KVM: Portability: Move x86 emulation and mmio device hook to x86.c
[safe/jmp/linux-2.6] / drivers / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "x86.h"
20 #include "x86_emulate.h"
21 #include "irq.h"
22
23 #include <linux/kvm.h>
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/percpu.h>
27 #include <linux/gfp.h>
28 #include <linux/mm.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <linux/reboot.h>
32 #include <linux/debugfs.h>
33 #include <linux/highmem.h>
34 #include <linux/file.h>
35 #include <linux/sysdev.h>
36 #include <linux/cpu.h>
37 #include <linux/sched.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45
46 #include <asm/processor.h>
47 #include <asm/msr.h>
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 #include <asm/desc.h>
51
52 MODULE_AUTHOR("Qumranet");
53 MODULE_LICENSE("GPL");
54
55 static DEFINE_SPINLOCK(kvm_lock);
56 static LIST_HEAD(vm_list);
57
58 static cpumask_t cpus_hardware_enabled;
59
60 struct kvm_x86_ops *kvm_x86_ops;
61 struct kmem_cache *kvm_vcpu_cache;
62 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
63
64 static __read_mostly struct preempt_ops kvm_preempt_ops;
65
66 #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
67
68 static struct kvm_stats_debugfs_item {
69         const char *name;
70         int offset;
71         struct dentry *dentry;
72 } debugfs_entries[] = {
73         { "pf_fixed", STAT_OFFSET(pf_fixed) },
74         { "pf_guest", STAT_OFFSET(pf_guest) },
75         { "tlb_flush", STAT_OFFSET(tlb_flush) },
76         { "invlpg", STAT_OFFSET(invlpg) },
77         { "exits", STAT_OFFSET(exits) },
78         { "io_exits", STAT_OFFSET(io_exits) },
79         { "mmio_exits", STAT_OFFSET(mmio_exits) },
80         { "signal_exits", STAT_OFFSET(signal_exits) },
81         { "irq_window", STAT_OFFSET(irq_window_exits) },
82         { "halt_exits", STAT_OFFSET(halt_exits) },
83         { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
84         { "request_irq", STAT_OFFSET(request_irq_exits) },
85         { "irq_exits", STAT_OFFSET(irq_exits) },
86         { "light_exits", STAT_OFFSET(light_exits) },
87         { "efer_reload", STAT_OFFSET(efer_reload) },
88         { NULL }
89 };
90
91 static struct dentry *debugfs_dir;
92
93 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
94                            unsigned long arg);
95
96 static inline int valid_vcpu(int n)
97 {
98         return likely(n >= 0 && n < KVM_MAX_VCPUS);
99 }
100
101 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
102 {
103         if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
104                 return;
105
106         vcpu->guest_fpu_loaded = 1;
107         fx_save(&vcpu->host_fx_image);
108         fx_restore(&vcpu->guest_fx_image);
109 }
110 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
111
112 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
113 {
114         if (!vcpu->guest_fpu_loaded)
115                 return;
116
117         vcpu->guest_fpu_loaded = 0;
118         fx_save(&vcpu->guest_fx_image);
119         fx_restore(&vcpu->host_fx_image);
120 }
121 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
122
123 /*
124  * Switches to specified vcpu, until a matching vcpu_put()
125  */
126 void vcpu_load(struct kvm_vcpu *vcpu)
127 {
128         int cpu;
129
130         mutex_lock(&vcpu->mutex);
131         cpu = get_cpu();
132         preempt_notifier_register(&vcpu->preempt_notifier);
133         kvm_arch_vcpu_load(vcpu, cpu);
134         put_cpu();
135 }
136
137 void vcpu_put(struct kvm_vcpu *vcpu)
138 {
139         preempt_disable();
140         kvm_arch_vcpu_put(vcpu);
141         preempt_notifier_unregister(&vcpu->preempt_notifier);
142         preempt_enable();
143         mutex_unlock(&vcpu->mutex);
144 }
145
146 static void ack_flush(void *_completed)
147 {
148 }
149
150 void kvm_flush_remote_tlbs(struct kvm *kvm)
151 {
152         int i, cpu;
153         cpumask_t cpus;
154         struct kvm_vcpu *vcpu;
155
156         cpus_clear(cpus);
157         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
158                 vcpu = kvm->vcpus[i];
159                 if (!vcpu)
160                         continue;
161                 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
162                         continue;
163                 cpu = vcpu->cpu;
164                 if (cpu != -1 && cpu != raw_smp_processor_id())
165                         cpu_set(cpu, cpus);
166         }
167         smp_call_function_mask(cpus, ack_flush, NULL, 1);
168 }
169
170 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
171 {
172         struct page *page;
173         int r;
174
175         mutex_init(&vcpu->mutex);
176         vcpu->cpu = -1;
177         vcpu->mmu.root_hpa = INVALID_PAGE;
178         vcpu->kvm = kvm;
179         vcpu->vcpu_id = id;
180         if (!irqchip_in_kernel(kvm) || id == 0)
181                 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
182         else
183                 vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
184         init_waitqueue_head(&vcpu->wq);
185
186         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
187         if (!page) {
188                 r = -ENOMEM;
189                 goto fail;
190         }
191         vcpu->run = page_address(page);
192
193         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
194         if (!page) {
195                 r = -ENOMEM;
196                 goto fail_free_run;
197         }
198         vcpu->pio_data = page_address(page);
199
200         r = kvm_mmu_create(vcpu);
201         if (r < 0)
202                 goto fail_free_pio_data;
203
204         if (irqchip_in_kernel(kvm)) {
205                 r = kvm_create_lapic(vcpu);
206                 if (r < 0)
207                         goto fail_mmu_destroy;
208         }
209
210         return 0;
211
212 fail_mmu_destroy:
213         kvm_mmu_destroy(vcpu);
214 fail_free_pio_data:
215         free_page((unsigned long)vcpu->pio_data);
216 fail_free_run:
217         free_page((unsigned long)vcpu->run);
218 fail:
219         return r;
220 }
221 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
222
223 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
224 {
225         kvm_free_lapic(vcpu);
226         kvm_mmu_destroy(vcpu);
227         free_page((unsigned long)vcpu->pio_data);
228         free_page((unsigned long)vcpu->run);
229 }
230 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
231
232 static struct kvm *kvm_create_vm(void)
233 {
234         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
235
236         if (!kvm)
237                 return ERR_PTR(-ENOMEM);
238
239         kvm_io_bus_init(&kvm->pio_bus);
240         mutex_init(&kvm->lock);
241         INIT_LIST_HEAD(&kvm->active_mmu_pages);
242         kvm_io_bus_init(&kvm->mmio_bus);
243         spin_lock(&kvm_lock);
244         list_add(&kvm->vm_list, &vm_list);
245         spin_unlock(&kvm_lock);
246         return kvm;
247 }
248
249 /*
250  * Free any memory in @free but not in @dont.
251  */
252 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
253                                   struct kvm_memory_slot *dont)
254 {
255         if (!dont || free->rmap != dont->rmap)
256                 vfree(free->rmap);
257
258         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
259                 vfree(free->dirty_bitmap);
260
261         free->npages = 0;
262         free->dirty_bitmap = NULL;
263         free->rmap = NULL;
264 }
265
266 static void kvm_free_physmem(struct kvm *kvm)
267 {
268         int i;
269
270         for (i = 0; i < kvm->nmemslots; ++i)
271                 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
272 }
273
274 static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
275 {
276         int i;
277
278         for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
279                 if (vcpu->pio.guest_pages[i]) {
280                         kvm_release_page(vcpu->pio.guest_pages[i]);
281                         vcpu->pio.guest_pages[i] = NULL;
282                 }
283 }
284
285 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
286 {
287         vcpu_load(vcpu);
288         kvm_mmu_unload(vcpu);
289         vcpu_put(vcpu);
290 }
291
292 static void kvm_free_vcpus(struct kvm *kvm)
293 {
294         unsigned int i;
295
296         /*
297          * Unpin any mmu pages first.
298          */
299         for (i = 0; i < KVM_MAX_VCPUS; ++i)
300                 if (kvm->vcpus[i])
301                         kvm_unload_vcpu_mmu(kvm->vcpus[i]);
302         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
303                 if (kvm->vcpus[i]) {
304                         kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
305                         kvm->vcpus[i] = NULL;
306                 }
307         }
308
309 }
310
311 static void kvm_destroy_vm(struct kvm *kvm)
312 {
313         spin_lock(&kvm_lock);
314         list_del(&kvm->vm_list);
315         spin_unlock(&kvm_lock);
316         kvm_io_bus_destroy(&kvm->pio_bus);
317         kvm_io_bus_destroy(&kvm->mmio_bus);
318         kfree(kvm->vpic);
319         kfree(kvm->vioapic);
320         kvm_free_vcpus(kvm);
321         kvm_free_physmem(kvm);
322         kfree(kvm);
323 }
324
325 static int kvm_vm_release(struct inode *inode, struct file *filp)
326 {
327         struct kvm *kvm = filp->private_data;
328
329         kvm_destroy_vm(kvm);
330         return 0;
331 }
332
333 static void inject_gp(struct kvm_vcpu *vcpu)
334 {
335         kvm_x86_ops->inject_gp(vcpu, 0);
336 }
337
338 void fx_init(struct kvm_vcpu *vcpu)
339 {
340         unsigned after_mxcsr_mask;
341
342         /* Initialize guest FPU by resetting ours and saving into guest's */
343         preempt_disable();
344         fx_save(&vcpu->host_fx_image);
345         fpu_init();
346         fx_save(&vcpu->guest_fx_image);
347         fx_restore(&vcpu->host_fx_image);
348         preempt_enable();
349
350         vcpu->cr0 |= X86_CR0_ET;
351         after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
352         vcpu->guest_fx_image.mxcsr = 0x1f80;
353         memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
354                0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
355 }
356 EXPORT_SYMBOL_GPL(fx_init);
357
358 /*
359  * Allocate some memory and give it an address in the guest physical address
360  * space.
