ieee1394: SPIN_LOCK_UNLOCKED cleanup
[safe/jmp/linux-2.6] / drivers / ieee1394 / ieee1394_transactions.c
1 /*
2  * IEEE 1394 for Linux
3  *
4  * Transaction support.
5  *
6  * Copyright (C) 1999 Andreas E. Bombe
7  *
8  * This code is licensed under the GPL.  See the file COPYING in the root
9  * directory of the kernel sources for details.
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/compiler.h>
14 #include <linux/hardirq.h>
15 #include <linux/spinlock.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>  /* because linux/wait.h is broken if CONFIG_SMP=n */
18 #include <linux/wait.h>
19
20 #include <asm/bug.h>
21 #include <asm/errno.h>
22 #include <asm/system.h>
23
24 #include "ieee1394.h"
25 #include "ieee1394_types.h"
26 #include "hosts.h"
27 #include "ieee1394_core.h"
28 #include "ieee1394_transactions.h"
29
30 #define PREP_ASYNC_HEAD_ADDRESS(tc) \
31         packet->tcode = tc; \
32         packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \
33                 | (1 << 8) | (tc << 4); \
34         packet->header[1] = (packet->host->node_id << 16) | (addr >> 32); \
35         packet->header[2] = addr & 0xffffffff
36
37 #ifndef HPSB_DEBUG_TLABELS
38 static
39 #endif
40 DEFINE_SPINLOCK(hpsb_tlabel_lock);
41
42 static DECLARE_WAIT_QUEUE_HEAD(tlabel_wq);
43
44 static void fill_async_readquad(struct hpsb_packet *packet, u64 addr)
45 {
46         PREP_ASYNC_HEAD_ADDRESS(TCODE_READQ);
47         packet->header_size = 12;
48         packet->data_size = 0;
49         packet->expect_response = 1;
50 }
51
52 static void fill_async_readblock(struct hpsb_packet *packet, u64 addr,
53                                  int length)
54 {
55         PREP_ASYNC_HEAD_ADDRESS(TCODE_READB);
56         packet->header[3] = length << 16;
57         packet->header_size = 16;
58         packet->data_size = 0;
59         packet->expect_response = 1;
60 }
61
62 static void fill_async_writequad(struct hpsb_packet *packet, u64 addr,
63                                  quadlet_t data)
64 {
65         PREP_ASYNC_HEAD_ADDRESS(TCODE_WRITEQ);
66         packet->header[3] = data;
67         packet->header_size = 16;
68         packet->data_size = 0;
69         packet->expect_response = 1;
70 }
71
72 static void fill_async_writeblock(struct hpsb_packet *packet, u64 addr,
73                                   int length)
74 {
75         PREP_ASYNC_HEAD_ADDRESS(TCODE_WRITEB);
76         packet->header[3] = length << 16;
77         packet->header_size = 16;
78         packet->expect_response = 1;
79         packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0);
80 }
81
82 static void fill_async_lock(struct hpsb_packet *packet, u64 addr, int extcode,
83                             int length)
84 {
85         PREP_ASYNC_HEAD_ADDRESS(TCODE_LOCK_REQUEST);
86         packet->header[3] = (length << 16) | extcode;
87         packet->header_size = 16;
88         packet->data_size = length;
89         packet->expect_response = 1;
90 }
91
92 static void fill_iso_packet(struct hpsb_packet *packet, int length, int channel,
93                             int tag, int sync)
94 {
95         packet->header[0] = (length << 16) | (tag << 14) | (channel << 8)
96             | (TCODE_ISO_DATA << 4) | sync;
97
98         packet->header_size = 4;
99         packet->data_size = length;
100         packet->type = hpsb_iso;
101         packet->tcode = TCODE_ISO_DATA;
102 }
103
104 static void fill_phy_packet(struct hpsb_packet *packet, quadlet_t data)
105 {
106         packet->header[0] = data;
107         packet->header[1] = ~data;
108         packet->header_size = 8;
109         packet->data_size = 0;
110         packet->expect_response = 0;
111         packet->type = hpsb_raw;        /* No CRC added */
112         packet->speed_code = IEEE1394_SPEED_100;        /* Force speed to be 100Mbps */
113 }
114
115 static void fill_async_stream_packet(struct hpsb_packet *packet, int length,
116                                      int channel, int tag, int sync)
117 {
118         packet->header[0] = (length << 16) | (tag << 14) | (channel << 8)
119             | (TCODE_STREAM_DATA << 4) | sync;
120
121         packet->header_size = 4;
122         packet->data_size = length;
123         packet->type = hpsb_async;
124         packet->tcode = TCODE_ISO_DATA;
125 }
126
127 /* same as hpsb_get_tlabel, except that it returns immediately */
128 static int hpsb_get_tlabel_atomic(struct hpsb_packet *packet)
129 {
130         unsigned long flags, *tp;
131         u8 *next;
132         int tlabel, n = NODEID_TO_NODE(packet->node_id);
133
134         /* Broadcast transactions are complete once the request has been sent.
