KVM: Simplify CPU_TASKS_FROZEN cpu notifier handling
[safe/jmp/linux-2.6] / drivers / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "x86.h"
20 #include "x86_emulate.h"
21 #include "irq.h"
22
23 #include <linux/kvm.h>
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/percpu.h>
27 #include <linux/gfp.h>
28 #include <linux/mm.h>
29 #include <linux/miscdevice.h>
30 #include <linux/vmalloc.h>
31 #include <linux/reboot.h>
32 #include <linux/debugfs.h>
33 #include <linux/highmem.h>
34 #include <linux/file.h>
35 #include <linux/sysdev.h>
36 #include <linux/cpu.h>
37 #include <linux/sched.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45
46 #include <asm/processor.h>
47 #include <asm/msr.h>
48 #include <asm/io.h>
49 #include <asm/uaccess.h>
50 #include <asm/desc.h>
51
52 MODULE_AUTHOR("Qumranet");
53 MODULE_LICENSE("GPL");
54
55 static DEFINE_SPINLOCK(kvm_lock);
56 static LIST_HEAD(vm_list);
57
58 static cpumask_t cpus_hardware_enabled;
59
60 struct kvm_x86_ops *kvm_x86_ops;
61 struct kmem_cache *kvm_vcpu_cache;
62 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
63
64 static __read_mostly struct preempt_ops kvm_preempt_ops;
65
66 static struct dentry *debugfs_dir;
67
68 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
69                            unsigned long arg);
70
71 static inline int valid_vcpu(int n)
72 {
73         return likely(n >= 0 && n < KVM_MAX_VCPUS);
74 }
75
76 /*
77  * Switches to specified vcpu, until a matching vcpu_put()
78  */
79 void vcpu_load(struct kvm_vcpu *vcpu)
80 {
81         int cpu;
82
83         mutex_lock(&vcpu->mutex);
84         cpu = get_cpu();
85         preempt_notifier_register(&vcpu->preempt_notifier);
86         kvm_arch_vcpu_load(vcpu, cpu);
87         put_cpu();
88 }
89
90 void vcpu_put(struct kvm_vcpu *vcpu)
91 {
92         preempt_disable();
93         kvm_arch_vcpu_put(vcpu);
94         preempt_notifier_unregister(&vcpu->preempt_notifier);
95         preempt_enable();
96         mutex_unlock(&vcpu->mutex);
97 }
98
99 static void ack_flush(void *_completed)
100 {
101 }
102
103 void kvm_flush_remote_tlbs(struct kvm *kvm)
104 {
105         int i, cpu;
106         cpumask_t cpus;
107         struct kvm_vcpu *vcpu;
108
109         cpus_clear(cpus);
110         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
111                 vcpu = kvm->vcpus[i];
112                 if (!vcpu)
113                         continue;
114                 if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
115                         continue;
116                 cpu = vcpu->cpu;
117                 if (cpu != -1 && cpu != raw_smp_processor_id())
118                         cpu_set(cpu, cpus);
119         }
120         smp_call_function_mask(cpus, ack_flush, NULL, 1);
121 }
122
123 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
124 {
125         struct page *page;
126         int r;
127
128         mutex_init(&vcpu->mutex);
129         vcpu->cpu = -1;
130         vcpu->mmu.root_hpa = INVALID_PAGE;
131         vcpu->kvm = kvm;
132         vcpu->vcpu_id = id;
133         if (!irqchip_in_kernel(kvm) || id == 0)
134                 vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
135         else
136                 vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
137         init_waitqueue_head(&vcpu->wq);
138
139         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
140         if (!page) {
141                 r = -ENOMEM;
142                 goto fail;
143         }
144         vcpu->run = page_address(page);
145
146         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
147         if (!page) {
148                 r = -ENOMEM;
149                 goto fail_free_run;
150         }
151         vcpu->pio_data = page_address(page);
152
153         r = kvm_mmu_create(vcpu);
154         if (r < 0)
155                 goto fail_free_pio_data;
156
157         if (irqchip_in_kernel(kvm)) {
158                 r = kvm_create_lapic(vcpu);
159                 if (r < 0)
160                         goto fail_mmu_destroy;
161         }
162
163         return 0;
164
165 fail_mmu_destroy:
166         kvm_mmu_destroy(vcpu);
167 fail_free_pio_data:
168         free_page((unsigned long)vcpu->pio_data);
169 fail_free_run:
170         free_page((unsigned long)vcpu->run);
171 fail:
172         return r;
173 }
174 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
175
176 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
177 {
178         kvm_free_lapic(vcpu);
179         kvm_mmu_destroy(vcpu);
180         free_page((unsigned long)vcpu->pio_data);
181         free_page((unsigned long)vcpu->run);
182 }
183 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
184
185 static struct kvm *kvm_create_vm(void)
186 {
187         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
188
189         if (!kvm)
190                 return ERR_PTR(-ENOMEM);
191
192         kvm_io_bus_init(&kvm->pio_bus);
193         mutex_init(&kvm->lock);
194         INIT_LIST_HEAD(&kvm->active_mmu_pages);
195         kvm_io_bus_init(&kvm->mmio_bus);
196         spin_lock(&kvm_lock);
197         list_add(&kvm->vm_list, &vm_list);
198         spin_unlock(&kvm_lock);
199         return kvm;
200 }
201
202 /*
203  * Free any memory in @free but not in @dont.
204  */
205 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
206                                   struct kvm_memory_slot *dont)
207 {
208         if (!dont || free->rmap != dont->rmap)
209                 vfree(free->rmap);
210
211         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
212                 vfree(free->dirty_bitmap);
213
214         free->npages = 0;
215         free->dirty_bitmap = NULL;
216         free->rmap = NULL;
217 }
218
219 static void kvm_free_physmem(struct kvm *kvm)
220 {
221         int i;
222
223         for (i = 0; i < kvm->nmemslots; ++i)
224                 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
225 }
226
227 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
228 {
229         vcpu_load(vcpu);
230         kvm_mmu_unload(vcpu);
231         vcpu_put(vcpu);
232 }
233
234 static void kvm_free_vcpus(struct kvm *kvm)
235 {
236         unsigned int i;
237
238         /*
239          * Unpin any mmu pages first.
