gfn)
610 {
611         unsigned index;
612         struct hlist_head *bucket;
613         struct kvm_mmu_page *page;
614         struct hlist_node *node;
615
616         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
617         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
618         bucket = &vcpu->kvm->mmu_page_hash[index];
619         hlist_for_each_entry(page, node, bucket, hash_link)
620                 if (page->gfn == gfn && !page->role.metaphysical) {
621                         pgprintk("%s: found role %x\n",
622                                  __FUNCTION__, page->role.word);
623                         return page;
624                 }
625         return NULL;
626 }
627
628 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
629                                              gfn_t gfn,
630                                              gva_t gaddr,
631                                              unsigned level,
632                                              int metaphysical,
633                                              unsigned hugepage_access,
634                                              u64 *parent_pte)
635 {
636         union kvm_mmu_page_role role;
637         unsigned index;
638         unsigned quadrant;
639         struct hlist_head *bucket;
640         struct kvm_mmu_page *page;
641         struct hlist_node *node;
642
643         role.word = 0;
644         role.glevels = vcpu->mmu.root_level;
645         role.level = level;
646         role.metaphysical = metaphysical;
647         role.hugepage_access = hugepage_access;
648         if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
649                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
650                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
651                 role.quadrant = quadrant;
652         }
653         pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
654                  gfn, role.word);
655         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
656         bucket = &vcpu->kvm->mmu_page_hash[index];
657         hlist_for_each_entry(page, node, bucket, hash_link)
658                 if (page->gfn == gfn && page->role.word == role.word) {
659                         mmu_page_add_parent_pte(vcpu, page, parent_pte);
660                         pgprintk("%s: found\n", __FUNCTION__);
661                         return page;
662                 }
663         page = kvm_mmu_alloc_page(vcpu, parent_pte);
664         if (!page)
665                 return page;
666         pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
667         page->gfn = gfn;
668         page->role = role;
669         hlist_add_head(&page->hash_link, bucket);
670         vcpu->mmu.prefetch_page(vcpu, page);
671         if (!metaphysical)
672                 rmap_write_protect(vcpu, gfn);
673         return page;
674 }
675
676 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
677                                          struct kvm_mmu_page *page)
678 {
679         unsigned i;
680         u64 *pt;
681         u64 ent;
682
683         pt = page->spt;
684
685         if (page->role.level == PT_PAGE_TABLE_LEVEL) {
686                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
687                         if (is_shadow_present_pte(pt[i]))
688                                 rmap_remove(kvm, &pt[i]);
689                         pt[i] = shadow_trap_nonpresent_pte;
690                 }
691                 kvm_flush_remote_tlbs(kvm);
692                 return;
693         }
694
695         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
696                 ent = pt[i];
697
698                 pt[i] = shadow_trap_nonpresent_pte;
699                 if (!is_shadow_present_pte(ent))
700                         continue;
701                 ent &= PT64_BASE_ADDR_MASK;
702                 mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
703         }
704         kvm_flush_remote_tlbs(kvm);
705 }
706
707 static void kvm_mmu_put_page(struct kvm_mmu_page *page,
708                              u64 *parent_pte)
709 {
710         mmu_page_remove_parent_pte(page, parent_pte);
711 }
712
713 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
714 {
715         int i;
716
717         for (i = 0; i < KVM_MAX_VCPUS; ++i)
718                 if (kvm->vcpus[i])
719                         kvm->vcpus[i]->last_pte_updated = NULL;
720 }
721
722 static void kvm_mmu_zap_page(struct kvm *kvm,
723                              struct kvm_mmu_page *page)
724 {
725         u64 *parent_pte;
726
727         while (page->multimapped || page->parent_pte) {
728                 if (!page->multimapped)
729                         parent_pte = page->parent_pte;
730                 else {
