ieee1394: de-inline some functions
[safe/jmp/linux-2.6] / drivers / ieee1394 / ieee1394_core.c
1 /*
2  * IEEE 1394 for Linux
3  *
4  * Core support: hpsb_packet management, packet handling and forwarding to
5  *               highlevel or lowlevel code
6  *
7  * Copyright (C) 1999, 2000 Andreas E. Bombe
8  *                     2002 Manfred Weihs <weihs@ict.tuwien.ac.at>
9  *
10  * This code is licensed under the GPL.  See the file COPYING in the root
11  * directory of the kernel sources for details.
12  *
13  *
14  * Contributions:
15  *
16  * Manfred Weihs <weihs@ict.tuwien.ac.at>
17  *        loopback functionality in hpsb_send_packet
18  *        allow highlevel drivers to disable automatic response generation
19  *              and to generate responses themselves (deferred)
20  *
21  */
22
23 #include <linux/kernel.h>
24 #include <linux/list.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/bitops.h>
32 #include <linux/kdev_t.h>
33 #include <linux/skbuff.h>
34 #include <linux/suspend.h>
35 #include <linux/kthread.h>
36 #include <linux/preempt.h>
37 #include <linux/time.h>
38
39 #include <asm/system.h>
40 #include <asm/byteorder.h>
41
42 #include "ieee1394_types.h"
43 #include "ieee1394.h"
44 #include "hosts.h"
45 #include "ieee1394_core.h"
46 #include "highlevel.h"
47 #include "ieee1394_transactions.h"
48 #include "csr.h"
49 #include "nodemgr.h"
50 #include "dma.h"
51 #include "iso.h"
52 #include "config_roms.h"
53
54 /*
55  * Disable the nodemgr detection and config rom reading functionality.
56  */
57 static int disable_nodemgr;
58 module_param(disable_nodemgr, int, 0444);
59 MODULE_PARM_DESC(disable_nodemgr, "Disable nodemgr functionality.");
60
61 /* Disable Isochronous Resource Manager functionality */
62 int hpsb_disable_irm = 0;
63 module_param_named(disable_irm, hpsb_disable_irm, bool, 0444);
64 MODULE_PARM_DESC(disable_irm,
65                  "Disable Isochronous Resource Manager functionality.");
66
67 /* We are GPL, so treat us special */
68 MODULE_LICENSE("GPL");
69
70 /* Some globals used */
71 const char *hpsb_speedto_str[] = { "S100", "S200", "S400", "S800", "S1600", "S3200" };
72 struct class *hpsb_protocol_class;
73
74 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
75 static void dump_packet(const char *text, quadlet_t *data, int size, int speed)
76 {
77         int i;
78
79         size /= 4;
80         size = (size > 4 ? 4 : size);
81
82         printk(KERN_DEBUG "ieee1394: %s", text);
83         if (speed > -1 && speed < 6)
84                 printk(" at %s", hpsb_speedto_str[speed]);
85         printk(":");
86         for (i = 0; i < size; i++)
87                 printk(" %08x", data[i]);
88         printk("\n");
89 }
90 #else
91 #define dump_packet(a,b,c,d) do {} while (0)
92 #endif
93
94 static void abort_requests(struct hpsb_host *host);
95 static void queue_packet_complete(struct hpsb_packet *packet);
96
97
98 /**
99  * hpsb_set_packet_complete_task - set task that runs when a packet completes
100  * @packet: the packet whose completion we want the task added to
101  * @routine: function to call
102  * @data: data (if any) to pass to the above function
103  *
104  * Set the task that runs when a packet completes. You cannot call this more
105  * than once on a single packet before it is sent.
106  */
107 void hpsb_set_packet_complete_task(struct hpsb_packet *packet,
108                                    void (*routine)(void *), void *data)
109 {
110         WARN_ON(packet->complete_routine != NULL);
111         packet->complete_routine = routine;
112         packet->complete_data = data;
113         return;
114 }
115
116 /**
117  * hpsb_alloc_packet - allocate new packet structure
118  * @data_size: size of the data block to be allocated
119  *
120  * This function allocates, initializes and returns a new &struct hpsb_packet.
121  * It can be used in interrupt context.  A header block is always included, its
122  * size is big enough to contain all possible 1394 headers.  The data block is
123  * only allocated when @data_size is not zero.
124  *
125  * For packets for which responses will be received the @data_size has to be big
126  * enough to contain the response's data block since no further allocation
127  * occurs at response matching time.
128  *
129  * The packet's generation value will be set to the current generation number
130  * for ease of use.  Remember to overwrite it with your own recorded generation
131  * number if you can not be sure that your code will not race with a bus reset.
132  *
133  * Return value: A pointer to a &struct hpsb_packet or NULL on allocation
134  * failure.
135  */
136 struct hpsb_packet *hpsb_alloc_packet(size_t data_size)
137 {
138         struct hpsb_packet *packet = NULL;
139         struct sk_buff *skb;
140
141         data_size = ((data_size + 3) & ~3);
142
143         skb = alloc_skb(data_size + sizeof(*packet), GFP_ATOMIC);
144         if (skb == NULL)
145                 return NULL;
146
147         memset(skb->data, 0, data_size + sizeof(*packet));
148
149         packet = (struct hpsb_packet *)skb->data;
150         packet->skb = skb;
151
152         packet->header = packet->embedded_header;
153         packet->state = hpsb_unused;
154         packet->generation = -1;
155         INIT_LIST_HEAD(&packet->driver_list);
156         atomic_set(&packet->refcnt, 1);
157
158         if (data_size) {
159                 packet->data = (quadlet_t *)(skb->data + sizeof(*packet));
160                 packet->data_size = data_size;
161         }
162
163         return packet;
164 }
165
166
167 /**
168  * hpsb_free_packet - free packet and data associated with it
169  * @packet: packet to free (is NULL safe)
170  *
171  * This function will free packet->data and finally the packet itself.
172  */
173 void hpsb_free_packet(struct hpsb_packet *packet)
174 {
175         if (packet && atomic_dec_and_test(&packet->refcnt)) {
176                 BUG_ON(!list_empty(&packet->driver_list));
177                 kfree_skb(packet->skb);
178         }
179 }
180
181
182 /**
183  * hpsb_reset_bus - initiate bus reset on the given host
184  * @host: host controller whose bus to reset
185  * @type: one of enum reset_types
186  *
187  * Returns 1 if bus reset already in progress, 0 otherwise.
