ide-probe: remove needless Status register reads
[safe/jmp/linux-2.6] / drivers / ide / ide-tape.c
1 /*
2  * Copyright (C) 1995-1999  Gadi Oxman <gadio@netvision.net.il>
3  * Copyright (C) 2003-2005  Bartlomiej Zolnierkiewicz
4  *
5  * $Header$
6  *
7  * This driver was constructed as a student project in the software laboratory
8  * of the faculty of electrical engineering in the Technion - Israel's
9  * Institute Of Technology, with the guide of Avner Lottem and Dr. Ilana David.
10  *
11  * It is hereby placed under the terms of the GNU general public license.
12  * (See linux/COPYING).
13  */
14  
15 /*
16  * IDE ATAPI streaming tape driver.
17  *
18  * This driver is a part of the Linux ide driver and works in co-operation
19  * with linux/drivers/block/ide.c.
20  *
21  * The driver, in co-operation with ide.c, basically traverses the 
22  * request-list for the block device interface. The character device
23  * interface, on the other hand, creates new requests, adds them
24  * to the request-list of the block device, and waits for their completion.
25  *
26  * Pipelined operation mode is now supported on both reads and writes.
27  *
28  * The block device major and minor numbers are determined from the
29  * tape's relative position in the ide interfaces, as explained in ide.c.
30  *
31  * The character device interface consists of the following devices:
32  *
33  * ht0          major 37, minor 0       first  IDE tape, rewind on close.
34  * ht1          major 37, minor 1       second IDE tape, rewind on close.
35  * ...
36  * nht0         major 37, minor 128     first  IDE tape, no rewind on close.
37  * nht1         major 37, minor 129     second IDE tape, no rewind on close.
38  * ...
39  *
40  * Run linux/scripts/MAKEDEV.ide to create the above entries.
41  *
42  * The general magnetic tape commands compatible interface, as defined by
43  * include/linux/mtio.h, is accessible through the character device.
44  *
45  * General ide driver configuration options, such as the interrupt-unmask
46  * flag, can be configured by issuing an ioctl to the block device interface,
47  * as any other ide device.
48  *
49  * Our own ide-tape ioctl's can be issued to either the block device or
50  * the character device interface.
51  *
52  * Maximal throughput with minimal bus load will usually be achieved in the
53  * following scenario:
54  *
55  *      1.      ide-tape is operating in the pipelined operation mode.
56  *      2.      No buffering is performed by the user backup program.
57  *
58  * Testing was done with a 2 GB CONNER CTMA 4000 IDE ATAPI Streaming Tape Drive.
59  * 
60  * Ver 0.1   Nov  1 95   Pre-working code :-)
61  * Ver 0.2   Nov 23 95   A short backup (few megabytes) and restore procedure
62  *                        was successful ! (Using tar cvf ... on the block
63  *                        device interface).
64  *                       A longer backup resulted in major swapping, bad
65  *                        overall Linux performance and eventually failed as
66  *                        we received non serial read-ahead requests from the
67  *                        buffer cache.
68  * Ver 0.3   Nov 28 95   Long backups are now possible, thanks to the
69  *                        character device interface. Linux's responsiveness
70  *                        and performance doesn't seem to be much affected
71  *                        from the background backup procedure.
72  *                       Some general mtio.h magnetic tape operations are
73  *                        now supported by our character device. As a result,
74  *                        popular tape utilities are starting to work with
75  *                        ide tapes :-)
76  *                       The following configurations were tested:
77  *                              1. An IDE ATAPI TAPE shares the same interface
78  *                                 and irq with an IDE ATAPI CDROM.
79  *                              2. An IDE ATAPI TAPE shares the same interface
80  *                                 and irq with a normal IDE disk.
81  *                        Both configurations seemed to work just fine !
82  *                        However, to be on the safe side, it is meanwhile
83  *                        recommended to give the IDE TAPE its own interface
84  *                        and irq.
85  *                       The one thing which needs to be done here is to
86  *                        add a "request postpone" feature to ide.c,
87  *                        so that we won't have to wait for the tape to finish
88  *                        performing a long media access (DSC) request (such
89  *                        as a rewind) before we can access the other device
90  *                        on the same interface. This effect doesn't disturb
91  *                        normal operation most of the time because read/write
92  *                        requests are relatively fast, and once we are
93  *                        performing one tape r/w request, a lot of requests
94  *                        from the other device can be queued and ide.c will
95  *                        service all of them after this single tape request.
96  * Ver 1.0   Dec 11 95   Integrated into Linux 1.3.46 development tree.
97  *                       On each read / write request, we now ask the drive
98  *                        if we can transfer a constant number of bytes
99  *                        (a parameter of the drive) only to its buffers,
100  *                        without causing actual media access. If we can't,
101  *                        we just wait until we can by polling the DSC bit.
102  *                        This ensures that while we are not transferring
103  *                        more bytes than the constant referred to above, the
104  *                        interrupt latency will not become too high and
105  *                        we won't cause an interrupt timeout, as happened
106  *                        occasionally in the previous version.
107  *                       While polling for DSC, the current request is
108  *                        postponed and ide.c is free to handle requests from
109  *                        the other device. This is handled transparently to
110  *                        ide.c. The hwgroup locking method which was used
111  *                        in the previous version was removed.
112  *                       Use of new general features which are provided by
113  *                        ide.c for use with atapi devices.
114  *                        (Programming done by Mark Lord)
115  *                       Few potential bug fixes (Again, suggested by Mark)
116  *                       Single character device data transfers are now
117  *                        not limited in size, as they were before.
118  *                       We are asking the tape about its recommended
119  *                        transfer unit and send a larger data transfer
120  *                        as several transfers of the above size.
121  *                        For best results, use an integral number of this
122  *                        basic unit (which is shown during driver
123  *                        initialization). I will soon add an ioctl to get
124  *                        this important parameter.
125  *                       Our data transfer buffer is allocated on startup,
126  *                        rather than before each data transfer. This should
127  *                        ensure that we will indeed have a data buffer.
128  * Ver 1.1   Dec 14 95   Fixed random problems which occurred when the tape
129  *                        shared an interface with another device.
130  *                        (poll_for_dsc was a complete mess).
131  *                       Removed some old (non-active) code which had
132  *                        to do with supporting buffer cache originated
133  *                        requests.
134  *                       The block device interface can now be opened, so
135  *                        that general ide driver features like the unmask
136  *                        interrupts flag can be selected with an ioctl.
137  *                        This is the only use of the block device interface.
138  *                       New fast pipelined operation mode (currently only on
139  *                        writes). When using the pipelined mode, the
140  *                        throughput can potentially reach the maximum
141  *                        tape supported throughput, regardless of the
142  *                        user backup program. On my tape drive, it sometimes
143  *                        boosted performance by a factor of 2. Pipelined
144  *                        mode is enabled by default, but since it has a few
145  *                        downfalls as well, you may want to disable it.
146  *                        A short explanation of the pipelined operation mode
147  *                        is available below.
148  * Ver 1.2   Jan  1 96   Eliminated pipelined mode race condition.
149  *                       Added pipeline read mode. As a result, restores
150  *                        are now as fast as backups.
151  *                       Optimized shared interface behavior. The new behavior
152  *                        typically results in better IDE bus efficiency and
153  *                        higher tape throughput.
154  *                       Pre-calculation of the expected read/write request
155  *                        service time, based on the tape's parameters. In
156  *                        the pipelined operation mode, this allows us to
157  *                        adjust our polling frequency to a much lower value,
158  *                        and thus to dramatically reduce our load on Linux,
159  *                        without any decrease in performance.
160  *                       Implemented additional mtio.h operations.
161  *                       The recommended user block size is returned by
162  *                        the MTIOCGET ioctl.
163  *                       Additional minor changes.
164  * Ver 1.3   Feb  9 96   Fixed pipelined read mode bug which prevented the
165  *                        use of some block sizes during a restore procedure.
166  *                       The character device interface will now present a
167  *                        continuous view of the media - any mix of block sizes
168  *                        during a backup/restore procedure is supported. The
169  *                        driver will buffer the requests internally and
170  *                        convert them to the tape's recommended transfer
171  *                        unit, making performance almost independent of the
172  *                        chosen user block size.
173  *                       Some improvements in error recovery.
174  *                       By cooperating with ide-dma.c, bus mastering DMA can
175  *                        now sometimes be used with IDE tape drives as well.
176  *                        Bus mastering DMA has the potential to dramatically
177  *                        reduce the CPU's overhead when accessing the device,
178  *                        and can be enabled by using hdparm -d1 on the tape's
179  *                        block device interface. For more info, read the
180  *                        comments in ide-dma.c.
181  * Ver 1.4   Mar 13 96   Fixed serialize support.
182  * Ver 1.5   Apr 12 96   Fixed shared interface operation, broken in 1.3.85.
183  *                       Fixed pipelined read mode inefficiency.
184  *                       Fixed nasty null dereferencing bug.
185  * Ver 1.6   Aug 16 96   Fixed FPU usage in the driver.
186  *                       Fixed end of media bug.
187  * Ver 1.7   Sep 10 96   Minor changes for the CONNER CTT8000-A model.
188  * Ver 1.8   Sep 26 96   Attempt to find a better balance between good
189  *                        interactive response and high system throughput.
190  * Ver 1.9   Nov  5 96   Automatically cross encountered filemarks rather
191  *                        than requiring an explicit FSF command.
192  *                       Abort pending requests at end of media.
193  *                       MTTELL was sometimes returning incorrect results.
194  *                       Return the real block size in the MTIOCGET ioctl.
195  *                       Some error recovery bug fixes.
196  * Ver 1.10  Nov  5 96   Major reorganization.
197  *                       Reduced CPU overhead a bit by eliminating internal
198  *                        bounce buffers.
199  *                       Added module support.
200  *                       Added multiple tape drives support.
201  *                       Added partition support.
202  *                       Rewrote DSC handling.
203  *                       Some portability fixes.
204  *                       Removed ide-tape.h.
205  *                       Additional minor changes.
206  * Ver 1.11  Dec  2 96   Bug fix in previous DSC timeout handling.
207  *                       Use ide_stall_queue() for DSC overlap.
208  *                       Use the maximum speed rather than the current speed
209  *                        to compute the request service time.
210  * Ver 1.12  Dec  7 97   Fix random memory overwriting and/or last block data
211  *                        corruption, which could occur if the total number
212  *                        of bytes written to the tape was not an integral
213  *                        number of tape blocks.
214  *                       Add support for INTERRUPT DRQ devices.
215  * Ver 1.13  Jan  2 98   Add "speed == 0" work-around for HP COLORADO 5GB
216  * Ver 1.14  Dec 30 98   Partial fixes for the Sony/AIWA tape drives.
217  *                       Replace cli()/sti() with hwgroup spinlocks.
218  * Ver 1.15  Mar 25 99   Fix SMP race condition by replacing hwgroup
219  *                        spinlock with private per-tape spinlock.
220  * Ver 1.16  Sep  1 99   Add OnStream tape support.
221  *                       Abort read pipeline on EOD.
222  *                       Wait for the tape to become ready in case it returns
223  *                        "in the process of becoming ready" on open().
224  *                       Fix zero padding of the last written block in
225  *                        case the tape block size is larger than PAGE_SIZE.
226  *                       Decrease the default disconnection time to tn.
