ieee1394: eth1394: contain host reset
[safe/jmp/linux-2.6] / drivers / ieee1394 / eth1394.c
1 /*
2  * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
3  *
4  * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5  *               2000 Bonin Franck <boninf@free.fr>
6  *               2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7  *
8  * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  */
24
25 /*
26  * This driver intends to support RFC 2734, which describes a method for
27  * transporting IPv4 datagrams over IEEE-1394 serial busses.
28  *
29  * TODO:
30  * RFC 2734 related:
31  * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
32  *
33  * Non-RFC 2734 related:
34  * - Handle fragmented skb's coming from the networking layer.
35  * - Move generic GASP reception to core 1394 code
36  * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37  * - Stability improvements
38  * - Performance enhancements
39  * - Consider garbage collecting old partial datagrams after X amount of time
40  */
41
42 #include <linux/module.h>
43
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/errno.h>
47 #include <linux/types.h>
48 #include <linux/delay.h>
49 #include <linux/init.h>
50
51 #include <linux/netdevice.h>
52 #include <linux/inetdevice.h>
53 #include <linux/etherdevice.h>
54 #include <linux/if_arp.h>
55 #include <linux/if_ether.h>
56 #include <linux/ip.h>
57 #include <linux/in.h>
58 #include <linux/tcp.h>
59 #include <linux/skbuff.h>
60 #include <linux/bitops.h>
61 #include <linux/ethtool.h>
62 #include <asm/uaccess.h>
63 #include <asm/delay.h>
64 #include <asm/unaligned.h>
65 #include <net/arp.h>
66
67 #include "config_roms.h"
68 #include "csr1212.h"
69 #include "eth1394.h"
70 #include "highlevel.h"
71 #include "ieee1394.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_hotplug.h"
74 #include "ieee1394_transactions.h"
75 #include "ieee1394_types.h"
76 #include "iso.h"
77 #include "nodemgr.h"
78
79 #define ETH1394_PRINT_G(level, fmt, args...) \
80         printk(level "%s: " fmt, driver_name, ## args)
81
82 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
83         printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
84
85 struct fragment_info {
86         struct list_head list;
87         int offset;
88         int len;
89 };
90
91 struct partial_datagram {
92         struct list_head list;
93         u16 dgl;
94         u16 dg_size;
95         u16 ether_type;
96         struct sk_buff *skb;
97         char *pbuf;
98         struct list_head frag_info;
99 };
100
101 struct pdg_list {
102         struct list_head list;  /* partial datagram list per node       */
103         unsigned int sz;        /* partial datagram list size per node  */
104         spinlock_t lock;        /* partial datagram lock                */
105 };
106
107 struct eth1394_host_info {
108         struct hpsb_host *host;
109         struct net_device *dev;
110 };
111
112 struct eth1394_node_ref {
113         struct unit_directory *ud;
114         struct list_head list;
115 };
116
117 struct eth1394_node_info {
118         u16 maxpayload;         /* max payload                  */
119         u8 sspd;                /* max speed                    */
120         u64 fifo;               /* FIFO address                 */
121         struct pdg_list pdg;    /* partial RX datagram lists    */
122         int dgl;                /* outgoing datagram label      */
123 };
124
125 static const char driver_name[] = "eth1394";
126
127 static struct kmem_cache *packet_task_cache;
128
129 static struct hpsb_highlevel eth1394_highlevel;
130
131 /* Use common.lf to determine header len */
132 static const int hdr_type_len[] = {
133         sizeof(struct eth1394_uf_hdr),
134         sizeof(struct eth1394_ff_hdr),
135         sizeof(struct eth1394_sf_hdr),
136         sizeof(struct eth1394_sf_hdr)
137 };
138
139 /* For now, this needs to be 1500, so that XP works with us */
140 #define ETH1394_DATA_LEN        ETH_DATA_LEN
141
142 static const u16 eth1394_speedto_maxpayload[] = {
143 /*     S100, S200, S400, S800, S1600, S3200 */
144         512, 1024, 2048, 4096,  4096,  4096
145 };
146
147 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
148 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
149 MODULE_LICENSE("GPL");
150
151 /*
152  * The max_partial_datagrams parameter is the maximum number of fragmented
153  * datagrams per node that eth1394 will keep in memory.  Providing an upper
154  * bound allows us to limit the amount of memory that partial datagrams
155  * consume in the event that some partial datagrams are never completed.
156  */
157 static int max_partial_datagrams = 25;
158 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
159 MODULE_PARM_DESC(max_partial_datagrams,
160                  "Maximum number of partially received fragmented datagrams "
161                  "(default = 25).");
162
163
164 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
165                             unsigned short type, void *daddr, void *saddr,
166                             unsigned len);
167 static int ether1394_rebuild_header(struct sk_buff *skb);
168 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
169 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
170 static void ether1394_header_cache_update(struct hh_cache *hh,
171                                           struct net_device *dev,
172                                           unsigned char *haddr);
173 static int ether1394_mac_addr(struct net_device *dev, void *p);
174
175 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
176 static void ether1394_iso(struct hpsb_iso *iso);
177
178 static struct ethtool_ops ethtool_ops;
179
180 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
181                            quadlet_t *data, u64 addr, size_t len, u16 flags);
182 static void ether1394_add_host(struct hpsb_host *host);
183 static void ether1394_remove_host(struct hpsb_host *host);
184 static void ether1394_host_reset(struct hpsb_host *host);
185
186 /* Function for incoming 1394 packets */
187 static struct hpsb_address_ops addr_ops = {
188         .write =        ether1394_write,
189 };
190
191 /* Ieee1394 highlevel driver functions */
192 static struct hpsb_highlevel eth1394_highlevel = {
193         .name =         driver_name,
194         .add_host =     ether1394_add_host,
195         .remove_host =  ether1394_remove_host,
196         .host_reset =   ether1394_host_reset,
197 };
198
199 static int ether1394_recv_init(struct eth1394_priv *priv)
200 {
201         unsigned int iso_buf_size;
202
203         /* FIXME: rawiso limits us to PAGE_SIZE */
204         iso_buf_size = min((unsigned int)PAGE_SIZE,
205                            2 * (1U << (priv->host->csr.max_rec + 1)));
206
207         priv->iso = hpsb_iso_recv_init(priv->host,
208                                        ETHER1394_GASP_BUFFERS * iso_buf_size,
209                                        ETHER1394_GASP_BUFFERS,
210                                        priv->broadcast_channel,
211                                        HPSB_ISO_DMA_PACKET_PER_BUFFER,
212                                        1, ether1394_iso);
213         if (priv->iso == NULL) {
214                 ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n");
215                 priv->bc_state = ETHER1394_BC_ERROR;
216                 return -EAGAIN;
217         }
218
219         if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
220                 priv->bc_state = ETHER1394_BC_STOPPED;
221         else
222                 priv->bc_state = ETHER1394_BC_RUNNING;
223         return 0;
224 }
225
226 /* This is called after an "ifup" */
227 static int ether1394_open(struct net_device *dev)
228 {
229         struct eth1394_priv *priv = netdev_priv(dev);