188  */
189 int hpsb_reset_bus(struct hpsb_host *host, int type)
190 {
191         if (!host->in_bus_reset) {
192                 host->driver->devctl(host, RESET_BUS, type);
193                 return 0;
194         } else {
195                 return 1;
196         }
197 }
198
199 /**
200  * hpsb_read_cycle_timer - read cycle timer register and system time
201  * @host: host whose isochronous cycle timer register is read
202  * @cycle_timer: address of bitfield to return the register contents
203  * @local_time: address to return the system time
204  *
205  * The format of * @cycle_timer, is described in OHCI 1.1 clause 5.13. This
206  * format is also read from non-OHCI controllers. * @local_time contains the
207  * system time in microseconds since the Epoch, read at the moment when the
208  * cycle timer was read.
209  *
210  * Return value: 0 for success or error number otherwise.
211  */
212 int hpsb_read_cycle_timer(struct hpsb_host *host, u32 *cycle_timer,
213                           u64 *local_time)
214 {
215         int ctr;
216         struct timeval tv;
217         unsigned long flags;
218
219         if (!host || !cycle_timer || !local_time)
220                 return -EINVAL;
221
222         preempt_disable();
223         local_irq_save(flags);
224
225         ctr = host->driver->devctl(host, GET_CYCLE_COUNTER, 0);
226         if (ctr)
227                 do_gettimeofday(&tv);
228
229         local_irq_restore(flags);
230         preempt_enable();
231
232         if (!ctr)
233                 return -EIO;
234         *cycle_timer = ctr;
235         *local_time = tv.tv_sec * 1000000ULL + tv.tv_usec;
236         return 0;
237 }
238
239 /**
240  * hpsb_bus_reset - notify a bus reset to the core
241  *
242  * For host driver module usage.  Safe to use in interrupt context, although
243  * quite complex; so you may want to run it in the bottom rather than top half.
244  *
245  * Returns 1 if bus reset already in progress, 0 otherwise.
246  */
247 int hpsb_bus_reset(struct hpsb_host *host)
248 {
249         if (host->in_bus_reset) {
250                 HPSB_NOTICE("%s called while bus reset already in progress",
251                             __FUNCTION__);
252                 return 1;
253         }
254
255         abort_requests(host);
256         host->in_bus_reset = 1;
257         host->irm_id = -1;
258         host->is_irm = 0;
259         host->busmgr_id = -1;
260         host->is_busmgr = 0;
261         host->is_cycmst = 0;
262         host->node_count = 0;
263         host->selfid_count = 0;
264
265         return 0;
266 }
267
268
269 /*
270  * Verify num_of_selfids SelfIDs and return number of nodes.  Return zero in
271  * case verification failed.
272  */
273 static int check_selfids(struct hpsb_host *host)
274 {
275         int nodeid = -1;
276         int rest_of_selfids = host->selfid_count;
277         struct selfid *sid = (struct selfid *)host->topology_map;
278         struct ext_selfid *esid;
279         int esid_seq = 23;
280
281         host->nodes_active = 0;
282
283         while (rest_of_selfids--) {
284                 if (!sid->extended) {
285                         nodeid++;
286                         esid_seq = 0;
287
288                         if (sid->phy_id != nodeid) {
289                                 HPSB_INFO("SelfIDs failed monotony check with "
290                                           "%d", sid->phy_id);
291                                 return 0;
292                         }
293
294                         if (sid->link_active) {
295                                 host->nodes_active++;
296                                 if (sid->contender)
297                                         host->irm_id = LOCAL_BUS | sid->phy_id;
298                         }
299                 } else {
300                         esid = (struct ext_selfid *)sid;
301
302                         if ((esid->phy_id != nodeid)
303                             || (esid->seq_nr != esid_seq)) {
304                                 HPSB_INFO("SelfIDs failed monotony check with "
305                                           "%d/%d", esid->phy_id, esid->seq_nr);
306                                 return 0;
307                         }
308                         esid_seq++;
309                 }
310                 sid++;
311         }
312
313         esid = (struct ext_selfid *)(sid - 1);
314         while (esid->extended) {
315                 if ((esid->porta == SELFID_PORT_PARENT) ||
316                     (esid->portb == SELFID_PORT_PARENT) ||
317                     (esid->portc == SELFID_PORT_PARENT) ||
318                     (esid->portd == SELFID_PORT_PARENT) ||
319                     (esid->porte == SELFID_PORT_PARENT) ||
320                     (esid->portf == SELFID_PORT_PARENT) ||
321                     (esid->portg == SELFID_PORT_PARENT) ||
322                     (esid->porth == SELFID_PORT_PARENT)) {
323                         HPSB_INFO("SelfIDs failed root check on "
324                                   "extended SelfID");
325                         return 0;
326                 }
327                 esid--;
328         }
329
330         sid = (struct selfid *)esid;
331         if ((sid->port0 == SELFID_PORT_PARENT) ||
332             (sid->port1 == SELFID_PORT_PARENT) ||
333             (sid->port2 == SELFID_PORT_PARENT)) {
334                 HPSB_INFO("SelfIDs failed root check");
335                 return 0;
336         }
337
338         host->node_count = nodeid + 1;
339         return 1;
340 }
341
342 static void build_speed_map(struct hpsb_host *host, int nodecount)
343 {
344         u8 cldcnt[nodecount];
345         u8 *map = host->speed_map;
346         u8 *speedcap = host->speed;
347         struct selfid *sid;
348         struct ext_selfid *esid;
349         int i, j, n;
350
351         for (i = 0; i < (nodecount * 64); i += 64) {
352                 for (j = 0; j < nodecount; j++) {
353                         map[i+j] = IEEE1394_SPEED_MAX;
354                 }
355         }
356
357         for (i = 0; i < nodecount; i++) {
358                 cldcnt[i] = 0;
359         }
360
361         /* find direct children count and speed */
362         for (sid = (struct selfid *)&host->topology_map[host->selfid_count-1],
363                      n = nodecount - 1;
364              (void *)sid >= (void *)host->topology_map; sid--) {
365                 if (sid->extended) {
366                         esid = (struct ext_selfid *)sid;
367
368                         if (esid->porta == SELFID_PORT_CHILD) cldcnt[n]++;
369                         if (esid->portb == SELFID_PORT_CHILD) cldcnt[n]++;
370                         if (esid->portc == SELFID_PORT_CHILD) cldcnt[n]++;
371                         if (esid->portd == SELFID_PORT_CHILD) cldcnt[n]++;
372                         if (esid->porte == SELFID_PORT_CHILD) cldcnt[n]++;
373                         if (esid->portf == SELFID_PORT_CHILD) cldcnt[n]++;
374                         if (esid->portg == SELFID_PORT_CHILD) cldcnt[n]++;
375                         if (esid->porth == SELFID_PORT_CHILD) cldcnt[n]++;
376                 } else {