227  * Ver 1.16e Oct  3 99   Minor fixes.
228  * Ver 1.16e1 Oct 13 99  Patches by Arnold Niessen,
229  *                          niessen@iae.nl / arnold.niessen@philips.com
230  *                   GO-1)  Undefined code in idetape_read_position
231  *                              according to Gadi's email
232  *                   AJN-1) Minor fix asc == 11 should be asc == 0x11
233  *                               in idetape_issue_packet_command (did effect
234  *                               debugging output only)
235  *                   AJN-2) Added more debugging output, and
236  *                              added ide-tape: where missing. I would also
237  *                              like to add tape->name where possible
238  *                   AJN-3) Added different debug_level's 
239  *                              via /proc/ide/hdc/settings
240  *                              "debug_level" determines amount of debugging output;
241  *                              can be changed using /proc/ide/hdx/settings
242  *                              0 : almost no debugging output
243  *                              1 : 0+output errors only
244  *                              2 : 1+output all sensekey/asc
245  *                              3 : 2+follow all chrdev related procedures
246  *                              4 : 3+follow all procedures
247  *                              5 : 4+include pc_stack rq_stack info
248  *                              6 : 5+USE_COUNT updates
249  *                   AJN-4) Fixed timeout for retension in idetape_queue_pc_tail
250  *                              from 5 to 10 minutes
251  *                   AJN-5) Changed maximum number of blocks to skip when
252  *                              reading tapes with multiple consecutive write
253  *                              errors from 100 to 1000 in idetape_get_logical_blk
254  *                   Proposed changes to code:
255  *                   1) output "logical_blk_num" via /proc
256  *                   2) output "current_operation" via /proc
257  *                   3) Either solve or document the fact that `mt rewind' is
258  *                      required after reading from /dev/nhtx to be
259  *                      able to rmmod the idetape module;
260  *                      Also, sometimes an application finishes but the
261  *                      device remains `busy' for some time. Same cause ?
262  *                   Proposed changes to release-notes:
263  *                   4) write a simple `quickstart' section in the
264  *                      release notes; I volunteer if you don't want to
265  *                   5) include a pointer to video4linux in the doc
266  *                      to stimulate video applications
267  *                   6) release notes lines 331 and 362: explain what happens
268  *                      if the application data rate is higher than 1100 KB/s; 
269  *                      similar approach to lower-than-500 kB/s ?
270  *                   7) 6.6 Comparison; wouldn't it be better to allow different 
271  *                      strategies for read and write ?
272  *                      Wouldn't it be better to control the tape buffer
273  *                      contents instead of the bandwidth ?
274  *                   8) line 536: replace will by would (if I understand
275  *                      this section correctly, a hypothetical and unwanted situation
276  *                       is being described)
277  * Ver 1.16f Dec 15 99   Change place of the secondary OnStream header frames.
278  * Ver 1.17  Nov 2000 / Jan 2001  Marcel Mol, marcel@mesa.nl
279  *                      - Add idetape_onstream_mode_sense_tape_parameter_page
280  *                        function to get tape capacity in frames: tape->capacity.
281  *                      - Add support for DI-50 drives( or any DI- drive).
282  *                      - 'workaround' for read error/blank block around block 3000.
283  *                      - Implement Early warning for end of media for Onstream.
284  *                      - Cosmetic code changes for readability.
285  *                      - Idetape_position_tape should not use SKIP bit during
286  *                        Onstream read recovery.
287  *                      - Add capacity, logical_blk_num and first/last_frame_position
288  *                        to /proc/ide/hd?/settings.
289  *                      - Module use count was gone in the Linux 2.4 driver.
290  * Ver 1.17a Apr 2001 Willem Riede osst@riede.org
291  *                      - Get drive's actual block size from mode sense block descriptor
292  *                      - Limit size of pipeline
293  * Ver 1.17b Oct 2002   Alan Stern <stern@rowland.harvard.edu>
294  *                      Changed IDETAPE_MIN_PIPELINE_STAGES to 1 and actually used
295  *                       it in the code!
296  *                      Actually removed aborted stages in idetape_abort_pipeline
297  *                       instead of just changing the command code.
298  *                      Made the transfer byte count for Request Sense equal to the
299  *                       actual length of the data transfer.
300  *                      Changed handling of partial data transfers: they do not
301  *                       cause DMA errors.
302  *                      Moved initiation of DMA transfers to the correct place.
303  *                      Removed reference to unallocated memory.
304  *                      Made __idetape_discard_read_pipeline return the number of
305  *                       sectors skipped, not the number of stages.
306  *                      Replaced errant kfree() calls with __idetape_kfree_stage().
307  *                      Fixed off-by-one error in testing the pipeline length.
308  *                      Fixed handling of filemarks in the read pipeline.
309  *                      Small code optimization for MTBSF and MTBSFM ioctls.
310  *                      Don't try to unlock the door during device close if is
311  *                       already unlocked!
312  *                      Cosmetic fixes to miscellaneous debugging output messages.
313  *                      Set the minimum /proc/ide/hd?/settings values for "pipeline",
314  *                       "pipeline_min", and "pipeline_max" to 1.
315  *
316  * Here are some words from the first releases of hd.c, which are quoted
317  * in ide.c and apply here as well:
318  *
319  * | Special care is recommended.  Have Fun!
320  *
321  */
322
323 /*
324  * An overview of the pipelined operation mode.
325  *
326  * In the pipelined write mode, we will usually just add requests to our
327  * pipeline and return immediately, before we even start to service them. The
328  * user program will then have enough time to prepare the next request while
329  * we are still busy servicing previous requests. In the pipelined read mode,
330  * the situation is similar - we add read-ahead requests into the pipeline,
331  * before the user even requested them.
332  *
333  * The pipeline can be viewed as a "safety net" which will be activated when
334  * the system load is high and prevents the user backup program from keeping up
335  * with the current tape speed. At this point, the pipeline will get
336  * shorter and shorter but the tape will still be streaming at the same speed.
337  * Assuming we have enough pipeline stages, the system load will hopefully
338  * decrease before the pipeline is completely empty, and the backup program
339  * will be able to "catch up" and refill the pipeline again.
340  * 
341  * When using the pipelined mode, it would be best to disable any type of
342  * buffering done by the user program, as ide-tape already provides all the
343  * benefits in the kernel, where it can be done in a more efficient way.
344  * As we will usually not block the user program on a request, the most
345  * efficient user code will then be a simple read-write-read-... cycle.
346  * Any additional logic will usually just slow down the backup process.
347  *
348  * Using the pipelined mode, I get a constant over 400 KBps throughput,
349  * which seems to be the maximum throughput supported by my tape.
350  *
351  * However, there are some downfalls:
352  *
353  *      1.      We use memory (for data buffers) in proportional to the number
354  *              of pipeline stages (each stage is about 26 KB with my tape).
355  *      2.      In the pipelined write mode, we cheat and postpone error codes
356  *              to the user task. In read mode, the actual tape position
357  *              will be a bit further than the last requested block.
358  *
359  * Concerning (1):
360  *
361  *      1.      We allocate stages dynamically only when we need them. When
362  *              we don't need them, we don't consume additional memory. In
363  *              case we can't allocate stages, we just manage without them
364  *              (at the expense of decreased throughput) so when Linux is
365  *              tight in memory, we will not pose additional difficulties.
366  *
367  *      2.      The maximum number of stages (which is, in fact, the maximum
368  *              amount of memory) which we allocate is limited by the compile
369  *              time parameter IDETAPE_MAX_PIPELINE_STAGES.
370  *
371  *      3.      The maximum number of stages is a controlled parameter - We
372  *              don't start from the user defined maximum number of stages
373  *              but from the lower IDETAPE_MIN_PIPELINE_STAGES (again, we
374  *              will not even allocate this amount of stages if the user
375  *              program can't handle the speed). We then implement a feedback
376  *              loop which checks if the pipeline is empty, and if it is, we
377  *              increase the maximum number of stages as necessary until we
378  *              reach the optimum value which just manages to keep the tape
379  *              busy with minimum allocated memory or until we reach
380  *              IDETAPE_MAX_PIPELINE_STAGES.
381  *
382  * Concerning (2):
383  *
384  *      In pipelined write mode, ide-tape can not return accurate error codes
385  *      to the user program since we usually just add the request to the
386  *      pipeline without waiting for it to be serviced. In case an error
387  *      occurs, I will report it on the next user request.
388  *
389  *      In the pipelined read mode, subsequent read requests or forward
390  *      filemark spacing will perform correctly, as we preserve all blocks
391  *      and filemarks which we encountered during our excess read-ahead.
392  * 
393  *      For accurate tape positioning and error reporting, disabling
394  *      pipelined mode might be the best option.
395  *
396  * You can enable/disable/tune the pipelined operation mode by adjusting
397  * the compile time parameters below.
398  */
399
400 /*
401  *      Possible improvements.
402  *
403  *      1.      Support for the ATAPI overlap protocol.
404  *
405  *              In order to maximize bus throughput, we currently use the DSC
406  *              overlap method which enables ide.c to service requests from the
407  *              other device while the tape is busy executing a command. The
408  *              DSC overlap method involves polling the tape's status register
409  *              for the DSC bit, and servicing the other device while the tape
410  *              isn't ready.
411  *
412  *              In the current QIC development standard (December 1995),
413  *              it is recommended that new tape drives will *in addition* 
414  *              implement the ATAPI overlap protocol, which is used for the
415  *              same purpose - efficient use of the IDE bus, but is interrupt
416  *              driven and thus has much less CPU overhead.
417  *
418  *              ATAPI overlap is likely to be supported in most new ATAPI
419  *              devices, including new ATAPI cdroms, and thus provides us
420  *              a method by which we can achieve higher throughput when
421  *              sharing a (fast) ATA-2 disk with any (slow) new ATAPI device.
422  */
423
424 #define IDETAPE_VERSION "1.19"
425
426 #include <linux/module.h>
427 #include <linux/types.h>
428 #include <linux/string.h>
429 #include <linux/kernel.h>
430 #include <linux/delay.h>
431 #include <linux/timer.h>
432 #include <linux/mm.h>
433 #include <linux/interrupt.h>
434 #include <linux/jiffies.h>
435 #include <linux/major.h>
436 #include <linux/errno.h>
437 #include <linux/genhd.h>
438 #include <linux/slab.h>
439 #include <linux/pci.h>
440 #include <linux/ide.h>
441 #include <linux/smp_lock.h>
442 #include <linux/completion.h>
443 #include <linux/bitops.h>
444 #include <linux/mutex.h>
445
446 #include <asm/byteorder.h>
447 #include <asm/irq.h>
448 #include <asm/uaccess.h>
449 #include <asm/io.h>
450 #include <asm/unaligned.h>
451
452 /*
453  * partition
454  */
455 typedef struct os_partition_s {
456         __u8    partition_num;
457         __u8    par_desc_ver;
458         __u16   wrt_pass_cntr;
459         __u32   first_frame_addr;
460         __u32   last_frame_addr;
461         __u32   eod_frame_addr;
462 } os_partition_t;
463
464 /*
465  * DAT entry
466  */
467 typedef struct os_dat_entry_s {
468         __u32   blk_sz;
469         __u16   blk_cnt;
470         __u8    flags;
471         __u8    reserved;
472 } os_dat_entry_t;
473
474 /*
475  * DAT
476  */
477 #define OS_DAT_FLAGS_DATA       (0xc)
478 #define OS_DAT_FLAGS_MARK       (0x1)
479
480 typedef struct os_dat_s {
481         __u8            dat_sz;
482         __u8            reserved1;
483         __u8            entry_cnt;
484         __u8            reserved3;
485         os_dat_entry_t  dat_list[16];
486 } os_dat_t;
487
488 #include <linux/mtio.h>
489
490 /**************************** Tunable parameters *****************************/
491
492
493 /*
494  *      Pipelined mode parameters.
