KVM: Use a shared page for kernel/user communication when runing a vcpu
[safe/jmp/linux-2.6] / drivers / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <linux/magic.h>
24 #include <asm/processor.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <asm/msr.h>
28 #include <linux/mm.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <asm/uaccess.h>
32 #include <linux/reboot.h>
33 #include <asm/io.h>
34 #include <linux/debugfs.h>
35 #include <linux/highmem.h>
36 #include <linux/file.h>
37 #include <asm/desc.h>
38 #include <linux/sysdev.h>
39 #include <linux/cpu.h>
40 #include <linux/file.h>
41 #include <linux/fs.h>
42 #include <linux/mount.h>
43
44 #include "x86_emulate.h"
45 #include "segment_descriptor.h"
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 static DEFINE_SPINLOCK(kvm_lock);
51 static LIST_HEAD(vm_list);
52
53 struct kvm_arch_ops *kvm_arch_ops;
54 struct kvm_stat kvm_stat;
55 EXPORT_SYMBOL_GPL(kvm_stat);
56
57 static struct kvm_stats_debugfs_item {
58         const char *name;
59         u32 *data;
60         struct dentry *dentry;
61 } debugfs_entries[] = {
62         { "pf_fixed", &kvm_stat.pf_fixed },
63         { "pf_guest", &kvm_stat.pf_guest },
64         { "tlb_flush", &kvm_stat.tlb_flush },
65         { "invlpg", &kvm_stat.invlpg },
66         { "exits", &kvm_stat.exits },
67         { "io_exits", &kvm_stat.io_exits },
68         { "mmio_exits", &kvm_stat.mmio_exits },
69         { "signal_exits", &kvm_stat.signal_exits },
70         { "irq_window", &kvm_stat.irq_window_exits },
71         { "halt_exits", &kvm_stat.halt_exits },
72         { "request_irq", &kvm_stat.request_irq_exits },
73         { "irq_exits", &kvm_stat.irq_exits },
74         { NULL, NULL }
75 };
76
77 static struct dentry *debugfs_dir;
78
79 struct vfsmount *kvmfs_mnt;
80
81 #define MAX_IO_MSRS 256
82
83 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
84 #define LMSW_GUEST_MASK 0x0eULL
85 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
86 #define CR8_RESEVED_BITS (~0x0fULL)
87 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
88
89 #ifdef CONFIG_X86_64
90 // LDT or TSS descriptor in the GDT. 16 bytes.
91 struct segment_descriptor_64 {
92         struct segment_descriptor s;
93         u32 base_higher;
94         u32 pad_zero;
95 };
96
97 #endif
98
99 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
100                            unsigned long arg);
101
102 static struct inode *kvmfs_inode(struct file_operations *fops)
103 {
104         int error = -ENOMEM;
105         struct inode *inode = new_inode(kvmfs_mnt->mnt_sb);
106
107         if (!inode)
108                 goto eexit_1;
109
110         inode->i_fop = fops;
111
112         /*
113          * Mark the inode dirty from the very beginning,
114          * that way it will never be moved to the dirty
115          * list because mark_inode_dirty() will think
116          * that it already _is_ on the dirty list.
117          */
118         inode->i_state = I_DIRTY;
119         inode->i_mode = S_IRUSR | S_IWUSR;
120         inode->i_uid = current->fsuid;
121         inode->i_gid = current->fsgid;
122         inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
123         return inode;
124
125 eexit_1:
126         return ERR_PTR(error);
127 }
128
129 static struct file *kvmfs_file(struct inode *inode, void *private_data)
130 {
131         struct file *file = get_empty_filp();
132
133         if (!file)
134                 return ERR_PTR(-ENFILE);
135
136         file->f_path.mnt = mntget(kvmfs_mnt);
137         file->f_path.dentry = d_alloc_anon(inode);
138         if (!file->f_path.dentry)
139                 return ERR_PTR(-ENOMEM);
140         file->f_mapping = inode->i_mapping;
141
142         file->f_pos = 0;
143         file->f_flags = O_RDWR;
144         file->f_op = inode->i_fop;
145         file->f_mode = FMODE_READ | FMODE_WRITE;
146         file->f_version = 0;
147         file->private_data = private_data;
148         return file;
149 }
150
151 unsigned long segment_base(u16 selector)
152 {
153         struct descriptor_table gdt;
154         struct segment_descriptor *d;
155         unsigned long table_base;
156         typedef unsigned long ul;
157         unsigned long v;
158
159         if (selector == 0)
160                 return 0;
161
162         asm ("sgdt %0" : "=m"(gdt));
163         table_base = gdt.base;
164
165         if (selector & 4) {           /* from ldt */
166                 u16 ldt_selector;
167
168                 asm ("sldt %0" : "=g"(ldt_selector));
169                 table_base = segment_base(ldt_selector);
170         }
171         d = (struct segment_descriptor *)(table_base + (selector & ~7));
172         v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
173 #ifdef CONFIG_X86_64
174         if (d->system == 0
175             && (d->type == 2 || d->type == 9 || d->type == 11))
176                 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
177 #endif
178         return v;
179 }
180 EXPORT_SYMBOL_GPL(segment_base);
181
182 static inline int valid_vcpu(int n)
183 {
184         return likely(n >= 0 && n < KVM_MAX_VCPUS);
185 }
186
187 int kvm_read_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
188                    void *dest)
189 {
190         unsigned char *host_buf = dest;
191         unsigned long req_size = size;
192
193         while (size) {
194                 hpa_t paddr;
195                 unsigned now;
196                 unsigned offset;
197                 hva_t guest_buf;
198
199                 paddr = gva_to_hpa(vcpu, addr);
200
201                 if (is_error_hpa(paddr))
202                         break;
203
204                 guest_buf = (hva_t)kmap_atomic(
205                                         pfn_to_page(paddr >> PAGE_SHIFT),
206                                         KM_USER0);
207                 offset = addr & ~PAGE_MASK;
208                 guest_buf |= offset;
209                 now = min(size, PAGE_SIZE - offset);
210                 memcpy(host_buf, (void*)guest_buf, now);
211                 host_buf += now;
212                 addr += now;
213                 size -= now;
214                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
215         }
216         return req_size - size;
217 }
218 EXPORT_SYMBOL_GPL(kvm_read_guest);
219
220 int kvm_write_guest(struct kvm_vcpu *vcpu, gva_t addr, unsigned long size,
221                     void *data)
222 {
223         unsigned char *host_buf = data;
224         unsigned long req_size = size;
225
226         while (size) {
227                 hpa_t paddr;
228                 unsigned now;
229                 unsigned offset;
230                 hva_t guest_buf;
231                 gfn_t gfn;
232
233                 paddr = gva_to_hpa(vcpu, addr);
234
235                 if (is_error_hpa(paddr))
236                         break;
237
238                 gfn = vcpu->mmu.gva_to_gpa(vcpu, addr) >> PAGE_SHIFT;
239                 mark_page_dirty(vcpu->kvm, gfn);
240                 guest_buf = (hva_t)kmap_atomic(
241                                 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
242                 offset = addr & ~PAGE_MASK;
243                 guest_buf |= offset;
244                 now = min(size, PAGE_SIZE - offset);
245                 memcpy((void*)guest_buf, host_buf, now);
246                 host_buf += now;
247                 addr += now;
248                 size -= now;
249                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
250         }
251         return req_size - size;
252 }
253 EXPORT_SYMBOL_GPL(kvm_write_guest);
254
255 /*
256  * Switches to specified vcpu, until a matching vcpu_put()
257  */
258 static void vcpu_load(struct kvm_vcpu *vcpu)
259 {
260         mutex_lock(&vcpu->mutex);
261         kvm_arch_ops->vcpu_load(vcpu);
262 }
263
264 /*
265  * Switches to specified vcpu, until a matching vcpu_put(). Will return NULL
266  * if the slot is not populated.
267  */
268 static struct kvm_vcpu *vcpu_load_slot(struct kvm *kvm, int slot)
269 {
270         struct kvm_vcpu *vcpu = &kvm->vcpus[slot];
271
272         mutex_lock(&vcpu->mutex);
273         if (!vcpu->vmcs) {
274                 mutex_unlock(&vcpu->mutex);
275                 return NULL;
276         }
277         kvm_arch_ops->vcpu_load(vcpu);
278         return vcpu;
279 }
280
281 static void vcpu_put(struct kvm_vcpu *vcpu)
282 {
283         kvm_arch_ops->vcpu_put(vcpu);
284         mutex_unlock(&vcpu->mutex);
285 }
286
287 static struct kvm *kvm_create_vm(void)
288 {
289         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
290         int i;
291
292         if (!kvm)
293                 return ERR_PTR(-ENOMEM);
294
295         spin_lock_init(&kvm->lock);
296         INIT_LIST_HEAD(&kvm->active_mmu_pages);
297         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
298                 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
299
300                 mutex_init(&vcpu->mutex);
301                 vcpu->cpu = -1;
302                 vcpu->kvm = kvm;
303                 vcpu->mmu.root_hpa = INVALID_PAGE;
304                 INIT_LIST_HEAD(&vcpu->free_pages);
305                 spin_lock(&kvm_lock);
306                 list_add(&kvm->vm_list, &vm_list);
307                 spin_unlock(&kvm_lock);
308         }
309         return kvm;
310 }
311
312 static int kvm_dev_open(struct inode *inode, struct file *filp)
313 {
314         return 0;
315 }
316
317 /*
318  * Free any memory in @free but not in @dont.