377                         if (sid->port0 == SELFID_PORT_CHILD) cldcnt[n]++;
378                         if (sid->port1 == SELFID_PORT_CHILD) cldcnt[n]++;
379                         if (sid->port2 == SELFID_PORT_CHILD) cldcnt[n]++;
380
381                         speedcap[n] = sid->speed;
382                         n--;
383                 }
384         }
385
386         /* set self mapping */
387         for (i = 0; i < nodecount; i++) {
388                 map[64*i + i] = speedcap[i];
389         }
390
391         /* fix up direct children count to total children count;
392          * also fix up speedcaps for sibling and parent communication */
393         for (i = 1; i < nodecount; i++) {
394                 for (j = cldcnt[i], n = i - 1; j > 0; j--) {
395                         cldcnt[i] += cldcnt[n];
396                         speedcap[n] = min(speedcap[n], speedcap[i]);
397                         n -= cldcnt[n] + 1;
398                 }
399         }
400
401         for (n = 0; n < nodecount; n++) {
402                 for (i = n - cldcnt[n]; i <= n; i++) {
403                         for (j = 0; j < (n - cldcnt[n]); j++) {
404                                 map[j*64 + i] = map[i*64 + j] =
405                                         min(map[i*64 + j], speedcap[n]);
406                         }
407                         for (j = n + 1; j < nodecount; j++) {
408                                 map[j*64 + i] = map[i*64 + j] =
409                                         min(map[i*64 + j], speedcap[n]);
410                         }
411                 }
412         }
413
414 #if SELFID_SPEED_UNKNOWN != IEEE1394_SPEED_MAX
415         /* assume maximum speed for 1394b PHYs, nodemgr will correct it */
416         for (n = 0; n < nodecount; n++)
417                 if (speedcap[n] == SELFID_SPEED_UNKNOWN)
418                         speedcap[n] = IEEE1394_SPEED_MAX;
419 #endif
420 }
421
422
423 /**
424  * hpsb_selfid_received - hand over received selfid packet to the core
425  *
426  * For host driver module usage.  Safe to use in interrupt context.
427  *
428  * The host driver should have done a successful complement check (second
429  * quadlet is complement of first) beforehand.
430  */
431 void hpsb_selfid_received(struct hpsb_host *host, quadlet_t sid)
432 {
433         if (host->in_bus_reset) {
434                 HPSB_VERBOSE("Including SelfID 0x%x", sid);
435                 host->topology_map[host->selfid_count++] = sid;
436         } else {
437                 HPSB_NOTICE("Spurious SelfID packet (0x%08x) received from bus %d",
438                             sid, NODEID_TO_BUS(host->node_id));
439         }
440 }
441
442 /**
443  * hpsb_selfid_complete - notify completion of SelfID stage to the core
444  *
445  * For host driver module usage.  Safe to use in interrupt context, although
446  * quite complex; so you may want to run it in the bottom rather than top half.
447  *
448  * Notify completion of SelfID stage to the core and report new physical ID
449  * and whether host is root now.
450  */
451 void hpsb_selfid_complete(struct hpsb_host *host, int phyid, int isroot)
452 {
453         if (!host->in_bus_reset)
454                 HPSB_NOTICE("SelfID completion called outside of bus reset!");
455
456         host->node_id = LOCAL_BUS | phyid;
457         host->is_root = isroot;
458
459         if (!check_selfids(host)) {
460                 if (host->reset_retries++ < 20) {
461                         /* selfid stage did not complete without error */
462                         HPSB_NOTICE("Error in SelfID stage, resetting");
463                         host->in_bus_reset = 0;
464                         /* this should work from ohci1394 now... */
465                         hpsb_reset_bus(host, LONG_RESET);
466                         return;
467                 } else {
468                         HPSB_NOTICE("Stopping out-of-control reset loop");
469                         HPSB_NOTICE("Warning - topology map and speed map will not be valid");
470                         host->reset_retries = 0;
471                 }
472         } else {
473                 host->reset_retries = 0;
474                 build_speed_map(host, host->node_count);
475         }
476
477         HPSB_VERBOSE("selfid_complete called with successful SelfID stage "
478                      "... irm_id: 0x%X node_id: 0x%X",host->irm_id,host->node_id);
479
480         /* irm_id is kept up to date by check_selfids() */
481         if (host->irm_id == host->node_id) {
482                 host->is_irm = 1;
483         } else {
484                 host->is_busmgr = 0;
485                 host->is_irm = 0;
486         }
487
488         if (isroot) {
489                 host->driver->devctl(host, ACT_CYCLE_MASTER, 1);
490                 host->is_cycmst = 1;
491         }
492         atomic_inc(&host->generation);
493         host->in_bus_reset = 0;
494         highlevel_host_reset(host);
495 }
496
497 /**
498  * hpsb_packet_sent - notify core of sending a packet
499  *
500  * For host driver module usage.  Safe to call from within a transmit packet
501  * routine.
502  *
503  * Notify core of sending a packet.  Ackcode is the ack code returned for async
504  * transmits or ACKX_SEND_ERROR if the transmission failed completely; ACKX_NONE
505  * for other cases (internal errors that don't justify a panic).
506  */
507 void hpsb_packet_sent(struct hpsb_host *host, struct hpsb_packet *packet,
508                       int ackcode)
509 {
510         unsigned long flags;
511
512         spin_lock_irqsave(&host->pending_packet_queue.lock, flags);
513
514         packet->ack_code = ackcode;
515
516         if (packet->no_waiter || packet->state == hpsb_complete) {
517                 /* if packet->no_waiter, must not have a tlabel allocated */
518                 spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags);
519                 hpsb_free_packet(packet);
520                 return;
521         }
522
523         atomic_dec(&packet->refcnt);    /* drop HC's reference */
524         /* here the packet must be on the host->pending_packet_queue */
525
526         if (ackcode != ACK_PENDING || !packet->expect_response) {
527                 packet->state = hpsb_complete;
528                 __skb_unlink(packet->skb, &host->pending_packet_queue);
529                 spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags);
530                 queue_packet_complete(packet);
531                 return;
532         }
533
534         packet->state = hpsb_pending;
535         packet->sendtime = jiffies;
536
537         spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags);
538
539         mod_timer(&host->timeout, jiffies + host->timeout_interval);
540 }
541
542 /**
543  * hpsb_send_phy_config - transmit a PHY configuration packet on the bus
544  * @host: host that PHY config packet gets sent through
545  * @rootid: root whose force_root bit should get set (-1 = don't set force_root)
546  * @gapcnt: gap count value to set (-1 = don't set gap count)
547  *
548  * This function sends a PHY config packet on the bus through the specified
549  * host.