495  *
496  *      We try to use the minimum number of stages which is enough to
497  *      keep the tape constantly streaming. To accomplish that, we implement
498  *      a feedback loop around the maximum number of stages:
499  *
500  *      We start from MIN maximum stages (we will not even use MIN stages
501  *      if we don't need them), increment it by RATE*(MAX-MIN)
502  *      whenever we sense that the pipeline is empty, until we reach
503  *      the optimum value or until we reach MAX.
504  *
505  *      Setting the following parameter to 0 is illegal: the pipelined mode
506  *      cannot be disabled (calculate_speeds() divides by tape->max_stages.)
507  */
508 #define IDETAPE_MIN_PIPELINE_STAGES       1
509 #define IDETAPE_MAX_PIPELINE_STAGES     400
510 #define IDETAPE_INCREASE_STAGES_RATE     20
511
512 /*
513  *      The following are used to debug the driver:
514  *
515  *      Setting IDETAPE_DEBUG_INFO to 1 will report device capabilities.
516  *      Setting IDETAPE_DEBUG_LOG to 1 will log driver flow control.
517  *      Setting IDETAPE_DEBUG_BUGS to 1 will enable self-sanity checks in
518  *      some places.
519  *
520  *      Setting them to 0 will restore normal operation mode:
521  *
522  *              1.      Disable logging normal successful operations.
523  *              2.      Disable self-sanity checks.
524  *              3.      Errors will still be logged, of course.
525  *
526  *      All the #if DEBUG code will be removed some day, when the driver
527  *      is verified to be stable enough. This will make it much more
528  *      esthetic.
529  */
530 #define IDETAPE_DEBUG_INFO              0
531 #define IDETAPE_DEBUG_LOG               0
532 #define IDETAPE_DEBUG_BUGS              1
533
534 /*
535  *      After each failed packet command we issue a request sense command
536  *      and retry the packet command IDETAPE_MAX_PC_RETRIES times.
537  *
538  *      Setting IDETAPE_MAX_PC_RETRIES to 0 will disable retries.
539  */
540 #define IDETAPE_MAX_PC_RETRIES          3
541
542 /*
543  *      With each packet command, we allocate a buffer of
544  *      IDETAPE_PC_BUFFER_SIZE bytes. This is used for several packet
545  *      commands (Not for READ/WRITE commands).
546  */
547 #define IDETAPE_PC_BUFFER_SIZE          256
548
549 /*
550  *      In various places in the driver, we need to allocate storage
551  *      for packet commands and requests, which will remain valid while
552  *      we leave the driver to wait for an interrupt or a timeout event.
553  */
554 #define IDETAPE_PC_STACK                (10 + IDETAPE_MAX_PC_RETRIES)
555
556 /*
557  * Some drives (for example, Seagate STT3401A Travan) require a very long
558  * timeout, because they don't return an interrupt or clear their busy bit
559  * until after the command completes (even retension commands).
560  */
561 #define IDETAPE_WAIT_CMD                (900*HZ)
562
563 /*
564  *      The following parameter is used to select the point in the internal
565  *      tape fifo in which we will start to refill the buffer. Decreasing
566  *      the following parameter will improve the system's latency and
567  *      interactive response, while using a high value might improve system
568  *      throughput.
569  */
570 #define IDETAPE_FIFO_THRESHOLD          2
571
572 /*
573  *      DSC polling parameters.
574  *
575  *      Polling for DSC (a single bit in the status register) is a very
576  *      important function in ide-tape. There are two cases in which we
577  *      poll for DSC:
578  *
579  *      1.      Before a read/write packet command, to ensure that we
580  *              can transfer data from/to the tape's data buffers, without
581  *              causing an actual media access. In case the tape is not
582  *              ready yet, we take out our request from the device
583  *              request queue, so that ide.c will service requests from
584  *              the other device on the same interface meanwhile.
585  *
586  *      2.      After the successful initialization of a "media access
587  *              packet command", which is a command which can take a long
588  *              time to complete (it can be several seconds or even an hour).
589  *
590  *              Again, we postpone our request in the middle to free the bus
591  *              for the other device. The polling frequency here should be
592  *              lower than the read/write frequency since those media access
593  *              commands are slow. We start from a "fast" frequency -
594  *              IDETAPE_DSC_MA_FAST (one second), and if we don't receive DSC
595  *              after IDETAPE_DSC_MA_THRESHOLD (5 minutes), we switch it to a
596  *              lower frequency - IDETAPE_DSC_MA_SLOW (1 minute).
597  *
598  *      We also set a timeout for the timer, in case something goes wrong.
599  *      The timeout should be longer then the maximum execution time of a
600  *      tape operation.
601  */
602  
603 /*
604  *      DSC timings.
605  */
606 #define IDETAPE_DSC_RW_MIN              5*HZ/100        /* 50 msec */
607 #define IDETAPE_DSC_RW_MAX              40*HZ/100       /* 400 msec */
608 #define IDETAPE_DSC_RW_TIMEOUT          2*60*HZ         /* 2 minutes */
609 #define IDETAPE_DSC_MA_FAST             2*HZ            /* 2 seconds */
610 #define IDETAPE_DSC_MA_THRESHOLD        5*60*HZ         /* 5 minutes */
611 #define IDETAPE_DSC_MA_SLOW             30*HZ           /* 30 seconds */
612 #define IDETAPE_DSC_MA_TIMEOUT          2*60*60*HZ      /* 2 hours */
613
614 /*************************** End of tunable parameters ***********************/
615
616 /*
617  *      Read/Write error simulation
618  */
619 #define SIMULATE_ERRORS                 0
620
621 /*
622  *      For general magnetic tape device compatibility.
623  */
624 typedef enum {
625         idetape_direction_none,
626         idetape_direction_read,
627         idetape_direction_write
628 } idetape_chrdev_direction_t;
629
630 struct idetape_bh {
631         u32 b_size;
632         atomic_t b_count;
633         struct idetape_bh *b_reqnext;
634         char *b_data;
635 };
636
637 /*
638  *      Our view of a packet command.
639  */
640 typedef struct idetape_packet_command_s {
641         u8 c[12];                               /* Actual packet bytes */
642         int retries;                            /* On each retry, we increment retries */
643         int error;                              /* Error code */
644         int request_transfer;                   /* Bytes to transfer */
645         int actually_transferred;               /* Bytes actually transferred */
646         int buffer_size;                        /* Size of our data buffer */
647         struct idetape_bh *bh;
648         char *b_data;
649         int b_count;
650         u8 *buffer;                             /* Data buffer */
651         u8 *current_position;                   /* Pointer into the above buffer */
652         ide_startstop_t (*callback) (ide_drive_t *);    /* Called when this packet command is completed */
653         u8 pc_buffer[IDETAPE_PC_BUFFER_SIZE];   /* Temporary buffer */
654         unsigned long flags;                    /* Status/Action bit flags: long for set_bit */
655 } idetape_pc_t;
656
657 /*
658  *      Packet command flag bits.
659  */
660 /* Set when an error is considered normal - We won't retry */
661 #define PC_ABORT                        0
662 /* 1 When polling for DSC on a media access command */
663 #define PC_WAIT_FOR_DSC                 1
664 /* 1 when we prefer to use DMA if possible */
665 #define PC_DMA_RECOMMENDED              2
666 /* 1 while DMA in progress */
667 #define PC_DMA_IN_PROGRESS              3
668 /* 1 when encountered problem during DMA */
669 #define PC_DMA_ERROR                    4
670 /* Data direction */
671 #define PC_WRITING                      5
672
673 /*
674  *      Capabilities and Mechanical Status Page
675  */
676 typedef struct {
677         unsigned        page_code       :6;     /* Page code - Should be 0x2a */
678         __u8            reserved0_6     :1;
679         __u8            ps              :1;     /* parameters saveable */
680         __u8            page_length;            /* Page Length - Should be 0x12 */
681         __u8            reserved2, reserved3;
682         unsigned        ro              :1;     /* Read Only Mode */
683         unsigned        reserved4_1234  :4;
684         unsigned        sprev           :1;     /* Supports SPACE in the reverse direction */
685         unsigned        reserved4_67    :2;
686         unsigned        reserved5_012   :3;
687         unsigned        efmt            :1;     /* Supports ERASE command initiated formatting */
688         unsigned        reserved5_4     :1;
689         unsigned        qfa             :1;     /* Supports the QFA two partition formats */
690         unsigned        reserved5_67    :2;
691         unsigned        lock            :1;     /* Supports locking the volume */
692         unsigned        locked          :1;     /* The volume is locked */
693         unsigned        prevent         :1;     /* The device defaults in the prevent state after power up */   
694         unsigned        eject           :1;     /* The device can eject the volume */
695         __u8            disconnect      :1;     /* The device can break request > ctl */        
696         __u8            reserved6_5     :1;
697         unsigned        ecc             :1;     /* Supports error correction */
698         unsigned        cmprs           :1;     /* Supports data compression */
699         unsigned        reserved7_0     :1;
700         unsigned        blk512          :1;     /* Supports 512 bytes block size */
701         unsigned        blk1024         :1;     /* Supports 1024 bytes block size */
702         unsigned        reserved7_3_6   :4;
703         unsigned        blk32768        :1;     /* slowb - the device restricts the byte count for PIO */
704                                                 /* transfers for slow buffer memory ??? */
705                                                 /* Also 32768 block size in some cases */
706         __u16           max_speed;              /* Maximum speed supported in KBps */
707         __u8            reserved10, reserved11;
708         __u16           ctl;                    /* Continuous Transfer Limit in blocks */
709         __u16           speed;                  /* Current Speed, in KBps */
710         __u16           buffer_size;            /* Buffer Size, in 512 bytes */
711         __u8            reserved18, reserved19;
712 } idetape_capabilities_page_t;
713
714 /*
715  *      Block Size Page
716  */
717 typedef struct {
718         unsigned        page_code       :6;     /* Page code - Should be 0x30 */
719         unsigned        reserved1_6     :1;
720         unsigned        ps              :1;
721         __u8            page_length;            /* Page Length - Should be 2 */
722         __u8            reserved2;
723         unsigned        play32          :1;
724         unsigned        play32_5        :1;
725         unsigned        reserved2_23    :2;
726         unsigned        record32        :1;
727         unsigned        record32_5      :1;
728         unsigned        reserved2_6     :1;
729         unsigned        one             :1;
730 } idetape_block_size_page_t;
731
732 /*
733  *      A pipeline stage.
734  */
735 typedef struct idetape_stage_s {
736         struct request rq;                      /* The corresponding request */
737         struct idetape_bh *bh;                  /* The data buffers */
738         struct idetape_stage_s *next;           /* Pointer to the next stage */
739 } idetape_stage_t;
740
741 /*
742  *      REQUEST SENSE packet command result - Data Format.