230         int ret;
231
232         if (priv->bc_state == ETHER1394_BC_ERROR) {
233                 ret = ether1394_recv_init(priv);
234                 if (ret)
235                         return ret;
236         }
237         netif_start_queue(dev);
238         return 0;
239 }
240
241 /* This is called after an "ifdown" */
242 static int ether1394_stop(struct net_device *dev)
243 {
244         netif_stop_queue(dev);
245         return 0;
246 }
247
248 /* Return statistics to the caller */
249 static struct net_device_stats *ether1394_stats(struct net_device *dev)
250 {
251         return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
252 }
253
254 /* FIXME: What to do if we timeout? I think a host reset is probably in order,
255  * so that's what we do. Should we increment the stat counters too?  */
256 static void ether1394_tx_timeout(struct net_device *dev)
257 {
258         struct hpsb_host *host =
259                         ((struct eth1394_priv *)netdev_priv(dev))->host;
260
261         ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n");
262         ether1394_host_reset(host);
263 }
264
265 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
266 {
267         int max_rec =
268                 ((struct eth1394_priv *)netdev_priv(dev))->host->csr.max_rec;
269
270         if (new_mtu < 68 ||
271             new_mtu > ETH1394_DATA_LEN ||
272             new_mtu > (1 << (max_rec + 1)) - sizeof(union eth1394_hdr) -
273                       ETHER1394_GASP_OVERHEAD)
274                 return -EINVAL;
275
276         dev->mtu = new_mtu;
277         return 0;
278 }
279
280 static void purge_partial_datagram(struct list_head *old)
281 {
282         struct partial_datagram *pd;
283         struct list_head *lh, *n;
284         struct fragment_info *fi;
285
286         pd = list_entry(old, struct partial_datagram, list);
287
288         list_for_each_safe(lh, n, &pd->frag_info) {
289                 fi = list_entry(lh, struct fragment_info, list);
290                 list_del(lh);
291                 kfree(fi);
292         }
293         list_del(old);
294         kfree_skb(pd->skb);
295         kfree(pd);
296 }
297
298 /******************************************
299  * 1394 bus activity functions
300  ******************************************/
301
302 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
303                                                   struct unit_directory *ud)
304 {
305         struct eth1394_node_ref *node;
306
307         list_for_each_entry(node, inl, list)
308                 if (node->ud == ud)
309                         return node;
310
311         return NULL;
312 }
313
314 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
315                                                        u64 guid)
316 {
317         struct eth1394_node_ref *node;
318
319         list_for_each_entry(node, inl, list)
320                 if (node->ud->ne->guid == guid)
321                         return node;
322
323         return NULL;
324 }
325
326 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
327                                                          nodeid_t nodeid)
328 {
329         struct eth1394_node_ref *node;
330
331         list_for_each_entry(node, inl, list)
332                 if (node->ud->ne->nodeid == nodeid)
333                         return node;
334
335         return NULL;
336 }
337
338 static int eth1394_new_node(struct eth1394_host_info *hi,
339                             struct unit_directory *ud)
340 {
341         struct eth1394_priv *priv;
342         struct eth1394_node_ref *new_node;
343         struct eth1394_node_info *node_info;
344
345         new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
346         if (!new_node)
347                 return -ENOMEM;
348
349         node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
350         if (!node_info) {
351                 kfree(new_node);
352                 return -ENOMEM;
353         }
354
355         spin_lock_init(&node_info->pdg.lock);
356         INIT_LIST_HEAD(&node_info->pdg.list);
357         node_info->pdg.sz = 0;
358         node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
359
360         ud->device.driver_data = node_info;
361         new_node->ud = ud;
362
363         priv = netdev_priv(hi->dev);
364         list_add_tail(&new_node->list, &priv->ip_node_list);
365         return 0;
366 }
367
368 static int eth1394_probe(struct device *dev)
369 {
370         struct unit_directory *ud;
371         struct eth1394_host_info *hi;
372
373         ud = container_of(dev, struct unit_directory, device);
374         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
375         if (!hi)
376                 return -ENOENT;
377
378         return eth1394_new_node(hi, ud);
379 }
380
381 static int eth1394_remove(struct device *dev)
382 {
383         struct unit_directory *ud;
384         struct eth1394_host_info *hi;
385         struct eth1394_priv *priv;
386         struct eth1394_node_ref *old_node;
387         struct eth1394_node_info *node_info;
388         struct list_head *lh, *n;
389         unsigned long flags;
390
391         ud = container_of(dev, struct unit_directory, device);
392         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
393         if (!hi)
394                 return -ENOENT;
395
396         priv = netdev_priv(hi->dev);
397
398         old_node = eth1394_find_node(&priv->ip_node_list, ud);
399         if (!old_node)
400                 return 0;
401
402         list_del(&old_node->list);
403         kfree(old_node);
404
405         node_info = (struct eth1394_node_info*)ud->device.driver_data;
406
407         spin_lock_irqsave(&node_info->pdg.lock, flags);
408         /* The partial datagram list should be empty, but we'll just
409          * make sure anyway... */
410         list_for_each_safe(lh, n, &node_info->pdg.list)
411                 purge_partial_datagram(lh);
412         spin_unlock_irqrestore(&node_info->pdg.lock, flags);
413
414         kfree(node_info);
415         ud->device.driver_data = NULL;
416         return 0;
417 }
418
419 static int eth1394_update(struct unit_directory *ud)
420 {
421         struct eth1394_host_info *hi;
422         struct eth1394_priv *priv;
423         struct eth1394_node_ref *node;
424
425         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
426         if (!hi)
427                 return -ENOENT;
428
429         priv = netdev_priv(hi->dev);
430         node = eth1394_find_node(&priv->ip_node_list, ud);
431         if (node)
432                 return 0;
433
434         return eth1394_new_node(hi, ud);
435 }
436
437 static struct ieee1394_device_id eth1394_id_table[] = {
438         {
439                 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
440                                 IEEE1394_MATCH_VERSION),
441                 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
442                 .version = ETHER1394_GASP_VERSION,
443         },
444         {}
445 };
446
447 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
448
449 static struct hpsb_protocol_driver eth1394_proto_driver = {
450         .name           = driver_name,
451         .id_table       = eth1394_id_table,
452         .update         = eth1394_update,
453         .driver         = {
454                 .probe          = eth1394_probe,
455                 .remove         = eth1394_remove,
456         },
457 };
458
459 static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
460 {
461         unsigned long flags;
462         int i;
463         struct eth1394_priv *priv = netdev_priv(dev);
464         struct hpsb_host *host = priv->host;
465         u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
466         int max_speed = IEEE1394_SPEED_MAX;
467