240          */
241         for (i = 0; i < KVM_MAX_VCPUS; ++i)
242                 if (kvm->vcpus[i])
243                         kvm_unload_vcpu_mmu(kvm->vcpus[i]);
244         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
245                 if (kvm->vcpus[i]) {
246                         kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
247                         kvm->vcpus[i] = NULL;
248                 }
249         }
250
251 }
252
253 static void kvm_destroy_vm(struct kvm *kvm)
254 {
255         spin_lock(&kvm_lock);
256         list_del(&kvm->vm_list);
257         spin_unlock(&kvm_lock);
258         kvm_io_bus_destroy(&kvm->pio_bus);
259         kvm_io_bus_destroy(&kvm->mmio_bus);
260         kfree(kvm->vpic);
261         kfree(kvm->vioapic);
262         kvm_free_vcpus(kvm);
263         kvm_free_physmem(kvm);
264         kfree(kvm);
265 }
266
267 static int kvm_vm_release(struct inode *inode, struct file *filp)
268 {
269         struct kvm *kvm = filp->private_data;
270
271         kvm_destroy_vm(kvm);
272         return 0;
273 }
274
275 /*
276  * Allocate some memory and give it an address in the guest physical address
277  * space.
278  *
279  * Discontiguous memory is allowed, mostly for framebuffers.
280  *
281  * Must be called holding kvm->lock.
282  */
283 int __kvm_set_memory_region(struct kvm *kvm,
284                             struct kvm_userspace_memory_region *mem,
285                             int user_alloc)
286 {
287         int r;
288         gfn_t base_gfn;
289         unsigned long npages;
290         unsigned long i;
291         struct kvm_memory_slot *memslot;
292         struct kvm_memory_slot old, new;
293
294         r = -EINVAL;
295         /* General sanity checks */
296         if (mem->memory_size & (PAGE_SIZE - 1))
297                 goto out;
298         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
299                 goto out;
300         if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
301                 goto out;
302         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
303                 goto out;
304
305         memslot = &kvm->memslots[mem->slot];
306         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
307         npages = mem->memory_size >> PAGE_SHIFT;
308
309         if (!npages)
310                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
311
312         new = old = *memslot;
313
314         new.base_gfn = base_gfn;
315         new.npages = npages;
316         new.flags = mem->flags;
317
318         /* Disallow changing a memory slot's size. */
319         r = -EINVAL;
320         if (npages && old.npages && npages != old.npages)
321                 goto out_free;
322
323         /* Check for overlaps */
324         r = -EEXIST;
325         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
326                 struct kvm_memory_slot *s = &kvm->memslots[i];
327
328                 if (s == memslot)
329                         continue;
330                 if (!((base_gfn + npages <= s->base_gfn) ||
331                       (base_gfn >= s->base_gfn + s->npages)))
332                         goto out_free;
333         }
334
335         /* Free page dirty bitmap if unneeded */
336         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
337                 new.dirty_bitmap = NULL;
338
339         r = -ENOMEM;
340
341         /* Allocate if a slot is being created */
342         if (npages && !new.rmap) {
343                 new.rmap = vmalloc(npages * sizeof(struct page *));
344
345                 if (!new.rmap)
346                         goto out_free;
347
348                 memset(new.rmap, 0, npages * sizeof(*new.rmap));
349
350                 new.user_alloc = user_alloc;
351                 if (user_alloc)
352                         new.userspace_addr = mem->userspace_addr;
353                 else {
354                         down_write(&current->mm->mmap_sem);
355                         new.userspace_addr = do_mmap(NULL, 0,
356                                                      npages * PAGE_SIZE,
357                                                      PROT_READ | PROT_WRITE,
358                                                      MAP_SHARED | MAP_ANONYMOUS,
359                                                      0);
360                         up_write(&current->mm->mmap_sem);
361
362                         if (IS_ERR((void *)new.userspace_addr))
363                                 goto out_free;
364                 }
365         } else {
366                 if (!old.user_alloc && old.rmap) {
367                         int ret;
368
369                         down_write(&current->mm->mmap_sem);
370                         ret = do_munmap(current->mm, old.userspace_addr,
371                                         old.npages * PAGE_SIZE);
372                         up_write(&current->mm->mmap_sem);
373                         if (ret < 0)
374                                 printk(KERN_WARNING
375                                        "kvm_vm_ioctl_set_memory_region: "
376                                        "failed to munmap memory\n");
377                 }
378         }
379
380         /* Allocate page dirty bitmap if needed */
381         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
382                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
383
384                 new.dirty_bitmap = vmalloc(dirty_bytes);
385                 if (!new.dirty_bitmap)
386                         goto out_free;
387                 memset(new.dirty_bitmap, 0, dirty_bytes);
388         }
389
390         if (mem->slot >= kvm->nmemslots)
391                 kvm->nmemslots = mem->slot + 1;
392
393         if (!kvm->n_requested_mmu_pages) {
394                 unsigned int n_pages;
395
396                 if (npages) {
397                         n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
398                         kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
399                                                  n_pages);
400                 } else {
401                         unsigned int nr_mmu_pages;
402
403                         n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
404                         nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
405                         nr_mmu_pages = max(nr_mmu_pages,
406                                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
407                         kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
408                 }
409         }
410
411         *memslot = new;
412
413         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
414         kvm_flush_remote_tlbs(kvm);
415
416         kvm_free_physmem_slot(&old, &new);
417         return 0;
418
419 out_free:
420         kvm_free_physmem_slot(&new, &old);
421 out:
422         return r;
423
424 }
425 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
426
427 int kvm_set_memory_region(struct kvm *kvm,
428                           struct kvm_userspace_memory_region *mem,
429                           int user_alloc)
430 {
431         int r;
432
433         mutex_lock(&kvm->lock);
434         r = __kvm_set_memory_region(kvm, mem, user_alloc);
435         mutex_unlock(&kvm->lock);
436         return r;
437 }
438 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
439
440 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
441                                    struct
442                                    kvm_userspace_memory_region *mem,
443                                    int user_alloc)
444 {
445         if (mem->slot >= KVM_MEMORY_SLOTS)
446                 return -EINVAL;
447         return kvm_set_memory_region(kvm, mem, user_alloc);
448 }
449
450 /*
451  * Get (and clear) the dirty memory log for a memory slot.