319  */
320 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
321                                   struct kvm_memory_slot *dont)
322 {
323         int i;
324
325         if (!dont || free->phys_mem != dont->phys_mem)
326                 if (free->phys_mem) {
327                         for (i = 0; i < free->npages; ++i)
328                                 if (free->phys_mem[i])
329                                         __free_page(free->phys_mem[i]);
330                         vfree(free->phys_mem);
331                 }
332
333         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
334                 vfree(free->dirty_bitmap);
335
336         free->phys_mem = NULL;
337         free->npages = 0;
338         free->dirty_bitmap = NULL;
339 }
340
341 static void kvm_free_physmem(struct kvm *kvm)
342 {
343         int i;
344
345         for (i = 0; i < kvm->nmemslots; ++i)
346                 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
347 }
348
349 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
350 {
351         if (!vcpu->vmcs)
352                 return;
353
354         vcpu_load(vcpu);
355         kvm_mmu_destroy(vcpu);
356         vcpu_put(vcpu);
357         kvm_arch_ops->vcpu_free(vcpu);
358         free_page((unsigned long)vcpu->run);
359         vcpu->run = NULL;
360 }
361
362 static void kvm_free_vcpus(struct kvm *kvm)
363 {
364         unsigned int i;
365
366         for (i = 0; i < KVM_MAX_VCPUS; ++i)
367                 kvm_free_vcpu(&kvm->vcpus[i]);
368 }
369
370 static int kvm_dev_release(struct inode *inode, struct file *filp)
371 {
372         return 0;
373 }
374
375 static void kvm_destroy_vm(struct kvm *kvm)
376 {
377         spin_lock(&kvm_lock);
378         list_del(&kvm->vm_list);
379         spin_unlock(&kvm_lock);
380         kvm_free_vcpus(kvm);
381         kvm_free_physmem(kvm);
382         kfree(kvm);
383 }
384
385 static int kvm_vm_release(struct inode *inode, struct file *filp)
386 {
387         struct kvm *kvm = filp->private_data;
388
389         kvm_destroy_vm(kvm);
390         return 0;
391 }
392
393 static void inject_gp(struct kvm_vcpu *vcpu)
394 {
395         kvm_arch_ops->inject_gp(vcpu, 0);
396 }
397
398 /*
399  * Load the pae pdptrs.  Return true is they are all valid.
400  */
401 static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
402 {
403         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
404         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
405         int i;
406         u64 pdpte;
407         u64 *pdpt;
408         int ret;
409         struct kvm_memory_slot *memslot;
410
411         spin_lock(&vcpu->kvm->lock);
412         memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
413         /* FIXME: !memslot - emulate? 0xff? */
414         pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
415
416         ret = 1;
417         for (i = 0; i < 4; ++i) {
418                 pdpte = pdpt[offset + i];
419                 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull)) {
420                         ret = 0;
421                         goto out;
422                 }
423         }
424
425         for (i = 0; i < 4; ++i)
426                 vcpu->pdptrs[i] = pdpt[offset + i];
427
428 out:
429         kunmap_atomic(pdpt, KM_USER0);
430         spin_unlock(&vcpu->kvm->lock);
431
432         return ret;
433 }
434
435 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
436 {
437         if (cr0 & CR0_RESEVED_BITS) {
438                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
439                        cr0, vcpu->cr0);
440                 inject_gp(vcpu);
441                 return;
442         }
443
444         if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
445                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
446                 inject_gp(vcpu);
447                 return;
448         }
449
450         if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
451                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
452                        "and a clear PE flag\n");
453                 inject_gp(vcpu);
454                 return;
455         }
456
457         if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
458 #ifdef CONFIG_X86_64
459                 if ((vcpu->shadow_efer & EFER_LME)) {
460                         int cs_db, cs_l;
461
462                         if (!is_pae(vcpu)) {
463                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
464                                        "in long mode while PAE is disabled\n");
465                                 inject_gp(vcpu);
466                                 return;
467                         }
468                         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
469                         if (cs_l) {
470                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
471                                        "in long mode while CS.L == 1\n");
472                                 inject_gp(vcpu);
473                                 return;
474
475                         }
476                 } else
477 #endif
478                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
479                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
480                                "reserved bits\n");
481                         inject_gp(vcpu);
482                         return;
483                 }
484
485         }
486
487         kvm_arch_ops->set_cr0(vcpu, cr0);
488         vcpu->cr0 = cr0;
489
490         spin_lock(&vcpu->kvm->lock);
491         kvm_mmu_reset_context(vcpu);
492         spin_unlock(&vcpu->kvm->lock);
493         return;
494 }
495 EXPORT_SYMBOL_GPL(set_cr0);
496
497 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
498 {
499         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
500         set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
501 }
502 EXPORT_SYMBOL_GPL(lmsw);
503
504 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
505 {
506         if (cr4 & CR4_RESEVED_BITS) {
507                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
508                 inject_gp(vcpu);
509                 return;
510         }
511
512         if (is_long_mode(vcpu)) {
513                 if (!(cr4 & CR4_PAE_MASK)) {
514                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
515                                "in long mode\n");
516                         inject_gp(vcpu);
517                         return;
518                 }
519         } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
520                    && !load_pdptrs(vcpu, vcpu->cr3)) {
521                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
522                 inject_gp(vcpu);
523         }
524
525         if (cr4 & CR4_VMXE_MASK) {
526                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
527                 inject_gp(vcpu);
528                 return;
529         }
530         kvm_arch_ops->set_cr4(vcpu, cr4);
531         spin_lock(&vcpu->kvm->lock);
532         kvm_mmu_reset_context(vcpu);
533         spin_unlock(&vcpu->kvm->lock);
534 }
535 EXPORT_SYMBOL_GPL(set_cr4);
536
537 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
538 {
539         if (is_long_mode(vcpu)) {
540                 if (cr3 & CR3_L_MODE_RESEVED_BITS) {
541                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
542                         inject_gp(vcpu);
543                         return;
544                 }
545         } else {
546                 if (cr3 & CR3_RESEVED_BITS) {
547                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
548                         inject_gp(vcpu);
549                         return;
550                 }
551                 if (is_paging(vcpu) && is_pae(vcpu) &&
552                     !load_pdptrs(vcpu, cr3)) {
553                         printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
554                                "reserved bits\n");
555                         inject_gp(vcpu);
556                         return;
557                 }
558         }
559
560         vcpu->cr3 = cr3;
561         spin_lock(&vcpu->kvm->lock);
562         /*
563          * Does the new cr3 value map to physical memory? (Note, we
564          * catch an invalid cr3 even in real-mode, because it would
565          * cause trouble later on when we turn on paging anyway.)
566          *
567          * A real CPU would silently accept an invalid cr3 and would
568          * attempt to use it - with largely undefined (and often hard
569          * to debug) behavior on the guest side.
570          */
571         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
572                 inject_gp(vcpu);
573         else
574                 vcpu->mmu.new_cr3(vcpu);
575         spin_unlock(&vcpu->kvm->lock);
576 }
577 EXPORT_SYMBOL_GPL(set_cr3);
578
579 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
580 {
581         if ( cr8 & CR8_RESEVED_BITS) {
582                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
583                 inject_gp(vcpu);
584                 return;
585         }
586         vcpu->cr8 = cr8;
587 }
588 EXPORT_SYMBOL_GPL(set_cr8);
589
590 void fx_init(struct kvm_vcpu *vcpu)
591 {
592         struct __attribute__ ((__packed__)) fx_image_s {
593                 u16 control; //fcw
594                 u16 status; //fsw
595                 u16 tag; // ftw
596                 u16 opcode; //fop
597                 u64 ip; // fpu ip
598                 u64 operand;// fpu dp
599                 u32 mxcsr;
600                 u32 mxcsr_mask;
601
602         } *fx_image;
603
604         fx_save(vcpu->host_fx_image);
605         fpu_init();
606         fx_save(vcpu->guest_fx_image);
607         fx_restore(vcpu->host_fx_image);
608
609         fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
610         fx_image->mxcsr = 0x1f80;
611         memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
612                0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
613 }
614 EXPORT_SYMBOL_GPL(fx_init);
615
616 static void do_remove_write_access(struct kvm_vcpu *vcpu, int slot)
617 {
618         spin_lock(&vcpu->kvm->lock);
619         kvm_mmu_slot_remove_write_access(vcpu, slot);
620         spin_unlock(&vcpu->kvm->lock);
621 }
622
623 /*
624  * Allocate some memory and give it an address in the guest physical address
625  * space.
626  *
627  * Discontiguous memory is allowed, mostly for framebuffers.
628  */
629 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
630                                           struct kvm_memory_region *mem)
631 {
632         int r;
633         gfn_t base_gfn;
634         unsigned long npages;
635         unsigned long i;
636         struct kvm_memory_slot *memslot;
637         struct kvm_memory_slot old, new;
638         int memory_config_version;
639
640         r = -EINVAL;
641         /* General sanity checks */
642         if (mem->memory_size & (PAGE_SIZE - 1))
643                 goto out;
644         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
645                 goto out;
646         if (mem->slot >= KVM_MEMORY_SLOTS)
647                 goto out;
648         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
649                 goto out;
650
651         memslot = &kvm->memslots[mem->slot];
652         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
653         npages = mem->memory_size >> PAGE_SHIFT;
654
655         if (!npages)
656                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
657
658 raced:
659         spin_lock(&kvm->lock);
660
661         memory_config_version = kvm->memory_config_version;
662         new = old = *memslot;
663
664         new.base_gfn = base_gfn;
665         new.npages = npages;
666         new.flags = mem->flags;
667
668         /* Disallow changing a memory slot's size. */
669         r = -EINVAL;
670         if (npages && old.npages && npages != old.npages)
671                 goto out_unlock;
672
673         /* Check for overlaps */
674         r = -EEXIST;
675         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
676                 struct kvm_memory_slot *s = &kvm->memslots[i];
677
678                 if (s == memslot)
679                         continue;
680                 if (!((base_gfn + npages <= s->base_gfn) ||
681                       (base_gfn >= s->base_gfn + s->npages)))
682                         goto out_unlock;
683         }
684         /*
685          * Do memory allocations outside lock.  memory_config_version will
686          * detect any races.