743  */
744 typedef struct {
745         unsigned        error_code      :7;     /* Current of deferred errors */
746         unsigned        valid           :1;     /* The information field conforms to QIC-157C */
747         __u8            reserved1       :8;     /* Segment Number - Reserved */
748         unsigned        sense_key       :4;     /* Sense Key */
749         unsigned        reserved2_4     :1;     /* Reserved */
750         unsigned        ili             :1;     /* Incorrect Length Indicator */
751         unsigned        eom             :1;     /* End Of Medium */
752         unsigned        filemark        :1;     /* Filemark */
753         __u32           information __attribute__ ((packed));
754         __u8            asl;                    /* Additional sense length (n-7) */
755         __u32           command_specific;       /* Additional command specific information */
756         __u8            asc;                    /* Additional Sense Code */
757         __u8            ascq;                   /* Additional Sense Code Qualifier */
758         __u8            replaceable_unit_code;  /* Field Replaceable Unit Code */
759         unsigned        sk_specific1    :7;     /* Sense Key Specific */
760         unsigned        sksv            :1;     /* Sense Key Specific information is valid */
761         __u8            sk_specific2;           /* Sense Key Specific */
762         __u8            sk_specific3;           /* Sense Key Specific */
763         __u8            pad[2];                 /* Padding to 20 bytes */
764 } idetape_request_sense_result_t;
765
766
767 /*
768  *      Most of our global data which we need to save even as we leave the
769  *      driver due to an interrupt or a timer event is stored in a variable
770  *      of type idetape_tape_t, defined below.
771  */
772 typedef struct ide_tape_obj {
773         ide_drive_t     *drive;
774         ide_driver_t    *driver;
775         struct gendisk  *disk;
776         struct kref     kref;
777
778         /*
779          *      Since a typical character device operation requires more
780          *      than one packet command, we provide here enough memory
781          *      for the maximum of interconnected packet commands.
782          *      The packet commands are stored in the circular array pc_stack.
783          *      pc_stack_index points to the last used entry, and warps around
784          *      to the start when we get to the last array entry.
785          *
786          *      pc points to the current processed packet command.
787          *
788          *      failed_pc points to the last failed packet command, or contains
789          *      NULL if we do not need to retry any packet command. This is
790          *      required since an additional packet command is needed before the
791          *      retry, to get detailed information on what went wrong.
792          */
793         /* Current packet command */
794         idetape_pc_t *pc;
795         /* Last failed packet command */
796         idetape_pc_t *failed_pc;
797         /* Packet command stack */
798         idetape_pc_t pc_stack[IDETAPE_PC_STACK];
799         /* Next free packet command storage space */
800         int pc_stack_index;
801         struct request rq_stack[IDETAPE_PC_STACK];
802         /* We implement a circular array */
803         int rq_stack_index;
804
805         /*
806          *      DSC polling variables.
807          *
808          *      While polling for DSC we use postponed_rq to postpone the
809          *      current request so that ide.c will be able to service
810          *      pending requests on the other device. Note that at most
811          *      we will have only one DSC (usually data transfer) request
812          *      in the device request queue. Additional requests can be
813          *      queued in our internal pipeline, but they will be visible
814          *      to ide.c only one at a time.
815          */
816         struct request *postponed_rq;
817         /* The time in which we started polling for DSC */
818         unsigned long dsc_polling_start;
819         /* Timer used to poll for dsc */
820         struct timer_list dsc_timer;
821         /* Read/Write dsc polling frequency */
822         unsigned long best_dsc_rw_frequency;
823         /* The current polling frequency */
824         unsigned long dsc_polling_frequency;
825         /* Maximum waiting time */
826         unsigned long dsc_timeout;
827
828         /*
829          *      Read position information
830          */
831         u8 partition;
832         /* Current block */
833         unsigned int first_frame_position;
834         unsigned int last_frame_position;
835         unsigned int blocks_in_buffer;
836
837         /*
838          *      Last error information
839          */
840         u8 sense_key, asc, ascq;
841
842         /*
843          *      Character device operation
844          */
845         unsigned int minor;
846         /* device name */
847         char name[4];
848         /* Current character device data transfer direction */
849         idetape_chrdev_direction_t chrdev_direction;
850
851         /*
852          *      Device information
853          */
854         /* Usually 512 or 1024 bytes */
855         unsigned short tape_block_size;
856         int user_bs_factor;
857         /* Copy of the tape's Capabilities and Mechanical Page */
858         idetape_capabilities_page_t capabilities;
859
860         /*
861          *      Active data transfer request parameters.
862          *
863          *      At most, there is only one ide-tape originated data transfer
864          *      request in the device request queue. This allows ide.c to
865          *      easily service requests from the other device when we
866          *      postpone our active request. In the pipelined operation
867          *      mode, we use our internal pipeline structure to hold
868          *      more data requests.
869          *
870          *      The data buffer size is chosen based on the tape's
871          *      recommendation.
872          */
873         /* Pointer to the request which is waiting in the device request queue */
874         struct request *active_data_request;
875         /* Data buffer size (chosen based on the tape's recommendation */
876         int stage_size;
877         idetape_stage_t *merge_stage;
878         int merge_stage_size;
879         struct idetape_bh *bh;
880         char *b_data;
881         int b_count;
882         
883         /*
884          *      Pipeline parameters.
885          *
886          *      To accomplish non-pipelined mode, we simply set the following
887          *      variables to zero (or NULL, where appropriate).
888          */
889         /* Number of currently used stages */
890         int nr_stages;
891         /* Number of pending stages */
892         int nr_pending_stages;
893         /* We will not allocate more than this number of stages */
894         int max_stages, min_pipeline, max_pipeline;
895         /* The first stage which will be removed from the pipeline */
896         idetape_stage_t *first_stage;
897         /* The currently active stage */
898         idetape_stage_t *active_stage;
899         /* Will be serviced after the currently active request */
900         idetape_stage_t *next_stage;
901         /* New requests will be added to the pipeline here */
902         idetape_stage_t *last_stage;
903         /* Optional free stage which we can use */
904         idetape_stage_t *cache_stage;
905         int pages_per_stage;
906         /* Wasted space in each stage */
907         int excess_bh_size;
908
909         /* Status/Action flags: long for set_bit */
910         unsigned long flags;
911         /* protects the ide-tape queue */
912         spinlock_t spinlock;
913
914         /*
915          * Measures average tape speed
916          */
917         unsigned long avg_time;
918         int avg_size;
919         int avg_speed;
920
921         /* last sense information */
922         idetape_request_sense_result_t sense;
923
924         char vendor_id[10];
925         char product_id[18];
926         char firmware_revision[6];
927         int firmware_revision_num;
928
929         /* the door is currently locked */
930         int door_locked;
931         /* the tape hardware is write protected */
932         char drv_write_prot;
933         /* the tape is write protected (hardware or opened as read-only) */
934         char write_prot;
935
936         /*
937          * Limit the number of times a request can
938          * be postponed, to avoid an infinite postpone
939          * deadlock.
940          */
941         /* request postpone count limit */
942         int postpone_cnt;
943
944         /*
945          * Measures number of frames:
946          *
947          * 1. written/read to/from the driver pipeline (pipeline_head).
948          * 2. written/read to/from the tape buffers (idetape_bh).
949          * 3. written/read by the tape to/from the media (tape_head).
950          */
951         int pipeline_head;
952         int buffer_head;
953         int tape_head;
954         int last_tape_head;
955
956         /*
957          * Speed control at the tape buffers input/output
958          */
959         unsigned long insert_time;
960         int insert_size;
961         int insert_speed;
962         int max_insert_speed;
963         int measure_insert_time;
964
965         /*
966          * Measure tape still time, in milliseconds
967          */
968         unsigned long tape_still_time_begin;
969         int tape_still_time;
970
971         /*
972          * Speed regulation negative feedback loop
973          */
974         int speed_control;
975         int pipeline_head_speed;
976         int controlled_pipeline_head_speed;
977         int uncontrolled_pipeline_head_speed;
978         int controlled_last_pipeline_head;
979         int uncontrolled_last_pipeline_head;
980         unsigned long uncontrolled_pipeline_head_time;
981         unsigned long controlled_pipeline_head_time;
982         int controlled_previous_pipeline_head;
983         int uncontrolled_previous_pipeline_head;
984         unsigned long controlled_previous_head_time;
985         unsigned long uncontrolled_previous_head_time;
986         int restart_speed_control_req;
987
988         /*
989          * Debug_level determines amount of debugging output;
990          * can be changed using /proc/ide/hdx/settings
991          * 0 : almost no debugging output
992          * 1 : 0+output errors only
993          * 2 : 1+output all sensekey/asc
994          * 3 : 2+follow all chrdev related procedures
995          * 4 : 3+follow all procedures
996          * 5 : 4+include pc_stack rq_stack info
997          * 6 : 5+USE_COUNT updates
998          */
999          int debug_level; 
1000 } idetape_tape_t;
1001
1002 static DEFINE_MUTEX(idetape_ref_mutex);
1003
1004 static struct class *idetape_sysfs_class;
1005
1006 #define to_ide_tape(obj) container_of(obj, struct ide_tape_obj, kref)
1007
1008 #define ide_tape_g(disk) \
1009         container_of((disk)->private_data, struct ide_tape_obj, driver)
1010
1011 static struct ide_tape_obj *ide_tape_get(struct gendisk *disk)
1012 {
1013         struct ide_tape_obj *tape = NULL;
1014
1015         mutex_lock(&idetape_ref_mutex);
1016         tape = ide_tape_g(disk);
1017         if (tape)
1018                 kref_get(&tape->kref);
1019         mutex_unlock(&idetape_ref_mutex);
1020         return tape;
1021 }
1022
1023 static void ide_tape_release(struct kref *);
1024
1025 static void ide_tape_put(struct ide_tape_obj *tape)
1026 {
1027         mutex_lock(&idetape_ref_mutex);
1028         kref_put(&tape->kref, ide_tape_release);
1029         mutex_unlock(&idetape_ref_mutex);
1030 }
1031
1032 /*
1033  *      Tape door status
1034  */
1035 #define DOOR_UNLOCKED                   0
1036 #define DOOR_LOCKED                     1
1037 #define DOOR_EXPLICITLY_LOCKED          2
1038
1039 /*
1040  *      Tape flag bits values.