135          * Use the same transaction label for all broadcast transactions. */
136         if (unlikely(n == ALL_NODES)) {
137                 packet->tlabel = 0;
138                 return 0;
139         }
140         tp = packet->host->tl_pool[n].map;
141         next = &packet->host->next_tl[n];
142
143         spin_lock_irqsave(&hpsb_tlabel_lock, flags);
144         tlabel = find_next_zero_bit(tp, 64, *next);
145         if (tlabel > 63)
146                 tlabel = find_first_zero_bit(tp, 64);
147         if (tlabel > 63) {
148                 spin_unlock_irqrestore(&hpsb_tlabel_lock, flags);
149                 return -EAGAIN;
150         }
151         __set_bit(tlabel, tp);
152         *next = (tlabel + 1) & 63;
153         spin_unlock_irqrestore(&hpsb_tlabel_lock, flags);
154
155         packet->tlabel = tlabel;
156         return 0;
157 }
158
159 /**
160  * hpsb_get_tlabel - allocate a transaction label
161  * @packet: the packet whose tlabel and tl_pool we set
162  *
163  * Every asynchronous transaction on the 1394 bus needs a transaction
164  * label to match the response to the request.  This label has to be
165  * different from any other transaction label in an outstanding request to
166  * the same node to make matching possible without ambiguity.
167  *
168  * There are 64 different tlabels, so an allocated tlabel has to be freed
169  * with hpsb_free_tlabel() after the transaction is complete (unless it's
170  * reused again for the same target node).
171  *
172  * Return value: Zero on success, otherwise non-zero. A non-zero return
173  * generally means there are no available tlabels. If this is called out
174  * of interrupt or atomic context, then it will sleep until can return a
175  * tlabel or a signal is received.
176  */
177 int hpsb_get_tlabel(struct hpsb_packet *packet)
178 {
179         if (irqs_disabled() || in_atomic())
180                 return hpsb_get_tlabel_atomic(packet);
181
182         /* NB: The macro wait_event_interruptible() is called with a condition
183          * argument with side effect.  This is only possible because the side
184          * effect does not occur until the condition became true, and
185          * wait_event_interruptible() won't evaluate the condition again after
186          * that. */
187         return wait_event_interruptible(tlabel_wq,
188                                         !hpsb_get_tlabel_atomic(packet));
189 }
190
191 /**
192  * hpsb_free_tlabel - free an allocated transaction label
193  * @packet: packet whose tlabel and tl_pool needs to be cleared
194  *
195  * Frees the transaction label allocated with hpsb_get_tlabel().  The
196  * tlabel has to be freed after the transaction is complete (i.e. response
197  * was received for a split transaction or packet was sent for a unified
198  * transaction).
199  *
200  * A tlabel must not be freed twice.
201  */
202 void hpsb_free_tlabel(struct hpsb_packet *packet)
203 {
204         unsigned long flags, *tp;
205         int tlabel, n = NODEID_TO_NODE(packet->node_id);
206
207         if (unlikely(n == ALL_NODES))
208                 return;
209         tp = packet->host->tl_pool[n].map;
210         tlabel = packet->tlabel;
211         BUG_ON(tlabel > 63 || tlabel < 0);
212
213         spin_lock_irqsave(&hpsb_tlabel_lock, flags);
214         BUG_ON(!__test_and_clear_bit(tlabel, tp));
215         spin_unlock_irqrestore(&hpsb_tlabel_lock, flags);
216
217         wake_up_interruptible(&tlabel_wq);
218 }
219
220 /**
221  * hpsb_packet_success - Make sense of the ack and reply codes
222  *
223  * Make sense of the ack and reply codes and return more convenient error codes:
224  * 0 = success.  -%EBUSY = node is busy, try again.  -%EAGAIN = error which can
225  * probably resolved by retry.  -%EREMOTEIO = node suffers from an internal
226  * error.  -%EACCES = this transaction is not allowed on requested address.