687          */
688         spin_unlock(&kvm->lock);
689
690         /* Deallocate if slot is being removed */
691         if (!npages)
692                 new.phys_mem = NULL;
693
694         /* Free page dirty bitmap if unneeded */
695         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
696                 new.dirty_bitmap = NULL;
697
698         r = -ENOMEM;
699
700         /* Allocate if a slot is being created */
701         if (npages && !new.phys_mem) {
702                 new.phys_mem = vmalloc(npages * sizeof(struct page *));
703
704                 if (!new.phys_mem)
705                         goto out_free;
706
707                 memset(new.phys_mem, 0, npages * sizeof(struct page *));
708                 for (i = 0; i < npages; ++i) {
709                         new.phys_mem[i] = alloc_page(GFP_HIGHUSER
710                                                      | __GFP_ZERO);
711                         if (!new.phys_mem[i])
712                                 goto out_free;
713                         set_page_private(new.phys_mem[i],0);
714                 }
715         }
716
717         /* Allocate page dirty bitmap if needed */
718         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
719                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
720
721                 new.dirty_bitmap = vmalloc(dirty_bytes);
722                 if (!new.dirty_bitmap)
723                         goto out_free;
724                 memset(new.dirty_bitmap, 0, dirty_bytes);
725         }
726
727         spin_lock(&kvm->lock);
728
729         if (memory_config_version != kvm->memory_config_version) {
730                 spin_unlock(&kvm->lock);
731                 kvm_free_physmem_slot(&new, &old);
732                 goto raced;
733         }
734
735         r = -EAGAIN;
736         if (kvm->busy)
737                 goto out_unlock;
738
739         if (mem->slot >= kvm->nmemslots)
740                 kvm->nmemslots = mem->slot + 1;
741
742         *memslot = new;
743         ++kvm->memory_config_version;
744
745         spin_unlock(&kvm->lock);
746
747         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
748                 struct kvm_vcpu *vcpu;
749
750                 vcpu = vcpu_load_slot(kvm, i);
751                 if (!vcpu)
752                         continue;
753                 if (new.flags & KVM_MEM_LOG_DIRTY_PAGES)
754                         do_remove_write_access(vcpu, mem->slot);
755                 kvm_mmu_reset_context(vcpu);
756                 vcpu_put(vcpu);
757         }
758
759         kvm_free_physmem_slot(&old, &new);
760         return 0;
761
762 out_unlock:
763         spin_unlock(&kvm->lock);
764 out_free:
765         kvm_free_physmem_slot(&new, &old);
766 out:
767         return r;
768 }
769
770 /*
771  * Get (and clear) the dirty memory log for a memory slot.
772  */
773 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
774                                       struct kvm_dirty_log *log)
775 {
776         struct kvm_memory_slot *memslot;
777         int r, i;
778         int n;
779         int cleared;
780         unsigned long any = 0;
781
782         spin_lock(&kvm->lock);
783
784         /*
785          * Prevent changes to guest memory configuration even while the lock
786          * is not taken.
787          */
788         ++kvm->busy;
789         spin_unlock(&kvm->lock);
790         r = -EINVAL;
791         if (log->slot >= KVM_MEMORY_SLOTS)
792                 goto out;
793
794         memslot = &kvm->memslots[log->slot];
795         r = -ENOENT;
796         if (!memslot->dirty_bitmap)
797                 goto out;
798
799         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
800
801         for (i = 0; !any && i < n/sizeof(long); ++i)
802                 any = memslot->dirty_bitmap[i];
803
804         r = -EFAULT;
805         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
806                 goto out;
807
808         if (any) {
809                 cleared = 0;
810                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
811                         struct kvm_vcpu *vcpu;
812
813                         vcpu = vcpu_load_slot(kvm, i);
814                         if (!vcpu)
815                                 continue;
816                         if (!cleared) {
817                                 do_remove_write_access(vcpu, log->slot);
818                                 memset(memslot->dirty_bitmap, 0, n);
819                                 cleared = 1;
820                         }
821                         kvm_arch_ops->tlb_flush(vcpu);
822                         vcpu_put(vcpu);
823                 }
824         }
825
826         r = 0;
827
828 out:
829         spin_lock(&kvm->lock);
830         --kvm->busy;
831         spin_unlock(&kvm->lock);
832         return r;
833 }
834
835 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
836 {
837         int i;
838
839         for (i = 0; i < kvm->nmemslots; ++i) {
840                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
841
842                 if (gfn >= memslot->base_gfn
843                     && gfn < memslot->base_gfn + memslot->npages)
844                         return memslot;
845         }
846         return NULL;
847 }
848 EXPORT_SYMBOL_GPL(gfn_to_memslot);
849
850 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
851 {
852         int i;
853         struct kvm_memory_slot *memslot = NULL;
854         unsigned long rel_gfn;
855
856         for (i = 0; i < kvm->nmemslots; ++i) {
857                 memslot = &kvm->memslots[i];
858
859                 if (gfn >= memslot->base_gfn
860                     && gfn < memslot->base_gfn + memslot->npages) {
861
862                         if (!memslot || !memslot->dirty_bitmap)
863                                 return;
864
865                         rel_gfn = gfn - memslot->base_gfn;
866
867                         /* avoid RMW */
868                         if (!test_bit(rel_gfn, memslot->dirty_bitmap))
869                                 set_bit(rel_gfn, memslot->dirty_bitmap);
870                         return;
871                 }
872         }
873 }
874
875 static int emulator_read_std(unsigned long addr,
876                              unsigned long *val,
877                              unsigned int bytes,
878                              struct x86_emulate_ctxt *ctxt)
879 {
880         struct kvm_vcpu *vcpu = ctxt->vcpu;
881         void *data = val;
882
883         while (bytes) {
884                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
885                 unsigned offset = addr & (PAGE_SIZE-1);
886                 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
887                 unsigned long pfn;
888                 struct kvm_memory_slot *memslot;
889                 void *page;
890
891                 if (gpa == UNMAPPED_GVA)
892                         return X86EMUL_PROPAGATE_FAULT;
893                 pfn = gpa >> PAGE_SHIFT;
894                 memslot = gfn_to_memslot(vcpu->kvm, pfn);
895                 if (!memslot)
896                         return X86EMUL_UNHANDLEABLE;
897                 page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
898
899                 memcpy(data, page + offset, tocopy);
900
901                 kunmap_atomic(page, KM_USER0);
902
903                 bytes -= tocopy;
904                 data += tocopy;
905                 addr += tocopy;
906         }
907
908         return X86EMUL_CONTINUE;
909 }
910
911 static int emulator_write_std(unsigned long addr,
912                               unsigned long val,
913                               unsigned int bytes,
914                               struct x86_emulate_ctxt *ctxt)
915 {
916         printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
917                addr, bytes);
918         return X86EMUL_UNHANDLEABLE;
919 }
920
921 static int emulator_read_emulated(unsigned long addr,
922                                   unsigned long *val,
923                                   unsigned int bytes,
924                                   struct x86_emulate_ctxt *ctxt)
925 {
926         struct kvm_vcpu *vcpu = ctxt->vcpu;
927
928         if (vcpu->mmio_read_completed) {
929                 memcpy(val, vcpu->mmio_data, bytes);
930                 vcpu->mmio_read_completed = 0;
931                 return X86EMUL_CONTINUE;
932         } else if (emulator_read_std(addr, val, bytes, ctxt)
933                    == X86EMUL_CONTINUE)
934                 return X86EMUL_CONTINUE;
935         else {
936                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
937
938                 if (gpa == UNMAPPED_GVA)
939                         return X86EMUL_PROPAGATE_FAULT;
940                 vcpu->mmio_needed = 1;
941                 vcpu->mmio_phys_addr = gpa;
942                 vcpu->mmio_size = bytes;
943                 vcpu->mmio_is_write = 0;
944
945                 return X86EMUL_UNHANDLEABLE;
946         }
947 }
948
949 static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
950                                unsigned long val, int bytes)
951 {
952         struct kvm_memory_slot *m;
953         struct page *page;
954         void *virt;
955
956         if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
957                 return 0;
958         m = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
959         if (!m)
960                 return 0;
961         page = gfn_to_page(m, gpa >> PAGE_SHIFT);
962         kvm_mmu_pre_write(vcpu, gpa, bytes);
963         mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
964         virt = kmap_atomic(page, KM_USER0);
965         memcpy(virt + offset_in_page(gpa), &val, bytes);
966         kunmap_atomic(virt, KM_USER0);
967         kvm_mmu_post_write(vcpu, gpa, bytes);
968         return 1;
969 }
970
971 static int emulator_write_emulated(unsigned long addr,
972                                    unsigned long val,
973                                    unsigned int bytes,
974                                    struct x86_emulate_ctxt *ctxt)
975 {
976         struct kvm_vcpu *vcpu = ctxt->vcpu;
977         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
978
979         if (gpa == UNMAPPED_GVA)
980                 return X86EMUL_PROPAGATE_FAULT;
981
982         if (emulator_write_phys(vcpu, gpa, val, bytes))
983                 return X86EMUL_CONTINUE;
984
985         vcpu->mmio_needed = 1;
986         vcpu->mmio_phys_addr = gpa;
987         vcpu->mmio_size = bytes;
988         vcpu->mmio_is_write = 1;
989         memcpy(vcpu->mmio_data, &val, bytes);
990
991         return X86EMUL_CONTINUE;
992 }
993
994 static int emulator_cmpxchg_emulated(unsigned long addr,
995                                      unsigned long old,
996                                      unsigned long new,
997                                      unsigned int bytes,
998                                      struct x86_emulate_ctxt *ctxt)
999 {
1000         static int reported;