731                         struct kvm_pte_chain *chain;
732
733                         chain = container_of(page->parent_ptes.first,
734                                              struct kvm_pte_chain, link);
735                         parent_pte = chain->parent_ptes[0];
736                 }
737                 BUG_ON(!parent_pte);
738                 kvm_mmu_put_page(page, parent_pte);
739                 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
740         }
741         kvm_mmu_page_unlink_children(kvm, page);
742         if (!page->root_count) {
743                 hlist_del(&page->hash_link);
744                 kvm_mmu_free_page(kvm, page);
745         } else
746                 list_move(&page->link, &kvm->active_mmu_pages);
747         kvm_mmu_reset_last_pte_updated(kvm);
748 }
749
750 /*
751  * Changing the number of mmu pages allocated to the vm
752  * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
753  */
754 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
755 {
756         /*
757          * If we set the number of mmu pages to be smaller be than the
758          * number of actived pages , we must to free some mmu pages before we
759          * change the value
760          */
761
762         if ((kvm->n_alloc_mmu_pages - kvm->n_free_mmu_pages) >
763             kvm_nr_mmu_pages) {
764                 int n_used_mmu_pages = kvm->n_alloc_mmu_pages
765                                        - kvm->n_free_mmu_pages;
766
767                 while (n_used_mmu_pages > kvm_nr_mmu_pages) {
768                         struct kvm_mmu_page *page;
769
770                         page = container_of(kvm->active_mmu_pages.prev,
771                                             struct kvm_mmu_page, link);
772                         kvm_mmu_zap_page(kvm, page);
773                         n_used_mmu_pages--;
774                 }
775                 kvm->n_free_mmu_pages = 0;
776         }
777         else
778                 kvm->n_free_mmu_pages += kvm_nr_mmu_pages
779                                          - kvm->n_alloc_mmu_pages;
780
781         kvm->n_alloc_mmu_pages = kvm_nr_mmu_pages;
782 }
783
784 static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
785 {
786         unsigned index;
787         struct hlist_head *bucket;
788         struct kvm_mmu_page *page;
789         struct hlist_node *node, *n;
790         int r;
791
792         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
793         r = 0;
794         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
795         bucket = &vcpu->kvm->mmu_page_hash[index];
796         hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
797                 if (page->gfn == gfn && !page->role.metaphysical) {
798                         pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
799                                  page->role.word);
800                         kvm_mmu_zap_page(vcpu->kvm, page);
801                         r = 1;
802                 }
803         return r;
804 }
805
806 static void mmu_unshadow(struct kvm_vcpu *vcpu, gfn_t gfn)
807 {
808         struct kvm_mmu_page *page;
809
810         while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) {
811                 pgprintk("%s: zap %lx %x\n",
812                          __FUNCTION__, gfn, page->role.word);
813                 kvm_mmu_zap_page(vcpu->kvm, page);
814         }
815 }
816
817 static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
818 {
819         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
820         struct kvm_mmu_page *page_head = page_header(__pa(pte));
821
822         __set_bit(slot, &page_head->slot_bitmap);
823 }
824
825 hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
826 {
827         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
828
829         return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
830 }
831
832 hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
833 {
834         struct page *page;
835
836         ASSERT((gpa & HPA_ERR_MASK) == 0);
837         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
838         if (!page)
839                 return gpa | HPA_ERR_MASK;
840         return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
841                 | (gpa & (PAGE_SIZE-1));
842 }
843
844 hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
845 {
846         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
847
848         if (gpa == UNMAPPED_GVA)
849                 return UNMAPPED_GVA;
850         return gpa_to_hpa(vcpu, gpa);
851 }
852
853 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
854 {
855         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
856
857         if (gpa == UNMAPPED_GVA)
858                 return NULL;