468         spin_lock_irqsave(&priv->lock, flags);
469
470         memset(priv->ud_list, 0, sizeof(priv->ud_list));
471         priv->bc_maxpayload = 512;
472
473         /* Determine speed limit */
474         for (i = 0; i < host->node_count; i++)
475                 if (max_speed > host->speed[i])
476                         max_speed = host->speed[i];
477         priv->bc_sspd = max_speed;
478
479         /* We'll use our maximum payload as the default MTU */
480         if (set_mtu) {
481                 int max_payload = 1 << (host->csr.max_rec + 1);
482
483                 dev->mtu = min(ETH1394_DATA_LEN,
484                                (int)(max_payload - sizeof(union eth1394_hdr) -
485                                      ETHER1394_GASP_OVERHEAD));
486
487                 /* Set our hardware address while we're at it */
488                 memcpy(dev->dev_addr, &guid, sizeof(u64));
489                 memset(dev->broadcast, 0xff, sizeof(u64));
490         }
491
492         spin_unlock_irqrestore(&priv->lock, flags);
493 }
494
495 /* This function is called right before register_netdev */
496 static void ether1394_init_dev(struct net_device *dev)
497 {
498         /* Our functions */
499         dev->open               = ether1394_open;
500         dev->stop               = ether1394_stop;
501         dev->hard_start_xmit    = ether1394_tx;
502         dev->get_stats          = ether1394_stats;
503         dev->tx_timeout         = ether1394_tx_timeout;
504         dev->change_mtu         = ether1394_change_mtu;
505
506         dev->hard_header        = ether1394_header;
507         dev->rebuild_header     = ether1394_rebuild_header;
508         dev->hard_header_cache  = ether1394_header_cache;
509         dev->header_cache_update= ether1394_header_cache_update;
510         dev->hard_header_parse  = ether1394_header_parse;
511         dev->set_mac_address    = ether1394_mac_addr;
512         SET_ETHTOOL_OPS(dev, &ethtool_ops);
513
514         /* Some constants */
515         dev->watchdog_timeo     = ETHER1394_TIMEOUT;
516         dev->flags              = IFF_BROADCAST | IFF_MULTICAST;
517         dev->features           = NETIF_F_HIGHDMA;
518         dev->addr_len           = ETH1394_ALEN;
519         dev->hard_header_len    = ETH1394_HLEN;
520         dev->type               = ARPHRD_IEEE1394;
521
522         ether1394_reset_priv(dev, 1);
523 }
524
525 /*
526  * This function is called every time a card is found. It is generally called
527  * when the module is installed. This is where we add all of our ethernet
528  * devices. One for each host.
529  */
530 static void ether1394_add_host(struct hpsb_host *host)
531 {
532         struct eth1394_host_info *hi = NULL;
533         struct net_device *dev = NULL;
534         struct eth1394_priv *priv;
535         u64 fifo_addr;
536
537         if (hpsb_config_rom_ip1394_add(host) != 0) {
538                 ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
539                 return;
540         }
541
542         fifo_addr = hpsb_allocate_and_register_addrspace(
543                         &eth1394_highlevel, host, &addr_ops,
544                         ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
545                         CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
546         if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
547                 ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
548                 hpsb_config_rom_ip1394_remove(host);
549                 return;
550         }
551
552         /* We should really have our own alloc_hpsbdev() function in
553          * net_init.c instead of calling the one for ethernet then hijacking
554          * it for ourselves.  That way we'd be a real networking device. */
555         dev = alloc_etherdev(sizeof (struct eth1394_priv));
556
557         if (dev == NULL) {
558                 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
559                 goto out;
560         }
561
562         SET_MODULE_OWNER(dev);
563 #if 0
564         /* FIXME - Is this the correct parent device anyway? */
565         SET_NETDEV_DEV(dev, &host->device);
566 #endif
567
568         priv = netdev_priv(dev);
569
570         INIT_LIST_HEAD(&priv->ip_node_list);
571
572         spin_lock_init(&priv->lock);
573         priv->host = host;
574         priv->local_fifo = fifo_addr;
575
576         hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
577
578         if (hi == NULL) {
579                 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
580                 goto out;
581         }
582
583         ether1394_init_dev(dev);
584
585         if (register_netdev(dev)) {
586                 ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n");
587                 goto out;
588         }
589
590         ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n",
591                       host->id);
592
593         hi->host = host;
594         hi->dev = dev;
595
596         /* Ignore validity in hopes that it will be set in the future.  It'll
597          * be checked when the eth device is opened. */
598         priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
599
600         ether1394_recv_init(priv);
601         return;
602 out:
603         if (dev)
604                 free_netdev(dev);
605         if (hi)
606                 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
607         hpsb_unregister_addrspace(&eth1394_highlevel, host, fifo_addr);
608         hpsb_config_rom_ip1394_remove(host);
609 }
610
611 /* Remove a card from our list */
612 static void ether1394_remove_host(struct hpsb_host *host)
613 {
614         struct eth1394_host_info *hi;
615         struct eth1394_priv *priv;
616
617         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
618         if (!hi)
619                 return;
620         priv = netdev_priv(hi->dev);
621         hpsb_unregister_addrspace(&eth1394_highlevel, host, priv->local_fifo);
622         hpsb_config_rom_ip1394_remove(host);
623         if (priv->iso)
624                 hpsb_iso_shutdown(priv->iso);
625         unregister_netdev(hi->dev);
626         free_netdev(hi->dev);
627 }
628
629 /* A bus reset happened */
630 static void ether1394_host_reset(struct hpsb_host *host)
631 {
632         struct eth1394_host_info *hi;
633         struct eth1394_priv *priv;
634         struct net_device *dev;
635         struct list_head *lh, *n;
636         struct eth1394_node_ref *node;
637         struct eth1394_node_info *node_info;
638         unsigned long flags;
639
640         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
641
642         /* This can happen for hosts that we don't use */
643         if (!hi)
644                 return;
645
646         dev = hi->dev;
647         priv = netdev_priv(dev);
648
649         /* Reset our private host data, but not our MTU */
650         netif_stop_queue(dev);
651         ether1394_reset_priv(dev, 0);
652
653         list_for_each_entry(node, &priv->ip_node_list, list) {
654                 node_info = node->ud->device.driver_data;
655
656                 spin_lock_irqsave(&node_info->pdg.lock, flags);
657
658                 list_for_each_safe(lh, n, &node_info->pdg.list)
659                         purge_partial_datagram(lh);
660
661                 INIT_LIST_HEAD(&(node_info->pdg.list));
662                 node_info->pdg.sz = 0;
663
664                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
665         }
666
667         netif_wake_queue(dev);
668 }
669
670 /******************************************
671  * HW Header net device functions
672  ******************************************/
673 /* These functions have been adapted from net/ethernet/eth.c */
674
675 /* Create a fake MAC header for an arbitrary protocol layer.