1001
1002         if (!reported) {
1003                 reported = 1;
1004                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
1005         }
1006         return emulator_write_emulated(addr, new, bytes, ctxt);
1007 }
1008
1009 #ifdef CONFIG_X86_32
1010
1011 static int emulator_cmpxchg8b_emulated(unsigned long addr,
1012                                        unsigned long old_lo,
1013                                        unsigned long old_hi,
1014                                        unsigned long new_lo,
1015                                        unsigned long new_hi,
1016                                        struct x86_emulate_ctxt *ctxt)
1017 {
1018         static int reported;
1019         int r;
1020
1021         if (!reported) {
1022                 reported = 1;
1023                 printk(KERN_WARNING "kvm: emulating exchange8b as write\n");
1024         }
1025         r = emulator_write_emulated(addr, new_lo, 4, ctxt);
1026         if (r != X86EMUL_CONTINUE)
1027                 return r;
1028         return emulator_write_emulated(addr+4, new_hi, 4, ctxt);
1029 }
1030
1031 #endif
1032
1033 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
1034 {
1035         return kvm_arch_ops->get_segment_base(vcpu, seg);
1036 }
1037
1038 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
1039 {
1040         return X86EMUL_CONTINUE;
1041 }
1042
1043 int emulate_clts(struct kvm_vcpu *vcpu)
1044 {
1045         unsigned long cr0;
1046
1047         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1048         cr0 = vcpu->cr0 & ~CR0_TS_MASK;
1049         kvm_arch_ops->set_cr0(vcpu, cr0);
1050         return X86EMUL_CONTINUE;
1051 }
1052
1053 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
1054 {
1055         struct kvm_vcpu *vcpu = ctxt->vcpu;
1056
1057         switch (dr) {
1058         case 0 ... 3:
1059                 *dest = kvm_arch_ops->get_dr(vcpu, dr);
1060                 return X86EMUL_CONTINUE;
1061         default:
1062                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1063                        __FUNCTION__, dr);
1064                 return X86EMUL_UNHANDLEABLE;
1065         }
1066 }
1067
1068 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
1069 {
1070         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
1071         int exception;
1072
1073         kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
1074         if (exception) {
1075                 /* FIXME: better handling */
1076                 return X86EMUL_UNHANDLEABLE;
1077         }
1078         return X86EMUL_CONTINUE;
1079 }
1080
1081 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
1082 {
1083         static int reported;
1084         u8 opcodes[4];
1085         unsigned long rip = ctxt->vcpu->rip;
1086         unsigned long rip_linear;
1087
1088         rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
1089
1090         if (reported)
1091                 return;
1092
1093         emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
1094
1095         printk(KERN_ERR "emulation failed but !mmio_needed?"
1096                " rip %lx %02x %02x %02x %02x\n",
1097                rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
1098         reported = 1;
1099 }
1100
1101 struct x86_emulate_ops emulate_ops = {
1102         .read_std            = emulator_read_std,
1103         .write_std           = emulator_write_std,
1104         .read_emulated       = emulator_read_emulated,
1105         .write_emulated      = emulator_write_emulated,
1106         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
1107 #ifdef CONFIG_X86_32
1108         .cmpxchg8b_emulated  = emulator_cmpxchg8b_emulated,
1109 #endif
1110 };
1111
1112 int emulate_instruction(struct kvm_vcpu *vcpu,
1113                         struct kvm_run *run,
1114                         unsigned long cr2,
1115                         u16 error_code)
1116 {
1117         struct x86_emulate_ctxt emulate_ctxt;
1118         int r;
1119         int cs_db, cs_l;
1120
1121         kvm_arch_ops->cache_regs(vcpu);
1122
1123         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
1124
1125         emulate_ctxt.vcpu = vcpu;
1126         emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1127         emulate_ctxt.cr2 = cr2;
1128         emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1129                 ? X86EMUL_MODE_REAL : cs_l
1130                 ? X86EMUL_MODE_PROT64 : cs_db
1131                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1132
1133         if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1134                 emulate_ctxt.cs_base = 0;
1135                 emulate_ctxt.ds_base = 0;
1136                 emulate_ctxt.es_base = 0;
1137                 emulate_ctxt.ss_base = 0;
1138         } else {
1139                 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1140                 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1141                 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1142                 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1143         }
1144
1145         emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1146         emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1147
1148         vcpu->mmio_is_write = 0;
1149         r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1150
1151         if ((r || vcpu->mmio_is_write) && run) {
1152                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1153                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1154                 run->mmio.len = vcpu->mmio_size;
1155                 run->mmio.is_write = vcpu->mmio_is_write;
1156         }
1157
1158         if (r) {
1159                 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
1160                         return EMULATE_DONE;
1161                 if (!vcpu->mmio_needed) {
1162                         report_emulation_failure(&emulate_ctxt);
1163                         return EMULATE_FAIL;
1164                 }
1165                 return EMULATE_DO_MMIO;
1166         }
1167
1168         kvm_arch_ops->decache_regs(vcpu);
1169         kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1170
1171         if (vcpu->mmio_is_write)
1172                 return EMULATE_DO_MMIO;
1173
1174         return EMULATE_DONE;
1175 }
1176 EXPORT_SYMBOL_GPL(emulate_instruction);
1177
1178 int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
1179 {
1180         unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
1181
1182         kvm_arch_ops->cache_regs(vcpu);
1183         ret = -KVM_EINVAL;
1184 #ifdef CONFIG_X86_64
1185         if (is_long_mode(vcpu)) {
1186                 nr = vcpu->regs[VCPU_REGS_RAX];
1187                 a0 = vcpu->regs[VCPU_REGS_RDI];
1188                 a1 = vcpu->regs[VCPU_REGS_RSI];
1189                 a2 = vcpu->regs[VCPU_REGS_RDX];
1190                 a3 = vcpu->regs[VCPU_REGS_RCX];
1191                 a4 = vcpu->regs[VCPU_REGS_R8];
1192                 a5 = vcpu->regs[VCPU_REGS_R9];
1193         } else
1194 #endif
1195         {
1196                 nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
1197                 a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
1198                 a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
1199                 a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
1200                 a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
1201                 a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
1202                 a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
1203         }
1204         switch (nr) {
1205         default:
1206                 ;
1207         }
1208         vcpu->regs[VCPU_REGS_RAX] = ret;
1209         kvm_arch_ops->decache_regs(vcpu);
1210         return 1;
1211 }
1212 EXPORT_SYMBOL_GPL(kvm_hypercall);
1213
1214 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1215 {
1216         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1217 }
1218
1219 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1220 {
1221         struct descriptor_table dt = { limit, base };
1222
1223         kvm_arch_ops->set_gdt(vcpu, &dt);
1224 }
1225
1226 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1227 {
1228         struct descriptor_table dt = { limit, base };
1229
1230         kvm_arch_ops->set_idt(vcpu, &dt);
1231 }
1232
1233 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1234                    unsigned long *rflags)
1235 {
1236         lmsw(vcpu, msw);
1237         *rflags = kvm_arch_ops->get_rflags(vcpu);
1238 }
1239
1240 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1241 {
1242         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1243         switch (cr) {
1244         case 0:
1245                 return vcpu->cr0;
1246         case 2:
1247                 return vcpu->cr2;
1248         case 3:
1249                 return vcpu->cr3;
1250         case 4:
1251                 return vcpu->cr4;
1252         default:
1253                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1254                 return 0;
1255         }
1256 }
1257
1258 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1259                      unsigned long *rflags)
1260 {
1261         switch (cr) {
1262         case 0:
1263                 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1264                 *rflags = kvm_arch_ops->get_rflags(vcpu);
1265                 break;
1266         case 2:
1267                 vcpu->cr2 = val;
1268                 break;
1269         case 3:
1270                 set_cr3(vcpu, val);
1271                 break;
1272         case 4:
1273                 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1274                 break;
1275         default:
1276                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1277         }
1278 }
1279
1280 /*
1281  * Register the para guest with the host:
1282  */
1283 static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
1284 {
1285         struct kvm_vcpu_para_state *para_state;
1286         hpa_t para_state_hpa, hypercall_hpa;
1287         struct page *para_state_page;
1288         unsigned char *hypercall;
1289         gpa_t hypercall_gpa;
1290
1291         printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
1292         printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
1293
1294         /*
1295          * Needs to be page aligned:
1296          */
1297         if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
1298                 goto err_gp;
1299
1300         para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
1301         printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
1302         if (is_error_hpa(para_state_hpa))
1303                 goto err_gp;
1304
1305         mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
1306         para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
1307         para_state = kmap_atomic(para_state_page, KM_USER0);