859         return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
860 }
861
862 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
863 {
864 }
865
866 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
867 {
868         int level = PT32E_ROOT_LEVEL;
869         hpa_t table_addr = vcpu->mmu.root_hpa;
870
871         for (; ; level--) {
872                 u32 index = PT64_INDEX(v, level);
873                 u64 *table;
874                 u64 pte;
875
876                 ASSERT(VALID_PAGE(table_addr));
877                 table = __va(table_addr);
878
879                 if (level == 1) {
880                         pte = table[index];
881                         if (is_shadow_present_pte(pte) && is_writeble_pte(pte))
882                                 return 0;
883                         mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
884                         page_header_update_slot(vcpu->kvm, table, v);
885                         table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
886                                                                 PT_USER_MASK;
887                         rmap_add(vcpu, &table[index], v >> PAGE_SHIFT);
888                         return 0;
889                 }
890
891                 if (table[index] == shadow_trap_nonpresent_pte) {
892                         struct kvm_mmu_page *new_table;
893                         gfn_t pseudo_gfn;
894
895                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
896                                 >> PAGE_SHIFT;
897                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
898                                                      v, level - 1,
899                                                      1, 0, &table[index]);
900                         if (!new_table) {
901                                 pgprintk("nonpaging_map: ENOMEM\n");
902                                 return -ENOMEM;
903                         }
904
905                         table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
906                                 | PT_WRITABLE_MASK | PT_USER_MASK;
907                 }
908                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
909         }
910 }
911
912 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
913                                     struct kvm_mmu_page *sp)
914 {
915         int i;
916
917         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
918                 sp->spt[i] = shadow_trap_nonpresent_pte;
919 }
920
921 static void mmu_free_roots(struct kvm_vcpu *vcpu)
922 {
923         int i;
924         struct kvm_mmu_page *page;
925
926         if (!VALID_PAGE(vcpu->mmu.root_hpa))
927                 return;
928 #ifdef CONFIG_X86_64
929         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
930                 hpa_t root = vcpu->mmu.root_hpa;
931
932                 page = page_header(root);
933                 --page->root_count;
934                 vcpu->mmu.root_hpa = INVALID_PAGE;
935                 return;
936         }
937 #endif
938         for (i = 0; i < 4; ++i) {
939                 hpa_t root = vcpu->mmu.pae_root[i];
940
941                 if (root) {
942                         root &= PT64_BASE_ADDR_MASK;
943                         page = page_header(root);
944                         --page->root_count;
945                 }
946                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
947         }
948         vcpu->mmu.root_hpa = INVALID_PAGE;
949 }
950
951 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
952 {
953         int i;
954         gfn_t root_gfn;
955         struct kvm_mmu_page *page;
956
957         root_gfn = vcpu->cr3 >> PAGE_SHIFT;
958
959 #ifdef CONFIG_X86_64
960         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
961                 hpa_t root = vcpu->mmu.root_hpa;
962
963                 ASSERT(!VALID_PAGE(root));
964                 page = kvm_mmu_get_page(vcpu, root_gfn, 0,
965                                         PT64_ROOT_LEVEL, 0, 0, NULL);
966                 root = __pa(page->spt);
967                 ++page->root_count;
968                 vcpu->mmu.root_hpa = root;
969                 return;
970         }
971 #endif
972         for (i = 0; i < 4; ++i) {
973                 hpa_t root = vcpu->mmu.pae_root[i];
974
975                 ASSERT(!VALID_PAGE(root));
976                 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
977                         if (!is_present_pte(vcpu->pdptrs[i])) {
978                                 vcpu->mmu.pae_root[i] = 0;
979                                 continue;
980                         }
981                         root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
982                 } else if (vcpu->mmu.root_level == 0)