1041  */
1042 #define IDETAPE_IGNORE_DSC              0
1043 #define IDETAPE_ADDRESS_VALID           1       /* 0 When the tape position is unknown */
1044 #define IDETAPE_BUSY                    2       /* Device already opened */
1045 #define IDETAPE_PIPELINE_ERROR          3       /* Error detected in a pipeline stage */
1046 #define IDETAPE_DETECT_BS               4       /* Attempt to auto-detect the current user block size */
1047 #define IDETAPE_FILEMARK                5       /* Currently on a filemark */
1048 #define IDETAPE_DRQ_INTERRUPT           6       /* DRQ interrupt device */
1049 #define IDETAPE_READ_ERROR              7
1050 #define IDETAPE_PIPELINE_ACTIVE         8       /* pipeline active */
1051 /* 0 = no tape is loaded, so we don't rewind after ejecting */
1052 #define IDETAPE_MEDIUM_PRESENT          9
1053
1054 /*
1055  *      Supported ATAPI tape drives packet commands
1056  */
1057 #define IDETAPE_TEST_UNIT_READY_CMD     0x00
1058 #define IDETAPE_REWIND_CMD              0x01
1059 #define IDETAPE_REQUEST_SENSE_CMD       0x03
1060 #define IDETAPE_READ_CMD                0x08
1061 #define IDETAPE_WRITE_CMD               0x0a
1062 #define IDETAPE_WRITE_FILEMARK_CMD      0x10
1063 #define IDETAPE_SPACE_CMD               0x11
1064 #define IDETAPE_INQUIRY_CMD             0x12
1065 #define IDETAPE_ERASE_CMD               0x19
1066 #define IDETAPE_MODE_SENSE_CMD          0x1a
1067 #define IDETAPE_MODE_SELECT_CMD         0x15
1068 #define IDETAPE_LOAD_UNLOAD_CMD         0x1b
1069 #define IDETAPE_PREVENT_CMD             0x1e
1070 #define IDETAPE_LOCATE_CMD              0x2b
1071 #define IDETAPE_READ_POSITION_CMD       0x34
1072 #define IDETAPE_READ_BUFFER_CMD         0x3c
1073 #define IDETAPE_SET_SPEED_CMD           0xbb
1074
1075 /*
1076  *      Some defines for the READ BUFFER command
1077  */
1078 #define IDETAPE_RETRIEVE_FAULTY_BLOCK   6
1079
1080 /*
1081  *      Some defines for the SPACE command
1082  */
1083 #define IDETAPE_SPACE_OVER_FILEMARK     1
1084 #define IDETAPE_SPACE_TO_EOD            3
1085
1086 /*
1087  *      Some defines for the LOAD UNLOAD command
1088  */
1089 #define IDETAPE_LU_LOAD_MASK            1
1090 #define IDETAPE_LU_RETENSION_MASK       2
1091 #define IDETAPE_LU_EOT_MASK             4
1092
1093 /*
1094  *      Special requests for our block device strategy routine.
1095  *
1096  *      In order to service a character device command, we add special
1097  *      requests to the tail of our block device request queue and wait
1098  *      for their completion.
1099  */
1100
1101 enum {
1102         REQ_IDETAPE_PC1         = (1 << 0), /* packet command (first stage) */
1103         REQ_IDETAPE_PC2         = (1 << 1), /* packet command (second stage) */
1104         REQ_IDETAPE_READ        = (1 << 2),
1105         REQ_IDETAPE_WRITE       = (1 << 3),
1106         REQ_IDETAPE_READ_BUFFER = (1 << 4),
1107 };
1108
1109 /*
1110  *      Error codes which are returned in rq->errors to the higher part
1111  *      of the driver.
1112  */
1113 #define IDETAPE_ERROR_GENERAL           101
1114 #define IDETAPE_ERROR_FILEMARK          102
1115 #define IDETAPE_ERROR_EOD               103
1116
1117 /*
1118  *      The following is used to format the general configuration word of
1119  *      the ATAPI IDENTIFY DEVICE command.
1120  */
1121 struct idetape_id_gcw { 
1122         unsigned packet_size            :2;     /* Packet Size */
1123         unsigned reserved234            :3;     /* Reserved */
1124         unsigned drq_type               :2;     /* Command packet DRQ type */
1125         unsigned removable              :1;     /* Removable media */
1126         unsigned device_type            :5;     /* Device type */
1127         unsigned reserved13             :1;     /* Reserved */
1128         unsigned protocol               :2;     /* Protocol type */
1129 };
1130
1131 /*
1132  *      INQUIRY packet command - Data Format (From Table 6-8 of QIC-157C)
1133  */
1134 typedef struct {
1135         unsigned        device_type     :5;     /* Peripheral Device Type */
1136         unsigned        reserved0_765   :3;     /* Peripheral Qualifier - Reserved */
1137         unsigned        reserved1_6t0   :7;     /* Reserved */
1138         unsigned        rmb             :1;     /* Removable Medium Bit */
1139         unsigned        ansi_version    :3;     /* ANSI Version */
1140         unsigned        ecma_version    :3;     /* ECMA Version */
1141         unsigned        iso_version     :2;     /* ISO Version */
1142         unsigned        response_format :4;     /* Response Data Format */
1143         unsigned        reserved3_45    :2;     /* Reserved */
1144         unsigned        reserved3_6     :1;     /* TrmIOP - Reserved */
1145         unsigned        reserved3_7     :1;     /* AENC - Reserved */
1146         __u8            additional_length;      /* Additional Length (total_length-4) */
1147         __u8            rsv5, rsv6, rsv7;       /* Reserved */
1148         __u8            vendor_id[8];           /* Vendor Identification */
1149         __u8            product_id[16];         /* Product Identification */
1150         __u8            revision_level[4];      /* Revision Level */
1151         __u8            vendor_specific[20];    /* Vendor Specific - Optional */
1152         __u8            reserved56t95[40];      /* Reserved - Optional */
1153                                                 /* Additional information may be returned */
1154 } idetape_inquiry_result_t;
1155
1156 /*
1157  *      READ POSITION packet command - Data Format (From Table 6-57)
1158  */
1159 typedef struct {
1160         unsigned        reserved0_10    :2;     /* Reserved */
1161         unsigned        bpu             :1;     /* Block Position Unknown */    
1162         unsigned        reserved0_543   :3;     /* Reserved */
1163         unsigned        eop             :1;     /* End Of Partition */
1164         unsigned        bop             :1;     /* Beginning Of Partition */
1165         u8              partition;              /* Partition Number */
1166         u8              reserved2, reserved3;   /* Reserved */
1167         u32             first_block;            /* First Block Location */
1168         u32             last_block;             /* Last Block Location (Optional) */
1169         u8              reserved12;             /* Reserved */
1170         u8              blocks_in_buffer[3];    /* Blocks In Buffer - (Optional) */
1171         u32             bytes_in_buffer;        /* Bytes In Buffer (Optional) */
1172 } idetape_read_position_result_t;
1173
1174 /*
1175  *      Follows structures which are related to the SELECT SENSE / MODE SENSE
1176  *      packet commands. Those packet commands are still not supported
1177  *      by ide-tape.
1178  */
1179 #define IDETAPE_BLOCK_DESCRIPTOR        0
1180 #define IDETAPE_CAPABILITIES_PAGE       0x2a
1181 #define IDETAPE_PARAMTR_PAGE            0x2b   /* Onstream DI-x0 only */
1182 #define IDETAPE_BLOCK_SIZE_PAGE         0x30
1183 #define IDETAPE_BUFFER_FILLING_PAGE     0x33
1184
1185 /*
1186  *      Mode Parameter Header for the MODE SENSE packet command
1187  */
1188 typedef struct {
1189         __u8    mode_data_length;       /* Length of the following data transfer */
1190         __u8    medium_type;            /* Medium Type */
1191         __u8    dsp;                    /* Device Specific Parameter */
1192         __u8    bdl;                    /* Block Descriptor Length */
1193 #if 0
1194         /* data transfer page */
1195         __u8    page_code       :6;
1196         __u8    reserved0_6     :1;
1197         __u8    ps              :1;     /* parameters saveable */
1198         __u8    page_length;            /* page Length == 0x02 */
1199         __u8    reserved2;
1200         __u8    read32k         :1;     /* 32k blk size (data only) */
1201         __u8    read32k5        :1;     /* 32.5k blk size (data&AUX) */
1202         __u8    reserved3_23    :2;
1203         __u8    write32k        :1;     /* 32k blk size (data only) */
1204         __u8    write32k5       :1;     /* 32.5k blk size (data&AUX) */
1205         __u8    reserved3_6     :1;
1206         __u8    streaming       :1;     /* streaming mode enable */
1207 #endif
1208 } idetape_mode_parameter_header_t;
1209
1210 /*
1211  *      Mode Parameter Block Descriptor the MODE SENSE packet command
1212  *
1213  *      Support for block descriptors is optional.
1214  */
1215 typedef struct {
1216         __u8            density_code;           /* Medium density code */
1217         __u8            blocks[3];              /* Number of blocks */
1218         __u8            reserved4;              /* Reserved */
1219         __u8            length[3];              /* Block Length */
1220 } idetape_parameter_block_descriptor_t;
1221
1222 /*
1223  *      The Data Compression Page, as returned by the MODE SENSE packet command.
1224  */
1225 typedef struct {
1226         unsigned        page_code       :6;     /* Page Code - Should be 0xf */
1227         unsigned        reserved0       :1;     /* Reserved */
1228         unsigned        ps              :1;
1229         __u8            page_length;            /* Page Length - Should be 14 */
1230         unsigned        reserved2       :6;     /* Reserved */
1231         unsigned        dcc             :1;     /* Data Compression Capable */
1232         unsigned        dce             :1;     /* Data Compression Enable */
1233         unsigned        reserved3       :5;     /* Reserved */
1234         unsigned        red             :2;     /* Report Exception on Decompression */
1235         unsigned        dde             :1;     /* Data Decompression Enable */
1236         __u32           ca;                     /* Compression Algorithm */
1237         __u32           da;                     /* Decompression Algorithm */
1238         __u8            reserved[4];            /* Reserved */
1239 } idetape_data_compression_page_t;
1240
1241 /*
1242  *      The Medium Partition Page, as returned by the MODE SENSE packet command.
1243  */
1244 typedef struct {
1245         unsigned        page_code       :6;     /* Page Code - Should be 0x11 */
1246         unsigned        reserved1_6     :1;     /* Reserved */
1247         unsigned        ps              :1;
1248         __u8            page_length;            /* Page Length - Should be 6 */
1249         __u8            map;                    /* Maximum Additional Partitions - Should be 0 */
1250         __u8            apd;                    /* Additional Partitions Defined - Should be 0 */
1251         unsigned        reserved4_012   :3;     /* Reserved */
1252         unsigned        psum            :2;     /* Should be 0 */
1253         unsigned        idp             :1;     /* Should be 0 */
1254         unsigned        sdp             :1;     /* Should be 0 */
1255         unsigned        fdp             :1;     /* Fixed Data Partitions */
1256         __u8            mfr;                    /* Medium Format Recognition */
1257         __u8            reserved[2];            /* Reserved */
1258 } idetape_medium_partition_page_t;
1259
1260 /*
1261  *      Run time configurable parameters.
1262  */
1263 typedef struct {
1264         int     dsc_rw_frequency;
1265         int     dsc_media_access_frequency;
1266         int     nr_stages;
1267 } idetape_config_t;
1268
1269 /*
1270  *      The variables below are used for the character device interface.
1271  *      Additional state variables are defined in our ide_drive_t structure.
1272  */
1273 static struct ide_tape_obj * idetape_devs[MAX_HWIFS * MAX_DRIVES];
1274
1275 #define ide_tape_f(file) ((file)->private_data)
1276
1277 static struct ide_tape_obj *ide_tape_chrdev_get(unsigned int i)
1278 {
1279         struct ide_tape_obj *tape = NULL;
1280
1281         mutex_lock(&idetape_ref_mutex);
1282         tape = idetape_devs[i];
1283         if (tape)
1284                 kref_get(&tape->kref);
1285         mutex_unlock(&idetape_ref_mutex);
1286         return tape;
1287 }
1288
1289 /*
1290  *      Function declarations
1291  *
1292  */
1293 static int idetape_chrdev_release (struct inode *inode, struct file *filp);
1294 static void idetape_write_release (ide_drive_t *drive, unsigned int minor);
1295
1296 /*
1297  * Too bad. The drive wants to send us data which we are not ready to accept.