1308
1309         printk(KERN_DEBUG "....  guest version: %d\n", para_state->guest_version);
1310         printk(KERN_DEBUG "....           size: %d\n", para_state->size);
1311
1312         para_state->host_version = KVM_PARA_API_VERSION;
1313         /*
1314          * We cannot support guests that try to register themselves
1315          * with a newer API version than the host supports:
1316          */
1317         if (para_state->guest_version > KVM_PARA_API_VERSION) {
1318                 para_state->ret = -KVM_EINVAL;
1319                 goto err_kunmap_skip;
1320         }
1321
1322         hypercall_gpa = para_state->hypercall_gpa;
1323         hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
1324         printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
1325         if (is_error_hpa(hypercall_hpa)) {
1326                 para_state->ret = -KVM_EINVAL;
1327                 goto err_kunmap_skip;
1328         }
1329
1330         printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
1331         vcpu->para_state_page = para_state_page;
1332         vcpu->para_state_gpa = para_state_gpa;
1333         vcpu->hypercall_gpa = hypercall_gpa;
1334
1335         mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
1336         hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
1337                                 KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
1338         kvm_arch_ops->patch_hypercall(vcpu, hypercall);
1339         kunmap_atomic(hypercall, KM_USER1);
1340
1341         para_state->ret = 0;
1342 err_kunmap_skip:
1343         kunmap_atomic(para_state, KM_USER0);
1344         return 0;
1345 err_gp:
1346         return 1;
1347 }
1348
1349 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1350 {
1351         u64 data;
1352
1353         switch (msr) {
1354         case 0xc0010010: /* SYSCFG */
1355         case 0xc0010015: /* HWCR */
1356         case MSR_IA32_PLATFORM_ID:
1357         case MSR_IA32_P5_MC_ADDR:
1358         case MSR_IA32_P5_MC_TYPE:
1359         case MSR_IA32_MC0_CTL:
1360         case MSR_IA32_MCG_STATUS:
1361         case MSR_IA32_MCG_CAP:
1362         case MSR_IA32_MC0_MISC:
1363         case MSR_IA32_MC0_MISC+4:
1364         case MSR_IA32_MC0_MISC+8:
1365         case MSR_IA32_MC0_MISC+12:
1366         case MSR_IA32_MC0_MISC+16:
1367         case MSR_IA32_UCODE_REV:
1368         case MSR_IA32_PERF_STATUS:
1369                 /* MTRR registers */
1370         case 0xfe:
1371         case 0x200 ... 0x2ff:
1372                 data = 0;
1373                 break;
1374         case 0xcd: /* fsb frequency */
1375                 data = 3;
1376                 break;
1377         case MSR_IA32_APICBASE:
1378                 data = vcpu->apic_base;
1379                 break;
1380         case MSR_IA32_MISC_ENABLE:
1381                 data = vcpu->ia32_misc_enable_msr;
1382                 break;
1383 #ifdef CONFIG_X86_64
1384         case MSR_EFER:
1385                 data = vcpu->shadow_efer;
1386                 break;
1387 #endif
1388         default:
1389                 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1390                 return 1;
1391         }
1392         *pdata = data;
1393         return 0;
1394 }
1395 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1396
1397 /*
1398  * Reads an msr value (of 'msr_index') into 'pdata'.
1399  * Returns 0 on success, non-0 otherwise.
1400  * Assumes vcpu_load() was already called.
1401  */
1402 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1403 {
1404         return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1405 }
1406
1407 #ifdef CONFIG_X86_64
1408
1409 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1410 {
1411         if (efer & EFER_RESERVED_BITS) {
1412                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1413                        efer);
1414                 inject_gp(vcpu);
1415                 return;
1416         }
1417
1418         if (is_paging(vcpu)
1419             && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1420                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1421                 inject_gp(vcpu);
1422                 return;
1423         }
1424
1425         kvm_arch_ops->set_efer(vcpu, efer);
1426
1427         efer &= ~EFER_LMA;
1428         efer |= vcpu->shadow_efer & EFER_LMA;
1429
1430         vcpu->shadow_efer = efer;
1431 }
1432
1433 #endif
1434
1435 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1436 {
1437         switch (msr) {
1438 #ifdef CONFIG_X86_64
1439         case MSR_EFER:
1440                 set_efer(vcpu, data);
1441                 break;
1442 #endif
1443         case MSR_IA32_MC0_STATUS:
1444                 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1445                        __FUNCTION__, data);
1446                 break;
1447         case MSR_IA32_UCODE_REV:
1448         case MSR_IA32_UCODE_WRITE:
1449         case 0x200 ... 0x2ff: /* MTRRs */
1450                 break;
1451         case MSR_IA32_APICBASE:
1452                 vcpu->apic_base = data;
1453                 break;
1454         case MSR_IA32_MISC_ENABLE:
1455                 vcpu->ia32_misc_enable_msr = data;
1456                 break;
1457         /*
1458          * This is the 'probe whether the host is KVM' logic:
1459          */
1460         case MSR_KVM_API_MAGIC:
1461                 return vcpu_register_para(vcpu, data);
1462
1463         default:
1464                 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1465                 return 1;
1466         }
1467         return 0;
1468 }
1469 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1470
1471 /*
1472  * Writes msr value into into the appropriate "register".
1473  * Returns 0 on success, non-0 otherwise.
1474  * Assumes vcpu_load() was already called.
1475  */
1476 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1477 {
1478         return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1479 }
1480
1481 void kvm_resched(struct kvm_vcpu *vcpu)
1482 {
1483         vcpu_put(vcpu);
1484         cond_resched();
1485         vcpu_load(vcpu);
1486 }
1487 EXPORT_SYMBOL_GPL(kvm_resched);
1488
1489 void load_msrs(struct vmx_msr_entry *e, int n)
1490 {
1491         int i;
1492
1493         for (i = 0; i < n; ++i)
1494                 wrmsrl(e[i].index, e[i].data);
1495 }
1496 EXPORT_SYMBOL_GPL(load_msrs);
1497
1498 void save_msrs(struct vmx_msr_entry *e, int n)
1499 {
1500         int i;
1501
1502         for (i = 0; i < n; ++i)
1503                 rdmsrl(e[i].index, e[i].data);
1504 }
1505 EXPORT_SYMBOL_GPL(save_msrs);
1506
1507 static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1508 {
1509         int r;
1510
1511         vcpu_load(vcpu);
1512
1513         /* re-sync apic's tpr */
1514         vcpu->cr8 = kvm_run->cr8;
1515
1516         if (kvm_run->emulated) {
1517                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1518                 kvm_run->emulated = 0;
1519         }
1520
1521         if (kvm_run->mmio_completed) {
1522                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1523                 vcpu->mmio_read_completed = 1;
1524         }
1525
1526         vcpu->mmio_needed = 0;
1527
1528         r = kvm_arch_ops->run(vcpu, kvm_run);
1529
1530         vcpu_put(vcpu);
1531         return r;
1532 }
1533
1534 static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
1535                                    struct kvm_regs *regs)
1536 {
1537         vcpu_load(vcpu);
1538
1539         kvm_arch_ops->cache_regs(vcpu);
1540
1541         regs->rax = vcpu->regs[VCPU_REGS_RAX];
1542         regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1543         regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1544         regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1545         regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1546         regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1547         regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1548         regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1549 #ifdef CONFIG_X86_64
1550         regs->r8 = vcpu->regs[VCPU_REGS_R8];
1551         regs->r9 = vcpu->regs[VCPU_REGS_R9];
1552         regs->r10 = vcpu->regs[VCPU_REGS_R10];
1553         regs->r11 = vcpu->regs[VCPU_REGS_R11];
1554         regs->r12 = vcpu->regs[VCPU_REGS_R12];
1555         regs->r13 = vcpu->regs[VCPU_REGS_R13];
1556         regs->r14 = vcpu->regs[VCPU_REGS_R14];
1557         regs->r15 = vcpu->regs[VCPU_REGS_R15];
1558 #endif
1559
1560         regs->rip = vcpu->rip;
1561         regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1562
1563         /*
1564          * Don't leak debug flags in case they were set for guest debugging
1565          */
1566         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1567                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1568
1569         vcpu_put(vcpu);
1570
1571         return 0;
1572 }
1573
1574 static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
1575                                    struct kvm_regs *regs)
1576 {
1577         vcpu_load(vcpu);
1578
1579         vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1580         vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1581         vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1582         vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1583         vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1584         vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1585         vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1586         vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1587 #ifdef CONFIG_X86_64
1588         vcpu->regs[VCPU_REGS_R8] = regs->r8;
1589         vcpu->regs[VCPU_REGS_R9] = regs->r9;
1590         vcpu->regs[VCPU_REGS_R10] = regs->r10;
1591         vcpu->regs[VCPU_REGS_R11] = regs->r11;
1592         vcpu->regs[VCPU_REGS_R12] = regs->r12;
1593         vcpu->regs[VCPU_REGS_R13] = regs->r13;
1594         vcpu->regs[VCPU_REGS_R14] = regs->r14;
1595         vcpu->regs[VCPU_REGS_R15] = regs->r15;
1596 #endif
1597
1598         vcpu->rip = regs->rip;
1599         kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1600
1601         kvm_arch_ops->decache_regs(vcpu);
1602
1603         vcpu_put(vcpu);
1604
1605         return 0;
1606 }
1607
1608 static void get_segment(struct kvm_vcpu *vcpu,
1609                         struct kvm_segment *var, int seg)
1610 {
1611         return kvm_arch_ops->get_segment(vcpu, var, seg);
1612 }
1613
1614 static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1615                                     struct kvm_sregs *sregs)
1616 {
1617         struct descriptor_table dt;
1618
1619         vcpu_load(vcpu);
1620
1621         get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1622         get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1623         get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1624         get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1625         get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1626         get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1627