361  *
362  * Discontiguous memory is allowed, mostly for framebuffers.
363  *
364  * Must be called holding kvm->lock.
365  */
366 int __kvm_set_memory_region(struct kvm *kvm,
367                             struct kvm_userspace_memory_region *mem,
368                             int user_alloc)
369 {
370         int r;
371         gfn_t base_gfn;
372         unsigned long npages;
373         unsigned long i;
374         struct kvm_memory_slot *memslot;
375         struct kvm_memory_slot old, new;
376
377         r = -EINVAL;
378         /* General sanity checks */
379         if (mem->memory_size & (PAGE_SIZE - 1))
380                 goto out;
381         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
382                 goto out;
383         if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
384                 goto out;
385         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
386                 goto out;
387
388         memslot = &kvm->memslots[mem->slot];
389         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
390         npages = mem->memory_size >> PAGE_SHIFT;
391
392         if (!npages)
393                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
394
395         new = old = *memslot;
396
397         new.base_gfn = base_gfn;
398         new.npages = npages;
399         new.flags = mem->flags;
400
401         /* Disallow changing a memory slot's size. */
402         r = -EINVAL;
403         if (npages && old.npages && npages != old.npages)
404                 goto out_free;
405
406         /* Check for overlaps */
407         r = -EEXIST;
408         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
409                 struct kvm_memory_slot *s = &kvm->memslots[i];
410
411                 if (s == memslot)
412                         continue;
413                 if (!((base_gfn + npages <= s->base_gfn) ||
414                       (base_gfn >= s->base_gfn + s->npages)))
415                         goto out_free;
416         }
417
418         /* Free page dirty bitmap if unneeded */
419         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
420                 new.dirty_bitmap = NULL;
421
422         r = -ENOMEM;
423
424         /* Allocate if a slot is being created */
425         if (npages && !new.rmap) {
426                 new.rmap = vmalloc(npages * sizeof(struct page *));
427
428                 if (!new.rmap)
429                         goto out_free;
430
431                 memset(new.rmap, 0, npages * sizeof(*new.rmap));
432
433                 new.user_alloc = user_alloc;
434                 if (user_alloc)
435                         new.userspace_addr = mem->userspace_addr;
436                 else {
437                         down_write(&current->mm->mmap_sem);
438                         new.userspace_addr = do_mmap(NULL, 0,
439                                                      npages * PAGE_SIZE,
440                                                      PROT_READ | PROT_WRITE,
441                                                      MAP_SHARED | MAP_ANONYMOUS,
442                                                      0);
443                         up_write(&current->mm->mmap_sem);
444
445                         if (IS_ERR((void *)new.userspace_addr))
446                                 goto out_free;
447                 }
448         } else {
449                 if (!old.user_alloc && old.rmap) {
450                         int ret;
451
452                         down_write(&current->mm->mmap_sem);
453                         ret = do_munmap(current->mm, old.userspace_addr,
454                                         old.npages * PAGE_SIZE);
455                         up_write(&current->mm->mmap_sem);
456                         if (ret < 0)
457                                 printk(KERN_WARNING
458                                        "kvm_vm_ioctl_set_memory_region: "
459                                        "failed to munmap memory\n");
460                 }
461         }
462
463         /* Allocate page dirty bitmap if needed */
464         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
465                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
466
467                 new.dirty_bitmap = vmalloc(dirty_bytes);
468                 if (!new.dirty_bitmap)
469                         goto out_free;
470                 memset(new.dirty_bitmap, 0, dirty_bytes);
471         }
472
473         if (mem->slot >= kvm->nmemslots)
474                 kvm->nmemslots = mem->slot + 1;
475
476         if (!kvm->n_requested_mmu_pages) {
477                 unsigned int n_pages;
478
479                 if (npages) {
480                         n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
481                         kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
482                                                  n_pages);
483                 } else {
484                         unsigned int nr_mmu_pages;
485
486                         n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
487                         nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
488                         nr_mmu_pages = max(nr_mmu_pages,
489                                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
490                         kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
491                 }
492         }
493
494         *memslot = new;
495
496         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
497         kvm_flush_remote_tlbs(kvm);
498
499         kvm_free_physmem_slot(&old, &new);
500         return 0;
501
502 out_free:
503         kvm_free_physmem_slot(&new, &old);
504 out:
505         return r;
506
507 }
508 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
509
510 int kvm_set_memory_region(struct kvm *kvm,
511                           struct kvm_userspace_memory_region *mem,
512                           int user_alloc)
513 {
514         int r;
515
516         mutex_lock(&kvm->lock);
517         r = __kvm_set_memory_region(kvm, mem, user_alloc);
518         mutex_unlock(&kvm->lock);
519         return r;
520 }
521 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
522
523 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
524                                    struct
525                                    kvm_userspace_memory_region *mem,
526                                    int user_alloc)
527 {
528         if (mem->slot >= KVM_MEMORY_SLOTS)
529                 return -EINVAL;
530         return kvm_set_memory_region(kvm, mem, user_alloc);
531 }
532
533 /*
534  * Get (and clear) the dirty memory log for a memory slot.
535  */
536 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
537                                       struct kvm_dirty_log *log)
538 {
539         struct kvm_memory_slot *memslot;
540         int r, i;
541         int n;
542         unsigned long any = 0;
543
544         mutex_lock(&kvm->lock);
545
546         r = -EINVAL;
547         if (log->slot >= KVM_MEMORY_SLOTS)
548                 goto out;
549
550         memslot = &kvm->memslots[log->slot];
551         r = -ENOENT;
552         if (!memslot->dirty_bitmap)
553                 goto out;
554
555         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
556
557         for (i = 0; !any && i < n/sizeof(long); ++i)
558                 any = memslot->dirty_bitmap[i];
559
560         r = -EFAULT;
561         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
562                 goto out;
563
564         /* If nothing is dirty, don't bother messing with page tables. */
565         if (any) {
566                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
567                 kvm_flush_remote_tlbs(kvm);
568                 memset(memslot->dirty_bitmap, 0, n);
569         }
570
571         r = 0;
572
573 out:
574         mutex_unlock(&kvm->lock);
575         return r;
576 }
577
578 int is_error_page(struct page *page)
579 {
580         return page == bad_page;
581 }
582 EXPORT_SYMBOL_GPL(is_error_page);
583
584 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
585 {
586         int i;
587         struct kvm_mem_alias *alias;
588
589         for (i = 0; i < kvm->naliases; ++i) {
590                 alias = &kvm->aliases[i];
591                 if (gfn >= alias->base_gfn
592                     && gfn < alias->base_gfn + alias->npages)
593                         return alias->target_gfn + gfn - alias->base_gfn;
594         }
595         return gfn;
596 }
597
598 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
599 {
600         int i;
601
602         for (i = 0; i < kvm->nmemslots; ++i) {
603                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
604
605                 if (gfn >= memslot->base_gfn
606                     && gfn < memslot->base_gfn + memslot->npages)
607                         return memslot;
608         }
609         return NULL;
610 }
611
612 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
613 {
614         gfn = unalias_gfn(kvm, gfn);
615         return __gfn_to_memslot(kvm, gfn);
616 }
617
618 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
619 {
620         int i;
621
622         gfn = unalias_gfn(kvm, gfn);
623         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
624                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
625
626                 if (gfn >= memslot->base_gfn
627                     && gfn < memslot->base_gfn + memslot->npages)
628                         return 1;
629         }
630         return 0;
631 }
632 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
633
634 /*
635  * Requires current->mm->mmap_sem to be held
636  */
637 static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
638 {
639         struct kvm_memory_slot *slot;
640         struct page *page[1];
641         int npages;
642
643         might_sleep();
644
645         gfn = unalias_gfn(kvm, gfn);
646         slot = __gfn_to_memslot(kvm, gfn);
647         if (!slot) {
648                 get_page(bad_page);
649                 return bad_page;
650         }
651
652         npages = get_user_pages(current, current->mm,
653                                 slot->userspace_addr
654                                 + (gfn - slot->base_gfn) * PAGE_SIZE, 1,
655                                 1, 1, page, NULL);
656         if (npages != 1) {
657                 get_page(bad_page);
658                 return bad_page;
659         }
660
661         return page[0];
662 }
663
664 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
665 {
666         struct page *page;
667
668         down_read(&current->mm->mmap_sem);
669         page = __gfn_to_page(kvm, gfn);
670         up_read(&current->mm->mmap_sem);
671
672         return page;
673 }
674
675 EXPORT_SYMBOL_GPL(gfn_to_page);
676
677 void kvm_release_page(struct page *page)
678 {
679         if (!PageReserved(page))
680                 SetPageDirty(page);
681         put_page(page);
682 }
683 EXPORT_SYMBOL_GPL(kvm_release_page);
684
685 static int next_segment(unsigned long len, int offset)
686 {
687         if (len > PAGE_SIZE - offset)
688                 return PAGE_SIZE - offset;
689         else
690                 return len;
691 }
692
693 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
694                         int len)
695 {
696         void *page_virt;
697         struct page *page;
698
699         page = gfn_to_page(kvm, gfn);
700         if (is_error_page(page)) {
701                 kvm_release_page(page);
702                 return -EFAULT;
703         }
704         page_virt = kmap_atomic(page, KM_USER0);
705
706         memcpy(data, page_virt + offset, len);
707
708         kunmap_atomic(page_virt, KM_USER0);
709         kvm_release_page(page);
710         return 0;
711 }
712 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
713
714 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
715 {
716         gfn_t gfn = gpa >> PAGE_SHIFT;
717         int seg;
718         int offset = offset_in_page(gpa);
719         int ret;
720
721         while ((seg = next_segment(len, offset)) != 0) {