676  * saddr=NULL means use device source address
677  * daddr=NULL means leave destination address (eg unresolved arp). */
678 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
679                             unsigned short type, void *daddr, void *saddr,
680                             unsigned len)
681 {
682         struct eth1394hdr *eth =
683                         (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
684
685         eth->h_proto = htons(type);
686
687         if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
688                 memset(eth->h_dest, 0, dev->addr_len);
689                 return dev->hard_header_len;
690         }
691
692         if (daddr) {
693                 memcpy(eth->h_dest, daddr, dev->addr_len);
694                 return dev->hard_header_len;
695         }
696
697         return -dev->hard_header_len;
698 }
699
700 /* Rebuild the faked MAC header. This is called after an ARP
701  * (or in future other address resolution) has completed on this
702  * sk_buff. We now let ARP fill in the other fields.
703  *
704  * This routine CANNOT use cached dst->neigh!
705  * Really, it is used only when dst->neigh is wrong.
706  */
707 static int ether1394_rebuild_header(struct sk_buff *skb)
708 {
709         struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
710         struct net_device *dev = skb->dev;
711
712         switch (eth->h_proto) {
713
714 #ifdef CONFIG_INET
715         case __constant_htons(ETH_P_IP):
716                 return arp_find((unsigned char *)&eth->h_dest, skb);
717 #endif
718         default:
719                 ETH1394_PRINT(KERN_DEBUG, dev->name,
720                               "unable to resolve type %04x addresses.\n",
721                               ntohs(eth->h_proto));
722                 break;
723         }
724
725         return 0;
726 }
727
728 static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
729 {
730         struct net_device *dev = skb->dev;
731
732         memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
733         return ETH1394_ALEN;
734 }
735
736 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
737 {
738         unsigned short type = hh->hh_type;
739         struct net_device *dev = neigh->dev;
740         struct eth1394hdr *eth =
741                 (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
742
743         if (type == htons(ETH_P_802_3))
744                 return -1;
745
746         eth->h_proto = type;
747         memcpy(eth->h_dest, neigh->ha, dev->addr_len);
748
749         hh->hh_len = ETH1394_HLEN;
750         return 0;
751 }
752
753 /* Called by Address Resolution module to notify changes in address. */
754 static void ether1394_header_cache_update(struct hh_cache *hh,
755                                           struct net_device *dev,
756                                           unsigned char * haddr)
757 {
758         memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
759 }
760
761 static int ether1394_mac_addr(struct net_device *dev, void *p)
762 {
763         if (netif_running(dev))
764                 return -EBUSY;
765
766         /* Not going to allow setting the MAC address, we really need to use
767          * the real one supplied by the hardware */
768          return -EINVAL;
769 }
770
771 /******************************************
772  * Datagram reception code
773  ******************************************/
774
775 /* Copied from net/ethernet/eth.c */
776 static u16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
777 {
778         struct eth1394hdr *eth;
779         unsigned char *rawp;
780
781         skb_reset_mac_header(skb);
782         skb_pull(skb, ETH1394_HLEN);
783         eth = eth1394_hdr(skb);
784
785         if (*eth->h_dest & 1) {
786                 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
787                         skb->pkt_type = PACKET_BROADCAST;
788 #if 0
789                 else
790                         skb->pkt_type = PACKET_MULTICAST;
791 #endif
792         } else {
793                 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
794                         skb->pkt_type = PACKET_OTHERHOST;
795         }
796
797         if (ntohs(eth->h_proto) >= 1536)
798                 return eth->h_proto;
799
800         rawp = skb->data;
801
802         if (*(unsigned short *)rawp == 0xFFFF)
803                 return htons(ETH_P_802_3);
804
805         return htons(ETH_P_802_2);
806 }
807
808 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
809  * We also perform ARP translation here, if need be.  */
810 static u16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
811                                  nodeid_t srcid, nodeid_t destid,
812                                  u16 ether_type)
813 {
814         struct eth1394_priv *priv = netdev_priv(dev);
815         u64 dest_hw;
816         unsigned short ret = 0;
817
818         /* Setup our hw addresses. We use these to build the ethernet header. */
819         if (destid == (LOCAL_BUS | ALL_NODES))
820                 dest_hw = ~0ULL;  /* broadcast */
821         else
822                 dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
823                                       priv->host->csr.guid_lo);
824
825         /* If this is an ARP packet, convert it. First, we want to make
826          * use of some of the fields, since they tell us a little bit
827          * about the sending machine.  */
828         if (ether_type == htons(ETH_P_ARP)) {
829                 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
830                 struct arphdr *arp = (struct arphdr *)skb->data;
831                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
832                 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
833                                            ntohl(arp1394->fifo_lo);
834                 u8 max_rec = min(priv->host->csr.max_rec,
835                                  (u8)(arp1394->max_rec));
836                 int sspd = arp1394->sspd;
837                 u16 maxpayload;
838                 struct eth1394_node_ref *node;
839                 struct eth1394_node_info *node_info;
840                 __be64 guid;
841
842                 /* Sanity check. MacOSX seems to be sending us 131 in this
843                  * field (atleast on my Panther G5). Not sure why. */
844                 if (sspd > 5 || sspd < 0)
845                         sspd = 0;
846
847                 maxpayload = min(eth1394_speedto_maxpayload[sspd],
848                                  (u16)(1 << (max_rec + 1)));
849
850                 guid = get_unaligned(&arp1394->s_uniq_id);
851                 node = eth1394_find_node_guid(&priv->ip_node_list,
852                                               be64_to_cpu(guid));
853                 if (!node)
854                         return 0;
855
856                 node_info =
857                     (struct eth1394_node_info *)node->ud->device.driver_data;
858
859                 /* Update our speed/payload/fifo_offset table */
860                 node_info->maxpayload = maxpayload;
861                 node_info->sspd =       sspd;
862                 node_info->fifo =       fifo_addr;
863
864                 /* Now that we're done with the 1394 specific stuff, we'll
865                  * need to alter some of the data.  Believe it or not, all
866                  * that needs to be done is sender_IP_address needs to be
867                  * moved, the destination hardware address get stuffed
868                  * in and the hardware address length set to 8.