550  *
551  * Return value: 0 for success or negative error number otherwise.
552  */
553 int hpsb_send_phy_config(struct hpsb_host *host, int rootid, int gapcnt)
554 {
555         struct hpsb_packet *packet;
556         quadlet_t d = 0;
557         int retval = 0;
558
559         if (rootid >= ALL_NODES || rootid < -1 || gapcnt > 0x3f || gapcnt < -1 ||
560            (rootid == -1 && gapcnt == -1)) {
561                 HPSB_DEBUG("Invalid Parameter: rootid = %d   gapcnt = %d",
562                            rootid, gapcnt);
563                 return -EINVAL;
564         }
565
566         if (rootid != -1)
567                 d |= PHYPACKET_PHYCONFIG_R | rootid << PHYPACKET_PORT_SHIFT;
568         if (gapcnt != -1)
569                 d |= PHYPACKET_PHYCONFIG_T | gapcnt << PHYPACKET_GAPCOUNT_SHIFT;
570
571         packet = hpsb_make_phypacket(host, d);
572         if (!packet)
573                 return -ENOMEM;
574
575         packet->generation = get_hpsb_generation(host);
576         retval = hpsb_send_packet_and_wait(packet);
577         hpsb_free_packet(packet);
578
579         return retval;
580 }
581
582 /**
583  * hpsb_send_packet - transmit a packet on the bus
584  * @packet: packet to send
585  *
586  * The packet is sent through the host specified in the packet->host field.
587  * Before sending, the packet's transmit speed is automatically determined
588  * using the local speed map when it is an async, non-broadcast packet.
589  *
590  * Possibilities for failure are that host is either not initialized, in bus
591  * reset, the packet's generation number doesn't match the current generation
592  * number or the host reports a transmit error.
593  *
594  * Return value: 0 on success, negative errno on failure.
595  */
596 int hpsb_send_packet(struct hpsb_packet *packet)
597 {
598         struct hpsb_host *host = packet->host;
599
600         if (host->is_shutdown)
601                 return -EINVAL;
602         if (host->in_bus_reset ||
603             (packet->generation != get_hpsb_generation(host)))
604                 return -EAGAIN;
605
606         packet->state = hpsb_queued;
607
608         /* This just seems silly to me */
609         WARN_ON(packet->no_waiter && packet->expect_response);
610
611         if (!packet->no_waiter || packet->expect_response) {
612                 atomic_inc(&packet->refcnt);
613                 /* Set the initial "sendtime" to 10 seconds from now, to
614                    prevent premature expiry.  If a packet takes more than
615                    10 seconds to hit the wire, we have bigger problems :) */
616                 packet->sendtime = jiffies + 10 * HZ;
617                 skb_queue_tail(&host->pending_packet_queue, packet->skb);
618         }
619
620         if (packet->node_id == host->node_id) {
621                 /* it is a local request, so handle it locally */
622
623                 quadlet_t *data;
624                 size_t size = packet->data_size + packet->header_size;
625
626                 data = kmalloc(size, GFP_ATOMIC);
627                 if (!data) {
628                         HPSB_ERR("unable to allocate memory for concatenating header and data");
629                         return -ENOMEM;
630                 }
631
632                 memcpy(data, packet->header, packet->header_size);
633
634                 if (packet->data_size)
635                         memcpy(((u8*)data) + packet->header_size, packet->data, packet->data_size);
636
637                 dump_packet("send packet local", packet->header, packet->header_size, -1);
638
639                 hpsb_packet_sent(host, packet, packet->expect_response ? ACK_PENDING : ACK_COMPLETE);
640                 hpsb_packet_received(host, data, size, 0);
641
642                 kfree(data);
643
644                 return 0;
645         }
646
647         if (packet->type == hpsb_async &&
648             NODEID_TO_NODE(packet->node_id) != ALL_NODES)
649                 packet->speed_code =
650                         host->speed[NODEID_TO_NODE(packet->node_id)];
651
652         dump_packet("send packet", packet->header, packet->header_size, packet->speed_code);
653
654         return host->driver->transmit_packet(host, packet);
655 }
656
657 /* We could just use complete() directly as the packet complete
658  * callback, but this is more typesafe, in the sense that we get a
659  * compiler error if the prototype for complete() changes. */
660
661 static void complete_packet(void *data)
662 {
663         complete((struct completion *) data);
664 }
665
666 /**
667  * hpsb_send_packet_and_wait - enqueue packet, block until transaction completes
668  * @packet: packet to send
669  *
670  * Return value: 0 on success, negative errno on failure.