1628         get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1629         get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1630
1631         kvm_arch_ops->get_idt(vcpu, &dt);
1632         sregs->idt.limit = dt.limit;
1633         sregs->idt.base = dt.base;
1634         kvm_arch_ops->get_gdt(vcpu, &dt);
1635         sregs->gdt.limit = dt.limit;
1636         sregs->gdt.base = dt.base;
1637
1638         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1639         sregs->cr0 = vcpu->cr0;
1640         sregs->cr2 = vcpu->cr2;
1641         sregs->cr3 = vcpu->cr3;
1642         sregs->cr4 = vcpu->cr4;
1643         sregs->cr8 = vcpu->cr8;
1644         sregs->efer = vcpu->shadow_efer;
1645         sregs->apic_base = vcpu->apic_base;
1646
1647         memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1648                sizeof sregs->interrupt_bitmap);
1649
1650         vcpu_put(vcpu);
1651
1652         return 0;
1653 }
1654
1655 static void set_segment(struct kvm_vcpu *vcpu,
1656                         struct kvm_segment *var, int seg)
1657 {
1658         return kvm_arch_ops->set_segment(vcpu, var, seg);
1659 }
1660
1661 static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1662                                     struct kvm_sregs *sregs)
1663 {
1664         int mmu_reset_needed = 0;
1665         int i;
1666         struct descriptor_table dt;
1667
1668         vcpu_load(vcpu);
1669
1670         set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1671         set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1672         set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1673         set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1674         set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1675         set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1676
1677         set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1678         set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1679
1680         dt.limit = sregs->idt.limit;
1681         dt.base = sregs->idt.base;
1682         kvm_arch_ops->set_idt(vcpu, &dt);
1683         dt.limit = sregs->gdt.limit;
1684         dt.base = sregs->gdt.base;
1685         kvm_arch_ops->set_gdt(vcpu, &dt);
1686
1687         vcpu->cr2 = sregs->cr2;
1688         mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1689         vcpu->cr3 = sregs->cr3;
1690
1691         vcpu->cr8 = sregs->cr8;
1692
1693         mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1694 #ifdef CONFIG_X86_64
1695         kvm_arch_ops->set_efer(vcpu, sregs->efer);
1696 #endif
1697         vcpu->apic_base = sregs->apic_base;
1698
1699         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1700
1701         mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1702         kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
1703
1704         mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1705         kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
1706         if (!is_long_mode(vcpu) && is_pae(vcpu))
1707                 load_pdptrs(vcpu, vcpu->cr3);
1708
1709         if (mmu_reset_needed)
1710                 kvm_mmu_reset_context(vcpu);
1711
1712         memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1713                sizeof vcpu->irq_pending);
1714         vcpu->irq_summary = 0;
1715         for (i = 0; i < NR_IRQ_WORDS; ++i)
1716                 if (vcpu->irq_pending[i])
1717                         __set_bit(i, &vcpu->irq_summary);
1718
1719         vcpu_put(vcpu);
1720
1721         return 0;
1722 }
1723
1724 /*
1725  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1726  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1727  *
1728  * This list is modified at module load time to reflect the
1729  * capabilities of the host cpu.
1730  */
1731 static u32 msrs_to_save[] = {
1732         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1733         MSR_K6_STAR,
1734 #ifdef CONFIG_X86_64
1735         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1736 #endif
1737         MSR_IA32_TIME_STAMP_COUNTER,
1738 };
1739
1740 static unsigned num_msrs_to_save;
1741
1742 static u32 emulated_msrs[] = {
1743         MSR_IA32_MISC_ENABLE,
1744 };
1745
1746 static __init void kvm_init_msr_list(void)
1747 {
1748         u32 dummy[2];
1749         unsigned i, j;
1750
1751         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1752                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1753                         continue;
1754                 if (j < i)
1755                         msrs_to_save[j] = msrs_to_save[i];
1756                 j++;
1757         }
1758         num_msrs_to_save = j;
1759 }
1760
1761 /*
1762  * Adapt set_msr() to msr_io()'s calling convention
1763  */
1764 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1765 {
1766         return set_msr(vcpu, index, *data);
1767 }
1768
1769 /*
1770  * Read or write a bunch of msrs. All parameters are kernel addresses.
1771  *
1772  * @return number of msrs set successfully.
1773  */
1774 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1775                     struct kvm_msr_entry *entries,
1776                     int (*do_msr)(struct kvm_vcpu *vcpu,
1777                                   unsigned index, u64 *data))
1778 {
1779         int i;
1780
1781         vcpu_load(vcpu);
1782
1783         for (i = 0; i < msrs->nmsrs; ++i)
1784                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1785                         break;
1786
1787         vcpu_put(vcpu);
1788
1789         return i;
1790 }
1791
1792 /*
1793  * Read or write a bunch of msrs. Parameters are user addresses.
1794  *
1795  * @return number of msrs set successfully.
1796  */
1797 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1798                   int (*do_msr)(struct kvm_vcpu *vcpu,
1799                                 unsigned index, u64 *data),
1800                   int writeback)
1801 {
1802         struct kvm_msrs msrs;
1803         struct kvm_msr_entry *entries;
1804         int r, n;
1805         unsigned size;
1806
1807         r = -EFAULT;
1808         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1809                 goto out;
1810
1811         r = -E2BIG;
1812         if (msrs.nmsrs >= MAX_IO_MSRS)
1813                 goto out;
1814
1815         r = -ENOMEM;
1816         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1817         entries = vmalloc(size);
1818         if (!entries)
1819                 goto out;
1820
1821         r = -EFAULT;
1822         if (copy_from_user(entries, user_msrs->entries, size))
1823                 goto out_free;
1824
1825         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1826         if (r < 0)
1827                 goto out_free;
1828
1829         r = -EFAULT;
1830         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1831                 goto out_free;
1832
1833         r = n;
1834
1835 out_free:
1836         vfree(entries);
1837 out:
1838         return r;
1839 }
1840
1841 /*
1842  * Translate a guest virtual address to a guest physical address.
1843  */
1844 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1845                                     struct kvm_translation *tr)
1846 {
1847         unsigned long vaddr = tr->linear_address;
1848         gpa_t gpa;
1849
1850         vcpu_load(vcpu);
1851         spin_lock(&vcpu->kvm->lock);
1852         gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
1853         tr->physical_address = gpa;
1854         tr->valid = gpa != UNMAPPED_GVA;
1855         tr->writeable = 1;
1856         tr->usermode = 0;
1857         spin_unlock(&vcpu->kvm->lock);
1858         vcpu_put(vcpu);
1859
1860         return 0;
1861 }
1862
1863 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1864                                     struct kvm_interrupt *irq)
1865 {
1866         if (irq->irq < 0 || irq->irq >= 256)
1867                 return -EINVAL;
1868         vcpu_load(vcpu);
1869
1870         set_bit(irq->irq, vcpu->irq_pending);
1871         set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
1872
1873         vcpu_put(vcpu);
1874
1875         return 0;
1876 }
1877
1878 static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
1879                                       struct kvm_debug_guest *dbg)
1880 {
1881         int r;
1882
1883         vcpu_load(vcpu);
1884
1885         r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
1886
1887         vcpu_put(vcpu);
1888
1889         return r;
1890 }
1891
1892 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
1893                                     unsigned long address,
1894                                     int *type)
1895 {
1896         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1897         unsigned long pgoff;
1898         struct page *page;
1899
1900         *type = VM_FAULT_MINOR;
1901         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1902         if (pgoff != 0)
1903                 return NOPAGE_SIGBUS;
1904         page = virt_to_page(vcpu->run);
1905         get_page(page);
1906         return page;
1907 }
1908
1909 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1910         .nopage = kvm_vcpu_nopage,
1911 };
1912
1913 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1914 {
1915         vma->vm_ops = &kvm_vcpu_vm_ops;
1916         return 0;
1917 }
1918
1919 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1920 {
1921         struct kvm_vcpu *vcpu = filp->private_data;
1922
1923         fput(vcpu->kvm->filp);
1924         return 0;
1925 }
1926
1927 static struct file_operations kvm_vcpu_fops = {
1928         .release        = kvm_vcpu_release,
1929         .unlocked_ioctl = kvm_vcpu_ioctl,
1930         .compat_ioctl   = kvm_vcpu_ioctl,
1931         .mmap           = kvm_vcpu_mmap,
1932 };
1933
1934 /*
1935  * Allocates an inode for the vcpu.
1936  */
1937 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1938 {
1939         int fd, r;
1940         struct inode *inode;
1941         struct file *file;
1942
1943         atomic_inc(&vcpu->kvm->filp->f_count);
1944         inode = kvmfs_inode(&kvm_vcpu_fops);
1945         if (IS_ERR(inode)) {
1946                 r = PTR_ERR(inode);
1947                 goto out1;
1948         }
1949
1950         file = kvmfs_file(inode, vcpu);
1951         if (IS_ERR(file)) {
1952                 r = PTR_ERR(file);
1953                 goto out2;
1954         }
1955
1956         r = get_unused_fd();
1957         if (r < 0)
1958                 goto out3;
1959         fd = r;
1960         fd_install(fd, file);
1961
1962         return fd;
1963
1964 out3:
1965         fput(file);
1966 out2:
1967         iput(inode);
1968 out1:
1969         fput(vcpu->kvm->filp);
1970         return r;
1971 }
1972
1973 /*
1974  * Creates some virtual cpus.  Good luck creating more than one.