227  * -%EINVAL = invalid address at node.
228  */
229 int hpsb_packet_success(struct hpsb_packet *packet)
230 {
231         switch (packet->ack_code) {
232         case ACK_PENDING:
233                 switch ((packet->header[1] >> 12) & 0xf) {
234                 case RCODE_COMPLETE:
235                         return 0;
236                 case RCODE_CONFLICT_ERROR:
237                         return -EAGAIN;
238                 case RCODE_DATA_ERROR:
239                         return -EREMOTEIO;
240                 case RCODE_TYPE_ERROR:
241                         return -EACCES;
242                 case RCODE_ADDRESS_ERROR:
243                         return -EINVAL;
244                 default:
245                         HPSB_ERR("received reserved rcode %d from node %d",
246                                  (packet->header[1] >> 12) & 0xf,
247                                  packet->node_id);
248                         return -EAGAIN;
249                 }
250                 BUG();
251
252         case ACK_BUSY_X:
253         case ACK_BUSY_A:
254         case ACK_BUSY_B:
255                 return -EBUSY;
256
257         case ACK_TYPE_ERROR:
258                 return -EACCES;
259
260         case ACK_COMPLETE:
261                 if (packet->tcode == TCODE_WRITEQ
262                     || packet->tcode == TCODE_WRITEB) {
263                         return 0;
264                 } else {
265                         HPSB_ERR("impossible ack_complete from node %d "
266                                  "(tcode %d)", packet->node_id, packet->tcode);
267                         return -EAGAIN;
268                 }
269
270         case ACK_DATA_ERROR:
271                 if (packet->tcode == TCODE_WRITEB
272                     || packet->tcode == TCODE_LOCK_REQUEST) {
273                         return -EAGAIN;
274                 } else {
275                         HPSB_ERR("impossible ack_data_error from node %d "
276                                  "(tcode %d)", packet->node_id, packet->tcode);
277                         return -EAGAIN;
278                 }
279
280         case ACK_ADDRESS_ERROR:
281                 return -EINVAL;
282
283         case ACK_TARDY:
284         case ACK_CONFLICT_ERROR:
285         case ACKX_NONE:
286         case ACKX_SEND_ERROR:
287         case ACKX_ABORTED:
288         case ACKX_TIMEOUT:
289                 /* error while sending */
290                 return -EAGAIN;
291
292         default:
293                 HPSB_ERR("got invalid ack %d from node %d (tcode %d)",
294                          packet->ack_code, packet->node_id, packet->tcode);
295                 return -EAGAIN;
296         }
297         BUG();
298 }
299
300 struct hpsb_packet *hpsb_make_readpacket(struct hpsb_host *host, nodeid_t node,
301                                          u64 addr, size_t length)
302 {
303         struct hpsb_packet *packet;
304
305         if (length == 0)
306                 return NULL;
307
308         packet = hpsb_alloc_packet(length);
309         if (!packet)
310                 return NULL;
311
312         packet->host = host;
313         packet->node_id = node;
314
315         if (hpsb_get_tlabel(packet)) {
316                 hpsb_free_packet(packet);
317                 return NULL;
318         }
319
320         if (length == 4)
321                 fill_async_readquad(packet, addr);
322         else
323                 fill_async_readblock(packet, addr, length);
324
325         return packet;
326 }
327
328 struct hpsb_packet *hpsb_make_writepacket(struct hpsb_host *host, nodeid_t node,
329                                           u64 addr, quadlet_t * buffer,
330                                           size_t length)
331 {
332         struct hpsb_packet *packet;
333
334         if (length == 0)
335                 return NULL;
336
337         packet = hpsb_alloc_packet(length);
338         if (!packet)
339                 return NULL;
340
341         if (length % 4) {       /* zero padding bytes */
342                 packet->data[length >> 2] = 0;
343         }
344         packet->host = host;
345         packet->node_id = node;
346
347         if (hpsb_get_tlabel(packet)) {
348                 hpsb_free_packet(packet);
349                 return NULL;
350         }
351
352         if (length == 4) {
353                 fill_async_writequad(packet, addr, buffer ? *buffer : 0);
354         } else {
355                 fill_async_writeblock(packet, addr, length);
356                 if (buffer)
357                         memcpy(packet->data, buffer, length);
358         }
359
360         return packet;
361 }
362
363 struct hpsb_packet *hpsb_make_streampacket(struct hpsb_host *host, u8 * buffer,
364                                            int length, int channel, int tag,