869                  *
870                  * IMPORTANT: The code below overwrites 1394 specific data
871                  * needed above so keep the munging of the data for the
872                  * higher level IP stack last. */
873
874                 arp->ar_hln = 8;
875                 arp_ptr += arp->ar_hln;         /* skip over sender unique id */
876                 *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
877                 arp_ptr += arp->ar_pln;         /* skip over sender IP addr */
878
879                 if (arp->ar_op == htons(ARPOP_REQUEST))
880                         memset(arp_ptr, 0, sizeof(u64));
881                 else
882                         memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
883         }
884
885         /* Now add the ethernet header. */
886         if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
887                              skb->len) >= 0)
888                 ret = ether1394_type_trans(skb, dev);
889
890         return ret;
891 }
892
893 static int fragment_overlap(struct list_head *frag_list, int offset, int len)
894 {
895         struct fragment_info *fi;
896
897         list_for_each_entry(fi, frag_list, list) {
898                 if ( ! ((offset > (fi->offset + fi->len - 1)) ||
899                        ((offset + len - 1) < fi->offset)))
900                         return 1;
901         }
902         return 0;
903 }
904
905 static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
906 {
907         struct partial_datagram *pd;
908
909         list_for_each_entry(pd, pdgl, list)
910                 if (pd->dgl == dgl)
911                         return &pd->list;
912
913         return NULL;
914 }
915
916 /* Assumes that new fragment does not overlap any existing fragments */
917 static int new_fragment(struct list_head *frag_info, int offset, int len)
918 {
919         struct list_head *lh;
920         struct fragment_info *fi, *fi2, *new;
921
922         list_for_each(lh, frag_info) {
923                 fi = list_entry(lh, struct fragment_info, list);
924                 if (fi->offset + fi->len == offset) {
925                         /* The new fragment can be tacked on to the end */
926                         fi->len += len;
927                         /* Did the new fragment plug a hole? */
928                         fi2 = list_entry(lh->next, struct fragment_info, list);
929                         if (fi->offset + fi->len == fi2->offset) {
930                                 /* glue fragments together */
931                                 fi->len += fi2->len;
932                                 list_del(lh->next);
933                                 kfree(fi2);
934                         }
935                         return 0;
936                 } else if (offset + len == fi->offset) {
937                         /* The new fragment can be tacked on to the beginning */
938                         fi->offset = offset;
939                         fi->len += len;
940                         /* Did the new fragment plug a hole? */
941                         fi2 = list_entry(lh->prev, struct fragment_info, list);
942                         if (fi2->offset + fi2->len == fi->offset) {
943                                 /* glue fragments together */
944                                 fi2->len += fi->len;
945                                 list_del(lh);
946                                 kfree(fi);
947                         }
948                         return 0;
949                 } else if (offset > fi->offset + fi->len) {
950                         break;
951                 } else if (offset + len < fi->offset) {
952                         lh = lh->prev;
953                         break;
954                 }
955         }
956
957         new = kmalloc(sizeof(*new), GFP_ATOMIC);
958         if (!new)
959                 return -ENOMEM;
960
961         new->offset = offset;
962         new->len = len;
963
964         list_add(&new->list, lh);
965         return 0;
966 }
967
968 static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
969                                 int dgl, int dg_size, char *frag_buf,
970                                 int frag_off, int frag_len)
971 {
972         struct partial_datagram *new;
973
974         new = kmalloc(sizeof(*new), GFP_ATOMIC);
975         if (!new)
976                 return -ENOMEM;
977
978         INIT_LIST_HEAD(&new->frag_info);
979
980         if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
981                 kfree(new);
982                 return -ENOMEM;
983         }
984
985         new->dgl = dgl;
986         new->dg_size = dg_size;
987
988         new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
989         if (!new->skb) {
990                 struct fragment_info *fi = list_entry(new->frag_info.next,
991                                                       struct fragment_info,
992                                                       list);
993                 kfree(fi);
994                 kfree(new);
995                 return -ENOMEM;
996         }
997
998         skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
999         new->pbuf = skb_put(new->skb, dg_size);
1000         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1001
1002         list_add(&new->list, pdgl);
1003         return 0;
1004 }
1005
1006 static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1007                                    char *frag_buf, int frag_off, int frag_len)
1008 {
1009         struct partial_datagram *pd =
1010                         list_entry(lh, struct partial_datagram, list);
1011
1012         if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
1013                 return -ENOMEM;
1014
1015         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1016
1017         /* Move list entry to beginnig of list so that oldest partial
1018          * datagrams percolate to the end of the list */
1019         list_move(lh, pdgl);
1020         return 0;
1021 }
1022
1023 static int is_datagram_complete(struct list_head *lh, int dg_size)
1024 {
1025         struct partial_datagram *pd;
1026         struct fragment_info *fi;
1027
1028         pd = list_entry(lh, struct partial_datagram, list);
1029         fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1030
1031         return (fi->len == dg_size);
1032 }
1033
1034 /* Packet reception. We convert the IP1394 encapsulation header to an
1035  * ethernet header, and fill it with some of our other fields. This is
1036  * an incoming packet from the 1394 bus.  */
1037 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1038                                   char *buf, int len)
1039 {
1040         struct sk_buff *skb;
1041         unsigned long flags;
1042         struct eth1394_priv *priv = netdev_priv(dev);
1043         union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1044         u16 ether_type = 0;  /* initialized to clear warning */
1045         int hdr_len;
1046         struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1047         struct eth1394_node_info *node_info;
1048
1049         if (!ud) {
1050                 struct eth1394_node_ref *node;
1051                 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1052                 if (!node) {
1053                         HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1054                                    "lookup failure: " NODE_BUS_FMT,
1055                                    NODE_BUS_ARGS(priv->host, srcid));
1056                         priv->stats.rx_dropped++;
1057                         return -1;
1058                 }
1059                 ud = node->ud;
1060
1061                 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1062         }
1063
1064         node_info = (struct eth1394_node_info *)ud->device.driver_data;
1065
1066         /* First, did we receive a fragmented or unfragmented datagram? */
1067         hdr->words.word1 = ntohs(hdr->words.word1);
1068
1069         hdr_len = hdr_type_len[hdr->common.lf];
1070
1071         if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1072                 /* An unfragmented datagram has been received by the ieee1394
1073                  * bus. Build an skbuff around it so we can pass it to the
1074                  * high level network layer. */
1075
1076                 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1077                 if (!skb) {
1078                         ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
1079                         priv->stats.rx_dropped++;
1080                         return -1;
1081                 }
1082                 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1083                 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
1084                        len - hdr_len);
1085                 ether_type = hdr->uf.ether_type;
1086         } else {
1087                 /* A datagram fragment has been received, now the fun begins. */
1088
1089                 struct list_head *pdgl, *lh;
1090                 struct partial_datagram *pd;
1091                 int fg_off;
1092                 int fg_len = len - hdr_len;
1093                 int dg_size;
1094                 int dgl;
1095                 int retval;
1096                 struct pdg_list *pdg = &(node_info->pdg);
1097
1098                 hdr->words.word3 = ntohs(hdr->words.word3);