452  */
453 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
454                                       struct kvm_dirty_log *log)
455 {
456         struct kvm_memory_slot *memslot;
457         int r, i;
458         int n;
459         unsigned long any = 0;
460
461         mutex_lock(&kvm->lock);
462
463         r = -EINVAL;
464         if (log->slot >= KVM_MEMORY_SLOTS)
465                 goto out;
466
467         memslot = &kvm->memslots[log->slot];
468         r = -ENOENT;
469         if (!memslot->dirty_bitmap)
470                 goto out;
471
472         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
473
474         for (i = 0; !any && i < n/sizeof(long); ++i)
475                 any = memslot->dirty_bitmap[i];
476
477         r = -EFAULT;
478         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
479                 goto out;
480
481         /* If nothing is dirty, don't bother messing with page tables. */
482         if (any) {
483                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
484                 kvm_flush_remote_tlbs(kvm);
485                 memset(memslot->dirty_bitmap, 0, n);
486         }
487
488         r = 0;
489
490 out:
491         mutex_unlock(&kvm->lock);
492         return r;
493 }
494
495 int is_error_page(struct page *page)
496 {
497         return page == bad_page;
498 }
499 EXPORT_SYMBOL_GPL(is_error_page);
500
501 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
502 {
503         int i;
504         struct kvm_mem_alias *alias;
505
506         for (i = 0; i < kvm->naliases; ++i) {
507                 alias = &kvm->aliases[i];
508                 if (gfn >= alias->base_gfn
509                     && gfn < alias->base_gfn + alias->npages)
510                         return alias->target_gfn + gfn - alias->base_gfn;
511         }
512         return gfn;
513 }
514
515 static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
516 {
517         int i;
518
519         for (i = 0; i < kvm->nmemslots; ++i) {
520                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
521
522                 if (gfn >= memslot->base_gfn
523                     && gfn < memslot->base_gfn + memslot->npages)
524                         return memslot;
525         }
526         return NULL;
527 }
528
529 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
530 {
531         gfn = unalias_gfn(kvm, gfn);
532         return __gfn_to_memslot(kvm, gfn);
533 }
534
535 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
536 {
537         int i;
538
539         gfn = unalias_gfn(kvm, gfn);
540         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
541                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
542
543                 if (gfn >= memslot->base_gfn
544                     && gfn < memslot->base_gfn + memslot->npages)
545                         return 1;
546         }
547         return 0;
548 }
549 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
550
551 /*
552  * Requires current->mm->mmap_sem to be held
553  */
554 static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
555 {
556         struct kvm_memory_slot *slot;
557         struct page *page[1];
558         int npages;
559
560         might_sleep();
561
562         gfn = unalias_gfn(kvm, gfn);
563         slot = __gfn_to_memslot(kvm, gfn);
564         if (!slot) {
565                 get_page(bad_page);
566                 return bad_page;
567         }
568
569         npages = get_user_pages(current, current->mm,
570                                 slot->userspace_addr
571                                 + (gfn - slot->base_gfn) * PAGE_SIZE, 1,
572                                 1, 1, page, NULL);
573         if (npages != 1) {
574                 get_page(bad_page);
575                 return bad_page;
576         }
577
578         return page[0];
579 }
580
581 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
582 {
583         struct page *page;
584
585         down_read(&current->mm->mmap_sem);
586         page = __gfn_to_page(kvm, gfn);
587         up_read(&current->mm->mmap_sem);
588
589         return page;
590 }
591
592 EXPORT_SYMBOL_GPL(gfn_to_page);
593
594 void kvm_release_page(struct page *page)
595 {
596         if (!PageReserved(page))
597                 SetPageDirty(page);
598         put_page(page);
599 }
600 EXPORT_SYMBOL_GPL(kvm_release_page);
601
602 static int next_segment(unsigned long len, int offset)
603 {
604         if (len > PAGE_SIZE - offset)
605                 return PAGE_SIZE - offset;
606         else
607                 return len;
608 }
609
610 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
611                         int len)
612 {
613         void *page_virt;
614         struct page *page;
615
616         page = gfn_to_page(kvm, gfn);
617         if (is_error_page(page)) {
618                 kvm_release_page(page);
619                 return -EFAULT;
620         }
621         page_virt = kmap_atomic(page, KM_USER0);
622
623         memcpy(data, page_virt + offset, len);
624
625         kunmap_atomic(page_virt, KM_USER0);
626         kvm_release_page(page);
627         return 0;
628 }
629 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
630
631 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
632 {
633         gfn_t gfn = gpa >> PAGE_SHIFT;
634         int seg;
635         int offset = offset_in_page(gpa);
636         int ret;
637
638         while ((seg = next_segment(len, offset)) != 0) {
639                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
640                 if (ret < 0)
641                         return ret;
642                 offset = 0;
643                 len -= seg;
644                 data += seg;
645                 ++gfn;
646         }
647         return 0;
648 }
649 EXPORT_SYMBOL_GPL(kvm_read_guest);
650
651 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
652                          int offset, int len)
653 {
654         void *page_virt;
655         struct page *page;
656
657         page = gfn_to_page(kvm, gfn);
658         if (is_error_page(page)) {
659                 kvm_release_page(page);
660                 return -EFAULT;
661         }
662         page_virt = kmap_atomic(page, KM_USER0);
663
664         memcpy(page_virt + offset, data, len);
665