671  */
672 int hpsb_send_packet_and_wait(struct hpsb_packet *packet)
673 {
674         struct completion done;
675         int retval;
676
677         init_completion(&done);
678         hpsb_set_packet_complete_task(packet, complete_packet, &done);
679         retval = hpsb_send_packet(packet);
680         if (retval == 0)
681                 wait_for_completion(&done);
682
683         return retval;
684 }
685
686 static void send_packet_nocare(struct hpsb_packet *packet)
687 {
688         if (hpsb_send_packet(packet) < 0) {
689                 hpsb_free_packet(packet);
690         }
691 }
692
693
694 static void handle_packet_response(struct hpsb_host *host, int tcode,
695                                    quadlet_t *data, size_t size)
696 {
697         struct hpsb_packet *packet = NULL;
698         struct sk_buff *skb;
699         int tcode_match = 0;
700         int tlabel;
701         unsigned long flags;
702
703         tlabel = (data[0] >> 10) & 0x3f;
704
705         spin_lock_irqsave(&host->pending_packet_queue.lock, flags);
706
707         skb_queue_walk(&host->pending_packet_queue, skb) {
708                 packet = (struct hpsb_packet *)skb->data;
709                 if ((packet->tlabel == tlabel)
710                     && (packet->node_id == (data[1] >> 16))){
711                         break;
712                 }
713
714                 packet = NULL;
715         }
716
717         if (packet == NULL) {
718                 HPSB_DEBUG("unsolicited response packet received - no tlabel match");
719                 dump_packet("contents", data, 16, -1);
720                 spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags);
721                 return;
722         }
723
724         switch (packet->tcode) {
725         case TCODE_WRITEQ:
726         case TCODE_WRITEB:
727                 if (tcode != TCODE_WRITE_RESPONSE)
728                         break;
729                 tcode_match = 1;
730                 memcpy(packet->header, data, 12);
731                 break;
732         case TCODE_READQ:
733                 if (tcode != TCODE_READQ_RESPONSE)
734                         break;
735                 tcode_match = 1;
736                 memcpy(packet->header, data, 16);
737                 break;
738         case TCODE_READB:
739                 if (tcode != TCODE_READB_RESPONSE)
740                         break;
741                 tcode_match = 1;
742                 BUG_ON(packet->skb->len - sizeof(*packet) < size - 16);
743                 memcpy(packet->header, data, 16);
744                 memcpy(packet->data, data + 4, size - 16);
745                 break;
746         case TCODE_LOCK_REQUEST:
747                 if (tcode != TCODE_LOCK_RESPONSE)
748                         break;
749                 tcode_match = 1;
750                 size = min((size - 16), (size_t)8);
751                 BUG_ON(packet->skb->len - sizeof(*packet) < size);
752                 memcpy(packet->header, data, 16);
753                 memcpy(packet->data, data + 4, size);
754                 break;
755         }
756
757         if (!tcode_match) {
758                 spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags);
759                 HPSB_INFO("unsolicited response packet received - tcode mismatch");
760                 dump_packet("contents", data, 16, -1);
761                 return;
762         }
763
764         __skb_unlink(skb, &host->pending_packet_queue);
765
766         if (packet->state == hpsb_queued) {
767                 packet->sendtime = jiffies;
768                 packet->ack_code = ACK_PENDING;
769         }
770
771         packet->state = hpsb_complete;
772         spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags);
773
774         queue_packet_complete(packet);
775 }
776
777
778 static struct hpsb_packet *create_reply_packet(struct hpsb_host *host,
779                                                quadlet_t *data, size_t dsize)
780 {
781         struct hpsb_packet *p;
782
783         p = hpsb_alloc_packet(dsize);
784         if (unlikely(p == NULL)) {
785                 /* FIXME - send data_error response */
786                 return NULL;
787         }
788
789         p->type = hpsb_async;
790         p->state = hpsb_unused;
791         p->host = host;
792         p->node_id = data[1] >> 16;
793         p->tlabel = (data[0] >> 10) & 0x3f;
794         p->no_waiter = 1;
795
796         p->generation = get_hpsb_generation(host);
797
798         if (dsize % 4)
799                 p->data[dsize / 4] = 0;
800
801         return p;
802 }
803
804 #define PREP_ASYNC_HEAD_RCODE(tc) \
805         packet->tcode = tc; \
806         packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \
807                 | (1 << 8) | (tc << 4); \
808         packet->header[1] = (packet->host->node_id << 16) | (rcode << 12); \
809         packet->header[2] = 0
810
811 static void fill_async_readquad_resp(struct hpsb_packet *packet, int rcode,
812                               quadlet_t data)
813 {
814         PREP_ASYNC_HEAD_RCODE(TCODE_READQ_RESPONSE);
815         packet->header[3] = data;
816         packet->header_size = 16;
817         packet->data_size = 0;
818 }
819
820 static void fill_async_readblock_resp(struct hpsb_packet *packet, int rcode,
821                                int length)
822 {
823         if (rcode != RCODE_COMPLETE)
824                 length = 0;
825
826         PREP_ASYNC_HEAD_RCODE(TCODE_READB_RESPONSE);
827         packet->header[3] = length << 16;
828         packet->header_size = 16;
829         packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0);
830 }
831
832 static void fill_async_write_resp(struct hpsb_packet *packet, int rcode)
833 {
834         PREP_ASYNC_HEAD_RCODE(TCODE_WRITE_RESPONSE);
835         packet->header[2] = 0;
836         packet->header_size = 12;
837         packet->data_size = 0;
838 }
839
840 static void fill_async_lock_resp(struct hpsb_packet *packet, int rcode, int extcode,
841                           int length)
842 {
843         if (rcode != RCODE_COMPLETE)
844                 length = 0;
845
846         PREP_ASYNC_HEAD_RCODE(TCODE_LOCK_RESPONSE);
847         packet->header[3] = (length << 16) | extcode;
848         packet->header_size = 16;
849         packet->data_size = length;
850 }
851
852 #define PREP_REPLY_PACKET(length) \
853                 packet = create_reply_packet(host, data, length); \
854                 if (packet == NULL) break
855
856 static void handle_incoming_packet(struct hpsb_host *host, int tcode,
857                                    quadlet_t *data, size_t size, int write_acked)
858 {
859         struct hpsb_packet *packet;
860         int length, rcode, extcode;