1099                 /* The 4th header word is reserved so no need to do ntohs() */
1100
1101                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1102                         ether_type = hdr->ff.ether_type;
1103                         dgl = hdr->ff.dgl;
1104                         dg_size = hdr->ff.dg_size + 1;
1105                         fg_off = 0;
1106                 } else {
1107                         hdr->words.word2 = ntohs(hdr->words.word2);
1108                         dgl = hdr->sf.dgl;
1109                         dg_size = hdr->sf.dg_size + 1;
1110                         fg_off = hdr->sf.fg_off;
1111                 }
1112                 spin_lock_irqsave(&pdg->lock, flags);
1113
1114                 pdgl = &(pdg->list);
1115                 lh = find_partial_datagram(pdgl, dgl);
1116
1117                 if (lh == NULL) {
1118                         while (pdg->sz >= max_partial_datagrams) {
1119                                 /* remove the oldest */
1120                                 purge_partial_datagram(pdgl->prev);
1121                                 pdg->sz--;
1122                         }
1123
1124                         retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1125                                                       buf + hdr_len, fg_off,
1126                                                       fg_len);
1127                         if (retval < 0) {
1128                                 spin_unlock_irqrestore(&pdg->lock, flags);
1129                                 goto bad_proto;
1130                         }
1131                         pdg->sz++;
1132                         lh = find_partial_datagram(pdgl, dgl);
1133                 } else {
1134                         struct partial_datagram *pd;
1135
1136                         pd = list_entry(lh, struct partial_datagram, list);
1137
1138                         if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1139                                 /* Overlapping fragments, obliterate old
1140                                  * datagram and start new one. */
1141                                 purge_partial_datagram(lh);
1142                                 retval = new_partial_datagram(dev, pdgl, dgl,
1143                                                               dg_size,
1144                                                               buf + hdr_len,
1145                                                               fg_off, fg_len);
1146                                 if (retval < 0) {
1147                                         pdg->sz--;
1148                                         spin_unlock_irqrestore(&pdg->lock, flags);
1149                                         goto bad_proto;
1150                                 }
1151                         } else {
1152                                 retval = update_partial_datagram(pdgl, lh,
1153                                                                  buf + hdr_len,
1154                                                                  fg_off, fg_len);
1155                                 if (retval < 0) {
1156                                         /* Couldn't save off fragment anyway
1157                                          * so might as well obliterate the
1158                                          * datagram now. */
1159                                         purge_partial_datagram(lh);
1160                                         pdg->sz--;
1161                                         spin_unlock_irqrestore(&pdg->lock, flags);
1162                                         goto bad_proto;
1163                                 }
1164                         } /* fragment overlap */
1165                 } /* new datagram or add to existing one */
1166
1167                 pd = list_entry(lh, struct partial_datagram, list);
1168
1169                 if (hdr->common.lf == ETH1394_HDR_LF_FF)
1170                         pd->ether_type = ether_type;
1171
1172                 if (is_datagram_complete(lh, dg_size)) {
1173                         ether_type = pd->ether_type;
1174                         pdg->sz--;
1175                         skb = skb_get(pd->skb);
1176                         purge_partial_datagram(lh);
1177                         spin_unlock_irqrestore(&pdg->lock, flags);
1178                 } else {
1179                         /* Datagram is not complete, we're done for the
1180                          * moment. */
1181                         spin_unlock_irqrestore(&pdg->lock, flags);
1182                         return 0;
1183                 }
1184         } /* unframgented datagram or fragmented one */
1185
1186         /* Write metadata, and then pass to the receive level */
1187         skb->dev = dev;
1188         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
1189
1190         /* Parse the encapsulation header. This actually does the job of
1191          * converting to an ethernet frame header, aswell as arp
1192          * conversion if needed. ARP conversion is easier in this
1193          * direction, since we are using ethernet as our backend.  */
1194         skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1195                                               ether_type);
1196
1197         spin_lock_irqsave(&priv->lock, flags);
1198
1199         if (!skb->protocol) {
1200                 priv->stats.rx_errors++;
1201                 priv->stats.rx_dropped++;
1202                 dev_kfree_skb_any(skb);
1203                 goto bad_proto;
1204         }
1205
1206         if (netif_rx(skb) == NET_RX_DROP) {
1207                 priv->stats.rx_errors++;
1208                 priv->stats.rx_dropped++;
1209                 goto bad_proto;
1210         }
1211
1212         /* Statistics */
1213         priv->stats.rx_packets++;
1214         priv->stats.rx_bytes += skb->len;
1215
1216 bad_proto:
1217         if (netif_queue_stopped(dev))
1218                 netif_wake_queue(dev);
1219         spin_unlock_irqrestore(&priv->lock, flags);
1220
1221         dev->last_rx = jiffies;
1222
1223         return 0;
1224 }
1225
1226 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1227                            quadlet_t *data, u64 addr, size_t len, u16 flags)
1228 {
1229         struct eth1394_host_info *hi;
1230
1231         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1232         if (hi == NULL) {
1233                 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1234                                 host->id);
1235                 return RCODE_ADDRESS_ERROR;
1236         }
1237
1238         if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1239                 return RCODE_ADDRESS_ERROR;
1240         else
1241                 return RCODE_COMPLETE;
1242 }
1243
1244 static void ether1394_iso(struct hpsb_iso *iso)
1245 {
1246         quadlet_t *data;
1247         char *buf;
1248         struct eth1394_host_info *hi;
1249         struct net_device *dev;
1250         struct eth1394_priv *priv;
1251         unsigned int len;
1252         u32 specifier_id;
1253         u16 source_id;
1254         int i;
1255         int nready;
1256
1257         hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1258         if (hi == NULL) {
1259                 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1260                                 iso->host->id);
1261                 return;
1262         }
1263
1264         dev = hi->dev;
1265
1266         nready = hpsb_iso_n_ready(iso);
1267         for (i = 0; i < nready; i++) {
1268                 struct hpsb_iso_packet_info *info =
1269                         &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1270                 data = (quadlet_t *)(iso->data_buf.kvirt + info->offset);
1271
1272                 /* skip over GASP header */
1273                 buf = (char *)data + 8;
1274                 len = info->len - 8;
1275
1276                 specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
1277                                (be32_to_cpu(data[1]) & 0xff000000) >> 24;
1278                 source_id = be32_to_cpu(data[0]) >> 16;
1279
1280                 priv = netdev_priv(dev);
1281
1282                 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
1283                     || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1284                         /* This packet is not for us */
1285                         continue;
1286                 }
1287                 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1288                                        buf, len);
1289         }
1290
1291         hpsb_iso_recv_release_packets(iso, i);
1292
1293         dev->last_rx = jiffies;
1294 }
1295
1296 /******************************************
1297  * Datagram transmission code
1298  ******************************************/
1299
1300 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1301  * arphdr) is the same format as the ip1394 header, so they overlap.  The rest
1302  * needs to be munged a bit.  The remainder of the arphdr is formatted based
1303  * on hwaddr len and ipaddr len.  We know what they'll be, so it's easy to
1304  * judge.
1305  *
1306  * Now that the EUI is used for the hardware address all we need to do to make
1307  * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1308  * speed, and unicast FIFO address information between the sender_unique_id
1309  * and the IP addresses.