722                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
723                 if (ret < 0)
724                         return ret;
725                 offset = 0;
726                 len -= seg;
727                 data += seg;
728                 ++gfn;
729         }
730         return 0;
731 }
732 EXPORT_SYMBOL_GPL(kvm_read_guest);
733
734 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
735                          int offset, int len)
736 {
737         void *page_virt;
738         struct page *page;
739
740         page = gfn_to_page(kvm, gfn);
741         if (is_error_page(page)) {
742                 kvm_release_page(page);
743                 return -EFAULT;
744         }
745         page_virt = kmap_atomic(page, KM_USER0);
746
747         memcpy(page_virt + offset, data, len);
748
749         kunmap_atomic(page_virt, KM_USER0);
750         mark_page_dirty(kvm, gfn);
751         kvm_release_page(page);
752         return 0;
753 }
754 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
755
756 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
757                     unsigned long len)
758 {
759         gfn_t gfn = gpa >> PAGE_SHIFT;
760         int seg;
761         int offset = offset_in_page(gpa);
762         int ret;
763
764         while ((seg = next_segment(len, offset)) != 0) {
765                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
766                 if (ret < 0)
767                         return ret;
768                 offset = 0;
769                 len -= seg;
770                 data += seg;
771                 ++gfn;
772         }
773         return 0;
774 }
775
776 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
777 {
778         void *page_virt;
779         struct page *page;
780
781         page = gfn_to_page(kvm, gfn);
782         if (is_error_page(page)) {
783                 kvm_release_page(page);
784                 return -EFAULT;
785         }
786         page_virt = kmap_atomic(page, KM_USER0);
787
788         memset(page_virt + offset, 0, len);
789
790         kunmap_atomic(page_virt, KM_USER0);
791         kvm_release_page(page);
792         return 0;
793 }
794 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
795
796 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
797 {
798         gfn_t gfn = gpa >> PAGE_SHIFT;
799         int seg;
800         int offset = offset_in_page(gpa);
801         int ret;
802
803         while ((seg = next_segment(len, offset)) != 0) {
804                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
805                 if (ret < 0)
806                         return ret;
807                 offset = 0;
808                 len -= seg;
809                 ++gfn;
810         }
811         return 0;
812 }
813 EXPORT_SYMBOL_GPL(kvm_clear_guest);
814
815 /* WARNING: Does not work on aliased pages. */
816 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
817 {
818         struct kvm_memory_slot *memslot;
819
820         memslot = __gfn_to_memslot(kvm, gfn);
821         if (memslot && memslot->dirty_bitmap) {
822                 unsigned long rel_gfn = gfn - memslot->base_gfn;
823
824                 /* avoid RMW */
825                 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
826                         set_bit(rel_gfn, memslot->dirty_bitmap);
827         }
828 }
829
830 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
831                                                gpa_t addr)
832 {
833         return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
834 }
835
836 /*
837  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
838  */
839 static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
840 {
841         DECLARE_WAITQUEUE(wait, current);
842
843         add_wait_queue(&vcpu->wq, &wait);
844
845         /*
846          * We will block until either an interrupt or a signal wakes us up
847          */
848         while (!kvm_cpu_has_interrupt(vcpu)
849                && !signal_pending(current)
850                && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
851                && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
852                 set_current_state(TASK_INTERRUPTIBLE);
853                 vcpu_put(vcpu);
854                 schedule();
855                 vcpu_load(vcpu);
856         }
857
858         __set_current_state(TASK_RUNNING);
859         remove_wait_queue(&vcpu->wq, &wait);
860 }
861
862 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
863 {
864         ++vcpu->stat.halt_exits;
865         if (irqchip_in_kernel(vcpu->kvm)) {
866                 vcpu->mp_state = VCPU_MP_STATE_HALTED;
867                 kvm_vcpu_block(vcpu);
868                 if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
869                         return -EINTR;
870                 return 1;
871         } else {
872                 vcpu->run->exit_reason = KVM_EXIT_HLT;
873                 return 0;
874         }
875 }
876 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
877
878 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
879 {
880         unsigned long nr, a0, a1, a2, a3, ret;
881
882         kvm_x86_ops->cache_regs(vcpu);
883
884         nr = vcpu->regs[VCPU_REGS_RAX];
885         a0 = vcpu->regs[VCPU_REGS_RBX];
886         a1 = vcpu->regs[VCPU_REGS_RCX];
887         a2 = vcpu->regs[VCPU_REGS_RDX];
888         a3 = vcpu->regs[VCPU_REGS_RSI];
889
890         if (!is_long_mode(vcpu)) {
891                 nr &= 0xFFFFFFFF;
892                 a0 &= 0xFFFFFFFF;
893                 a1 &= 0xFFFFFFFF;
894                 a2 &= 0xFFFFFFFF;
895                 a3 &= 0xFFFFFFFF;
896         }
897
898         switch (nr) {
899         default:
900                 ret = -KVM_ENOSYS;
901                 break;
902         }
903         vcpu->regs[VCPU_REGS_RAX] = ret;
904         kvm_x86_ops->decache_regs(vcpu);
905         return 0;
906 }
907 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
908
909 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
910 {
911         char instruction[3];
912         int ret = 0;
913
914         mutex_lock(&vcpu->kvm->lock);
915
916         /*
917          * Blow out the MMU to ensure that no other VCPU has an active mapping
918          * to ensure that the updated hypercall appears atomically across all
919          * VCPUs.
920          */
921         kvm_mmu_zap_all(vcpu->kvm);
922
923         kvm_x86_ops->cache_regs(vcpu);
924         kvm_x86_ops->patch_hypercall(vcpu, instruction);
925         if (emulator_write_emulated(vcpu->rip, instruction, 3, vcpu)
926             != X86EMUL_CONTINUE)
927                 ret = -EFAULT;
928
929         mutex_unlock(&vcpu->kvm->lock);
930
931         return ret;
932 }
933
934 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
935 {
936         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
937 }
938
939 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
940 {
941         struct descriptor_table dt = { limit, base };
942
943         kvm_x86_ops->set_gdt(vcpu, &dt);
944 }
945
946 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
947 {
948         struct descriptor_table dt = { limit, base };
949
950         kvm_x86_ops->set_idt(vcpu, &dt);
951 }
952
953 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
954                    unsigned long *rflags)
955 {
956         lmsw(vcpu, msw);
957         *rflags = kvm_x86_ops->get_rflags(vcpu);
958 }
959
960 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
961 {
962         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
963         switch (cr) {
964         case 0:
965                 return vcpu->cr0;
966         case 2:
967                 return vcpu->cr2;
968         case 3:
969                 return vcpu->cr3;
970         case 4:
971                 return vcpu->cr4;
972         default:
973                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
974                 return 0;
975         }
976 }
977
978 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
979                      unsigned long *rflags)
980 {
981         switch (cr) {
982         case 0:
983                 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
984                 *rflags = kvm_x86_ops->get_rflags(vcpu);
985                 break;
986         case 2:
987                 vcpu->cr2 = val;
988                 break;
989         case 3:
990                 set_cr3(vcpu, val);
991                 break;
992         case 4:
993                 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
994                 break;
995         default:
996                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
997         }
998 }
999
1000 void kvm_resched(struct kvm_vcpu *vcpu)
1001 {
1002         if (!need_resched())
1003                 return;
1004         cond_resched();
1005 }
1006 EXPORT_SYMBOL_GPL(kvm_resched);
1007
1008 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1009 {
1010         int i;
1011         u32 function;
1012         struct kvm_cpuid_entry *e, *best;
1013
1014         kvm_x86_ops->cache_regs(vcpu);
1015         function = vcpu->regs[VCPU_REGS_RAX];
1016         vcpu->regs[VCPU_REGS_RAX] = 0;
1017         vcpu->regs[VCPU_REGS_RBX] = 0;
1018         vcpu->regs[VCPU_REGS_RCX] = 0;
1019         vcpu->regs[VCPU_REGS_RDX] = 0;
1020         best = NULL;
1021         for (i = 0; i < vcpu->cpuid_nent; ++i) {
1022                 e = &vcpu->cpuid_entries[i];
1023                 if (e->function == function) {
1024                         best = e;
1025                         break;
1026                 }
1027                 /*
1028                  * Both basic or both extended?
1029                  */
1030                 if (((e->function ^ function) & 0x80000000) == 0)
1031                         if (!best || e->function > best->function)
1032                                 best = e;
1033         }
1034         if (best) {
1035                 vcpu->regs[VCPU_REGS_RAX] = best->eax;
1036                 vcpu->regs[VCPU_REGS_RBX] = best->ebx;
1037                 vcpu->regs[VCPU_REGS_RCX] = best->ecx;
1038                 vcpu->regs[VCPU_REGS_RDX] = best->edx;
1039         }
1040         kvm_x86_ops->decache_regs(vcpu);
1041         kvm_x86_ops->skip_emulated_instruction(vcpu);
1042 }
1043 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1044
1045 static int pio_copy_data(struct kvm_vcpu *vcpu)
1046 {
1047         void *p = vcpu->pio_data;
1048         void *q;
1049         unsigned bytes;
1050         int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
1051
1052         q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
1053                  PAGE_KERNEL);
1054         if (!q) {
1055                 free_pio_guest_pages(vcpu);
1056                 return -ENOMEM;
1057         }
1058         q += vcpu->pio.guest_page_offset;
1059         bytes = vcpu->pio.size * vcpu->pio.cur_count;
1060         if (vcpu->pio.in)
1061                 memcpy(q, p, bytes);
1062         else
1063                 memcpy(p, q, bytes);
1064         q -= vcpu->pio.guest_page_offset;
1065         vunmap(q);
1066         free_pio_guest_pages(vcpu);
1067         return 0;
1068 }
1069
1070 static int complete_pio(struct kvm_vcpu *vcpu)
1071 {
1072         struct kvm_pio_request *io = &vcpu->pio;
1073         long delta;
1074         int r;
1075
1076         kvm_x86_ops->cache_regs(vcpu);
1077
1078         if (!io->string) {
1079                 if (io->in)
1080                         memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
1081                                io->size);
1082         } else {
1083                 if (io->in) {
1084                         r = pio_copy_data(vcpu);
1085                         if (r) {
1086                                 kvm_x86_ops->cache_regs(vcpu);
1087                                 return r;
1088                         }
1089                 }
1090
1091                 delta = 1;
1092                 if (io->rep) {
1093                         delta *= io->cur_count;
1094                         /*
1095                          * The size of the register should really depend on
1096                          * current address size.