861         quadlet_t buffer;
862         nodeid_t source = data[1] >> 16;
863         nodeid_t dest = data[0] >> 16;
864         u16 flags = (u16) data[0];
865         u64 addr;
866
867         /* big FIXME - no error checking is done for an out of bounds length */
868
869         switch (tcode) {
870         case TCODE_WRITEQ:
871                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
872                 rcode = highlevel_write(host, source, dest, data+3,
873                                         addr, 4, flags);
874
875                 if (!write_acked
876                     && (NODEID_TO_NODE(data[0] >> 16) != NODE_MASK)
877                     && (rcode >= 0)) {
878                         /* not a broadcast write, reply */
879                         PREP_REPLY_PACKET(0);
880                         fill_async_write_resp(packet, rcode);
881                         send_packet_nocare(packet);
882                 }
883                 break;
884
885         case TCODE_WRITEB:
886                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
887                 rcode = highlevel_write(host, source, dest, data+4,
888                                         addr, data[3]>>16, flags);
889
890                 if (!write_acked
891                     && (NODEID_TO_NODE(data[0] >> 16) != NODE_MASK)
892                     && (rcode >= 0)) {
893                         /* not a broadcast write, reply */
894                         PREP_REPLY_PACKET(0);
895                         fill_async_write_resp(packet, rcode);
896                         send_packet_nocare(packet);
897                 }
898                 break;
899
900         case TCODE_READQ:
901                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
902                 rcode = highlevel_read(host, source, &buffer, addr, 4, flags);
903
904                 if (rcode >= 0) {
905                         PREP_REPLY_PACKET(0);
906                         fill_async_readquad_resp(packet, rcode, buffer);
907                         send_packet_nocare(packet);
908                 }
909                 break;
910
911         case TCODE_READB:
912                 length = data[3] >> 16;
913                 PREP_REPLY_PACKET(length);
914
915                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
916                 rcode = highlevel_read(host, source, packet->data, addr,
917                                        length, flags);
918
919                 if (rcode >= 0) {
920                         fill_async_readblock_resp(packet, rcode, length);
921                         send_packet_nocare(packet);
922                 } else {
923                         hpsb_free_packet(packet);
924                 }
925                 break;
926
927         case TCODE_LOCK_REQUEST:
928                 length = data[3] >> 16;
929                 extcode = data[3] & 0xffff;
930                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
931
932                 PREP_REPLY_PACKET(8);
933
934                 if ((extcode == 0) || (extcode >= 7)) {
935                         /* let switch default handle error */
936                         length = 0;
937                 }
938
939                 switch (length) {
940                 case 4:
941                         rcode = highlevel_lock(host, source, packet->data, addr,
942                                                data[4], 0, extcode,flags);
943                         fill_async_lock_resp(packet, rcode, extcode, 4);
944                         break;
945                 case 8:
946                         if ((extcode != EXTCODE_FETCH_ADD)
947                             && (extcode != EXTCODE_LITTLE_ADD)) {
948                                 rcode = highlevel_lock(host, source,
949                                                        packet->data, addr,
950                                                        data[5], data[4],
951                                                        extcode, flags);
952                                 fill_async_lock_resp(packet, rcode, extcode, 4);
953                         } else {
954                                 rcode = highlevel_lock64(host, source,
955                                              (octlet_t *)packet->data, addr,
956                                              *(octlet_t *)(data + 4), 0ULL,
957                                              extcode, flags);
958                                 fill_async_lock_resp(packet, rcode, extcode, 8);
959                         }
960                         break;
961                 case 16:
962                         rcode = highlevel_lock64(host, source,
963                                                  (octlet_t *)packet->data, addr,
964                                                  *(octlet_t *)(data + 6),
965                                                  *(octlet_t *)(data + 4),
966                                                  extcode, flags);
967                         fill_async_lock_resp(packet, rcode, extcode, 8);
968                         break;
969                 default:
970                         rcode = RCODE_TYPE_ERROR;
971                         fill_async_lock_resp(packet, rcode,
972                                              extcode, 0);
973                 }
974
975                 if (rcode >= 0) {
976                         send_packet_nocare(packet);
977                 } else {
978                         hpsb_free_packet(packet);
979                 }
980                 break;
981         }
982
983 }
984 #undef PREP_REPLY_PACKET
985
986 /**
987  * hpsb_packet_received - hand over received packet to the core
988  *
989  * For host driver module usage.
990  *
991  * The contents of data are expected to be the full packet but with the CRCs
992  * left out (data block follows header immediately), with the header (i.e. the
993  * first four quadlets) in machine byte order and the data block in big endian.
994  * *@data can be safely overwritten after this call.
995  *
996  * If the packet is a write request, @write_acked is to be set to true if it was
997  * ack_complete'd already, false otherwise.  This argument is ignored for any
998  * other packet type.
999  */
1000 void hpsb_packet_received(struct hpsb_host *host, quadlet_t *data, size_t size,
1001                           int write_acked)
1002 {
1003         int tcode;
1004
1005         if (host->in_bus_reset) {
1006                 HPSB_INFO("received packet during reset; ignoring");
1007                 return;
1008         }
1009
1010         dump_packet("received packet", data, size, -1);
1011
1012         tcode = (data[0] >> 4) & 0xf;
1013
1014         switch (tcode) {