1310  */
1311 static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1312                                      struct net_device *dev)
1313 {
1314         struct eth1394_priv *priv = netdev_priv(dev);
1315         struct arphdr *arp = (struct arphdr *)skb->data;
1316         unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1317         struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1318
1319         arp1394->hw_addr_len    = 16;
1320         arp1394->sip            = *(u32*)(arp_ptr + ETH1394_ALEN);
1321         arp1394->max_rec        = priv->host->csr.max_rec;
1322         arp1394->sspd           = priv->host->csr.lnk_spd;
1323         arp1394->fifo_hi        = htons(priv->local_fifo >> 32);
1324         arp1394->fifo_lo        = htonl(priv->local_fifo & ~0x0);
1325 }
1326
1327 /* We need to encapsulate the standard header with our own. We use the
1328  * ethernet header's proto for our own. */
1329 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1330                                                __be16 proto,
1331                                                union eth1394_hdr *hdr,
1332                                                u16 dg_size, u16 dgl)
1333 {
1334         unsigned int adj_max_payload =
1335                                 max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1336
1337         /* Does it all fit in one packet? */
1338         if (dg_size <= adj_max_payload) {
1339                 hdr->uf.lf = ETH1394_HDR_LF_UF;
1340                 hdr->uf.ether_type = proto;
1341         } else {
1342                 hdr->ff.lf = ETH1394_HDR_LF_FF;
1343                 hdr->ff.ether_type = proto;
1344                 hdr->ff.dg_size = dg_size - 1;
1345                 hdr->ff.dgl = dgl;
1346                 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1347         }
1348         return (dg_size + adj_max_payload - 1) / adj_max_payload;
1349 }
1350
1351 static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1352                                           unsigned int max_payload,
1353                                           union eth1394_hdr *hdr)
1354 {
1355         union eth1394_hdr *bufhdr;
1356         int ftype = hdr->common.lf;
1357         int hdrsz = hdr_type_len[ftype];
1358         unsigned int adj_max_payload = max_payload - hdrsz;
1359
1360         switch (ftype) {
1361         case ETH1394_HDR_LF_UF:
1362                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1363                 bufhdr->words.word1 = htons(hdr->words.word1);
1364                 bufhdr->words.word2 = hdr->words.word2;
1365                 break;
1366
1367         case ETH1394_HDR_LF_FF:
1368                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1369                 bufhdr->words.word1 = htons(hdr->words.word1);
1370                 bufhdr->words.word2 = hdr->words.word2;
1371                 bufhdr->words.word3 = htons(hdr->words.word3);
1372                 bufhdr->words.word4 = 0;
1373
1374                 /* Set frag type here for future interior fragments */
1375                 hdr->common.lf = ETH1394_HDR_LF_IF;
1376                 hdr->sf.fg_off = 0;
1377                 break;
1378
1379         default:
1380                 hdr->sf.fg_off += adj_max_payload;
1381                 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1382                 if (max_payload >= skb->len)
1383                         hdr->common.lf = ETH1394_HDR_LF_LF;
1384                 bufhdr->words.word1 = htons(hdr->words.word1);
1385                 bufhdr->words.word2 = htons(hdr->words.word2);
1386                 bufhdr->words.word3 = htons(hdr->words.word3);
1387                 bufhdr->words.word4 = 0;
1388         }
1389         return min(max_payload, skb->len);
1390 }
1391
1392 static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1393 {
1394         struct hpsb_packet *p;
1395
1396         p = hpsb_alloc_packet(0);
1397         if (p) {
1398                 p->host = host;
1399                 p->generation = get_hpsb_generation(host);
1400                 p->type = hpsb_async;
1401         }
1402         return p;
1403 }
1404
1405 static int ether1394_prep_write_packet(struct hpsb_packet *p,
1406                                        struct hpsb_host *host, nodeid_t node,
1407                                        u64 addr, void *data, int tx_len)
1408 {
1409         p->node_id = node;
1410         p->data = NULL;
1411
1412         p->tcode = TCODE_WRITEB;
1413         p->header[1] = host->node_id << 16 | addr >> 32;
1414         p->header[2] = addr & 0xffffffff;
1415
1416         p->header_size = 16;
1417         p->expect_response = 1;
1418
1419         if (hpsb_get_tlabel(p)) {
1420                 ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n");
1421                 return -1;
1422         }
1423         p->header[0] =
1424                 p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
1425
1426         p->header[3] = tx_len << 16;
1427         p->data_size = (tx_len + 3) & ~3;
1428         p->data = data;
1429
1430         return 0;
1431 }
1432
1433 static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1434                                        struct eth1394_priv *priv,
1435                                        struct sk_buff *skb, int length)
1436 {
1437         p->header_size = 4;
1438         p->tcode = TCODE_STREAM_DATA;
1439
1440         p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
1441                        TCODE_STREAM_DATA << 4;
1442         p->data_size = length;
1443         p->data = (quadlet_t *)skb->data - 2;
1444         p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
1445                                  ETHER1394_GASP_SPECIFIER_ID_HI);
1446         p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
1447                                  ETHER1394_GASP_VERSION);
1448
1449         /* Setting the node id to ALL_NODES (not LOCAL_BUS | ALL_NODES)
1450          * prevents hpsb_send_packet() from setting the speed to an arbitrary
1451          * value based on packet->node_id if packet->node_id is not set. */
1452         p->node_id = ALL_NODES;
1453         p->speed_code = priv->bc_sspd;
1454 }
1455
1456 static void ether1394_free_packet(struct hpsb_packet *packet)
1457 {
1458         if (packet->tcode != TCODE_STREAM_DATA)
1459                 hpsb_free_tlabel(packet);
1460         hpsb_free_packet(packet);
1461 }
1462
1463 static void ether1394_complete_cb(void *__ptask);
1464
1465 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1466 {
1467         struct eth1394_priv *priv = ptask->priv;
1468         struct hpsb_packet *packet = NULL;
1469
1470         packet = ether1394_alloc_common_packet(priv->host);
1471         if (!packet)
1472                 return -1;
1473
1474         if (ptask->tx_type == ETH1394_GASP) {
1475                 int length = tx_len + 2 * sizeof(quadlet_t);
1476
1477                 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1478         } else if (ether1394_prep_write_packet(packet, priv->host,
1479                                                ptask->dest_node,
1480                                                ptask->addr, ptask->skb->data,
1481                                                tx_len)) {
1482                 hpsb_free_packet(packet);
1483                 return -1;
1484         }
1485
1486         ptask->packet = packet;
1487         hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1488                                       ptask);
1489
1490         if (hpsb_send_packet(packet) < 0) {
1491                 ether1394_free_packet(packet);
1492                 return -1;
1493         }
1494
1495         return 0;
1496 }
1497
1498 /* Task function to be run when a datagram transmission is completed */
1499 static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1500 {
1501         struct sk_buff *skb = ptask->skb;
1502         struct eth1394_priv *priv = netdev_priv(skb->dev);
1503         unsigned long flags;
1504
1505         /* Statistics */
1506         spin_lock_irqsave(&priv->lock, flags);