365                                            int sync)
366 {
367         struct hpsb_packet *packet;
368
369         if (length == 0)
370                 return NULL;
371
372         packet = hpsb_alloc_packet(length);
373         if (!packet)
374                 return NULL;
375
376         if (length % 4) {       /* zero padding bytes */
377                 packet->data[length >> 2] = 0;
378         }
379         packet->host = host;
380
381         if (hpsb_get_tlabel(packet)) {
382                 hpsb_free_packet(packet);
383                 return NULL;
384         }
385
386         fill_async_stream_packet(packet, length, channel, tag, sync);
387         if (buffer)
388                 memcpy(packet->data, buffer, length);
389
390         return packet;
391 }
392
393 struct hpsb_packet *hpsb_make_lockpacket(struct hpsb_host *host, nodeid_t node,
394                                          u64 addr, int extcode,
395                                          quadlet_t * data, quadlet_t arg)
396 {
397         struct hpsb_packet *p;
398         u32 length;
399
400         p = hpsb_alloc_packet(8);
401         if (!p)
402                 return NULL;
403
404         p->host = host;
405         p->node_id = node;
406         if (hpsb_get_tlabel(p)) {
407                 hpsb_free_packet(p);
408                 return NULL;
409         }
410
411         switch (extcode) {
412         case EXTCODE_FETCH_ADD:
413         case EXTCODE_LITTLE_ADD:
414                 length = 4;
415                 if (data)
416                         p->data[0] = *data;
417                 break;
418         default:
419                 length = 8;
420                 if (data) {
421                         p->data[0] = arg;
422                         p->data[1] = *data;
423                 }
424                 break;
425         }
426         fill_async_lock(p, addr, extcode, length);
427
428         return p;
429 }
430
431 struct hpsb_packet *hpsb_make_lock64packet(struct hpsb_host *host,
432                                            nodeid_t node, u64 addr, int extcode,
433                                            octlet_t * data, octlet_t arg)
434 {
435         struct hpsb_packet *p;
436         u32 length;
437
438         p = hpsb_alloc_packet(16);
439         if (!p)
440                 return NULL;
441
442         p->host = host;
443         p->node_id = node;
444         if (hpsb_get_tlabel(p)) {
445                 hpsb_free_packet(p);
446                 return NULL;
447         }
448
449         switch (extcode) {
450         case EXTCODE_FETCH_ADD:
451         case EXTCODE_LITTLE_ADD:
452                 length = 8;
453                 if (data) {
454                         p->data[0] = *data >> 32;
455                         p->data[1] = *data & 0xffffffff;
456                 }
457                 break;
458         default:
459                 length = 16;
460                 if (data) {
461                         p->data[0] = arg >> 32;
462                         p->data[1] = arg & 0xffffffff;
463                         p->data[2] = *data >> 32;
464                         p->data[3] = *data & 0xffffffff;
465                 }
466                 break;
467         }
468         fill_async_lock(p, addr, extcode, length);
469
470         return p;
471 }
472
473 struct hpsb_packet *hpsb_make_phypacket(struct hpsb_host *host, quadlet_t data)
474 {
475         struct hpsb_packet *p;
476
477         p = hpsb_alloc_packet(0);
478         if (!p)
479                 return NULL;
480
481         p->host = host;
482         fill_phy_packet(p, data);
483
484         return p;
485 }
486
487 struct hpsb_packet *hpsb_make_isopacket(struct hpsb_host *host,
488                                         int length, int channel,
489                                         int tag, int sync)
490 {
491         struct hpsb_packet *p;
492
493         p = hpsb_alloc_packet(length);
494         if (!p)
495                 return NULL;
496
497         p->host = host;
498         fill_iso_packet(p, length, channel, tag, sync);
499
500         p->generation = get_hpsb_generation(host);
501
502         return p;
503 }
504
505 /*
506  * FIXME - these functions should probably read from / write to user space to
507  * avoid in kernel buffers for user space callers
508  */
509
510 /**
511  * hpsb_read - generic read function
512  *
513  * Recognizes the local node ID and act accordingly.  Automatically uses a
514  * quadlet read request if @length == 4 and and a block read request otherwise.
515  * It does not yet support lengths that are not a multiple of 4.
516  *
517  * You must explicitly specifiy the @generation for which the node ID is valid,
518  * to avoid sending packets to the wrong nodes when we race with a bus reset.