1015         case TCODE_WRITE_RESPONSE:
1016         case TCODE_READQ_RESPONSE:
1017         case TCODE_READB_RESPONSE:
1018         case TCODE_LOCK_RESPONSE:
1019                 handle_packet_response(host, tcode, data, size);
1020                 break;
1021
1022         case TCODE_WRITEQ:
1023         case TCODE_WRITEB:
1024         case TCODE_READQ:
1025         case TCODE_READB:
1026         case TCODE_LOCK_REQUEST:
1027                 handle_incoming_packet(host, tcode, data, size, write_acked);
1028                 break;
1029
1030
1031         case TCODE_ISO_DATA:
1032                 highlevel_iso_receive(host, data, size);
1033                 break;
1034
1035         case TCODE_CYCLE_START:
1036                 /* simply ignore this packet if it is passed on */
1037                 break;
1038
1039         default:
1040                 HPSB_NOTICE("received packet with bogus transaction code %d",
1041                             tcode);
1042                 break;
1043         }
1044 }
1045
1046
1047 static void abort_requests(struct hpsb_host *host)
1048 {
1049         struct hpsb_packet *packet;
1050         struct sk_buff *skb;
1051
1052         host->driver->devctl(host, CANCEL_REQUESTS, 0);
1053
1054         while ((skb = skb_dequeue(&host->pending_packet_queue)) != NULL) {
1055                 packet = (struct hpsb_packet *)skb->data;
1056
1057                 packet->state = hpsb_complete;
1058                 packet->ack_code = ACKX_ABORTED;
1059                 queue_packet_complete(packet);
1060         }
1061 }
1062
1063 void abort_timedouts(unsigned long __opaque)
1064 {
1065         struct hpsb_host *host = (struct hpsb_host *)__opaque;
1066         unsigned long flags;
1067         struct hpsb_packet *packet;
1068         struct sk_buff *skb;
1069         unsigned long expire;
1070
1071         spin_lock_irqsave(&host->csr.lock, flags);
1072         expire = host->csr.expire;
1073         spin_unlock_irqrestore(&host->csr.lock, flags);
1074
1075         /* Hold the lock around this, since we aren't dequeuing all
1076          * packets, just ones we need. */
1077         spin_lock_irqsave(&host->pending_packet_queue.lock, flags);
1078
1079         while (!skb_queue_empty(&host->pending_packet_queue)) {
1080                 skb = skb_peek(&host->pending_packet_queue);
1081
1082                 packet = (struct hpsb_packet *)skb->data;
1083
1084                 if (time_before(packet->sendtime + expire, jiffies)) {
1085                         __skb_unlink(skb, &host->pending_packet_queue);
1086                         packet->state = hpsb_complete;
1087                         packet->ack_code = ACKX_TIMEOUT;
1088                         queue_packet_complete(packet);
1089                 } else {
1090                         /* Since packets are added to the tail, the oldest
1091                          * ones are first, always. When we get to one that
1092                          * isn't timed out, the rest aren't either. */
1093                         break;
1094                 }
1095         }
1096
1097         if (!skb_queue_empty(&host->pending_packet_queue))
1098                 mod_timer(&host->timeout, jiffies + host->timeout_interval);
1099
1100         spin_unlock_irqrestore(&host->pending_packet_queue.lock, flags);
1101 }
1102
1103
1104 /* Kernel thread and vars, which handles packets that are completed. Only
1105  * packets that have a "complete" function are sent here. This way, the
1106  * completion is run out of kernel context, and doesn't block the rest of
1107  * the stack. */
1108 static struct task_struct *khpsbpkt_thread;
1109 static struct sk_buff_head hpsbpkt_queue;
1110
1111 static void queue_packet_complete(struct hpsb_packet *packet)
1112 {
1113         if (packet->no_waiter) {
1114                 hpsb_free_packet(packet);
1115                 return;
1116         }
1117         if (packet->complete_routine != NULL) {
1118                 skb_queue_tail(&hpsbpkt_queue, packet->skb);
1119                 wake_up_process(khpsbpkt_thread);
1120         }
1121         return;
1122 }
1123
1124 static int hpsbpkt_thread(void *__hi)
1125 {
1126         struct sk_buff *skb;
1127         struct hpsb_packet *packet;
1128         void (*complete_routine)(void*);
1129         void *complete_data;
1130
1131         current->flags |= PF_NOFREEZE;
1132
1133         while (!kthread_should_stop()) {
1134                 while ((skb = skb_dequeue(&hpsbpkt_queue)) != NULL) {
1135                         packet = (struct hpsb_packet *)skb->data;
1136
1137                         complete_routine = packet->complete_routine;
1138                         complete_data = packet->complete_data;
1139
1140                         packet->complete_routine = packet->complete_data = NULL;
1141
1142                         complete_routine(complete_data);
1143                 }
1144
1145                 set_current_state(TASK_INTERRUPTIBLE);
1146                 if (!skb_peek(&hpsbpkt_queue))
1147                         schedule();
1148                 __set_current_state(TASK_RUNNING);
1149         }
1150         return 0;
1151 }
1152
1153 static int __init ieee1394_init(void)
1154 {
1155         int i, ret;
1156
1157         skb_queue_head_init(&hpsbpkt_queue);
1158
1159         /* non-fatal error */
1160         if (hpsb_init_config_roms()) {
1161                 HPSB_ERR("Failed to initialize some config rom entries.\n");
1162                 HPSB_ERR("Some features may not be available\n");
1163         }
1164
1165         khpsbpkt_thread = kthread_run(hpsbpkt_thread, NULL, "khpsbpkt");
1166         if (IS_ERR(khpsbpkt_thread)) {
1167                 HPSB_ERR("Failed to start hpsbpkt thread!\n");
1168                 ret = PTR_ERR(khpsbpkt_thread);
1169                 goto exit_cleanup_config_roms;
1170         }
1171
1172         if (register_chrdev_region(IEEE1394_CORE_DEV, 256, "ieee1394")) {
1173                 HPSB_ERR("unable to register character device major %d!\n", IEEE1394_MAJOR);
1174                 ret = -ENODEV;
1175                 goto exit_release_kernel_thread;
1176         }
1177
1178         ret = bus_register(&ieee1394_bus_type);
1179         if (ret < 0) {
1180                 HPSB_INFO("bus register failed");
1181                 goto release_chrdev;
1182         }
1183
1184         for (i = 0; fw_bus_attrs[i]; i++) {
1185                 ret = bus_create_file(&ieee1394_bus_type, fw_bus_attrs[i]);
1186                 if (ret < 0) {
1187                         while (i >= 0) {
1188                                 bus_remove_file(&ieee1394_bus_type,
1189                                                 fw_bus_attrs[i--]);
1190                         }