983                         root_gfn = 0;
984                 page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
985                                         PT32_ROOT_LEVEL, !is_paging(vcpu),
986                                         0, NULL);
987                 root = __pa(page->spt);
988                 ++page->root_count;
989                 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
990         }
991         vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
992 }
993
994 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
995 {
996         return vaddr;
997 }
998
999 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
1000                                u32 error_code)
1001 {
1002         gpa_t addr = gva;
1003         hpa_t paddr;
1004         int r;
1005
1006         r = mmu_topup_memory_caches(vcpu);
1007         if (r)
1008                 return r;
1009
1010         ASSERT(vcpu);
1011         ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
1012
1013
1014         paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
1015
1016         if (is_error_hpa(paddr))
1017                 return 1;
1018
1019         return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
1020 }
1021
1022 static void nonpaging_free(struct kvm_vcpu *vcpu)
1023 {
1024         mmu_free_roots(vcpu);
1025 }
1026
1027 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
1028 {
1029         struct kvm_mmu *context = &vcpu->mmu;
1030
1031         context->new_cr3 = nonpaging_new_cr3;
1032         context->page_fault = nonpaging_page_fault;
1033         context->gva_to_gpa = nonpaging_gva_to_gpa;
1034         context->free = nonpaging_free;
1035         context->prefetch_page = nonpaging_prefetch_page;
1036         context->root_level = 0;
1037         context->shadow_root_level = PT32E_ROOT_LEVEL;
1038         context->root_hpa = INVALID_PAGE;
1039         return 0;
1040 }
1041
1042 static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
1043 {
1044         ++vcpu->stat.tlb_flush;
1045         kvm_x86_ops->tlb_flush(vcpu);
1046 }
1047
1048 static void paging_new_cr3(struct kvm_vcpu *vcpu)
1049 {
1050         pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
1051         mmu_free_roots(vcpu);
1052 }
1053
1054 static void inject_page_fault(struct kvm_vcpu *vcpu,
1055                               u64 addr,
1056                               u32 err_code)
1057 {
1058         kvm_x86_ops->inject_page_fault(vcpu, addr, err_code);
1059 }
1060
1061 static void paging_free(struct kvm_vcpu *vcpu)
1062 {
1063         nonpaging_free(vcpu);
1064 }
1065
1066 #define PTTYPE 64
1067 #include "paging_tmpl.h"
1068 #undef PTTYPE
1069
1070 #define PTTYPE 32
1071 #include "paging_tmpl.h"
1072 #undef PTTYPE
1073
1074 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1075 {
1076         struct kvm_mmu *context = &vcpu->mmu;
1077
1078         ASSERT(is_pae(vcpu));
1079         context->new_cr3 = paging_new_cr3;
1080         context->page_fault = paging64_page_fault;
1081         context->gva_to_gpa = paging64_gva_to_gpa;
1082         context->prefetch_page = paging64_prefetch_page;
1083         context->free = paging_free;
1084         context->root_level = level;
1085         context->shadow_root_level = level;
1086         context->root_hpa = INVALID_PAGE;
1087         return 0;
1088 }
1089
1090 static int paging64_init_context(struct kvm_vcpu *vcpu)
1091 {
1092         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1093 }
1094
1095 static int paging32_init_context(struct kvm_vcpu *vcpu)
1096 {
1097         struct kvm_mmu *context = &vcpu->mmu;
1098
1099         context->new_cr3 = paging_new_cr3;
1100         context->page_fault = paging32_page_fault;
1101         context->gva_to_gpa = paging32_gva_to_gpa;
1102         context->free = paging_free;
1103         context->prefetch_page = paging32_prefetch_page;
1104         context->root_level = PT32_ROOT_LEVEL;
1105         context->shadow_root_level = PT32E_ROOT_LEVEL;
1106         context->root_hpa = INVALID_PAGE;
1107         return 0;
1108 }
1109
1110 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1111 {
1112         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1113 }
1114
1115 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1116 {
1117         ASSERT(vcpu);
1118         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1119
1120         if (!is_paging(vcpu))
1121                 return nonpaging_init_context(vcpu);
1122         else if (is_long_mode(vcpu))
1123                 return paging64_init_context(vcpu);
1124         else if (is_pae(vcpu))
1125                 return paging32E_init_context(vcpu);
1126         else
1127                 return paging32_init_context(vcpu);
1128 }
1129