1298  * Just throw it away.
1299  */
1300 static void idetape_discard_data (ide_drive_t *drive, unsigned int bcount)
1301 {
1302         while (bcount--)
1303                 (void) HWIF(drive)->INB(IDE_DATA_REG);
1304 }
1305
1306 static void idetape_input_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount)
1307 {
1308         struct idetape_bh *bh = pc->bh;
1309         int count;
1310
1311         while (bcount) {
1312 #if IDETAPE_DEBUG_BUGS
1313                 if (bh == NULL) {
1314                         printk(KERN_ERR "ide-tape: bh == NULL in "
1315                                 "idetape_input_buffers\n");
1316                         idetape_discard_data(drive, bcount);
1317                         return;
1318                 }
1319 #endif /* IDETAPE_DEBUG_BUGS */
1320                 count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), bcount);
1321                 HWIF(drive)->atapi_input_bytes(drive, bh->b_data + atomic_read(&bh->b_count), count);
1322                 bcount -= count;
1323                 atomic_add(count, &bh->b_count);
1324                 if (atomic_read(&bh->b_count) == bh->b_size) {
1325                         bh = bh->b_reqnext;
1326                         if (bh)
1327                                 atomic_set(&bh->b_count, 0);
1328                 }
1329         }
1330         pc->bh = bh;
1331 }
1332
1333 static void idetape_output_buffers (ide_drive_t *drive, idetape_pc_t *pc, unsigned int bcount)
1334 {
1335         struct idetape_bh *bh = pc->bh;
1336         int count;
1337
1338         while (bcount) {
1339 #if IDETAPE_DEBUG_BUGS
1340                 if (bh == NULL) {
1341                         printk(KERN_ERR "ide-tape: bh == NULL in "
1342                                 "idetape_output_buffers\n");
1343                         return;
1344                 }
1345 #endif /* IDETAPE_DEBUG_BUGS */
1346                 count = min((unsigned int)pc->b_count, (unsigned int)bcount);
1347                 HWIF(drive)->atapi_output_bytes(drive, pc->b_data, count);
1348                 bcount -= count;
1349                 pc->b_data += count;
1350                 pc->b_count -= count;
1351                 if (!pc->b_count) {
1352                         pc->bh = bh = bh->b_reqnext;
1353                         if (bh) {
1354                                 pc->b_data = bh->b_data;
1355                                 pc->b_count = atomic_read(&bh->b_count);
1356                         }
1357                 }
1358         }
1359 }
1360
1361 static void idetape_update_buffers (idetape_pc_t *pc)
1362 {
1363         struct idetape_bh *bh = pc->bh;
1364         int count;
1365         unsigned int bcount = pc->actually_transferred;
1366
1367         if (test_bit(PC_WRITING, &pc->flags))
1368                 return;
1369         while (bcount) {
1370 #if IDETAPE_DEBUG_BUGS
1371                 if (bh == NULL) {
1372                         printk(KERN_ERR "ide-tape: bh == NULL in "
1373                                 "idetape_update_buffers\n");
1374                         return;
1375                 }
1376 #endif /* IDETAPE_DEBUG_BUGS */
1377                 count = min((unsigned int)bh->b_size, (unsigned int)bcount);
1378                 atomic_set(&bh->b_count, count);
1379                 if (atomic_read(&bh->b_count) == bh->b_size)
1380                         bh = bh->b_reqnext;
1381                 bcount -= count;
1382         }
1383         pc->bh = bh;
1384 }
1385
1386 /*
1387  *      idetape_next_pc_storage returns a pointer to a place in which we can
1388  *      safely store a packet command, even though we intend to leave the
1389  *      driver. A storage space for a maximum of IDETAPE_PC_STACK packet
1390  *      commands is allocated at initialization time.
1391  */
1392 static idetape_pc_t *idetape_next_pc_storage (ide_drive_t *drive)
1393 {
1394         idetape_tape_t *tape = drive->driver_data;
1395
1396 #if IDETAPE_DEBUG_LOG
1397         if (tape->debug_level >= 5)
1398                 printk(KERN_INFO "ide-tape: pc_stack_index=%d\n",
1399                         tape->pc_stack_index);
1400 #endif /* IDETAPE_DEBUG_LOG */
1401         if (tape->pc_stack_index == IDETAPE_PC_STACK)
1402                 tape->pc_stack_index=0;
1403         return (&tape->pc_stack[tape->pc_stack_index++]);
1404 }
1405
1406 /*
1407  *      idetape_next_rq_storage is used along with idetape_next_pc_storage.
1408  *      Since we queue packet commands in the request queue, we need to
1409  *      allocate a request, along with the allocation of a packet command.
1410  */
1411  
1412 /**************************************************************
1413  *                                                            *
1414  *  This should get fixed to use kmalloc(.., GFP_ATOMIC)      *
1415  *  followed later on by kfree().   -ml                       *
1416  *                                                            *
1417  **************************************************************/
1418  
1419 static struct request *idetape_next_rq_storage (ide_drive_t *drive)
1420 {
1421         idetape_tape_t *tape = drive->driver_data;
1422
1423 #if IDETAPE_DEBUG_LOG
1424         if (tape->debug_level >= 5)
1425                 printk(KERN_INFO "ide-tape: rq_stack_index=%d\n",
1426                         tape->rq_stack_index);
1427 #endif /* IDETAPE_DEBUG_LOG */
1428         if (tape->rq_stack_index == IDETAPE_PC_STACK)
1429                 tape->rq_stack_index=0;
1430         return (&tape->rq_stack[tape->rq_stack_index++]);
1431 }
1432
1433 /*
1434  *      idetape_init_pc initializes a packet command.
1435  */
1436 static void idetape_init_pc (idetape_pc_t *pc)
1437 {
1438         memset(pc->c, 0, 12);
1439         pc->retries = 0;
1440         pc->flags = 0;
1441         pc->request_transfer = 0;
1442         pc->buffer = pc->pc_buffer;
1443         pc->buffer_size = IDETAPE_PC_BUFFER_SIZE;
1444         pc->bh = NULL;
1445         pc->b_data = NULL;
1446 }
1447
1448 /*
1449  *      idetape_analyze_error is called on each failed packet command retry
1450  *      to analyze the request sense. We currently do not utilize this
1451  *      information.
1452  */
1453 static void idetape_analyze_error (ide_drive_t *drive, idetape_request_sense_result_t *result)
1454 {
1455         idetape_tape_t *tape = drive->driver_data;
1456         idetape_pc_t *pc = tape->failed_pc;
1457
1458         tape->sense     = *result;
1459         tape->sense_key = result->sense_key;
1460         tape->asc       = result->asc;
1461         tape->ascq      = result->ascq;
1462 #if IDETAPE_DEBUG_LOG
1463         /*
1464          *      Without debugging, we only log an error if we decided to
1465          *      give up retrying.
1466          */
1467         if (tape->debug_level >= 1)
1468                 printk(KERN_INFO "ide-tape: pc = %x, sense key = %x, "
1469                         "asc = %x, ascq = %x\n",
1470                         pc->c[0], result->sense_key,
1471                         result->asc, result->ascq);
1472 #endif /* IDETAPE_DEBUG_LOG */
1473
1474         /*
1475          *      Correct pc->actually_transferred by asking the tape.
1476          */
1477         if (test_bit(PC_DMA_ERROR, &pc->flags)) {
1478                 pc->actually_transferred = pc->request_transfer - tape->tape_block_size * ntohl(get_unaligned(&result->information));
1479                 idetape_update_buffers(pc);
1480         }
1481
1482         /*
1483          * If error was the result of a zero-length read or write command,
1484          * with sense key=5, asc=0x22, ascq=0, let it slide.  Some drives
1485          * (i.e. Seagate STT3401A Travan) don't support 0-length read/writes.
1486          */
1487         if ((pc->c[0] == IDETAPE_READ_CMD || pc->c[0] == IDETAPE_WRITE_CMD)
1488             && pc->c[4] == 0 && pc->c[3] == 0 && pc->c[2] == 0) { /* length==0 */
1489                 if (result->sense_key == 5) {
1490                         /* don't report an error, everything's ok */
1491                         pc->error = 0;
1492                         /* don't retry read/write */
1493                         set_bit(PC_ABORT, &pc->flags);
1494                 }
1495         }
1496         if (pc->c[0] == IDETAPE_READ_CMD && result->filemark) {
1497                 pc->error = IDETAPE_ERROR_FILEMARK;
1498                 set_bit(PC_ABORT, &pc->flags);
1499         }
1500         if (pc->c[0] == IDETAPE_WRITE_CMD) {
1501                 if (result->eom ||
1502                     (result->sense_key == 0xd && result->asc == 0x0 &&
1503                      result->ascq == 0x2)) {
1504                         pc->error = IDETAPE_ERROR_EOD;
1505                         set_bit(PC_ABORT, &pc->flags);
1506                 }
1507         }
1508         if (pc->c[0] == IDETAPE_READ_CMD || pc->c[0] == IDETAPE_WRITE_CMD) {
1509                 if (result->sense_key == 8) {
1510                         pc->error = IDETAPE_ERROR_EOD;
1511                         set_bit(PC_ABORT, &pc->flags);
1512                 }
1513                 if (!test_bit(PC_ABORT, &pc->flags) &&
1514                     pc->actually_transferred)
1515                         pc->retries = IDETAPE_MAX_PC_RETRIES + 1;
1516         }
1517 }
1518
1519 /*
1520  * idetape_active_next_stage will declare the next stage as "active".
1521  */
1522 static void idetape_active_next_stage (ide_drive_t *drive)
1523 {
1524         idetape_tape_t *tape = drive->driver_data;
1525         idetape_stage_t *stage = tape->next_stage;
1526         struct request *rq = &stage->rq;
1527
1528 #if IDETAPE_DEBUG_LOG
1529         if (tape->debug_level >= 4)
1530                 printk(KERN_INFO "ide-tape: Reached idetape_active_next_stage\n");
1531 #endif /* IDETAPE_DEBUG_LOG */
1532 #if IDETAPE_DEBUG_BUGS
1533         if (stage == NULL) {
1534                 printk(KERN_ERR "ide-tape: bug: Trying to activate a non existing stage\n");
1535                 return;
1536         }
1537 #endif /* IDETAPE_DEBUG_BUGS */ 
1538
1539         rq->rq_disk = tape->disk;
1540         rq->buffer = NULL;
1541         rq->special = (void *)stage->bh;
1542         tape->active_data_request = rq;
1543         tape->active_stage = stage;
1544         tape->next_stage = stage->next;
1545 }
1546
1547 /*
1548  *      idetape_increase_max_pipeline_stages is a part of the feedback
1549  *      loop which tries to find the optimum number of stages. In the
1550  *      feedback loop, we are starting from a minimum maximum number of
1551  *      stages, and if we sense that the pipeline is empty, we try to
1552  *      increase it, until we reach the user compile time memory limit.