1191                         bus_unregister(&ieee1394_bus_type);
1192                         goto release_chrdev;
1193                 }
1194         }
1195
1196         ret = class_register(&hpsb_host_class);
1197         if (ret < 0)
1198                 goto release_all_bus;
1199
1200         hpsb_protocol_class = class_create(THIS_MODULE, "ieee1394_protocol");
1201         if (IS_ERR(hpsb_protocol_class)) {
1202                 ret = PTR_ERR(hpsb_protocol_class);
1203                 goto release_class_host;
1204         }
1205
1206         ret = init_csr();
1207         if (ret) {
1208                 HPSB_INFO("init csr failed");
1209                 ret = -ENOMEM;
1210                 goto release_class_protocol;
1211         }
1212
1213         if (disable_nodemgr) {
1214                 HPSB_INFO("nodemgr and IRM functionality disabled");
1215                 /* We shouldn't contend for IRM with nodemgr disabled, since
1216                    nodemgr implements functionality required of ieee1394a-2000
1217                    IRMs */
1218                 hpsb_disable_irm = 1;
1219
1220                 return 0;
1221         }
1222
1223         if (hpsb_disable_irm) {
1224                 HPSB_INFO("IRM functionality disabled");
1225         }
1226
1227         ret = init_ieee1394_nodemgr();
1228         if (ret < 0) {
1229                 HPSB_INFO("init nodemgr failed");
1230                 goto cleanup_csr;
1231         }
1232
1233         return 0;
1234
1235 cleanup_csr:
1236         cleanup_csr();
1237 release_class_protocol:
1238         class_destroy(hpsb_protocol_class);
1239 release_class_host:
1240         class_unregister(&hpsb_host_class);
1241 release_all_bus:
1242         for (i = 0; fw_bus_attrs[i]; i++)
1243                 bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]);
1244         bus_unregister(&ieee1394_bus_type);
1245 release_chrdev:
1246         unregister_chrdev_region(IEEE1394_CORE_DEV, 256);
1247 exit_release_kernel_thread:
1248         kthread_stop(khpsbpkt_thread);
1249 exit_cleanup_config_roms:
1250         hpsb_cleanup_config_roms();
1251         return ret;
1252 }
1253
1254 static void __exit ieee1394_cleanup(void)
1255 {
1256         int i;
1257
1258         if (!disable_nodemgr)
1259                 cleanup_ieee1394_nodemgr();
1260
1261         cleanup_csr();
1262
1263         class_destroy(hpsb_protocol_class);
1264         class_unregister(&hpsb_host_class);
1265         for (i = 0; fw_bus_attrs[i]; i++)
1266                 bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]);
1267         bus_unregister(&ieee1394_bus_type);
1268
1269         kthread_stop(khpsbpkt_thread);
1270
1271         hpsb_cleanup_config_roms();
1272
1273         unregister_chrdev_region(IEEE1394_CORE_DEV, 256);
1274 }
1275
1276 fs_initcall(ieee1394_init); /* same as ohci1394 */
1277 module_exit(ieee1394_cleanup);
1278
1279 /* Exported symbols */
1280
1281 /** hosts.c **/
1282 EXPORT_SYMBOL(hpsb_alloc_host);
1283 EXPORT_SYMBOL(hpsb_add_host);
1284 EXPORT_SYMBOL(hpsb_resume_host);
1285 EXPORT_SYMBOL(hpsb_remove_host);
1286 EXPORT_SYMBOL(hpsb_update_config_rom_image);
1287
1288 /** ieee1394_core.c **/
1289 EXPORT_SYMBOL(hpsb_speedto_str);
1290 EXPORT_SYMBOL(hpsb_protocol_class);
1291 EXPORT_SYMBOL(hpsb_set_packet_complete_task);
1292 EXPORT_SYMBOL(hpsb_alloc_packet);
1293 EXPORT_SYMBOL(hpsb_free_packet);
1294 EXPORT_SYMBOL(hpsb_send_packet);
1295 EXPORT_SYMBOL(hpsb_reset_bus);
1296 EXPORT_SYMBOL(hpsb_read_cycle_timer);
1297 EXPORT_SYMBOL(hpsb_bus_reset);
1298 EXPORT_SYMBOL(hpsb_selfid_received);
1299 EXPORT_SYMBOL(hpsb_selfid_complete);
1300 EXPORT_SYMBOL(hpsb_packet_sent);
1301 EXPORT_SYMBOL(hpsb_packet_received);
1302 EXPORT_SYMBOL_GPL(hpsb_disable_irm);
1303
1304 /** ieee1394_transactions.c **/
1305 EXPORT_SYMBOL(hpsb_get_tlabel);
1306 EXPORT_SYMBOL(hpsb_free_tlabel);
1307 EXPORT_SYMBOL(hpsb_make_readpacket);
1308 EXPORT_SYMBOL(hpsb_make_writepacket);
1309 EXPORT_SYMBOL(hpsb_make_streampacket);
1310 EXPORT_SYMBOL(hpsb_make_lockpacket);
1311 EXPORT_SYMBOL(hpsb_make_lock64packet);
1312 EXPORT_SYMBOL(hpsb_make_phypacket);
1313 EXPORT_SYMBOL(hpsb_make_isopacket);
1314 EXPORT_SYMBOL(hpsb_read);
1315 EXPORT_SYMBOL(hpsb_write);
1316 EXPORT_SYMBOL(hpsb_packet_success);
1317
1318 /** highlevel.c **/
1319 EXPORT_SYMBOL(hpsb_register_highlevel);
1320 EXPORT_SYMBOL(hpsb_unregister_highlevel);
1321 EXPORT_SYMBOL(hpsb_register_addrspace);
1322 EXPORT_SYMBOL(hpsb_unregister_addrspace);
1323 EXPORT_SYMBOL(hpsb_allocate_and_register_addrspace);
1324 EXPORT_SYMBOL(hpsb_listen_channel);
1325 EXPORT_SYMBOL(hpsb_unlisten_channel);
1326 EXPORT_SYMBOL(hpsb_get_hostinfo);
1327 EXPORT_SYMBOL(hpsb_create_hostinfo);
1328 EXPORT_SYMBOL(hpsb_destroy_hostinfo);
1329 EXPORT_SYMBOL(hpsb_set_hostinfo_key);
1330 EXPORT_SYMBOL(hpsb_get_hostinfo_bykey);
1331 EXPORT_SYMBOL(hpsb_set_hostinfo);
1332 EXPORT_SYMBOL(highlevel_host_reset);
1333
1334 /** nodemgr.c **/
1335 EXPORT_SYMBOL(hpsb_node_fill_packet);
1336 EXPORT_SYMBOL(hpsb_node_write);
1337 EXPORT_SYMBOL(__hpsb_register_protocol);
1338 EXPORT_SYMBOL(hpsb_unregister_protocol);
1339
1340 /** csr.c **/
1341 EXPORT_SYMBOL(hpsb_update_config_rom);
1342
1343 /** dma.c **/
1344 EXPORT_SYMBOL(dma_prog_region_init);
1345 EXPORT_SYMBOL(dma_prog_region_alloc);
1346 EXPORT_SYMBOL(dma_prog_region_free);
1347 EXPORT_SYMBOL(dma_region_init);
1348 EXPORT_SYMBOL(dma_region_alloc);
1349 EXPORT_SYMBOL(dma_region_free);
1350 EXPORT_SYMBOL(dma_region_sync_for_cpu);
1351 EXPORT_SYMBOL(dma_region_sync_for_device);
1352 EXPORT_SYMBOL(dma_region_mmap);
1353 EXPORT_SYMBOL(dma_region_offset_to_bus);
1354
1355 /** iso.c **/
1356 EXPORT_SYMBOL(hpsb_iso_xmit_init);
1357 EXPORT_SYMBOL(hpsb_iso_recv_init);
1358 EXPORT_SYMBOL(hpsb_iso_xmit_start);
1359 EXPORT_SYMBOL(hpsb_iso_recv_start);
1360 EXPORT_SYMBOL(hpsb_iso_recv_listen_channel);
1361 EXPORT_SYMBOL(hpsb_iso_recv_unlisten_channel);
1362 EXPORT_SYMBOL(hpsb_iso_recv_set_channel_mask);
1363 EXPORT_SYMBOL(hpsb_iso_stop);
1364 EXPORT_SYMBOL(hpsb_iso_shutdown);
1365 EXPORT_SYMBOL(hpsb_iso_xmit_queue_packet);
1366 EXPORT_SYMBOL(hpsb_iso_xmit_sync);
1367 EXPORT_SYMBOL(hpsb_iso_recv_release_packets);
1368 EXPORT_SYMBOL(hpsb_iso_n_ready);
1369 EXPORT_SYMBOL(hpsb_iso_packet_sent);
1370 EXPORT_SYMBOL(hpsb_iso_packet_received);
1371 EXPORT_SYMBOL(hpsb_iso_wake);
1372 EXPORT_SYMBOL(hpsb_iso_recv_flush);
1373
1374 /** csr1212.c **/
1375 EXPORT_SYMBOL(csr1212_attach_keyval_to_directory);
1376 EXPORT_SYMBOL(csr1212_detach_keyval_from_directory);
1377 EXPORT_SYMBOL(csr1212_get_keyval);
1378 EXPORT_SYMBOL(csr1212_new_directory);
1379 EXPORT_SYMBOL(csr1212_parse_keyval);
1380 EXPORT_SYMBOL(csr1212_read);
1381 EXPORT_SYMBOL(csr1212_release_keyval);