1130 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1131 {
1132         ASSERT(vcpu);
1133         if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1134                 vcpu->mmu.free(vcpu);
1135                 vcpu->mmu.root_hpa = INVALID_PAGE;
1136         }
1137 }
1138
1139 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1140 {
1141         destroy_kvm_mmu(vcpu);
1142         return init_kvm_mmu(vcpu);
1143 }
1144 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
1145
1146 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1147 {
1148         int r;
1149
1150         mutex_lock(&vcpu->kvm->lock);
1151         r = mmu_topup_memory_caches(vcpu);
1152         if (r)
1153                 goto out;
1154         mmu_alloc_roots(vcpu);
1155         kvm_x86_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
1156         kvm_mmu_flush_tlb(vcpu);
1157 out:
1158         mutex_unlock(&vcpu->kvm->lock);
1159         return r;
1160 }
1161 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1162
1163 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1164 {
1165         mmu_free_roots(vcpu);
1166 }
1167
1168 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1169                                   struct kvm_mmu_page *page,
1170                                   u64 *spte)
1171 {
1172         u64 pte;
1173         struct kvm_mmu_page *child;
1174
1175         pte = *spte;
1176         if (is_shadow_present_pte(pte)) {
1177                 if (page->role.level == PT_PAGE_TABLE_LEVEL)
1178                         rmap_remove(vcpu->kvm, spte);
1179                 else {
1180                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1181                         mmu_page_remove_parent_pte(child, spte);
1182                 }
1183         }
1184         set_shadow_pte(spte, shadow_trap_nonpresent_pte);
1185         kvm_flush_remote_tlbs(vcpu->kvm);
1186 }
1187
1188 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1189                                   struct kvm_mmu_page *page,
1190                                   u64 *spte,
1191                                   const void *new, int bytes,
1192                                   int offset_in_pte)
1193 {
1194         if (page->role.level != PT_PAGE_TABLE_LEVEL)
1195                 return;
1196
1197         if (page->role.glevels == PT32_ROOT_LEVEL)
1198                 paging32_update_pte(vcpu, page, spte, new, bytes,
1199                                     offset_in_pte);
1200         else
1201                 paging64_update_pte(vcpu, page, spte, new, bytes,
1202                                     offset_in_pte);
1203 }
1204
1205 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
1206 {
1207         u64 *spte = vcpu->last_pte_updated;
1208
1209         return !!(spte && (*spte & PT_ACCESSED_MASK));
1210 }
1211
1212 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1213                        const u8 *new, int bytes)
1214 {
1215         gfn_t gfn = gpa >> PAGE_SHIFT;
1216         struct kvm_mmu_page *page;
1217         struct hlist_node *node, *n;
1218         struct hlist_head *bucket;
1219         unsigned index;
1220         u64 *spte;
1221         unsigned offset = offset_in_page(gpa);
1222         unsigned pte_size;
1223         unsigned page_offset;
1224         unsigned misaligned;
1225         unsigned quadrant;
1226         int level;
1227         int flooded = 0;
1228         int npte;
1229
1230         pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1231         kvm_mmu_audit(vcpu, "pre pte write");
1232         if (gfn == vcpu->last_pt_write_gfn
1233             && !last_updated_pte_accessed(vcpu)) {
1234                 ++vcpu->last_pt_write_count;
1235                 if (vcpu->last_pt_write_count >= 3)
1236                         flooded = 1;
1237         } else {
1238                 vcpu->last_pt_write_gfn = gfn;
1239                 vcpu->last_pt_write_count = 1;
1240                 vcpu->last_pte_updated = NULL;
1241         }
1242         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1243         bucket = &vcpu->kvm->mmu_page_hash[index];
1244         hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
1245                 if (page->gfn != gfn || page->role.metaphysical)
1246                         continue;
1247                 pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1248                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1249                 misaligned |= bytes < 4;
1250                 if (misaligned || flooded) {
1251                         /*
1252                          * Misaligned accesses are too much trouble to fix
1253                          * up; also, they usually indicate a page is not used
1254                          * as a page table.