1097                          */
1098                         vcpu->regs[VCPU_REGS_RCX] -= delta;
1099                 }
1100                 if (io->down)
1101                         delta = -delta;
1102                 delta *= io->size;
1103                 if (io->in)
1104                         vcpu->regs[VCPU_REGS_RDI] += delta;
1105                 else
1106                         vcpu->regs[VCPU_REGS_RSI] += delta;
1107         }
1108
1109         kvm_x86_ops->decache_regs(vcpu);
1110
1111         io->count -= io->cur_count;
1112         io->cur_count = 0;
1113
1114         return 0;
1115 }
1116
1117 static void kernel_pio(struct kvm_io_device *pio_dev,
1118                        struct kvm_vcpu *vcpu,
1119                        void *pd)
1120 {
1121         /* TODO: String I/O for in kernel device */
1122
1123         mutex_lock(&vcpu->kvm->lock);
1124         if (vcpu->pio.in)
1125                 kvm_iodevice_read(pio_dev, vcpu->pio.port,
1126                                   vcpu->pio.size,
1127                                   pd);
1128         else
1129                 kvm_iodevice_write(pio_dev, vcpu->pio.port,
1130                                    vcpu->pio.size,
1131                                    pd);
1132         mutex_unlock(&vcpu->kvm->lock);
1133 }
1134
1135 static void pio_string_write(struct kvm_io_device *pio_dev,
1136                              struct kvm_vcpu *vcpu)
1137 {
1138         struct kvm_pio_request *io = &vcpu->pio;
1139         void *pd = vcpu->pio_data;
1140         int i;
1141
1142         mutex_lock(&vcpu->kvm->lock);
1143         for (i = 0; i < io->cur_count; i++) {
1144                 kvm_iodevice_write(pio_dev, io->port,
1145                                    io->size,
1146                                    pd);
1147                 pd += io->size;
1148         }
1149         mutex_unlock(&vcpu->kvm->lock);
1150 }
1151
1152 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1153                   int size, unsigned port)
1154 {
1155         struct kvm_io_device *pio_dev;
1156
1157         vcpu->run->exit_reason = KVM_EXIT_IO;
1158         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1159         vcpu->run->io.size = vcpu->pio.size = size;
1160         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1161         vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
1162         vcpu->run->io.port = vcpu->pio.port = port;
1163         vcpu->pio.in = in;
1164         vcpu->pio.string = 0;
1165         vcpu->pio.down = 0;
1166         vcpu->pio.guest_page_offset = 0;
1167         vcpu->pio.rep = 0;
1168
1169         kvm_x86_ops->cache_regs(vcpu);
1170         memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
1171         kvm_x86_ops->decache_regs(vcpu);
1172
1173         kvm_x86_ops->skip_emulated_instruction(vcpu);
1174
1175         pio_dev = vcpu_find_pio_dev(vcpu, port);
1176         if (pio_dev) {
1177                 kernel_pio(pio_dev, vcpu, vcpu->pio_data);
1178                 complete_pio(vcpu);
1179                 return 1;
1180         }
1181         return 0;
1182 }
1183 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
1184
1185 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
1186                   int size, unsigned long count, int down,
1187                   gva_t address, int rep, unsigned port)
1188 {
1189         unsigned now, in_page;
1190         int i, ret = 0;
1191         int nr_pages = 1;
1192         struct page *page;
1193         struct kvm_io_device *pio_dev;
1194
1195         vcpu->run->exit_reason = KVM_EXIT_IO;
1196         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
1197         vcpu->run->io.size = vcpu->pio.size = size;
1198         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
1199         vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
1200         vcpu->run->io.port = vcpu->pio.port = port;
1201         vcpu->pio.in = in;
1202         vcpu->pio.string = 1;
1203         vcpu->pio.down = down;
1204         vcpu->pio.guest_page_offset = offset_in_page(address);
1205         vcpu->pio.rep = rep;
1206
1207         if (!count) {
1208                 kvm_x86_ops->skip_emulated_instruction(vcpu);
1209                 return 1;
1210         }
1211
1212         if (!down)
1213                 in_page = PAGE_SIZE - offset_in_page(address);
1214         else
1215                 in_page = offset_in_page(address) + size;
1216         now = min(count, (unsigned long)in_page / size);
1217         if (!now) {
1218                 /*
1219                  * String I/O straddles page boundary.  Pin two guest pages
1220                  * so that we satisfy atomicity constraints.  Do just one
1221                  * transaction to avoid complexity.
1222                  */
1223                 nr_pages = 2;
1224                 now = 1;
1225         }
1226         if (down) {
1227                 /*
1228                  * String I/O in reverse.  Yuck.  Kill the guest, fix later.
1229                  */
1230                 pr_unimpl(vcpu, "guest string pio down\n");
1231                 inject_gp(vcpu);
1232                 return 1;
1233         }
1234         vcpu->run->io.count = now;
1235         vcpu->pio.cur_count = now;
1236
1237         if (vcpu->pio.cur_count == vcpu->pio.count)
1238                 kvm_x86_ops->skip_emulated_instruction(vcpu);
1239
1240         for (i = 0; i < nr_pages; ++i) {
1241                 mutex_lock(&vcpu->kvm->lock);
1242                 page = gva_to_page(vcpu, address + i * PAGE_SIZE);
1243                 vcpu->pio.guest_pages[i] = page;
1244                 mutex_unlock(&vcpu->kvm->lock);
1245                 if (!page) {
1246                         inject_gp(vcpu);
1247                         free_pio_guest_pages(vcpu);
1248                         return 1;
1249                 }
1250         }
1251
1252         pio_dev = vcpu_find_pio_dev(vcpu, port);
1253         if (!vcpu->pio.in) {
1254                 /* string PIO write */
1255                 ret = pio_copy_data(vcpu);
1256                 if (ret >= 0 && pio_dev) {
1257                         pio_string_write(pio_dev, vcpu);
1258                         complete_pio(vcpu);
1259                         if (vcpu->pio.count == 0)
1260                                 ret = 1;
1261                 }
1262         } else if (pio_dev)
1263                 pr_unimpl(vcpu, "no string pio read support yet, "
1264                        "port %x size %d count %ld\n",
1265                         port, size, count);
1266
1267         return ret;
1268 }
1269 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
1270
1271 /*
1272  * Check if userspace requested an interrupt window, and that the
1273  * interrupt window is open.
1274  *
1275  * No need to exit to userspace if we already have an interrupt queued.
1276  */
1277 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1278                                           struct kvm_run *kvm_run)
1279 {
1280         return (!vcpu->irq_summary &&
1281                 kvm_run->request_interrupt_window &&
1282                 vcpu->interrupt_window_open &&
1283                 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
1284 }
1285
1286 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1287                               struct kvm_run *kvm_run)
1288 {
1289         kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
1290         kvm_run->cr8 = get_cr8(vcpu);
1291         kvm_run->apic_base = kvm_get_apic_base(vcpu);
1292         if (irqchip_in_kernel(vcpu->kvm))
1293                 kvm_run->ready_for_interrupt_injection = 1;
1294         else
1295                 kvm_run->ready_for_interrupt_injection =
1296                                         (vcpu->interrupt_window_open &&
1297                                          vcpu->irq_summary == 0);
1298 }
1299
1300 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1301 {
1302         int r;
1303
1304         if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
1305                 pr_debug("vcpu %d received sipi with vector # %x\n",
1306                        vcpu->vcpu_id, vcpu->sipi_vector);
1307                 kvm_lapic_reset(vcpu);
1308                 r = kvm_x86_ops->vcpu_reset(vcpu);
1309                 if (r)
1310                         return r;
1311                 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
1312         }
1313
1314 preempted:
1315         if (vcpu->guest_debug.enabled)
1316                 kvm_x86_ops->guest_debug_pre(vcpu);
1317
1318 again:
1319         r = kvm_mmu_reload(vcpu);
1320         if (unlikely(r))
1321                 goto out;
1322
1323         kvm_inject_pending_timer_irqs(vcpu);
1324
1325         preempt_disable();
1326
1327         kvm_x86_ops->prepare_guest_switch(vcpu);
1328         kvm_load_guest_fpu(vcpu);
1329
1330         local_irq_disable();
1331
1332         if (signal_pending(current)) {
1333                 local_irq_enable();
1334                 preempt_enable();
1335                 r = -EINTR;
1336                 kvm_run->exit_reason = KVM_EXIT_INTR;
1337                 ++vcpu->stat.signal_exits;
1338                 goto out;
1339         }
1340
1341         if (irqchip_in_kernel(vcpu->kvm))
1342                 kvm_x86_ops->inject_pending_irq(vcpu);
1343         else if (!vcpu->mmio_read_completed)
1344                 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
1345
1346         vcpu->guest_mode = 1;
1347         kvm_guest_enter();
1348
1349         if (vcpu->requests)
1350                 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
1351                         kvm_x86_ops->tlb_flush(vcpu);
1352
1353         kvm_x86_ops->run(vcpu, kvm_run);
1354
1355         vcpu->guest_mode = 0;
1356         local_irq_enable();
1357
1358         ++vcpu->stat.exits;
1359
1360         /*
1361          * We must have an instruction between local_irq_enable() and
1362          * kvm_guest_exit(), so the timer interrupt isn't delayed by
1363          * the interrupt shadow.  The stat.exits increment will do nicely.