666         kunmap_atomic(page_virt, KM_USER0);
667         mark_page_dirty(kvm, gfn);
668         kvm_release_page(page);
669         return 0;
670 }
671 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
672
673 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
674                     unsigned long len)
675 {
676         gfn_t gfn = gpa >> PAGE_SHIFT;
677         int seg;
678         int offset = offset_in_page(gpa);
679         int ret;
680
681         while ((seg = next_segment(len, offset)) != 0) {
682                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
683                 if (ret < 0)
684                         return ret;
685                 offset = 0;
686                 len -= seg;
687                 data += seg;
688                 ++gfn;
689         }
690         return 0;
691 }
692
693 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
694 {
695         void *page_virt;
696         struct page *page;
697
698         page = gfn_to_page(kvm, gfn);
699         if (is_error_page(page)) {
700                 kvm_release_page(page);
701                 return -EFAULT;
702         }
703         page_virt = kmap_atomic(page, KM_USER0);
704
705         memset(page_virt + offset, 0, len);
706
707         kunmap_atomic(page_virt, KM_USER0);
708         kvm_release_page(page);
709         mark_page_dirty(kvm, gfn);
710         return 0;
711 }
712 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
713
714 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
715 {
716         gfn_t gfn = gpa >> PAGE_SHIFT;
717         int seg;
718         int offset = offset_in_page(gpa);
719         int ret;
720
721         while ((seg = next_segment(len, offset)) != 0) {
722                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
723                 if (ret < 0)
724                         return ret;
725                 offset = 0;
726                 len -= seg;
727                 ++gfn;
728         }
729         return 0;
730 }
731 EXPORT_SYMBOL_GPL(kvm_clear_guest);
732
733 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
734 {
735         struct kvm_memory_slot *memslot;
736
737         gfn = unalias_gfn(kvm, gfn);
738         memslot = __gfn_to_memslot(kvm, gfn);
739         if (memslot && memslot->dirty_bitmap) {
740                 unsigned long rel_gfn = gfn - memslot->base_gfn;
741
742                 /* avoid RMW */
743                 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
744                         set_bit(rel_gfn, memslot->dirty_bitmap);
745         }
746 }
747
748 /*
749  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
750  */
751 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
752 {
753         DECLARE_WAITQUEUE(wait, current);
754
755         add_wait_queue(&vcpu->wq, &wait);
756
757         /*
758          * We will block until either an interrupt or a signal wakes us up
759          */
760         while (!kvm_cpu_has_interrupt(vcpu)
761                && !signal_pending(current)
762                && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
763                && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
764                 set_current_state(TASK_INTERRUPTIBLE);
765                 vcpu_put(vcpu);
766                 schedule();
767                 vcpu_load(vcpu);
768         }
769
770         __set_current_state(TASK_RUNNING);
771         remove_wait_queue(&vcpu->wq, &wait);
772 }
773
774 void kvm_resched(struct kvm_vcpu *vcpu)
775 {
776         if (!need_resched())
777                 return;
778         cond_resched();
779 }
780 EXPORT_SYMBOL_GPL(kvm_resched);
781
782 /*
783  * Translate a guest virtual address to a guest physical address.
784  */
785 static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
786                                     struct kvm_translation *tr)
787 {
788         unsigned long vaddr = tr->linear_address;
789         gpa_t gpa;
790
791         vcpu_load(vcpu);
792         mutex_lock(&vcpu->kvm->lock);
793         gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
794         tr->physical_address = gpa;
795         tr->valid = gpa != UNMAPPED_GVA;
796         tr->writeable = 1;
797         tr->usermode = 0;
798         mutex_unlock(&vcpu->kvm->lock);
799         vcpu_put(vcpu);
800
801         return 0;
802 }
803
804 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
805                                     struct kvm_interrupt *irq)
806 {
807         if (irq->irq < 0 || irq->irq >= 256)
808                 return -EINVAL;
809         if (irqchip_in_kernel(vcpu->kvm))
810                 return -ENXIO;
811         vcpu_load(vcpu);
812
813         set_bit(irq->irq, vcpu->irq_pending);
814         set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
815
816         vcpu_put(vcpu);
817
818         return 0;
819 }
820
821 static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
822                                     unsigned long address,
823                                     int *type)
824 {
825         struct kvm_vcpu *vcpu = vma->vm_file->private_data;
826         unsigned long pgoff;
827         struct page *page;
828
829         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
830         if (pgoff == 0)
831                 page = virt_to_page(vcpu->run);
832         else if (pgoff == KVM_PIO_PAGE_OFFSET)
833                 page = virt_to_page(vcpu->pio_data);
834         else
835                 return NOPAGE_SIGBUS;
836         get_page(page);
837         if (type != NULL)
838                 *type = VM_FAULT_MINOR;
839
840         return page;
841 }
842
843 static struct vm_operations_struct kvm_vcpu_vm_ops = {
844         .nopage = kvm_vcpu_nopage,
845 };
846
847 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
848 {
849         vma->vm_ops = &kvm_vcpu_vm_ops;
850         return 0;
851 }
852
853 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
854 {
855         struct kvm_vcpu *vcpu = filp->private_data;
856
857         fput(vcpu->kvm->filp);
858         return 0;
859 }
860
861 static struct file_operations kvm_vcpu_fops = {
862         .release        = kvm_vcpu_release,
863         .unlocked_ioctl = kvm_vcpu_ioctl,
864         .compat_ioctl   = kvm_vcpu_ioctl,
865         .mmap           = kvm_vcpu_mmap,
866 };
867
868 /*
869  * Allocates an inode for the vcpu.