1975  */
1976 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1977 {
1978         int r;
1979         struct kvm_vcpu *vcpu;
1980         struct page *page;
1981
1982         r = -EINVAL;
1983         if (!valid_vcpu(n))
1984                 goto out;
1985
1986         vcpu = &kvm->vcpus[n];
1987
1988         mutex_lock(&vcpu->mutex);
1989
1990         if (vcpu->vmcs) {
1991                 mutex_unlock(&vcpu->mutex);
1992                 return -EEXIST;
1993         }
1994
1995         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1996         r = -ENOMEM;
1997         if (!page)
1998                 goto out_unlock;
1999         vcpu->run = page_address(page);
2000
2001         vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
2002                                            FX_IMAGE_ALIGN);
2003         vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
2004
2005         r = kvm_arch_ops->vcpu_create(vcpu);
2006         if (r < 0)
2007                 goto out_free_vcpus;
2008
2009         r = kvm_mmu_create(vcpu);
2010         if (r < 0)
2011                 goto out_free_vcpus;
2012
2013         kvm_arch_ops->vcpu_load(vcpu);
2014         r = kvm_mmu_setup(vcpu);
2015         if (r >= 0)
2016                 r = kvm_arch_ops->vcpu_setup(vcpu);
2017         vcpu_put(vcpu);
2018
2019         if (r < 0)
2020                 goto out_free_vcpus;
2021
2022         r = create_vcpu_fd(vcpu);
2023         if (r < 0)
2024                 goto out_free_vcpus;
2025
2026         return r;
2027
2028 out_free_vcpus:
2029         kvm_free_vcpu(vcpu);
2030 out_unlock:
2031         mutex_unlock(&vcpu->mutex);
2032 out:
2033         return r;
2034 }
2035
2036 static long kvm_vcpu_ioctl(struct file *filp,
2037                            unsigned int ioctl, unsigned long arg)
2038 {
2039         struct kvm_vcpu *vcpu = filp->private_data;
2040         void __user *argp = (void __user *)arg;
2041         int r = -EINVAL;
2042
2043         switch (ioctl) {
2044         case KVM_RUN:
2045                 r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
2046                 break;
2047         case KVM_GET_REGS: {
2048                 struct kvm_regs kvm_regs;
2049
2050                 memset(&kvm_regs, 0, sizeof kvm_regs);
2051                 r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
2052                 if (r)
2053                         goto out;
2054                 r = -EFAULT;
2055                 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
2056                         goto out;
2057                 r = 0;
2058                 break;
2059         }
2060         case KVM_SET_REGS: {
2061                 struct kvm_regs kvm_regs;
2062
2063                 r = -EFAULT;
2064                 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
2065                         goto out;
2066                 r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
2067                 if (r)
2068                         goto out;
2069                 r = 0;
2070                 break;
2071         }
2072         case KVM_GET_SREGS: {
2073                 struct kvm_sregs kvm_sregs;
2074
2075                 memset(&kvm_sregs, 0, sizeof kvm_sregs);
2076                 r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
2077                 if (r)
2078                         goto out;
2079                 r = -EFAULT;
2080                 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
2081                         goto out;
2082                 r = 0;
2083                 break;
2084         }
2085         case KVM_SET_SREGS: {
2086                 struct kvm_sregs kvm_sregs;
2087
2088                 r = -EFAULT;
2089                 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
2090                         goto out;
2091                 r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
2092                 if (r)
2093                         goto out;
2094                 r = 0;
2095                 break;
2096         }
2097         case KVM_TRANSLATE: {
2098                 struct kvm_translation tr;
2099
2100                 r = -EFAULT;
2101                 if (copy_from_user(&tr, argp, sizeof tr))
2102                         goto out;
2103                 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
2104                 if (r)
2105                         goto out;
2106                 r = -EFAULT;
2107                 if (copy_to_user(argp, &tr, sizeof tr))
2108                         goto out;
2109                 r = 0;
2110                 break;
2111         }
2112         case KVM_INTERRUPT: {
2113                 struct kvm_interrupt irq;
2114
2115                 r = -EFAULT;
2116                 if (copy_from_user(&irq, argp, sizeof irq))
2117                         goto out;
2118                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2119                 if (r)
2120                         goto out;
2121                 r = 0;
2122                 break;
2123         }
2124         case KVM_DEBUG_GUEST: {
2125                 struct kvm_debug_guest dbg;
2126
2127                 r = -EFAULT;
2128                 if (copy_from_user(&dbg, argp, sizeof dbg))
2129                         goto out;
2130                 r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
2131                 if (r)
2132                         goto out;
2133                 r = 0;
2134                 break;
2135         }
2136         case KVM_GET_MSRS:
2137                 r = msr_io(vcpu, argp, get_msr, 1);
2138                 break;
2139         case KVM_SET_MSRS:
2140                 r = msr_io(vcpu, argp, do_set_msr, 0);
2141                 break;
2142         default:
2143                 ;
2144         }
2145 out:
2146         return r;
2147 }
2148
2149 static long kvm_vm_ioctl(struct file *filp,
2150                            unsigned int ioctl, unsigned long arg)
2151 {
2152         struct kvm *kvm = filp->private_data;
2153         void __user *argp = (void __user *)arg;
2154         int r = -EINVAL;
2155
2156         switch (ioctl) {
2157         case KVM_CREATE_VCPU:
2158                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2159                 if (r < 0)
2160                         goto out;
2161                 break;
2162         case KVM_SET_MEMORY_REGION: {
2163                 struct kvm_memory_region kvm_mem;
2164
2165                 r = -EFAULT;
2166                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
2167                         goto out;
2168                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
2169                 if (r)
2170                         goto out;
2171                 break;
2172         }
2173         case KVM_GET_DIRTY_LOG: {
2174                 struct kvm_dirty_log log;
2175
2176                 r = -EFAULT;
2177                 if (copy_from_user(&log, argp, sizeof log))
2178                         goto out;
2179                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2180                 if (r)
2181                         goto out;
2182                 break;
2183         }
2184         default:
2185                 ;
2186         }
2187 out:
2188         return r;
2189 }
2190
2191 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
2192                                   unsigned long address,
2193                                   int *type)
2194 {
2195         struct kvm *kvm = vma->vm_file->private_data;
2196         unsigned long pgoff;
2197         struct kvm_memory_slot *slot;
2198         struct page *page;
2199
2200         *type = VM_FAULT_MINOR;
2201         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2202         slot = gfn_to_memslot(kvm, pgoff);
2203         if (!slot)
2204                 return NOPAGE_SIGBUS;
2205         page = gfn_to_page(slot, pgoff);
2206         if (!page)
2207                 return NOPAGE_SIGBUS;
2208         get_page(page);
2209         return page;
2210 }
2211
2212 static struct vm_operations_struct kvm_vm_vm_ops = {
2213         .nopage = kvm_vm_nopage,
2214 };
2215
2216 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
2217 {
2218         vma->vm_ops = &kvm_vm_vm_ops;
2219         return 0;
2220 }
2221
2222 static struct file_operations kvm_vm_fops = {
2223         .release        = kvm_vm_release,
2224         .unlocked_ioctl = kvm_vm_ioctl,
2225         .compat_ioctl   = kvm_vm_ioctl,
2226         .mmap           = kvm_vm_mmap,
2227 };
2228
2229 static int kvm_dev_ioctl_create_vm(void)
2230 {
2231         int fd, r;
2232         struct inode *inode;
2233         struct file *file;
2234         struct kvm *kvm;
2235
2236         inode = kvmfs_inode(&kvm_vm_fops);
2237         if (IS_ERR(inode)) {
2238                 r = PTR_ERR(inode);
2239                 goto out1;
2240         }
2241
2242         kvm = kvm_create_vm();
2243         if (IS_ERR(kvm)) {
2244                 r = PTR_ERR(kvm);
2245                 goto out2;
2246         }
2247
2248         file = kvmfs_file(inode, kvm);
2249         if (IS_ERR(file)) {
2250                 r = PTR_ERR(file);
2251                 goto out3;
2252         }
2253         kvm->filp = file;
2254
2255         r = get_unused_fd();
2256         if (r < 0)
2257                 goto out4;
2258         fd = r;
2259         fd_install(fd, file);
2260
2261         return fd;
2262
2263 out4:
2264         fput(file);
2265 out3:
2266         kvm_destroy_vm(kvm);
2267 out2:
2268         iput(inode);
2269 out1:
2270         return r;
2271 }
2272
2273 static long kvm_dev_ioctl(struct file *filp,
2274                           unsigned int ioctl, unsigned long arg)
2275 {
2276         void __user *argp = (void __user *)arg;
2277         int r = -EINVAL;
2278
2279         switch (ioctl) {
2280         case KVM_GET_API_VERSION:
2281                 r = KVM_API_VERSION;
2282                 break;
2283         case KVM_CREATE_VM:
2284                 r = kvm_dev_ioctl_create_vm();
2285                 break;
2286         case KVM_GET_MSR_INDEX_LIST: {
2287                 struct kvm_msr_list __user *user_msr_list = argp;
2288                 struct kvm_msr_list msr_list;
2289                 unsigned n;
2290
2291                 r = -EFAULT;
2292                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2293                         goto out;
2294                 n = msr_list.nmsrs;
2295                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2296                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2297                         goto out;
2298                 r = -E2BIG;
2299                 if (n < num_msrs_to_save)
2300                         goto out;
2301                 r = -EFAULT;
2302                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2303                                  num_msrs_to_save * sizeof(u32)))
2304                         goto out;
2305                 if (copy_to_user(user_msr_list->indices
2306                                  + num_msrs_to_save * sizeof(u32),
2307                                  &emulated_msrs,
2308                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2309                         goto out;
2310                 r = 0;
2311                 break;
2312         }
2313         default:
2314                 ;
2315         }
2316 out:
2317         return r;
2318 }
2319
2320 static struct file_operations kvm_chardev_ops = {
2321         .open           = kvm_dev_open,
2322         .release        = kvm_dev_release,
2323         .unlocked_ioctl = kvm_dev_ioctl,
2324         .compat_ioctl   = kvm_dev_ioctl,
2325 };
2326
2327 static struct miscdevice kvm_dev = {
2328         KVM_MINOR,
2329         "kvm",
2330         &kvm_chardev_ops,
2331 };
2332
2333 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2334                        void *v)
2335 {
2336         if (val == SYS_RESTART) {
2337                 /*
2338                  * Some (well, at least mine) BIOSes hang on reboot if
2339                  * in vmx root mode.