1255                          *
1256                          * If we're seeing too many writes to a page,
1257                          * it may no longer be a page table, or we may be
1258                          * forking, in which case it is better to unmap the
1259                          * page.
1260                          */
1261                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1262                                  gpa, bytes, page->role.word);
1263                         kvm_mmu_zap_page(vcpu->kvm, page);
1264                         continue;
1265                 }
1266                 page_offset = offset;
1267                 level = page->role.level;
1268                 npte = 1;
1269                 if (page->role.glevels == PT32_ROOT_LEVEL) {
1270                         page_offset <<= 1;      /* 32->64 */
1271                         /*
1272                          * A 32-bit pde maps 4MB while the shadow pdes map
1273                          * only 2MB.  So we need to double the offset again
1274                          * and zap two pdes instead of one.
1275                          */
1276                         if (level == PT32_ROOT_LEVEL) {
1277                                 page_offset &= ~7; /* kill rounding error */
1278                                 page_offset <<= 1;
1279                                 npte = 2;
1280                         }
1281                         quadrant = page_offset >> PAGE_SHIFT;
1282                         page_offset &= ~PAGE_MASK;
1283                         if (quadrant != page->role.quadrant)
1284                                 continue;
1285                 }
1286                 spte = &page->spt[page_offset / sizeof(*spte)];
1287                 while (npte--) {
1288                         mmu_pte_write_zap_pte(vcpu, page, spte);
1289                         mmu_pte_write_new_pte(vcpu, page, spte, new, bytes,
1290                                               page_offset & (pte_size - 1));
1291                         ++spte;
1292                 }
1293         }
1294         kvm_mmu_audit(vcpu, "post pte write");
1295 }
1296
1297 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1298 {
1299         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1300
1301         return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1302 }
1303
1304 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1305 {
1306         while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1307                 struct kvm_mmu_page *page;
1308
1309                 page = container_of(vcpu->kvm->active_mmu_pages.prev,
1310                                     struct kvm_mmu_page, link);
1311                 kvm_mmu_zap_page(vcpu->kvm, page);
1312         }
1313 }
1314
1315 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1316 {
1317         struct kvm_mmu_page *page;
1318
1319         while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1320                 page = container_of(vcpu->kvm->active_mmu_pages.next,
1321                                     struct kvm_mmu_page, link);
1322                 kvm_mmu_zap_page(vcpu->kvm, page);
1323         }
1324         free_page((unsigned long)vcpu->mmu.pae_root);
1325 }
1326
1327 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1328 {
1329         struct page *page;
1330         int i;
1331
1332         ASSERT(vcpu);
1333
1334         if (vcpu->kvm->n_requested_mmu_pages)
1335                 vcpu->kvm->n_free_mmu_pages = vcpu->kvm->n_requested_mmu_pages;
1336         else
1337                 vcpu->kvm->n_free_mmu_pages = vcpu->kvm->n_alloc_mmu_pages;
1338         /*
1339          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1340          * Therefore we need to allocate shadow page tables in the first
1341          * 4GB of memory, which happens to fit the DMA32 zone.