870  */
871 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
872 {
873         int fd, r;
874         struct inode *inode;
875         struct file *file;
876
877         r = anon_inode_getfd(&fd, &inode, &file,
878                              "kvm-vcpu", &kvm_vcpu_fops, vcpu);
879         if (r)
880                 return r;
881         atomic_inc(&vcpu->kvm->filp->f_count);
882         return fd;
883 }
884
885 /*
886  * Creates some virtual cpus.  Good luck creating more than one.
887  */
888 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
889 {
890         int r;
891         struct kvm_vcpu *vcpu;
892
893         if (!valid_vcpu(n))
894                 return -EINVAL;
895
896         vcpu = kvm_x86_ops->vcpu_create(kvm, n);
897         if (IS_ERR(vcpu))
898                 return PTR_ERR(vcpu);
899
900         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
901
902         /* We do fxsave: this must be aligned. */
903         BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
904
905         vcpu_load(vcpu);
906         r = kvm_x86_ops->vcpu_reset(vcpu);
907         if (r == 0)
908                 r = kvm_mmu_setup(vcpu);
909         vcpu_put(vcpu);
910         if (r < 0)
911                 goto free_vcpu;
912
913         mutex_lock(&kvm->lock);
914         if (kvm->vcpus[n]) {
915                 r = -EEXIST;
916                 mutex_unlock(&kvm->lock);
917                 goto mmu_unload;
918         }
919         kvm->vcpus[n] = vcpu;
920         mutex_unlock(&kvm->lock);
921
922         /* Now it's all set up, let userspace reach it */
923         r = create_vcpu_fd(vcpu);
924         if (r < 0)
925                 goto unlink;
926         return r;
927
928 unlink:
929         mutex_lock(&kvm->lock);
930         kvm->vcpus[n] = NULL;
931         mutex_unlock(&kvm->lock);
932
933 mmu_unload:
934         vcpu_load(vcpu);
935         kvm_mmu_unload(vcpu);
936         vcpu_put(vcpu);
937
938 free_vcpu:
939         kvm_x86_ops->vcpu_free(vcpu);
940         return r;
941 }
942
943 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
944 {
945         if (sigset) {
946                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
947                 vcpu->sigset_active = 1;
948                 vcpu->sigset = *sigset;
949         } else
950                 vcpu->sigset_active = 0;
951         return 0;
952 }
953
954 static long kvm_vcpu_ioctl(struct file *filp,
955                            unsigned int ioctl, unsigned long arg)
956 {
957         struct kvm_vcpu *vcpu = filp->private_data;
958         void __user *argp = (void __user *)arg;
959         int r;
960
961         switch (ioctl) {
962         case KVM_RUN:
963                 r = -EINVAL;
964                 if (arg)
965                         goto out;
966                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
967                 break;
968         case KVM_GET_REGS: {
969                 struct kvm_regs kvm_regs;
970
971                 memset(&kvm_regs, 0, sizeof kvm_regs);
972                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
973                 if (r)
974                         goto out;
975                 r = -EFAULT;
976                 if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
977                         goto out;
978                 r = 0;
979                 break;
980         }
981         case KVM_SET_REGS: {
982                 struct kvm_regs kvm_regs;
983
984                 r = -EFAULT;
985                 if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
986                         goto out;
987                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
988                 if (r)
989                         goto out;
990                 r = 0;
991                 break;
992         }
993         case KVM_GET_SREGS: {
994                 struct kvm_sregs kvm_sregs;
995
996                 memset(&kvm_sregs, 0, sizeof kvm_sregs);
997                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
998                 if (r)
999                         goto out;
1000                 r = -EFAULT;
1001                 if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
1002                         goto out;
1003                 r = 0;
1004                 break;
1005         }
1006         case KVM_SET_SREGS: {
1007                 struct kvm_sregs kvm_sregs;
1008
1009                 r = -EFAULT;
1010                 if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
1011                         goto out;
1012                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
1013                 if (r)
1014                         goto out;
1015                 r = 0;
1016                 break;
1017         }
1018         case KVM_TRANSLATE: {
1019                 struct kvm_translation tr;
1020
1021                 r = -EFAULT;
1022                 if (copy_from_user(&tr, argp, sizeof tr))
1023                         goto out;
1024                 r = kvm_vcpu_ioctl_translate(vcpu, &tr);
1025                 if (r)
1026                         goto out;
1027                 r = -EFAULT;
1028                 if (copy_to_user(argp, &tr, sizeof tr))
1029                         goto out;
1030                 r = 0;
1031                 break;
1032         }
1033         case KVM_INTERRUPT: {
1034                 struct kvm_interrupt irq;
1035
1036                 r = -EFAULT;
1037                 if (copy_from_user(&irq, argp, sizeof irq))
1038                         goto out;
1039                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1040                 if (r)
1041                         goto out;
1042                 r = 0;
1043                 break;
1044         }
1045         case KVM_DEBUG_GUEST: {
1046                 struct kvm_debug_guest dbg;
1047
1048                 r = -EFAULT;
1049                 if (copy_from_user(&dbg, argp, sizeof dbg))
1050                         goto out;
1051                 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
1052                 if (r)
1053                         goto out;
1054                 r = 0;
1055                 break;
1056         }
1057         case KVM_SET_SIGNAL_MASK: {
1058                 struct kvm_signal_mask __user *sigmask_arg = argp;
1059                 struct kvm_signal_mask kvm_sigmask;
1060                 sigset_t sigset, *p;
1061
1062                 p = NULL;
1063                 if (argp) {
1064                         r = -EFAULT;
1065                         if (copy_from_user(&kvm_sigmask, argp,
1066                                            sizeof kvm_sigmask))
1067                                 goto out;
1068                         r = -EINVAL;
1069                         if (kvm_sigmask.len != sizeof sigset)
1070                                 goto out;
1071                         r = -EFAULT;