1507         if (fail) {
1508                 priv->stats.tx_dropped++;
1509                 priv->stats.tx_errors++;
1510         } else {
1511                 priv->stats.tx_bytes += skb->len;
1512                 priv->stats.tx_packets++;
1513         }
1514         spin_unlock_irqrestore(&priv->lock, flags);
1515
1516         dev_kfree_skb_any(skb);
1517         kmem_cache_free(packet_task_cache, ptask);
1518 }
1519
1520 /* Callback for when a packet has been sent and the status of that packet is
1521  * known */
1522 static void ether1394_complete_cb(void *__ptask)
1523 {
1524         struct packet_task *ptask = (struct packet_task *)__ptask;
1525         struct hpsb_packet *packet = ptask->packet;
1526         int fail = 0;
1527
1528         if (packet->tcode != TCODE_STREAM_DATA)
1529                 fail = hpsb_packet_success(packet);
1530
1531         ether1394_free_packet(packet);
1532
1533         ptask->outstanding_pkts--;
1534         if (ptask->outstanding_pkts > 0 && !fail) {
1535                 int tx_len;
1536
1537                 /* Add the encapsulation header to the fragment */
1538                 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1539                                                &ptask->hdr);
1540                 if (ether1394_send_packet(ptask, tx_len))
1541                         ether1394_dg_complete(ptask, 1);
1542         } else {
1543                 ether1394_dg_complete(ptask, fail);
1544         }
1545 }
1546
1547 /* Transmit a packet (called by kernel) */
1548 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev)
1549 {
1550         gfp_t kmflags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
1551         struct eth1394hdr *eth;
1552         struct eth1394_priv *priv = netdev_priv(dev);
1553         __be16 proto;
1554         unsigned long flags;
1555         nodeid_t dest_node;
1556         eth1394_tx_type tx_type;
1557         int ret = 0;
1558         unsigned int tx_len;
1559         unsigned int max_payload;
1560         u16 dg_size;
1561         u16 dgl;
1562         struct packet_task *ptask;
1563         struct eth1394_node_ref *node;
1564         struct eth1394_node_info *node_info = NULL;
1565
1566         ptask = kmem_cache_alloc(packet_task_cache, kmflags);
1567         if (ptask == NULL) {
1568                 ret = -ENOMEM;
1569                 goto fail;
1570         }
1571
1572         /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1573          * it does not set our validity bit. We need to compensate for
1574          * that somewhere else, but not in eth1394. */
1575 #if 0
1576         if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000) {
1577                 ret = -EAGAIN;
1578                 goto fail;
1579         }
1580 #endif
1581
1582         skb = skb_share_check(skb, kmflags);
1583         if (!skb) {
1584                 ret = -ENOMEM;
1585                 goto fail;
1586         }
1587
1588         /* Get rid of the fake eth1394 header, but save a pointer */
1589         eth = (struct eth1394hdr *)skb->data;
1590         skb_pull(skb, ETH1394_HLEN);
1591
1592         proto = eth->h_proto;
1593         dg_size = skb->len;
1594
1595         /* Set the transmission type for the packet.  ARP packets and IP
1596          * broadcast packets are sent via GASP. */
1597         if (memcmp(eth->h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1598             proto == htons(ETH_P_ARP) ||
1599             (proto == htons(ETH_P_IP) &&
1600              IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1601                 tx_type = ETH1394_GASP;
1602                 dest_node = LOCAL_BUS | ALL_NODES;
1603                 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1604                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1605                 dgl = priv->bc_dgl;
1606                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1607                         priv->bc_dgl++;
1608         } else {
1609                 __be64 guid = get_unaligned((u64 *)eth->h_dest);
1610
1611                 node = eth1394_find_node_guid(&priv->ip_node_list,
1612                                               be64_to_cpu(guid));
1613                 if (!node) {
1614                         ret = -EAGAIN;
1615                         goto fail;
1616                 }
1617                 node_info =
1618                     (struct eth1394_node_info *)node->ud->device.driver_data;
1619                 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE) {
1620                         ret = -EAGAIN;
1621                         goto fail;
1622                 }
1623
1624                 dest_node = node->ud->ne->nodeid;
1625                 max_payload = node_info->maxpayload;
1626                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1627
1628                 dgl = node_info->dgl;
1629                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1630                         node_info->dgl++;
1631                 tx_type = ETH1394_WRREQ;
1632         }
1633
1634         /* If this is an ARP packet, convert it */
1635         if (proto == htons(ETH_P_ARP))
1636                 ether1394_arp_to_1394arp(skb, dev);
1637
1638         ptask->hdr.words.word1 = 0;
1639         ptask->hdr.words.word2 = 0;
1640         ptask->hdr.words.word3 = 0;
1641         ptask->hdr.words.word4 = 0;
1642         ptask->skb = skb;
1643         ptask->priv = priv;
1644         ptask->tx_type = tx_type;
1645
1646         if (tx_type != ETH1394_GASP) {
1647                 u64 addr;
1648
1649                 spin_lock_irqsave(&priv->lock, flags);
1650                 addr = node_info->fifo;
1651                 spin_unlock_irqrestore(&priv->lock, flags);
1652
1653                 ptask->addr = addr;
1654                 ptask->dest_node = dest_node;
1655         }
1656
1657         ptask->tx_type = tx_type;
1658         ptask->max_payload = max_payload;
1659         ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
1660                                         proto, &ptask->hdr, dg_size, dgl);
1661
1662         /* Add the encapsulation header to the fragment */
1663         tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1664         dev->trans_start = jiffies;
1665         if (ether1394_send_packet(ptask, tx_len))
1666                 goto fail;
1667
1668         netif_wake_queue(dev);
1669         return 0;
1670 fail:
1671         if (ptask)
1672                 kmem_cache_free(packet_task_cache, ptask);
1673
1674         if (skb != NULL)
1675                 dev_kfree_skb(skb);
1676
1677         spin_lock_irqsave(&priv->lock, flags);
1678         priv->stats.tx_dropped++;
1679         priv->stats.tx_errors++;
1680         spin_unlock_irqrestore(&priv->lock, flags);
1681
1682         if (netif_queue_stopped(dev))
1683                 netif_wake_queue(dev);
1684
1685         return 0;  /* returning non-zero causes serious problems */
1686 }
1687
1688 static void ether1394_get_drvinfo(struct net_device *dev,
1689                                   struct ethtool_drvinfo *info)
1690 {
1691         strcpy(info->driver, driver_name);
1692         strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
1693 }
1694
1695 static struct ethtool_ops ethtool_ops = {
1696         .get_drvinfo = ether1394_get_drvinfo
1697 };
1698
1699 static int __init ether1394_init_module (void)
1700 {
1701         packet_task_cache = kmem_cache_create("packet_task",
1702                                               sizeof(struct packet_task),
1703                                               0, 0, NULL, NULL);
1704
1705         hpsb_register_highlevel(&eth1394_highlevel);
1706         return hpsb_register_protocol(&eth1394_proto_driver);
1707 }
1708
1709 static void __exit ether1394_exit_module (void)
1710 {
1711         hpsb_unregister_protocol(&eth1394_proto_driver);
1712         hpsb_unregister_highlevel(&eth1394_highlevel);
1713         kmem_cache_destroy(packet_task_cache);
1714 }
1715
1716 module_init(ether1394_init_module);
1717 module_exit(ether1394_exit_module);