1342          */
1343         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1344         if (!page)
1345                 goto error_1;
1346         vcpu->mmu.pae_root = page_address(page);
1347         for (i = 0; i < 4; ++i)
1348                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1349
1350         return 0;
1351
1352 error_1:
1353         free_mmu_pages(vcpu);
1354         return -ENOMEM;
1355 }
1356
1357 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1358 {
1359         ASSERT(vcpu);
1360         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1361
1362         return alloc_mmu_pages(vcpu);
1363 }
1364
1365 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1366 {
1367         ASSERT(vcpu);
1368         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1369
1370         return init_kvm_mmu(vcpu);
1371 }
1372
1373 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1374 {
1375         ASSERT(vcpu);
1376
1377         destroy_kvm_mmu(vcpu);
1378         free_mmu_pages(vcpu);
1379         mmu_free_memory_caches(vcpu);
1380 }
1381
1382 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1383 {
1384         struct kvm_mmu_page *page;
1385
1386         list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1387                 int i;
1388                 u64 *pt;
1389
1390                 if (!test_bit(slot, &page->slot_bitmap))
1391                         continue;
1392
1393                 pt = page->spt;
1394                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1395                         /* avoid RMW */
1396                         if (pt[i] & PT_WRITABLE_MASK) {
1397                                 rmap_remove(kvm, &pt[i]);
1398                                 pt[i] &= ~PT_WRITABLE_MASK;
1399                         }
1400         }
1401 }
1402
1403 void kvm_mmu_zap_all(struct kvm *kvm)
1404 {
1405         struct kvm_mmu_page *page, *node;
1406
1407         list_for_each_entry_safe(page, node, &kvm->active_mmu_pages, link)
1408                 kvm_mmu_zap_page(kvm, page);
1409
1410         kvm_flush_remote_tlbs(kvm);
1411 }
1412
1413 void kvm_mmu_module_exit(void)
1414 {
1415         if (pte_chain_cache)
1416                 kmem_cache_destroy(pte_chain_cache);
1417         if (rmap_desc_cache)
1418                 kmem_cache_destroy(rmap_desc_cache);
1419         if (mmu_page_header_cache)
1420                 kmem_cache_destroy(mmu_page_header_cache);
1421 }
1422
1423 int kvm_mmu_module_init(void)
1424 {
1425         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1426                                             sizeof(struct kvm_pte_chain),
1427                                             0, 0, NULL);
1428         if (!pte_chain_cache)
1429                 goto nomem;
1430         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1431                                             sizeof(struct kvm_rmap_desc),
1432                                             0, 0, NULL);
1433         if (!rmap_desc_cache)
1434                 goto nomem;
1435
1436         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
1437                                                   sizeof(struct kvm_mmu_page),
1438                                                   0, 0, NULL);
1439         if (!mmu_page_header_cache)
1440                 goto nomem;
1441
1442         return 0;
1443
1444 nomem:
1445         kvm_mmu_module_exit();
1446         return -ENOMEM;
1447 }
1448
1449 #ifdef AUDIT
1450
1451 static const char *audit_msg;
1452
1453 static gva_t canonicalize(gva_t gva)
1454 {
1455 #ifdef CONFIG_X86_64
1456         gva = (long long)(gva << 16) >> 16;
1457 #endif
1458         return gva;
1459 }
1460
1461 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1462                                 gva_t va, int level)
1463 {
1464         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1465         int i;
1466         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1467
1468         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1469                 u64 ent = pt[i];
1470
1471                 if (ent == shadow_trap_nonpresent_pte)
1472                         continue;
1473
1474                 va = canonicalize(va);
1475                 if (level > 1) {
1476                         if (ent == shadow_notrap_nonpresent_pte)
1477                                 printk(KERN_ERR "audit: (%s) nontrapping pte"
1478                                        " in nonleaf level: levels %d gva %lx"
1479                                        " level %d pte %llx\n", audit_msg,
1480                                        vcpu->mmu.root_level, va, level, ent);
1481
1482                         audit_mappings_page(vcpu, ent, va, level - 1);
1483                 } else {
1484                         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
1485                         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
1486
1487                         if (is_shadow_present_pte(ent)
1488                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