2340                  */
2341                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2342                 on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2343         }
2344         return NOTIFY_OK;
2345 }
2346
2347 static struct notifier_block kvm_reboot_notifier = {
2348         .notifier_call = kvm_reboot,
2349         .priority = 0,
2350 };
2351
2352 /*
2353  * Make sure that a cpu that is being hot-unplugged does not have any vcpus
2354  * cached on it.
2355  */
2356 static void decache_vcpus_on_cpu(int cpu)
2357 {
2358         struct kvm *vm;
2359         struct kvm_vcpu *vcpu;
2360         int i;
2361
2362         spin_lock(&kvm_lock);
2363         list_for_each_entry(vm, &vm_list, vm_list)
2364                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2365                         vcpu = &vm->vcpus[i];
2366                         /*
2367                          * If the vcpu is locked, then it is running on some
2368                          * other cpu and therefore it is not cached on the
2369                          * cpu in question.
2370                          *
2371                          * If it's not locked, check the last cpu it executed
2372                          * on.
2373                          */
2374                         if (mutex_trylock(&vcpu->mutex)) {
2375                                 if (vcpu->cpu == cpu) {
2376                                         kvm_arch_ops->vcpu_decache(vcpu);
2377                                         vcpu->cpu = -1;
2378                                 }
2379                                 mutex_unlock(&vcpu->mutex);
2380                         }
2381                 }
2382         spin_unlock(&kvm_lock);
2383 }
2384
2385 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2386                            void *v)
2387 {
2388         int cpu = (long)v;
2389
2390         switch (val) {
2391         case CPU_DOWN_PREPARE:
2392         case CPU_UP_CANCELED:
2393                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2394                        cpu);
2395                 decache_vcpus_on_cpu(cpu);
2396                 smp_call_function_single(cpu, kvm_arch_ops->hardware_disable,
2397                                          NULL, 0, 1);
2398                 break;
2399         case CPU_ONLINE:
2400                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2401                        cpu);
2402                 smp_call_function_single(cpu, kvm_arch_ops->hardware_enable,
2403                                          NULL, 0, 1);
2404                 break;
2405         }
2406         return NOTIFY_OK;
2407 }
2408
2409 static struct notifier_block kvm_cpu_notifier = {
2410         .notifier_call = kvm_cpu_hotplug,
2411         .priority = 20, /* must be > scheduler priority */
2412 };
2413
2414 static __init void kvm_init_debug(void)
2415 {
2416         struct kvm_stats_debugfs_item *p;
2417
2418         debugfs_dir = debugfs_create_dir("kvm", NULL);
2419         for (p = debugfs_entries; p->name; ++p)
2420                 p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
2421                                                p->data);
2422 }
2423
2424 static void kvm_exit_debug(void)
2425 {
2426         struct kvm_stats_debugfs_item *p;
2427
2428         for (p = debugfs_entries; p->name; ++p)
2429                 debugfs_remove(p->dentry);
2430         debugfs_remove(debugfs_dir);
2431 }
2432
2433 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2434 {
2435         decache_vcpus_on_cpu(raw_smp_processor_id());
2436         on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2437         return 0;
2438 }
2439
2440 static int kvm_resume(struct sys_device *dev)
2441 {
2442         on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
2443         return 0;
2444 }
2445
2446 static struct sysdev_class kvm_sysdev_class = {
2447         set_kset_name("kvm"),
2448         .suspend = kvm_suspend,
2449         .resume = kvm_resume,
2450 };
2451
2452 static struct sys_device kvm_sysdev = {
2453         .id = 0,
2454         .cls = &kvm_sysdev_class,
2455 };
2456
2457 hpa_t bad_page_address;
2458
2459 static int kvmfs_get_sb(struct file_system_type *fs_type, int flags,
2460                         const char *dev_name, void *data, struct vfsmount *mnt)
2461 {
2462         return get_sb_pseudo(fs_type, "kvm:", NULL, KVMFS_SUPER_MAGIC, mnt);
2463 }
2464
2465 static struct file_system_type kvm_fs_type = {
2466         .name           = "kvmfs",
2467         .get_sb         = kvmfs_get_sb,
2468         .kill_sb        = kill_anon_super,
2469 };
2470
2471 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
2472 {
2473         int r;
2474
2475         if (kvm_arch_ops) {
2476                 printk(KERN_ERR "kvm: already loaded the other module\n");
2477                 return -EEXIST;
2478         }
2479
2480         if (!ops->cpu_has_kvm_support()) {
2481                 printk(KERN_ERR "kvm: no hardware support\n");
2482                 return -EOPNOTSUPP;
2483         }
2484         if (ops->disabled_by_bios()) {
2485                 printk(KERN_ERR "kvm: disabled by bios\n");
2486                 return -EOPNOTSUPP;
2487         }
2488
2489         kvm_arch_ops = ops;
2490
2491         r = kvm_arch_ops->hardware_setup();
2492         if (r < 0)
2493                 goto out;
2494
2495         on_each_cpu(kvm_arch_ops->hardware_enable, NULL, 0, 1);
2496         r = register_cpu_notifier(&kvm_cpu_notifier);
2497         if (r)
2498                 goto out_free_1;
2499         register_reboot_notifier(&kvm_reboot_notifier);
2500
2501         r = sysdev_class_register(&kvm_sysdev_class);
2502         if (r)
2503                 goto out_free_2;
2504
2505         r = sysdev_register(&kvm_sysdev);
2506         if (r)
2507                 goto out_free_3;
2508
2509         kvm_chardev_ops.owner = module;
2510
2511         r = misc_register(&kvm_dev);
2512         if (r) {
2513                 printk (KERN_ERR "kvm: misc device register failed\n");
2514                 goto out_free;
2515         }
2516
2517         return r;
2518
2519 out_free:
2520         sysdev_unregister(&kvm_sysdev);
2521 out_free_3:
2522         sysdev_class_unregister(&kvm_sysdev_class);
2523 out_free_2:
2524         unregister_reboot_notifier(&kvm_reboot_notifier);
2525         unregister_cpu_notifier(&kvm_cpu_notifier);
2526 out_free_1:
2527         on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2528         kvm_arch_ops->hardware_unsetup();
2529 out:
2530         kvm_arch_ops = NULL;
2531         return r;
2532 }
2533
2534 void kvm_exit_arch(void)
2535 {
2536         misc_deregister(&kvm_dev);
2537         sysdev_unregister(&kvm_sysdev);
2538         sysdev_class_unregister(&kvm_sysdev_class);
2539         unregister_reboot_notifier(&kvm_reboot_notifier);
2540         unregister_cpu_notifier(&kvm_cpu_notifier);
2541         on_each_cpu(kvm_arch_ops->hardware_disable, NULL, 0, 1);
2542         kvm_arch_ops->hardware_unsetup();
2543         kvm_arch_ops = NULL;
2544 }
2545
2546 static __init int kvm_init(void)
2547 {
2548         static struct page *bad_page;
2549         int r;
2550
2551         r = register_filesystem(&kvm_fs_type);
2552         if (r)
2553                 goto out3;
2554
2555         kvmfs_mnt = kern_mount(&kvm_fs_type);
2556         r = PTR_ERR(kvmfs_mnt);
2557         if (IS_ERR(kvmfs_mnt))
2558                 goto out2;
2559         kvm_init_debug();
2560
2561         kvm_init_msr_list();
2562
2563         if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
2564                 r = -ENOMEM;
2565                 goto out;
2566         }
2567
2568         bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
2569         memset(__va(bad_page_address), 0, PAGE_SIZE);
2570
2571         return 0;
2572
2573 out:
2574         kvm_exit_debug();
2575         mntput(kvmfs_mnt);
2576 out2:
2577         unregister_filesystem(&kvm_fs_type);
2578 out3:
2579         return r;
2580 }
2581
2582 static __exit void kvm_exit(void)
2583 {
2584         kvm_exit_debug();
2585         __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
2586         mntput(kvmfs_mnt);
2587         unregister_filesystem(&kvm_fs_type);
2588 }
2589
2590 module_init(kvm_init)
2591 module_exit(kvm_exit)
2592
2593 EXPORT_SYMBOL_GPL(kvm_init_arch);
2594 EXPORT_SYMBOL_GPL(kvm_exit_arch);