1364          * But we need to prevent reordering, hence this barrier():
1365          */
1366         barrier();
1367
1368         kvm_guest_exit();
1369
1370         preempt_enable();
1371
1372         /*
1373          * Profile KVM exit RIPs:
1374          */
1375         if (unlikely(prof_on == KVM_PROFILING)) {
1376                 kvm_x86_ops->cache_regs(vcpu);
1377                 profile_hit(KVM_PROFILING, (void *)vcpu->rip);
1378         }
1379
1380         r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
1381
1382         if (r > 0) {
1383                 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
1384                         r = -EINTR;
1385                         kvm_run->exit_reason = KVM_EXIT_INTR;
1386                         ++vcpu->stat.request_irq_exits;
1387                         goto out;
1388                 }
1389                 if (!need_resched()) {
1390                         ++vcpu->stat.light_exits;
1391                         goto again;
1392                 }
1393         }
1394
1395 out:
1396         if (r > 0) {
1397                 kvm_resched(vcpu);
1398                 goto preempted;
1399         }
1400
1401         post_kvm_run_save(vcpu, kvm_run);
1402
1403         return r;
1404 }
1405
1406
1407 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1408 {
1409         int r;
1410         sigset_t sigsaved;
1411
1412         vcpu_load(vcpu);
1413
1414         if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
1415                 kvm_vcpu_block(vcpu);
1416                 vcpu_put(vcpu);
1417                 return -EAGAIN;
1418         }
1419
1420         if (vcpu->sigset_active)
1421                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1422
1423         /* re-sync apic's tpr */
1424         if (!irqchip_in_kernel(vcpu->kvm))
1425                 set_cr8(vcpu, kvm_run->cr8);
1426
1427         if (vcpu->pio.cur_count) {
1428                 r = complete_pio(vcpu);
1429                 if (r)
1430                         goto out;
1431         }
1432 #if CONFIG_HAS_IOMEM
1433         if (vcpu->mmio_needed) {
1434                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1435                 vcpu->mmio_read_completed = 1;
1436                 vcpu->mmio_needed = 0;
1437                 r = emulate_instruction(vcpu, kvm_run,
1438                                         vcpu->mmio_fault_cr2, 0, 1);
1439                 if (r == EMULATE_DO_MMIO) {
1440                         /*
1441                          * Read-modify-write.  Back to userspace.
1442                          */
1443                         r = 0;
1444                         goto out;
1445                 }
1446         }
1447 #endif
1448         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
1449                 kvm_x86_ops->cache_regs(vcpu);
1450                 vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
1451                 kvm_x86_ops->decache_regs(vcpu);
1452         }
1453
1454         r = __vcpu_run(vcpu, kvm_run);
1455
1456 out:
1457         if (vcpu->sigset_active)
1458                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1459
1460         vcpu_put(vcpu);
1461         return r;
1462 }
1463
1464 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
1465                                    struct kvm_regs *regs)
1466 {
1467         vcpu_load(vcpu);
1468
1469         kvm_x86_ops->cache_regs(vcpu);
1470
1471         regs->rax = vcpu->regs[VCPU_REGS_RAX];
1472         regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1473         regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1474         regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1475         regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1476         regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1477         regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1478         regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1479 #ifdef CONFIG_X86_64
1480         regs->r8 = vcpu->regs[VCPU_REGS_R8];
1481         regs->r9 = vcpu->regs[VCPU_REGS_R9];
1482         regs->r10 = vcpu->regs[VCPU_REGS_R10];
1483         regs->r11 = vcpu->regs[VCPU_REGS_R11];
1484         regs->r12 = vcpu->regs[VCPU_REGS_R12];
1485         regs->r13 = vcpu->regs[VCPU_REGS_R13];
1486         regs->r14 = vcpu->regs[VCPU_REGS_R14];
1487         regs->r15 = vcpu->regs[VCPU_REGS_R15];
1488 #endif
1489
1490         regs->rip = vcpu->rip;
1491         regs->rflags = kvm_x86_ops->get_rflags(vcpu);
1492
1493         /*
1494          * Don't leak debug flags in case they were set for guest debugging
1495          */
1496         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1497                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1498
1499         vcpu_put(vcpu);
1500
1501         return 0;
1502 }
1503
1504 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
1505                                    struct kvm_regs *regs)
1506 {
1507         vcpu_load(vcpu);
1508
1509         vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1510         vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1511         vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1512         vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1513         vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1514         vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1515         vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1516         vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1517 #ifdef CONFIG_X86_64
1518         vcpu->regs[VCPU_REGS_R8] = regs->r8;
1519         vcpu->regs[VCPU_REGS_R9] = regs->r9;
1520         vcpu->regs[VCPU_REGS_R10] = regs->r10;
1521         vcpu->regs[VCPU_REGS_R11] = regs->r11;
1522         vcpu->regs[VCPU_REGS_R12] = regs->r12;
1523         vcpu->regs[VCPU_REGS_R13] = regs->r13;
1524         vcpu->regs[VCPU_REGS_R14] = regs->r14;
1525         vcpu->regs[VCPU_REGS_R15] = regs->r15;
1526 #endif
1527
1528         vcpu->rip = regs->rip;
1529         kvm_x86_ops->set_rflags(vcpu, regs->rflags);
1530
1531         kvm_x86_ops->decache_regs(vcpu);
1532
1533         vcpu_put(vcpu);
1534
1535         return 0;
1536 }
1537
1538 static void get_segment(struct kvm_vcpu *vcpu,
1539                         struct kvm_segment *var, int seg)
1540 {
1541         return kvm_x86_ops->get_segment(vcpu, var, seg);
1542 }
1543
1544 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1545                                     struct kvm_sregs *sregs)
1546 {
1547         struct descriptor_table dt;
1548         int pending_vec;
1549
1550         vcpu_load(vcpu);
1551
1552         get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1553         get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1554         get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1555         get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1556         get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1557         get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1558
1559         get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1560         get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1561
1562         kvm_x86_ops->get_idt(vcpu, &dt);
1563         sregs->idt.limit = dt.limit;
1564         sregs->idt.base = dt.base;
1565         kvm_x86_ops->get_gdt(vcpu, &dt);
1566         sregs->gdt.limit = dt.limit;
1567         sregs->gdt.base = dt.base;
1568
1569         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
1570         sregs->cr0 = vcpu->cr0;
1571         sregs->cr2 = vcpu->cr2;
1572         sregs->cr3 = vcpu->cr3;
1573         sregs->cr4 = vcpu->cr4;
1574         sregs->cr8 = get_cr8(vcpu);
1575         sregs->efer = vcpu->shadow_efer;
1576         sregs->apic_base = kvm_get_apic_base(vcpu);
1577
1578         if (irqchip_in_kernel(vcpu->kvm)) {
1579                 memset(sregs->interrupt_bitmap, 0,
1580                        sizeof sregs->interrupt_bitmap);
1581                 pending_vec = kvm_x86_ops->get_irq(vcpu);
1582                 if (pending_vec >= 0)
1583                         set_bit(pending_vec,
1584                                 (unsigned long *)sregs->interrupt_bitmap);
1585         } else
1586                 memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1587                        sizeof sregs->interrupt_bitmap);
1588
1589         vcpu_put(vcpu);
1590
1591         return 0;
1592 }
1593
1594 static void set_segment(struct kvm_vcpu *vcpu,
1595                         struct kvm_segment *var, int seg)
1596 {
1597         return kvm_x86_ops->set_segment(vcpu, var, seg);
1598 }
1599
1600 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1601                                     struct kvm_sregs *sregs)
1602 {
1603         int mmu_reset_needed = 0;
1604         int i, pending_vec, max_bits;
1605         struct descriptor_table dt;
1606
1607         vcpu_load(vcpu);
1608
1609         dt.limit = sregs->idt.limit;
1610         dt.base = sregs->idt.base;
1611         kvm_x86_ops->set_idt(vcpu, &dt);
1612         dt.limit = sregs->gdt.limit;
1613         dt.base = sregs->gdt.base;
1614         kvm_x86_ops->set_gdt(vcpu, &dt);
1615
1616         vcpu->cr2 = sregs->cr2;
1617         mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1618         vcpu->cr3 = sregs->cr3;
1619
1620         set_cr8(vcpu, sregs->cr8);
1621
1622         mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1623 #ifdef CONFIG_X86_64
1624         kvm_x86_ops->set_efer(vcpu, sregs->efer);
1625 #endif
1626         kvm_set_apic_base(vcpu, sregs->apic_base);
1627
1628         kvm_x86_ops->decache_cr4_guest_bits(vcpu);
1629
1630         mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1631         vcpu->cr0 = sregs->cr0;
1632         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
1633
1634         mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1635         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
1636         if (!is_long_mode(vcpu) && is_pae(vcpu))
1637                 load_pdptrs(vcpu, vcpu->cr3);
1638
1639         if (mmu_reset_needed)
1640                 kvm_mmu_reset_context(vcpu);
1641
1642         if (!irqchip_in_kernel(vcpu->kvm)) {
1643                 memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1644                        sizeof vcpu->irq_pending);
1645                 vcpu->irq_summary = 0;
1646                 for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
1647                         if (vcpu->irq_pending[i])
1648                                 __set_bit(i, &vcpu->irq_summary);
1649         } else {
1650                 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
1651                 pending_vec = find_first_bit(
1652                         (const unsigned long *)sregs->interrupt_bitmap,
1653                         max_bits);
1654                 /* Only pending external irq is handled here */
1655                 if (pending_vec < max_bits) {
1656                         kvm_x86_ops->set_irq(vcpu, pending_vec);
1657                         pr_debug("Set back pending irq %d\n",
1658                                  pending_vec);
1659                 }
1660         }
1661
1662         set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1663         set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1664         set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1665         set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1666         set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1667         set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1668
1669         set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1670         set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1671
1672         vcpu_put(vcpu);
1673
1674         return 0;
1675 }
1676
1677 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1678 {
1679         struct kvm_segment cs;
1680
1681         get_segment(vcpu, &cs, VCPU_SREG_CS);
1682         *db = cs.db;
1683         *l = cs.l;
1684 }
1685 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
1686
1687 /*
1688  * Translate a guest virtual address to a guest physical address.