1489                                 printk(KERN_ERR "xx audit error: (%s) levels %d"
1490                                        " gva %lx gpa %llx hpa %llx ent %llx %d\n",
1491                                        audit_msg, vcpu->mmu.root_level,
1492                                        va, gpa, hpa, ent, is_shadow_present_pte(ent));
1493                         else if (ent == shadow_notrap_nonpresent_pte
1494                                  && !is_error_hpa(hpa))
1495                                 printk(KERN_ERR "audit: (%s) notrap shadow,"
1496                                        " valid guest gva %lx\n", audit_msg, va);
1497
1498                 }
1499         }
1500 }
1501
1502 static void audit_mappings(struct kvm_vcpu *vcpu)
1503 {
1504         unsigned i;
1505
1506         if (vcpu->mmu.root_level == 4)
1507                 audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
1508         else
1509                 for (i = 0; i < 4; ++i)
1510                         if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
1511                                 audit_mappings_page(vcpu,
1512                                                     vcpu->mmu.pae_root[i],
1513                                                     i << 30,
1514                                                     2);
1515 }
1516
1517 static int count_rmaps(struct kvm_vcpu *vcpu)
1518 {
1519         int nmaps = 0;
1520         int i, j, k;
1521
1522         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1523                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1524                 struct kvm_rmap_desc *d;
1525
1526                 for (j = 0; j < m->npages; ++j) {
1527                         unsigned long *rmapp = &m->rmap[j];
1528
1529                         if (!*rmapp)
1530                                 continue;
1531                         if (!(*rmapp & 1)) {
1532                                 ++nmaps;
1533                                 continue;
1534                         }
1535                         d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
1536                         while (d) {
1537                                 for (k = 0; k < RMAP_EXT; ++k)
1538                                         if (d->shadow_ptes[k])
1539                                                 ++nmaps;
1540                                         else
1541                                                 break;
1542                                 d = d->more;
1543                         }
1544                 }
1545         }
1546         return nmaps;
1547 }
1548
1549 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1550 {
1551         int nmaps = 0;
1552         struct kvm_mmu_page *page;
1553         int i;
1554
1555         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1556                 u64 *pt = page->spt;
1557
1558                 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1559                         continue;
1560
1561                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1562                         u64 ent = pt[i];
1563
1564                         if (!(ent & PT_PRESENT_MASK))
1565                                 continue;
1566                         if (!(ent & PT_WRITABLE_MASK))
1567                                 continue;
1568                         ++nmaps;
1569                 }
1570         }
1571         return nmaps;
1572 }
1573
1574 static void audit_rmap(struct kvm_vcpu *vcpu)
1575 {
1576         int n_rmap = count_rmaps(vcpu);
1577         int n_actual = count_writable_mappings(vcpu);
1578
1579         if (n_rmap != n_actual)
1580                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1581                        __FUNCTION__, audit_msg, n_rmap, n_actual);
1582 }
1583
1584 static void audit_write_protection(struct kvm_vcpu *vcpu)
1585 {
1586         struct kvm_mmu_page *page;
1587         struct kvm_memory_slot *slot;
1588         unsigned long *rmapp;
1589         gfn_t gfn;
1590
1591         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1592                 if (page->role.metaphysical)
1593                         continue;
1594
1595                 slot = gfn_to_memslot(vcpu->kvm, page->gfn);
1596                 gfn = unalias_gfn(vcpu->kvm, page->gfn);
1597                 rmapp = &slot->rmap[gfn - slot->base_gfn];
1598                 if (*rmapp)
1599                         printk(KERN_ERR "%s: (%s) shadow page has writable"
1600                                " mappings: gfn %lx role %x\n",
1601                                __FUNCTION__, audit_msg, page->gfn,
1602                                page->role.word);
1603         }
1604 }
1605
1606 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1607 {
1608         int olddbg = dbg;
1609
1610         dbg = 0;
1611         audit_msg = msg;
1612         audit_rmap(vcpu);
1613         audit_write_protection(vcpu);
1614         audit_mappings(vcpu);
1615         dbg = olddbg;
1616 }
1617
1618 #endif