1072                         if (copy_from_user(&sigset, sigmask_arg->sigset,
1073                                            sizeof sigset))
1074                                 goto out;
1075                         p = &sigset;
1076                 }
1077                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1078                 break;
1079         }
1080         case KVM_GET_FPU: {
1081                 struct kvm_fpu fpu;
1082
1083                 memset(&fpu, 0, sizeof fpu);
1084                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
1085                 if (r)
1086                         goto out;
1087                 r = -EFAULT;
1088                 if (copy_to_user(argp, &fpu, sizeof fpu))
1089                         goto out;
1090                 r = 0;
1091                 break;
1092         }
1093         case KVM_SET_FPU: {
1094                 struct kvm_fpu fpu;
1095
1096                 r = -EFAULT;
1097                 if (copy_from_user(&fpu, argp, sizeof fpu))
1098                         goto out;
1099                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
1100                 if (r)
1101                         goto out;
1102                 r = 0;
1103                 break;
1104         }
1105         default:
1106                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1107         }
1108 out:
1109         return r;
1110 }
1111
1112 static long kvm_vm_ioctl(struct file *filp,
1113                            unsigned int ioctl, unsigned long arg)
1114 {
1115         struct kvm *kvm = filp->private_data;
1116         void __user *argp = (void __user *)arg;
1117         int r;
1118
1119         switch (ioctl) {
1120         case KVM_CREATE_VCPU:
1121                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1122                 if (r < 0)
1123                         goto out;
1124                 break;
1125         case KVM_SET_USER_MEMORY_REGION: {
1126                 struct kvm_userspace_memory_region kvm_userspace_mem;
1127
1128                 r = -EFAULT;
1129                 if (copy_from_user(&kvm_userspace_mem, argp,
1130                                                 sizeof kvm_userspace_mem))
1131                         goto out;
1132
1133                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1134                 if (r)
1135                         goto out;
1136                 break;
1137         }
1138         case KVM_GET_DIRTY_LOG: {
1139                 struct kvm_dirty_log log;
1140
1141                 r = -EFAULT;
1142                 if (copy_from_user(&log, argp, sizeof log))
1143                         goto out;
1144                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1145                 if (r)
1146                         goto out;
1147                 break;
1148         }
1149         default:
1150                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1151         }
1152 out:
1153         return r;
1154 }
1155
1156 static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
1157                                   unsigned long address,
1158                                   int *type)
1159 {
1160         struct kvm *kvm = vma->vm_file->private_data;
1161         unsigned long pgoff;
1162         struct page *page;
1163
1164         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1165         if (!kvm_is_visible_gfn(kvm, pgoff))
1166                 return NOPAGE_SIGBUS;
1167         /* current->mm->mmap_sem is already held so call lockless version */
1168         page = __gfn_to_page(kvm, pgoff);
1169         if (is_error_page(page)) {
1170                 kvm_release_page(page);
1171                 return NOPAGE_SIGBUS;
1172         }
1173         if (type != NULL)
1174                 *type = VM_FAULT_MINOR;
1175
1176         return page;
1177 }
1178
1179 static struct vm_operations_struct kvm_vm_vm_ops = {
1180         .nopage = kvm_vm_nopage,
1181 };
1182
1183 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1184 {
1185         vma->vm_ops = &kvm_vm_vm_ops;
1186         return 0;
1187 }
1188
1189 static struct file_operations kvm_vm_fops = {
1190         .release        = kvm_vm_release,
1191         .unlocked_ioctl = kvm_vm_ioctl,
1192         .compat_ioctl   = kvm_vm_ioctl,
1193         .mmap           = kvm_vm_mmap,
1194 };
1195
1196 static int kvm_dev_ioctl_create_vm(void)
1197 {
1198         int fd, r;
1199         struct inode *inode;
1200         struct file *file;
1201         struct kvm *kvm;
1202
1203         kvm = kvm_create_vm();
1204         if (IS_ERR(kvm))
1205                 return PTR_ERR(kvm);
1206         r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
1207         if (r) {
1208                 kvm_destroy_vm(kvm);
1209                 return r;
1210         }
1211
1212         kvm->filp = file;
1213
1214         return fd;
1215 }
1216
1217 static long kvm_dev_ioctl(struct file *filp,
1218                           unsigned int ioctl, unsigned long arg)
1219 {
1220         void __user *argp = (void __user *)arg;
1221         long r = -EINVAL;
1222
1223         switch (ioctl) {
1224         case KVM_GET_API_VERSION:
1225                 r = -EINVAL;
1226                 if (arg)
1227                         goto out;
1228                 r = KVM_API_VERSION;
1229                 break;
1230         case KVM_CREATE_VM:
1231                 r = -EINVAL;
1232                 if (arg)
1233                         goto out;
1234                 r = kvm_dev_ioctl_create_vm();
1235                 break;
1236         case KVM_CHECK_EXTENSION: {
1237                 int ext = (long)argp;
1238
1239                 switch (ext) {
1240                 case KVM_CAP_IRQCHIP:
1241                 case KVM_CAP_HLT:
1242                 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1243                 case KVM_CAP_USER_MEMORY:
1244                 case KVM_CAP_SET_TSS_ADDR:
1245                         r = 1;
1246                         break;
1247                 default:
1248                         r = 0;
1249                         break;
1250                 }
1251                 break;
1252         }
1253         case KVM_GET_VCPU_MMAP_SIZE:
1254                 r = -EINVAL;
1255                 if (arg)
1256                         goto out;
1257                 r = 2 * PAGE_SIZE;
1258                 break;
1259         default:
1260                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
1261         }
1262 out:
1263         return r;
1264 }
1265
1266 static struct file_operations kvm_chardev_ops = {
1267         .unlocked_ioctl = kvm_dev_ioctl,
1268         .compat_ioctl   = kvm_dev_ioctl,
1269 };
1270
1271 static struct miscdevice kvm_dev = {
1272         KVM_MINOR,
1273         "kvm",
1274         &kvm_chardev_ops,
1275 };
1276
1277 /*
1278  * Make sure that a cpu that is being hot-unplugged does not have any vcpus
1279  * cached on it.