1689  */
1690 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1691                                     struct kvm_translation *tr)
1692 {
1693         unsigned long vaddr = tr->linear_address;
1694         gpa_t gpa;
1695
1696         vcpu_load(vcpu);
1697         mutex_lock(&vcpu->kvm->lock);
1698         gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
1699         tr->physical_address = gpa;
1700         tr->valid = gpa != UNMAPPED_GVA;
1701         tr->writeable = 1;
1702         tr->usermode = 0;
1703         mutex_unlock(&vcpu->kvm->lock);
1704         vcpu_put(vcpu);
1705
1706         return 0;
1707 }
1708
1709 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1710                                     struct kvm_interrupt *irq)
1711 {
1712         if (irq->irq < 0 || irq->irq >= 256)
1713                 return -EINVAL;
1714         if (irqchip_in_kernel(vcpu->kvm))
1715                 return -ENXIO;
1716         vcpu_load(vcpu);
1717
1718         set_bit(irq->irq, vcpu->irq_pending);
1719         set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
1720
1721         vcpu_put(vcpu);
1722
1723         return 0;
1724 }
1725
1726 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
1727                                       struct kvm_debug_guest *dbg)
1728 {
1729         int r;
1730
1731         vcpu_load(vcpu);
1732
1733         r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
1734
1735         vcpu_put(vcpu);
1736
1737         return r;
1738 }
1739
1740 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
1741                                     unsigned long address,
1742                                     int *type)
1743 {
1744         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1745         unsigned long pgoff;
1746         struct page *page;
1747
1748         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1749         if (pgoff == 0)
1750                 page = virt_to_page(vcpu->run);
1751         else if (pgoff == KVM_PIO_PAGE_OFFSET)
1752                 page = virt_to_page(vcpu->pio_data);
1753         else
1754                 return NOPAGE_SIGBUS;
1755         get_page(page);
1756         if (type != NULL)
1757                 *type = VM_FAULT_MINOR;
1758
1759         return page;
1760 }
1761
1762 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1763         .nopage = kvm_vcpu_nopage,
1764 };
1765
1766 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1767 {
1768         vma->vm_ops = &kvm_vcpu_vm_ops;
1769         return 0;
1770 }
1771
1772 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1773 {
1774         struct kvm_vcpu *vcpu = filp->private_data;
1775
1776         fput(vcpu->kvm->filp);
1777         return 0;
1778 }
1779
1780 static struct file_operations kvm_vcpu_fops = {
1781         .release        = kvm_vcpu_release,
1782         .unlocked_ioctl = kvm_vcpu_ioctl,
1783         .compat_ioctl   = kvm_vcpu_ioctl,
1784         .mmap           = kvm_vcpu_mmap,
1785 };
1786
1787 /*
1788  * Allocates an inode for the vcpu.
1789  */
1790 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1791 {
1792         int fd, r;
1793         struct inode *inode;
1794         struct file *file;
1795
1796         r = anon_inode_getfd(&fd, &inode, &file,
1797                              "kvm-vcpu", &kvm_vcpu_fops, vcpu);
1798         if (r)
1799                 return r;
1800         atomic_inc(&vcpu->kvm->filp->f_count);
1801         return fd;
1802 }
1803
1804 /*
1805  * Creates some virtual cpus.  Good luck creating more than one.
1806  */
1807 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1808 {
1809         int r;
1810         struct kvm_vcpu *vcpu;
1811
1812         if (!valid_vcpu(n))
1813                 return -EINVAL;
1814
1815         vcpu = kvm_x86_ops->vcpu_create(kvm, n);
1816         if (IS_ERR(vcpu))
1817                 return PTR_ERR(vcpu);
1818
1819         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1820
1821         /* We do fxsave: this must be aligned. */
1822         BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
1823
1824         vcpu_load(vcpu);
1825         r = kvm_x86_ops->vcpu_reset(vcpu);
1826         if (r == 0)
1827                 r = kvm_mmu_setup(vcpu);
1828         vcpu_put(vcpu);
1829         if (r < 0)
1830                 goto free_vcpu;
1831
1832         mutex_lock(&kvm->lock);
1833         if (kvm->vcpus[n]) {
1834                 r = -EEXIST;
1835                 mutex_unlock(&kvm->lock);
1836                 goto mmu_unload;
1837         }
1838         kvm->vcpus[n] = vcpu;
1839         mutex_unlock(&kvm->lock);
1840
1841         /* Now it's all set up, let userspace reach it */
1842         r = create_vcpu_fd(vcpu);
1843         if (r < 0)
1844                 goto unlink;
1845         return r;
1846
1847 unlink:
1848         mutex_lock(&kvm->lock);
1849         kvm->vcpus[n] = NULL;
1850         mutex_unlock(&kvm->lock);
1851
1852 mmu_unload:
1853         vcpu_load(vcpu);
1854         kvm_mmu_unload(vcpu);
1855         vcpu_put(vcpu);
1856
1857 free_vcpu:
1858         kvm_x86_ops->vcpu_free(vcpu);
1859         return r;
1860 }
1861
1862 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1863 {
1864         if (sigset) {
1865                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1866                 vcpu->sigset_active = 1;
1867                 vcpu->sigset = *sigset;
1868         } else
1869                 vcpu->sigset_active = 0;
1870         return 0;
1871 }
1872
1873 /*
1874  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
1875  * we have asm/x86/processor.h
1876  */
1877 struct fxsave {
1878         u16     cwd;
1879         u16     swd;
1880         u16     twd;
1881         u16     fop;
1882         u64     rip;
1883         u64     rdp;
1884         u32     mxcsr;
1885         u32     mxcsr_mask;
1886         u32     st_space[32];   /* 8*16 bytes for each FP-reg = 128 bytes */
1887 #ifdef CONFIG_X86_64
1888         u32     xmm_space[64];  /* 16*16 bytes for each XMM-reg = 256 bytes */
1889 #else
1890         u32     xmm_space[32];  /* 8*16 bytes for each XMM-reg = 128 bytes */
1891 #endif
1892 };
1893
1894 static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1895 {
1896         struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
1897
1898         vcpu_load(vcpu);
1899
1900         memcpy(fpu->fpr, fxsave->st_space, 128);
1901         fpu->fcw = fxsave->cwd;
1902         fpu->fsw = fxsave->swd;
1903         fpu->ftwx = fxsave->twd;
1904         fpu->last_opcode = fxsave->fop;
1905         fpu->last_ip = fxsave->rip;
1906         fpu->last_dp = fxsave->rdp;
1907         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
1908
1909         vcpu_put(vcpu);
1910
1911         return 0;
1912 }
1913
1914 static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1915 {
1916         struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
1917
1918         vcpu_load(vcpu);
1919
1920         memcpy(fxsave->st_space, fpu->fpr, 128);
1921         fxsave->cwd = fpu->fcw;
1922         fxsave->swd = fpu->fsw;
1923         fxsave->twd = fpu->ftwx;
1924         fxsave->fop = fpu->last_opcode;
1925         fxsave->rip = fpu->last_ip;
1926         fxsave->rdp = fpu->last_dp;
1927         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
1928
1929         vcpu_put(vcpu);
1930
1931         return 0;
1932 }
1933
1934 static long kvm_vcpu_ioctl(struct file *filp,
1935                            unsigned int ioctl, unsigned long arg)
1936 {
1937         struct kvm_vcpu *vcpu = filp->private_data;
1938         void __user *argp = (void __user *)arg;
1939         int r;
1940
1941         switch (ioctl) {
1942         case KVM_RUN:
1943                 r = -EINVAL;
1944                 if (arg)
1945                         goto out;
1946                 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
1947                 break;
1948         case KVM_GET_REGS: {
1949                 struct kvm_regs kvm_regs;
1950
1951                 memset(&kvm_regs, 0, sizeof kvm_regs);
1952                 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
1953                 if (r)
1954                         goto out;
1955                 r = -EFAULT;
1956                 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
1957                         goto out;
1958                 r = 0;
1959                 break;
1960         }
1961         case KVM_SET_REGS: {
1962                 struct kvm_regs kvm_regs;
1963
1964                 r = -EFAULT;
1965                 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
1966                         goto out;
1967                 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
1968                 if (r)
1969                         goto out;
1970                 r = 0;
1971                 break;
1972         }
1973         case KVM_GET_SREGS: {
1974                 struct kvm_sregs kvm_sregs;
1975
1976                 memset(&kvm_sregs, 0, sizeof kvm_sregs);
1977                 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
1978                 if (r)
1979                         goto out;
1980                 r = -EFAULT;
1981                 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
1982                         goto out;
1983                 r = 0;
1984                 break;
1985         }
1986         case KVM_SET_SREGS: {
1987                 struct kvm_sregs kvm_sregs;
1988
1989                 r = -EFAULT;
1990                 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
1991                         goto out;
1992                 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
1993                 if (r)
1994                         goto out;
1995                 r = 0;
1996                 break;
1997         }
1998         case KVM_TRANSLATE: {