1553  */
1554 static void idetape_increase_max_pipeline_stages (ide_drive_t *drive)
1555 {
1556         idetape_tape_t *tape = drive->driver_data;
1557         int increase = (tape->max_pipeline - tape->min_pipeline) / 10;
1558         
1559 #if IDETAPE_DEBUG_LOG
1560         if (tape->debug_level >= 4)
1561                 printk (KERN_INFO "ide-tape: Reached idetape_increase_max_pipeline_stages\n");
1562 #endif /* IDETAPE_DEBUG_LOG */
1563
1564         tape->max_stages += max(increase, 1);
1565         tape->max_stages = max(tape->max_stages, tape->min_pipeline);
1566         tape->max_stages = min(tape->max_stages, tape->max_pipeline);
1567 }
1568
1569 /*
1570  *      idetape_kfree_stage calls kfree to completely free a stage, along with
1571  *      its related buffers.
1572  */
1573 static void __idetape_kfree_stage (idetape_stage_t *stage)
1574 {
1575         struct idetape_bh *prev_bh, *bh = stage->bh;
1576         int size;
1577
1578         while (bh != NULL) {
1579                 if (bh->b_data != NULL) {
1580                         size = (int) bh->b_size;
1581                         while (size > 0) {
1582                                 free_page((unsigned long) bh->b_data);
1583                                 size -= PAGE_SIZE;
1584                                 bh->b_data += PAGE_SIZE;
1585                         }
1586                 }
1587                 prev_bh = bh;
1588                 bh = bh->b_reqnext;
1589                 kfree(prev_bh);
1590         }
1591         kfree(stage);
1592 }
1593
1594 static void idetape_kfree_stage (idetape_tape_t *tape, idetape_stage_t *stage)
1595 {
1596         __idetape_kfree_stage(stage);
1597 }
1598
1599 /*
1600  *      idetape_remove_stage_head removes tape->first_stage from the pipeline.
1601  *      The caller should avoid race conditions.
1602  */
1603 static void idetape_remove_stage_head (ide_drive_t *drive)
1604 {
1605         idetape_tape_t *tape = drive->driver_data;
1606         idetape_stage_t *stage;
1607         
1608 #if IDETAPE_DEBUG_LOG
1609         if (tape->debug_level >= 4)
1610                 printk(KERN_INFO "ide-tape: Reached idetape_remove_stage_head\n");
1611 #endif /* IDETAPE_DEBUG_LOG */
1612 #if IDETAPE_DEBUG_BUGS
1613         if (tape->first_stage == NULL) {
1614                 printk(KERN_ERR "ide-tape: bug: tape->first_stage is NULL\n");
1615                 return;         
1616         }
1617         if (tape->active_stage == tape->first_stage) {
1618                 printk(KERN_ERR "ide-tape: bug: Trying to free our active pipeline stage\n");
1619                 return;
1620         }
1621 #endif /* IDETAPE_DEBUG_BUGS */
1622         stage = tape->first_stage;
1623         tape->first_stage = stage->next;
1624         idetape_kfree_stage(tape, stage);
1625         tape->nr_stages--;
1626         if (tape->first_stage == NULL) {
1627                 tape->last_stage = NULL;
1628 #if IDETAPE_DEBUG_BUGS
1629                 if (tape->next_stage != NULL)
1630                         printk(KERN_ERR "ide-tape: bug: tape->next_stage != NULL\n");
1631                 if (tape->nr_stages)
1632                         printk(KERN_ERR "ide-tape: bug: nr_stages should be 0 now\n");
1633 #endif /* IDETAPE_DEBUG_BUGS */
1634         }
1635 }
1636
1637 /*
1638  * This will free all the pipeline stages starting from new_last_stage->next
1639  * to the end of the list, and point tape->last_stage to new_last_stage.
1640  */
1641 static void idetape_abort_pipeline(ide_drive_t *drive,
1642                                    idetape_stage_t *new_last_stage)
1643 {
1644         idetape_tape_t *tape = drive->driver_data;
1645         idetape_stage_t *stage = new_last_stage->next;
1646         idetape_stage_t *nstage;
1647
1648 #if IDETAPE_DEBUG_LOG
1649         if (tape->debug_level >= 4)
1650                 printk(KERN_INFO "ide-tape: %s: idetape_abort_pipeline called\n", tape->name);
1651 #endif
1652         while (stage) {
1653                 nstage = stage->next;
1654                 idetape_kfree_stage(tape, stage);
1655                 --tape->nr_stages;
1656                 --tape->nr_pending_stages;
1657                 stage = nstage;
1658         }
1659         if (new_last_stage)
1660                 new_last_stage->next = NULL;
1661         tape->last_stage = new_last_stage;
1662         tape->next_stage = NULL;
1663 }
1664
1665 /*
1666  *      idetape_end_request is used to finish servicing a request, and to
1667  *      insert a pending pipeline request into the main device queue.
1668  */
1669 static int idetape_end_request(ide_drive_t *drive, int uptodate, int nr_sects)
1670 {
1671         struct request *rq = HWGROUP(drive)->rq;
1672         idetape_tape_t *tape = drive->driver_data;
1673         unsigned long flags;
1674         int error;
1675         int remove_stage = 0;
1676         idetape_stage_t *active_stage;
1677
1678 #if IDETAPE_DEBUG_LOG
1679         if (tape->debug_level >= 4)
1680         printk(KERN_INFO "ide-tape: Reached idetape_end_request\n");
1681 #endif /* IDETAPE_DEBUG_LOG */
1682
1683         switch (uptodate) {
1684                 case 0: error = IDETAPE_ERROR_GENERAL; break;
1685                 case 1: error = 0; break;
1686                 default: error = uptodate;
1687         }
1688         rq->errors = error;
1689         if (error)
1690                 tape->failed_pc = NULL;
1691
1692         if (!blk_special_request(rq)) {
1693                 ide_end_request(drive, uptodate, nr_sects);
1694                 return 0;
1695         }
1696
1697         spin_lock_irqsave(&tape->spinlock, flags);
1698
1699         /* The request was a pipelined data transfer request */
1700         if (tape->active_data_request == rq) {
1701                 active_stage = tape->active_stage;
1702                 tape->active_stage = NULL;
1703                 tape->active_data_request = NULL;
1704                 tape->nr_pending_stages--;
1705                 if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
1706                         remove_stage = 1;
1707                         if (error) {
1708                                 set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
1709                                 if (error == IDETAPE_ERROR_EOD)
1710                                         idetape_abort_pipeline(drive, active_stage);
1711                         }
1712                 } else if (rq->cmd[0] & REQ_IDETAPE_READ) {
1713                         if (error == IDETAPE_ERROR_EOD) {
1714                                 set_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
1715                                 idetape_abort_pipeline(drive, active_stage);
1716                         }
1717                 }
1718                 if (tape->next_stage != NULL) {
1719                         idetape_active_next_stage(drive);
1720
1721                         /*
1722                          * Insert the next request into the request queue.
1723                          */
1724                         (void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end);
1725                 } else if (!error) {
1726                                 idetape_increase_max_pipeline_stages(drive);
1727                 }
1728         }
1729         ide_end_drive_cmd(drive, 0, 0);
1730 //      blkdev_dequeue_request(rq);
1731 //      drive->rq = NULL;
1732 //      end_that_request_last(rq);
1733
1734         if (remove_stage)
1735                 idetape_remove_stage_head(drive);
1736         if (tape->active_data_request == NULL)
1737                 clear_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
1738         spin_unlock_irqrestore(&tape->spinlock, flags);
1739         return 0;
1740 }
1741
1742 static ide_startstop_t idetape_request_sense_callback (ide_drive_t *drive)
1743 {
1744         idetape_tape_t *tape = drive->driver_data;
1745
1746 #if IDETAPE_DEBUG_LOG
1747         if (tape->debug_level >= 4)
1748                 printk(KERN_INFO "ide-tape: Reached idetape_request_sense_callback\n");
1749 #endif /* IDETAPE_DEBUG_LOG */
1750         if (!tape->pc->error) {
1751                 idetape_analyze_error(drive, (idetape_request_sense_result_t *) tape->pc->buffer);
1752                 idetape_end_request(drive, 1, 0);
1753         } else {
1754                 printk(KERN_ERR "ide-tape: Error in REQUEST SENSE itself - Aborting request!\n");
1755                 idetape_end_request(drive, 0, 0);
1756         }
1757         return ide_stopped;
1758 }
1759
1760 static void idetape_create_request_sense_cmd (idetape_pc_t *pc)
1761 {
1762         idetape_init_pc(pc);    
1763         pc->c[0] = IDETAPE_REQUEST_SENSE_CMD;
1764         pc->c[4] = 20;
1765         pc->request_transfer = 20;
1766         pc->callback = &idetape_request_sense_callback;
1767 }
1768
1769 static void idetape_init_rq(struct request *rq, u8 cmd)
1770 {
1771         memset(rq, 0, sizeof(*rq));
1772         rq->cmd_type = REQ_TYPE_SPECIAL;
1773         rq->cmd[0] = cmd;
1774 }
1775
1776 /*
1777  *      idetape_queue_pc_head generates a new packet command request in front
1778  *      of the request queue, before the current request, so that it will be
1779  *      processed immediately, on the next pass through the driver.
1780  *
1781  *      idetape_queue_pc_head is called from the request handling part of
1782  *      the driver (the "bottom" part). Safe storage for the request should
1783  *      be allocated with idetape_next_pc_storage and idetape_next_rq_storage
1784  *      before calling idetape_queue_pc_head.
1785  *
1786  *      Memory for those requests is pre-allocated at initialization time, and
1787  *      is limited to IDETAPE_PC_STACK requests. We assume that we have enough
1788  *      space for the maximum possible number of inter-dependent packet commands.
1789  *
1790  *      The higher level of the driver - The ioctl handler and the character
1791  *      device handling functions should queue request to the lower level part
1792  *      and wait for their completion using idetape_queue_pc_tail or
1793  *      idetape_queue_rw_tail.
1794  */
1795 static void idetape_queue_pc_head (ide_drive_t *drive, idetape_pc_t *pc,struct request *rq)
1796 {
1797         struct ide_tape_obj *tape = drive->driver_data;
1798
1799         idetape_init_rq(rq, REQ_IDETAPE_PC1);
1800         rq->buffer = (char *) pc;
1801         rq->rq_disk = tape->disk;
1802         (void) ide_do_drive_cmd(drive, rq, ide_preempt);
1803 }
1804
1805 /*
1806  *      idetape_retry_pc is called when an error was detected during the
1807  *      last packet command. We queue a request sense packet command in
1808  *      the head of the request list.
1809  */
1810 static ide_startstop_t idetape_retry_pc (ide_drive_t *drive)
1811 {
1812         idetape_tape_t *tape = drive->driver_data;
1813         idetape_pc_t *pc;
1814         struct request *rq;
1815
1816         (void)drive->hwif->INB(IDE_ERROR_REG);
1817         pc = idetape_next_pc_storage(drive);
1818         rq = idetape_next_rq_storage(drive);
1819         idetape_create_request_sense_cmd(pc);
1820         set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
1821         idetape_queue_pc_head(drive, pc, rq);
1822         return ide_stopped;
1823 }
1824
1825 /*
1826  *      idetape_postpone_request postpones the current request so that
1827  *      ide.c will be able to service requests from another device on
1828  *      the same hwgroup while we are polling for DSC.