1280  */
1281 static void decache_vcpus_on_cpu(int cpu)
1282 {
1283         struct kvm *vm;
1284         struct kvm_vcpu *vcpu;
1285         int i;
1286
1287         spin_lock(&kvm_lock);
1288         list_for_each_entry(vm, &vm_list, vm_list)
1289                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
1290                         vcpu = vm->vcpus[i];
1291                         if (!vcpu)
1292                                 continue;
1293                         /*
1294                          * If the vcpu is locked, then it is running on some
1295                          * other cpu and therefore it is not cached on the
1296                          * cpu in question.
1297                          *
1298                          * If it's not locked, check the last cpu it executed
1299                          * on.
1300                          */
1301                         if (mutex_trylock(&vcpu->mutex)) {
1302                                 if (vcpu->cpu == cpu) {
1303                                         kvm_x86_ops->vcpu_decache(vcpu);
1304                                         vcpu->cpu = -1;
1305                                 }
1306                                 mutex_unlock(&vcpu->mutex);
1307                         }
1308                 }
1309         spin_unlock(&kvm_lock);
1310 }
1311
1312 static void hardware_enable(void *junk)
1313 {
1314         int cpu = raw_smp_processor_id();
1315
1316         if (cpu_isset(cpu, cpus_hardware_enabled))
1317                 return;
1318         cpu_set(cpu, cpus_hardware_enabled);
1319         kvm_x86_ops->hardware_enable(NULL);
1320 }
1321
1322 static void hardware_disable(void *junk)
1323 {
1324         int cpu = raw_smp_processor_id();
1325
1326         if (!cpu_isset(cpu, cpus_hardware_enabled))
1327                 return;
1328         cpu_clear(cpu, cpus_hardware_enabled);
1329         decache_vcpus_on_cpu(cpu);
1330         kvm_x86_ops->hardware_disable(NULL);
1331 }
1332
1333 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
1334                            void *v)
1335 {
1336         int cpu = (long)v;
1337
1338         val &= ~CPU_TASKS_FROZEN;
1339         switch (val) {
1340         case CPU_DYING:
1341                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1342                        cpu);
1343                 hardware_disable(NULL);
1344                 break;
1345         case CPU_UP_CANCELED:
1346                 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
1347                        cpu);
1348                 smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
1349                 break;
1350         case CPU_ONLINE:
1351                 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
1352                        cpu);
1353                 smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
1354                 break;
1355         }
1356         return NOTIFY_OK;
1357 }
1358
1359 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1360                       void *v)
1361 {
1362         if (val == SYS_RESTART) {
1363                 /*
1364                  * Some (well, at least mine) BIOSes hang on reboot if
1365                  * in vmx root mode.
1366                  */
1367                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1368                 on_each_cpu(hardware_disable, NULL, 0, 1);
1369         }
1370         return NOTIFY_OK;
1371 }
1372
1373 static struct notifier_block kvm_reboot_notifier = {
1374         .notifier_call = kvm_reboot,
1375         .priority = 0,
1376 };
1377
1378 void kvm_io_bus_init(struct kvm_io_bus *bus)
1379 {
1380         memset(bus, 0, sizeof(*bus));
1381 }
1382
1383 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
1384 {
1385         int i;
1386
1387         for (i = 0; i < bus->dev_count; i++) {
1388                 struct kvm_io_device *pos = bus->devs[i];
1389
1390                 kvm_iodevice_destructor(pos);
1391         }
1392 }
1393
1394 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
1395 {
1396         int i;
1397
1398         for (i = 0; i < bus->dev_count; i++) {
1399                 struct kvm_io_device *pos = bus->devs[i];
1400
1401                 if (pos->in_range(pos, addr))
1402                         return pos;
1403         }
1404
1405         return NULL;
1406 }
1407
1408 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
1409 {
1410         BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
1411
1412         bus->devs[bus->dev_count++] = dev;
1413 }
1414
1415 static struct notifier_block kvm_cpu_notifier = {
1416         .notifier_call = kvm_cpu_hotplug,
1417         .priority = 20, /* must be > scheduler priority */
1418 };
1419
1420 static u64 stat_get(void *_offset)
1421 {
1422         unsigned offset = (long)_offset;
1423         u64 total = 0;
1424         struct kvm *kvm;
1425         struct kvm_vcpu *vcpu;
1426         int i;
1427
1428         spin_lock(&kvm_lock);
1429         list_for_each_entry(kvm, &vm_list, vm_list)
1430                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
1431                         vcpu = kvm->vcpus[i];
1432                         if (vcpu)
1433                                 total += *(u32 *)((void *)vcpu + offset);
1434                 }
1435         spin_unlock(&kvm_lock);
1436         return total;
1437 }
1438
1439 DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
1440
1441 static __init void kvm_init_debug(void)
1442 {
1443         struct kvm_stats_debugfs_item *p;
1444
1445         debugfs_dir = debugfs_create_dir("kvm", NULL);
1446         for (p = debugfs_entries; p->name; ++p)
1447                 p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
1448                                                 (void *)(long)p->offset,