1999                 struct kvm_translation tr;
2000
2001                 r = -EFAULT;
2002                 if (copy_from_user(&tr, argp, sizeof tr))
2003                         goto out;
2004                 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2005                 if (r)
2006                         goto out;
2007                 r = -EFAULT;
2008                 if (copy_to_user(argp, &tr, sizeof tr))
2009                         goto out;
2010                 r = 0;
2011                 break;
2012         }
2013         case KVM_INTERRUPT: {
2014                 struct kvm_interrupt irq;
2015
2016                 r = -EFAULT;
2017                 if (copy_from_user(&irq, argp, sizeof irq))
2018                         goto out;
2019                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2020                 if (r)
2021                         goto out;
2022                 r = 0;
2023                 break;
2024         }
2025         case KVM_DEBUG_GUEST: {
2026                 struct kvm_debug_guest dbg;
2027
2028                 r = -EFAULT;
2029                 if (copy_from_user(&dbg, argp, sizeof dbg))
2030                         goto out;
2031                 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2032                 if (r)
2033                         goto out;
2034                 r = 0;
2035                 break;
2036         }
2037         case KVM_SET_SIGNAL_MASK: {
2038                 struct kvm_signal_mask __user *sigmask_arg = argp;
2039                 struct kvm_signal_mask kvm_sigmask;
2040                 sigset_t sigset, *p;
2041
2042                 p = NULL;
2043                 if (argp) {
2044                         r = -EFAULT;
2045                         if (copy_from_user(&kvm_sigmask, argp,
2046                                            sizeof kvm_sigmask))
2047                                 goto out;
2048                         r = -EINVAL;
2049                         if (kvm_sigmask.len != sizeof sigset)
2050                                 goto out;
2051                         r = -EFAULT;
2052                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2053                                            sizeof sigset))
2054                                 goto out;
2055                         p = &sigset;
2056                 }
2057                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2058                 break;
2059         }
2060         case KVM_GET_FPU: {
2061                 struct kvm_fpu fpu;
2062
2063                 memset(&fpu, 0, sizeof fpu);
2064                 r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
2065                 if (r)
2066                         goto out;
2067                 r = -EFAULT;
2068                 if (copy_to_user(argp, &fpu, sizeof fpu))
2069                         goto out;
2070                 r = 0;
2071                 break;
2072         }
2073         case KVM_SET_FPU: {
2074                 struct kvm_fpu fpu;
2075
2076                 r = -EFAULT;
2077                 if (copy_from_user(&fpu, argp, sizeof fpu))
2078                         goto out;
2079                 r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
2080                 if (r)
2081                         goto out;
2082                 r = 0;
2083                 break;
2084         }
2085         default:
2086                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2087         }
2088 out:
2089         return r;
2090 }
2091
2092 static long kvm_vm_ioctl(struct file *filp,
2093                            unsigned int ioctl, unsigned long arg)
2094 {
2095         struct kvm *kvm = filp->private_data;
2096         void __user *argp = (void __user *)arg;
2097         int r;
2098
2099         switch (ioctl) {
2100         case KVM_CREATE_VCPU:
2101                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2102                 if (r < 0)
2103                         goto out;
2104                 break;
2105         case KVM_SET_USER_MEMORY_REGION: {
2106                 struct kvm_userspace_memory_region kvm_userspace_mem;
2107
2108                 r = -EFAULT;
2109                 if (copy_from_user(&kvm_userspace_mem, argp,
2110                                                 sizeof kvm_userspace_mem))
2111                         goto out;
2112
2113                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
2114                 if (r)
2115                         goto out;
2116                 break;
2117         }
2118         case KVM_GET_DIRTY_LOG: {
2119                 struct kvm_dirty_log log;
2120
2121                 r = -EFAULT;
2122                 if (copy_from_user(&log, argp, sizeof log))
2123                         goto out;
2124                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2125                 if (r)
2126                         goto out;
2127                 break;
2128         }
2129         default:
2130                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2131         }
2132 out:
2133         return r;
2134 }
2135
2136 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2137                                   unsigned long address,
2138                                   int *type)
2139 {
2140         struct kvm *kvm = vma->vm_file->private_data;
2141         unsigned long pgoff;
2142         struct page *page;
2143
2144         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2145         if (!kvm_is_visible_gfn(kvm, pgoff))
2146                 return NOPAGE_SIGBUS;
2147         /* current->mm->mmap_sem is already held so call lockless version */
2148         page = __gfn_to_page(kvm, pgoff);
2149         if (is_error_page(page)) {
2150                 kvm_release_page(page);
2151                 return NOPAGE_SIGBUS;
2152         }
2153         if (type != NULL)
2154                 *type = VM_FAULT_MINOR;
2155
2156         return page;
2157 }
2158
2159 static struct vm_operations_struct kvm_vm_vm_ops = {
2160         .nopage = kvm_vm_nopage,
2161 };
2162
2163 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2164 {
2165         vma->vm_ops = &kvm_vm_vm_ops;
2166         return 0;
2167 }
2168
2169 static struct file_operations kvm_vm_fops = {
2170         .release        = kvm_vm_release,
2171         .unlocked_ioctl = kvm_vm_ioctl,
2172         .compat_ioctl   = kvm_vm_ioctl,
2173         .mmap           = kvm_vm_mmap,
2174 };
2175
2176 static int kvm_dev_ioctl_create_vm(void)
2177 {
2178         int fd, r;
2179         struct inode *inode;
2180         struct file *file;
2181         struct kvm *kvm;
2182
2183         kvm = kvm_create_vm();
2184         if (IS_ERR(kvm))
2185                 return PTR_ERR(kvm);
2186         r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
2187         if (r) {
2188                 kvm_destroy_vm(kvm);
2189                 return r;
2190         }
2191
2192         kvm->filp = file;
2193
2194         return fd;
2195 }
2196
2197 static long kvm_dev_ioctl(struct file *filp,
2198                           unsigned int ioctl, unsigned long arg)
2199 {
2200         void __user *argp = (void __user *)arg;
2201         long r = -EINVAL;
2202
2203         switch (ioctl) {
2204         case KVM_GET_API_VERSION:
2205                 r = -EINVAL;
2206                 if (arg)
2207                         goto out;
2208                 r = KVM_API_VERSION;
2209                 break;
2210         case KVM_CREATE_VM:
2211                 r = -EINVAL;
2212                 if (arg)
2213                         goto out;
2214                 r = kvm_dev_ioctl_create_vm();
2215                 break;
2216         case KVM_CHECK_EXTENSION: {
2217                 int ext = (long)argp;
2218
2219                 switch (ext) {
2220                 case KVM_CAP_IRQCHIP:
2221                 case KVM_CAP_HLT:
2222                 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2223                 case KVM_CAP_USER_MEMORY:
2224                 case KVM_CAP_SET_TSS_ADDR:
2225                         r = 1;
2226                         break;
2227                 default:
2228                         r = 0;
2229                         break;
2230                 }
2231                 break;
2232         }
2233         case KVM_GET_VCPU_MMAP_SIZE:
2234                 r = -EINVAL;
2235                 if (arg)
2236                         goto out;
2237                 r = 2 * PAGE_SIZE;
2238                 break;
2239         default:
2240                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2241         }
2242 out:
2243         return r;
2244 }
2245
2246 static struct file_operations kvm_chardev_ops = {
2247         .unlocked_ioctl = kvm_dev_ioctl,
2248         .compat_ioctl   = kvm_dev_ioctl,
2249 };
2250
2251 static struct miscdevice kvm_dev = {
2252         KVM_MINOR,
2253         "kvm",
2254         &kvm_chardev_ops,
2255 };
2256
2257 /*
2258  * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2259  * cached on it.
2260  */
2261 static void decache_vcpus_on_cpu(int cpu)
2262 {
2263         struct kvm *vm;
2264         struct kvm_vcpu *vcpu;
2265         int i;
2266
2267         spin_lock(&kvm_lock);
2268         list_for_each_entry(vm, &vm_list, vm_list)
2269                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2270                         vcpu = vm->vcpus[i];
2271                         if (!vcpu)
2272                                 continue;
2273                         /*
2274                          * If the vcpu is locked, then it is running on some
2275                          * other cpu and therefore it is not cached on the
2276                          * cpu in question.
2277                          *
2278                          * If it's not locked, check the last cpu it executed
2279                          * on.