519  */
520 int hpsb_read(struct hpsb_host *host, nodeid_t node, unsigned int generation,
521               u64 addr, quadlet_t * buffer, size_t length)
522 {
523         struct hpsb_packet *packet;
524         int retval = 0;
525
526         if (length == 0)
527                 return -EINVAL;
528
529         BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
530
531         packet = hpsb_make_readpacket(host, node, addr, length);
532
533         if (!packet) {
534                 return -ENOMEM;
535         }
536
537         packet->generation = generation;
538         retval = hpsb_send_packet_and_wait(packet);
539         if (retval < 0)
540                 goto hpsb_read_fail;
541
542         retval = hpsb_packet_success(packet);
543
544         if (retval == 0) {
545                 if (length == 4) {
546                         *buffer = packet->header[3];
547                 } else {
548                         memcpy(buffer, packet->data, length);
549                 }
550         }
551
552       hpsb_read_fail:
553         hpsb_free_tlabel(packet);
554         hpsb_free_packet(packet);
555
556         return retval;
557 }
558
559 /**
560  * hpsb_write - generic write function
561  *
562  * Recognizes the local node ID and act accordingly.  Automatically uses a
563  * quadlet write request if @length == 4 and and a block write request
564  * otherwise.  It does not yet support lengths that are not a multiple of 4.
565  *
566  * You must explicitly specifiy the @generation for which the node ID is valid,
567  * to avoid sending packets to the wrong nodes when we race with a bus reset.
568  */
569 int hpsb_write(struct hpsb_host *host, nodeid_t node, unsigned int generation,
570                u64 addr, quadlet_t * buffer, size_t length)
571 {
572         struct hpsb_packet *packet;
573         int retval;
574
575         if (length == 0)
576                 return -EINVAL;
577
578         BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
579
580         packet = hpsb_make_writepacket(host, node, addr, buffer, length);
581
582         if (!packet)
583                 return -ENOMEM;
584
585         packet->generation = generation;
586         retval = hpsb_send_packet_and_wait(packet);
587         if (retval < 0)
588                 goto hpsb_write_fail;
589
590         retval = hpsb_packet_success(packet);
591
592       hpsb_write_fail:
593         hpsb_free_tlabel(packet);
594         hpsb_free_packet(packet);
595
596         return retval;
597 }
598
599 #if 0
600
601 int hpsb_lock(struct hpsb_host *host, nodeid_t node, unsigned int generation,
602               u64 addr, int extcode, quadlet_t * data, quadlet_t arg)
603 {
604         struct hpsb_packet *packet;
605         int retval = 0;
606
607         BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
608
609         packet = hpsb_make_lockpacket(host, node, addr, extcode, data, arg);
610         if (!packet)
611                 return -ENOMEM;
612
613         packet->generation = generation;
614         retval = hpsb_send_packet_and_wait(packet);
615         if (retval < 0)
616                 goto hpsb_lock_fail;
617
618         retval = hpsb_packet_success(packet);
619
620         if (retval == 0) {
621                 *data = packet->data[0];
622         }
623
624       hpsb_lock_fail:
625         hpsb_free_tlabel(packet);
626         hpsb_free_packet(packet);
627
628         return retval;
629 }
630
631 int hpsb_send_gasp(struct hpsb_host *host, int channel, unsigned int generation,
632                    quadlet_t * buffer, size_t length, u32 specifier_id,
633                    unsigned int version)
634 {
635         struct hpsb_packet *packet;
636         int retval = 0;
637         u16 specifier_id_hi = (specifier_id & 0x00ffff00) >> 8;
638         u8 specifier_id_lo = specifier_id & 0xff;
639
640         HPSB_VERBOSE("Send GASP: channel = %d, length = %Zd", channel, length);
641
642         length += 8;
643
644         packet = hpsb_make_streampacket(host, NULL, length, channel, 3, 0);
645         if (!packet)
646                 return -ENOMEM;
647
648         packet->data[0] = cpu_to_be32((host->node_id << 16) | specifier_id_hi);
649         packet->data[1] =
650             cpu_to_be32((specifier_id_lo << 24) | (version & 0x00ffffff));
651
652         memcpy(&(packet->data[2]), buffer, length - 8);
653
654         packet->generation = generation;
655
656         packet->no_waiter = 1;
657
658         retval = hpsb_send_packet(packet);
659         if (retval < 0)
660                 hpsb_free_packet(packet);
661
662         return retval;
663 }
664
665 #endif                          /*  0  */