1449                                                 &stat_fops);
1450 }
1451
1452 static void kvm_exit_debug(void)
1453 {
1454         struct kvm_stats_debugfs_item *p;
1455
1456         for (p = debugfs_entries; p->name; ++p)
1457                 debugfs_remove(p->dentry);
1458         debugfs_remove(debugfs_dir);
1459 }
1460
1461 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
1462 {
1463         hardware_disable(NULL);
1464         return 0;
1465 }
1466
1467 static int kvm_resume(struct sys_device *dev)
1468 {
1469         hardware_enable(NULL);
1470         return 0;
1471 }
1472
1473 static struct sysdev_class kvm_sysdev_class = {
1474         .name = "kvm",
1475         .suspend = kvm_suspend,
1476         .resume = kvm_resume,
1477 };
1478
1479 static struct sys_device kvm_sysdev = {
1480         .id = 0,
1481         .cls = &kvm_sysdev_class,
1482 };
1483
1484 struct page *bad_page;
1485
1486 static inline
1487 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
1488 {
1489         return container_of(pn, struct kvm_vcpu, preempt_notifier);
1490 }
1491
1492 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
1493 {
1494         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1495
1496         kvm_x86_ops->vcpu_load(vcpu, cpu);
1497 }
1498
1499 static void kvm_sched_out(struct preempt_notifier *pn,
1500                           struct task_struct *next)
1501 {
1502         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
1503
1504         kvm_x86_ops->vcpu_put(vcpu);
1505 }
1506
1507 int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
1508                   struct module *module)
1509 {
1510         int r;
1511         int cpu;
1512
1513         if (kvm_x86_ops) {
1514                 printk(KERN_ERR "kvm: already loaded the other module\n");
1515                 return -EEXIST;
1516         }
1517
1518         if (!ops->cpu_has_kvm_support()) {
1519                 printk(KERN_ERR "kvm: no hardware support\n");
1520                 return -EOPNOTSUPP;
1521         }
1522         if (ops->disabled_by_bios()) {
1523                 printk(KERN_ERR "kvm: disabled by bios\n");
1524                 return -EOPNOTSUPP;
1525         }
1526
1527         kvm_x86_ops = ops;
1528
1529         r = kvm_x86_ops->hardware_setup();
1530         if (r < 0)
1531                 goto out;
1532
1533         for_each_online_cpu(cpu) {
1534                 smp_call_function_single(cpu,
1535                                 kvm_x86_ops->check_processor_compatibility,
1536                                 &r, 0, 1);
1537                 if (r < 0)
1538                         goto out_free_0;
1539         }
1540
1541         on_each_cpu(hardware_enable, NULL, 0, 1);
1542         r = register_cpu_notifier(&kvm_cpu_notifier);
1543         if (r)
1544                 goto out_free_1;
1545         register_reboot_notifier(&kvm_reboot_notifier);
1546
1547         r = sysdev_class_register(&kvm_sysdev_class);
1548         if (r)
1549                 goto out_free_2;
1550
1551         r = sysdev_register(&kvm_sysdev);
1552         if (r)
1553                 goto out_free_3;
1554
1555         /* A kmem cache lets us meet the alignment requirements of fx_save. */
1556         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
1557                                            __alignof__(struct kvm_vcpu), 0, 0);
1558         if (!kvm_vcpu_cache) {
1559                 r = -ENOMEM;
1560                 goto out_free_4;
1561         }
1562
1563         kvm_chardev_ops.owner = module;
1564
1565         r = misc_register(&kvm_dev);
1566         if (r) {
1567                 printk(KERN_ERR "kvm: misc device register failed\n");
1568                 goto out_free;
1569         }
1570
1571         kvm_preempt_ops.sched_in = kvm_sched_in;
1572         kvm_preempt_ops.sched_out = kvm_sched_out;
1573
1574         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
1575
1576         return 0;
1577
1578 out_free:
1579         kmem_cache_destroy(kvm_vcpu_cache);
1580 out_free_4:
1581         sysdev_unregister(&kvm_sysdev);
1582 out_free_3:
1583         sysdev_class_unregister(&kvm_sysdev_class);
1584 out_free_2:
1585         unregister_reboot_notifier(&kvm_reboot_notifier);
1586         unregister_cpu_notifier(&kvm_cpu_notifier);
1587 out_free_1:
1588         on_each_cpu(hardware_disable, NULL, 0, 1);
1589 out_free_0:
1590         kvm_x86_ops->hardware_unsetup();
1591 out:
1592         kvm_x86_ops = NULL;
1593         return r;
1594 }
1595 EXPORT_SYMBOL_GPL(kvm_init_x86);
1596
1597 void kvm_exit_x86(void)
1598 {
1599         misc_deregister(&kvm_dev);
1600         kmem_cache_destroy(kvm_vcpu_cache);
1601         sysdev_unregister(&kvm_sysdev);
1602         sysdev_class_unregister(&kvm_sysdev_class);
1603         unregister_reboot_notifier(&kvm_reboot_notifier);
1604         unregister_cpu_notifier(&kvm_cpu_notifier);
1605         on_each_cpu(hardware_disable, NULL, 0, 1);
1606         kvm_x86_ops->hardware_unsetup();
1607         kvm_x86_ops = NULL;
1608 }
1609 EXPORT_SYMBOL_GPL(kvm_exit_x86);
1610
1611 static __init int kvm_init(void)
1612 {
1613         int r;
1614
1615         r = kvm_mmu_module_init();
1616         if (r)
1617                 goto out4;
1618
1619         kvm_init_debug();
1620
1621         kvm_arch_init();
1622
1623         bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1624
1625         if (bad_page == NULL) {
1626                 r = -ENOMEM;
1627                 goto out;
1628         }
1629
1630         return 0;
1631
1632 out:
1633         kvm_exit_debug();
1634         kvm_mmu_module_exit();
1635 out4:
1636         return r;
1637 }
1638
1639 static __exit void kvm_exit(void)
1640 {
1641         kvm_exit_debug();
1642         __free_page(bad_page);
1643         kvm_mmu_module_exit();
1644 }
1645
1646 module_init(kvm_init)
1647 module_exit(kvm_exit)