2280                          */
2281                         if (mutex_trylock(&vcpu->mutex)) {
2282                                 if (vcpu->cpu == cpu) {
2283                                         kvm_x86_ops->vcpu_decache(vcpu);
2284                                         vcpu->cpu = -1;
2285                                 }
2286                                 mutex_unlock(&vcpu->mutex);
2287                         }
2288                 }
2289         spin_unlock(&kvm_lock);
2290 }
2291
2292 static void hardware_enable(void *junk)
2293 {
2294         int cpu = raw_smp_processor_id();
2295
2296         if (cpu_isset(cpu, cpus_hardware_enabled))
2297                 return;
2298         cpu_set(cpu, cpus_hardware_enabled);
2299         kvm_x86_ops->hardware_enable(NULL);
2300 }
2301
2302 static void hardware_disable(void *junk)
2303 {
2304         int cpu = raw_smp_processor_id();
2305
2306         if (!cpu_isset(cpu, cpus_hardware_enabled))
2307                 return;
2308         cpu_clear(cpu, cpus_hardware_enabled);
2309         decache_vcpus_on_cpu(cpu);
2310         kvm_x86_ops->hardware_disable(NULL);
2311 }
2312
2313 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2314                            void *v)
2315 {
2316         int cpu = (long)v;
2317
2318         switch (val) {
2319         case CPU_DYING:
2320         case CPU_DYING_FROZEN:
2321                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2322                        cpu);
2323                 hardware_disable(NULL);
2324                 break;
2325         case CPU_UP_CANCELED:
2326         case CPU_UP_CANCELED_FROZEN:
2327                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2328                        cpu);
2329                 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
2330                 break;
2331         case CPU_ONLINE:
2332         case CPU_ONLINE_FROZEN:
2333                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2334                        cpu);
2335                 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
2336                 break;
2337         }
2338         return NOTIFY_OK;
2339 }
2340
2341 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2342                       void *v)
2343 {
2344         if (val == SYS_RESTART) {
2345                 /*
2346                  * Some (well, at least mine) BIOSes hang on reboot if
2347                  * in vmx root mode.
2348                  */
2349                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2350                 on_each_cpu(hardware_disable, NULL, 0, 1);
2351         }
2352         return NOTIFY_OK;
2353 }
2354
2355 static struct notifier_block kvm_reboot_notifier = {
2356         .notifier_call = kvm_reboot,
2357         .priority = 0,
2358 };
2359
2360 void kvm_io_bus_init(struct kvm_io_bus *bus)
2361 {
2362         memset(bus, 0, sizeof(*bus));
2363 }
2364
2365 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2366 {
2367         int i;
2368
2369         for (i = 0; i < bus->dev_count; i++) {
2370                 struct kvm_io_device *pos = bus->devs[i];
2371
2372                 kvm_iodevice_destructor(pos);
2373         }
2374 }
2375
2376 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
2377 {
2378         int i;
2379
2380         for (i = 0; i < bus->dev_count; i++) {
2381                 struct kvm_io_device *pos = bus->devs[i];
2382
2383                 if (pos->in_range(pos, addr))
2384                         return pos;
2385         }
2386
2387         return NULL;
2388 }
2389
2390 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2391 {
2392         BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2393
2394         bus->devs[bus->dev_count++] = dev;
2395 }
2396
2397 static struct notifier_block kvm_cpu_notifier = {
2398         .notifier_call = kvm_cpu_hotplug,
2399         .priority = 20, /* must be > scheduler priority */
2400 };
2401
2402 static u64 stat_get(void *_offset)
2403 {
2404         unsigned offset = (long)_offset;
2405         u64 total = 0;
2406         struct kvm *kvm;
2407         struct kvm_vcpu *vcpu;
2408         int i;
2409
2410         spin_lock(&kvm_lock);
2411         list_for_each_entry(kvm, &vm_list, vm_list)
2412                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2413                         vcpu = kvm->vcpus[i];
2414                         if (vcpu)
2415                                 total += *(u32 *)((void *)vcpu + offset);
2416                 }
2417         spin_unlock(&kvm_lock);
2418         return total;
2419 }
2420
2421 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
2422
2423 static __init void kvm_init_debug(void)
2424 {
2425         struct kvm_stats_debugfs_item *p;
2426
2427         debugfs_dir = debugfs_create_dir("kvm", NULL);
2428         for (p = debugfs_entries; p->name; ++p)
2429                 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
2430                                                 (void *)(long)p->offset,
2431                                                 &stat_fops);
2432 }
2433
2434 static void kvm_exit_debug(void)
2435 {
2436         struct kvm_stats_debugfs_item *p;
2437
2438         for (p = debugfs_entries; p->name; ++p)
2439                 debugfs_remove(p->dentry);
2440         debugfs_remove(debugfs_dir);
2441 }
2442
2443 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2444 {
2445         hardware_disable(NULL);
2446         return 0;
2447 }
2448
2449 static int kvm_resume(struct sys_device *dev)
2450 {
2451         hardware_enable(NULL);
2452         return 0;
2453 }
2454
2455 static struct sysdev_class kvm_sysdev_class = {
2456         .name = "kvm",
2457         .suspend = kvm_suspend,
2458         .resume = kvm_resume,
2459 };
2460
2461 static struct sys_device kvm_sysdev = {
2462         .id = 0,
2463         .cls = &kvm_sysdev_class,
2464 };
2465
2466 struct page *bad_page;
2467
2468 static inline
2469 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2470 {
2471         return container_of(pn, struct kvm_vcpu, preempt_notifier);
2472 }
2473
2474 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2475 {
2476         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2477
2478         kvm_x86_ops->vcpu_load(vcpu, cpu);
2479 }
2480
2481 static void kvm_sched_out(struct preempt_notifier *pn,
2482                           struct task_struct *next)
2483 {
2484         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2485
2486         kvm_x86_ops->vcpu_put(vcpu);
2487 }
2488
2489 int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
2490                   struct module *module)
2491 {
2492         int r;
2493         int cpu;
2494
2495         if (kvm_x86_ops) {
2496                 printk(KERN_ERR "kvm: already loaded the other module\n");
2497                 return -EEXIST;
2498         }
2499
2500         if (!ops->cpu_has_kvm_support()) {
2501                 printk(KERN_ERR "kvm: no hardware support\n");
2502                 return -EOPNOTSUPP;
2503         }
2504         if (ops->disabled_by_bios()) {
2505                 printk(KERN_ERR "kvm: disabled by bios\n");
2506                 return -EOPNOTSUPP;
2507         }
2508
2509         kvm_x86_ops = ops;
2510
2511         r = kvm_x86_ops->hardware_setup();
2512         if (r < 0)
2513                 goto out;
2514
2515         for_each_online_cpu(cpu) {
2516                 smp_call_function_single(cpu,
2517                                 kvm_x86_ops->check_processor_compatibility,
2518                                 &r, 0, 1);
2519                 if (r < 0)
2520                         goto out_free_0;
2521         }
2522
2523         on_each_cpu(hardware_enable, NULL, 0, 1);
2524         r = register_cpu_notifier(&kvm_cpu_notifier);
2525         if (r)
2526                 goto out_free_1;
2527         register_reboot_notifier(&kvm_reboot_notifier);
2528
2529         r = sysdev_class_register(&kvm_sysdev_class);
2530         if (r)
2531                 goto out_free_2;
2532
2533         r = sysdev_register(&kvm_sysdev);
2534         if (r)
2535                 goto out_free_3;
2536
2537         /* A kmem cache lets us meet the alignment requirements of fx_save. */
2538         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2539                                            __alignof__(struct kvm_vcpu), 0, 0);
2540         if (!kvm_vcpu_cache) {
2541                 r = -ENOMEM;
2542                 goto out_free_4;
2543         }
2544
2545         kvm_chardev_ops.owner = module;
2546
2547         r = misc_register(&kvm_dev);
2548         if (r) {
2549                 printk(KERN_ERR "kvm: misc device register failed\n");
2550                 goto out_free;
2551         }
2552
2553         kvm_preempt_ops.sched_in = kvm_sched_in;
2554         kvm_preempt_ops.sched_out = kvm_sched_out;
2555
2556         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2557
2558         return 0;
2559
2560 out_free:
2561         kmem_cache_destroy(kvm_vcpu_cache);
2562 out_free_4:
2563         sysdev_unregister(&kvm_sysdev);
2564 out_free_3:
2565         sysdev_class_unregister(&kvm_sysdev_class);
2566 out_free_2:
2567         unregister_reboot_notifier(&kvm_reboot_notifier);
2568         unregister_cpu_notifier(&kvm_cpu_notifier);
2569 out_free_1:
2570         on_each_cpu(hardware_disable, NULL, 0, 1);
2571 out_free_0:
2572         kvm_x86_ops->hardware_unsetup();
2573 out:
2574         kvm_x86_ops = NULL;
2575         return r;
2576 }
2577 EXPORT_SYMBOL_GPL(kvm_init_x86);
2578
2579 void kvm_exit_x86(void)
2580 {
2581         misc_deregister(&kvm_dev);
2582         kmem_cache_destroy(kvm_vcpu_cache);
2583         sysdev_unregister(&kvm_sysdev);
2584         sysdev_class_unregister(&kvm_sysdev_class);
2585         unregister_reboot_notifier(&kvm_reboot_notifier);
2586         unregister_cpu_notifier(&kvm_cpu_notifier);
2587         on_each_cpu(hardware_disable, NULL, 0, 1);
2588         kvm_x86_ops->hardware_unsetup();
2589         kvm_x86_ops = NULL;
2590 }
2591 EXPORT_SYMBOL_GPL(kvm_exit_x86);
2592
2593 static __init int kvm_init(void)
2594 {
2595         int r;
2596
2597         r = kvm_mmu_module_init();
2598         if (r)
2599                 goto out4;
2600
2601         kvm_init_debug();
2602
2603         kvm_arch_init();
2604
2605         bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2606
2607         if (bad_page == NULL) {
2608                 r = -ENOMEM;
2609                 goto out;
2610         }
2611
2612         return 0;
2613
2614 out:
2615         kvm_exit_debug();
2616         kvm_mmu_module_exit();
2617 out4:
2618         return r;
2619 }
2620
2621 static __exit void kvm_exit(void)
2622 {
2623         kvm_exit_debug();
2624         __free_page(bad_page);
2625         kvm_mmu_module_exit();
2626 }
2627
2628 module_init(kvm_init)
2629 module_exit(kvm_exit)