1829  */
1830 static void idetape_postpone_request (ide_drive_t *drive)
1831 {
1832         idetape_tape_t *tape = drive->driver_data;
1833
1834 #if IDETAPE_DEBUG_LOG
1835         if (tape->debug_level >= 4)
1836                 printk(KERN_INFO "ide-tape: idetape_postpone_request\n");
1837 #endif
1838         tape->postponed_rq = HWGROUP(drive)->rq;
1839         ide_stall_queue(drive, tape->dsc_polling_frequency);
1840 }
1841
1842 /*
1843  *      idetape_pc_intr is the usual interrupt handler which will be called
1844  *      during a packet command. We will transfer some of the data (as
1845  *      requested by the drive) and will re-point interrupt handler to us.
1846  *      When data transfer is finished, we will act according to the
1847  *      algorithm described before idetape_issue_packet_command.
1848  *
1849  */
1850 static ide_startstop_t idetape_pc_intr (ide_drive_t *drive)
1851 {
1852         ide_hwif_t *hwif = drive->hwif;
1853         idetape_tape_t *tape = drive->driver_data;
1854         idetape_pc_t *pc = tape->pc;
1855         unsigned int temp;
1856 #if SIMULATE_ERRORS
1857         static int error_sim_count = 0;
1858 #endif
1859         u16 bcount;
1860         u8 stat, ireason;
1861
1862 #if IDETAPE_DEBUG_LOG
1863         if (tape->debug_level >= 4)
1864                 printk(KERN_INFO "ide-tape: Reached idetape_pc_intr "
1865                                 "interrupt handler\n");
1866 #endif /* IDETAPE_DEBUG_LOG */  
1867
1868         /* Clear the interrupt */
1869         stat = hwif->INB(IDE_STATUS_REG);
1870
1871         if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags)) {
1872                 if (hwif->ide_dma_end(drive) || (stat & ERR_STAT)) {
1873                         /*
1874                          * A DMA error is sometimes expected. For example,
1875                          * if the tape is crossing a filemark during a
1876                          * READ command, it will issue an irq and position
1877                          * itself before the filemark, so that only a partial
1878                          * data transfer will occur (which causes the DMA
1879                          * error). In that case, we will later ask the tape
1880                          * how much bytes of the original request were
1881                          * actually transferred (we can't receive that
1882                          * information from the DMA engine on most chipsets).
1883                          */
1884
1885                         /*
1886                          * On the contrary, a DMA error is never expected;
1887                          * it usually indicates a hardware error or abort.
1888                          * If the tape crosses a filemark during a READ
1889                          * command, it will issue an irq and position itself
1890                          * after the filemark (not before). Only a partial
1891                          * data transfer will occur, but no DMA error.
1892                          * (AS, 19 Apr 2001)
1893                          */
1894                         set_bit(PC_DMA_ERROR, &pc->flags);
1895                 } else {
1896                         pc->actually_transferred = pc->request_transfer;
1897                         idetape_update_buffers(pc);
1898                 }
1899 #if IDETAPE_DEBUG_LOG
1900                 if (tape->debug_level >= 4)
1901                         printk(KERN_INFO "ide-tape: DMA finished\n");
1902 #endif /* IDETAPE_DEBUG_LOG */
1903         }
1904
1905         /* No more interrupts */
1906         if ((stat & DRQ_STAT) == 0) {
1907 #if IDETAPE_DEBUG_LOG
1908                 if (tape->debug_level >= 2)
1909                         printk(KERN_INFO "ide-tape: Packet command completed, %d bytes transferred\n", pc->actually_transferred);
1910 #endif /* IDETAPE_DEBUG_LOG */
1911                 clear_bit(PC_DMA_IN_PROGRESS, &pc->flags);
1912
1913                 local_irq_enable();
1914
1915 #if SIMULATE_ERRORS
1916                 if ((pc->c[0] == IDETAPE_WRITE_CMD ||
1917                      pc->c[0] == IDETAPE_READ_CMD) &&
1918                     (++error_sim_count % 100) == 0) {
1919                         printk(KERN_INFO "ide-tape: %s: simulating error\n",
1920                                 tape->name);
1921                         stat |= ERR_STAT;
1922                 }
1923 #endif
1924                 if ((stat & ERR_STAT) && pc->c[0] == IDETAPE_REQUEST_SENSE_CMD)
1925                         stat &= ~ERR_STAT;
1926                 if ((stat & ERR_STAT) || test_bit(PC_DMA_ERROR, &pc->flags)) {
1927                         /* Error detected */
1928 #if IDETAPE_DEBUG_LOG
1929                         if (tape->debug_level >= 1)
1930                                 printk(KERN_INFO "ide-tape: %s: I/O error\n",
1931                                         tape->name);
1932 #endif /* IDETAPE_DEBUG_LOG */
1933                         if (pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
1934                                 printk(KERN_ERR "ide-tape: I/O error in request sense command\n");
1935                                 return ide_do_reset(drive);
1936                         }
1937 #if IDETAPE_DEBUG_LOG
1938                         if (tape->debug_level >= 1)
1939                                 printk(KERN_INFO "ide-tape: [cmd %x]: check condition\n", pc->c[0]);
1940 #endif
1941                         /* Retry operation */
1942                         return idetape_retry_pc(drive);
1943                 }
1944                 pc->error = 0;
1945                 if (test_bit(PC_WAIT_FOR_DSC, &pc->flags) &&
1946                     (stat & SEEK_STAT) == 0) {
1947                         /* Media access command */
1948                         tape->dsc_polling_start = jiffies;
1949                         tape->dsc_polling_frequency = IDETAPE_DSC_MA_FAST;
1950                         tape->dsc_timeout = jiffies + IDETAPE_DSC_MA_TIMEOUT;
1951                         /* Allow ide.c to handle other requests */
1952                         idetape_postpone_request(drive);
1953                         return ide_stopped;
1954                 }
1955                 if (tape->failed_pc == pc)
1956                         tape->failed_pc = NULL;
1957                 /* Command finished - Call the callback function */
1958                 return pc->callback(drive);
1959         }
1960         if (test_and_clear_bit(PC_DMA_IN_PROGRESS, &pc->flags)) {
1961                 printk(KERN_ERR "ide-tape: The tape wants to issue more "
1962                                 "interrupts in DMA mode\n");
1963                 printk(KERN_ERR "ide-tape: DMA disabled, reverting to PIO\n");
1964                 ide_dma_off(drive);
1965                 return ide_do_reset(drive);
1966         }
1967         /* Get the number of bytes to transfer on this interrupt. */
1968         bcount = (hwif->INB(IDE_BCOUNTH_REG) << 8) |
1969                   hwif->INB(IDE_BCOUNTL_REG);
1970
1971         ireason = hwif->INB(IDE_IREASON_REG);
1972
1973         if (ireason & CD) {
1974                 printk(KERN_ERR "ide-tape: CoD != 0 in idetape_pc_intr\n");
1975                 return ide_do_reset(drive);
1976         }
1977         if (((ireason & IO) == IO) == test_bit(PC_WRITING, &pc->flags)) {
1978                 /* Hopefully, we will never get here */
1979                 printk(KERN_ERR "ide-tape: We wanted to %s, ",
1980                                 (ireason & IO) ? "Write" : "Read");
1981                 printk(KERN_ERR "ide-tape: but the tape wants us to %s !\n",
1982                                 (ireason & IO) ? "Read" : "Write");
1983                 return ide_do_reset(drive);
1984         }
1985         if (!test_bit(PC_WRITING, &pc->flags)) {
1986                 /* Reading - Check that we have enough space */
1987                 temp = pc->actually_transferred + bcount;
1988                 if (temp > pc->request_transfer) {
1989                         if (temp > pc->buffer_size) {
1990                                 printk(KERN_ERR "ide-tape: The tape wants to send us more data than expected - discarding data\n");
1991                                 idetape_discard_data(drive, bcount);
1992                                 ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
1993                                 return ide_started;
1994                         }
1995 #if IDETAPE_DEBUG_LOG
1996                         if (tape->debug_level >= 2)
1997                                 printk(KERN_NOTICE "ide-tape: The tape wants to send us more data than expected - allowing transfer\n");
1998 #endif /* IDETAPE_DEBUG_LOG */
1999                 }
2000         }
2001         if (test_bit(PC_WRITING, &pc->flags)) {
2002                 if (pc->bh != NULL)
2003                         idetape_output_buffers(drive, pc, bcount);
2004                 else
2005                         /* Write the current buffer */
2006                         hwif->atapi_output_bytes(drive, pc->current_position,
2007                                                  bcount);
2008         } else {
2009                 if (pc->bh != NULL)
2010                         idetape_input_buffers(drive, pc, bcount);
2011                 else
2012                         /* Read the current buffer */
2013                         hwif->atapi_input_bytes(drive, pc->current_position,
2014                                                 bcount);
2015         }
2016         /* Update the current position */
2017         pc->actually_transferred += bcount;
2018         pc->current_position += bcount;
2019 #if IDETAPE_DEBUG_LOG
2020         if (tape->debug_level >= 2)
2021                 printk(KERN_INFO "ide-tape: [cmd %x] transferred %d bytes "
2022                                  "on that interrupt\n", pc->c[0], bcount);
2023 #endif
2024         /* And set the interrupt handler again */
2025         ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
2026         return ide_started;
2027 }
2028
2029 /*
2030  *      Packet Command Interface
2031  *
2032  *      The current Packet Command is available in tape->pc, and will not
2033  *      change until we finish handling it. Each packet command is associated
2034  *      with a callback function that will be called when the command is
2035  *      finished.
2036  *
2037  *      The handling will be done in three stages:
2038  *
2039  *      1.      idetape_issue_packet_command will send the packet command to the
2040  *              drive, and will set the interrupt handler to idetape_pc_intr.
2041  *
2042  *      2.      On each interrupt, idetape_pc_intr will be called. This step
2043  *              will be repeated until the device signals us that no more
2044  *              interrupts will be issued.
2045  *
2046  *      3.      ATAPI Tape media access commands have immediate status with a
2047  *              delayed process. In case of a successful initiation of a
2048  *              media access packet command, the DSC bit will be set when the
2049  *              actual execution of the command is finished. 
2050  *              Since the tape drive will not issue an interrupt, we have to
2051  *              poll for this event. In this case, we define the request as
2052  *              "low priority request" by setting rq_status to
2053  *              IDETAPE_RQ_POSTPONED,   set a timer to poll for DSC and exit
2054  *              the driver.
2055  *
2056  *              ide.c will then give higher priority to requests which
2057  *              originate from the other device, until will change rq_status
2058  *              to RQ_ACTIVE.
2059  *
2060  *      4.      When the packet command is finished, it will be checked for errors.
2061  *
2062  *      5.      In case an error was found, we queue a request sense packet
2063  *              command in front of the request queue and retry the operation
2064  *              up to IDETAPE_MAX_PC_RETRIES times.
2065  *
2066  *      6.      In case no error was found, or we decided to give up and not
2067  *              to retry again, the callback function will be called and then
2068  *              we will handle the next request.
2069  *
2070  */
2071 static ide_startstop_t idetape_transfer_pc(ide_drive_t *drive)
2072 {
2073         ide_hwif_t *hwif = drive->hwif;
2074         idetape_tape_t *tape = drive->driver_data;
2075         idetape_pc_t *pc = tape->pc;
2076         int retries = 100;
2077         ide_startstop_t startstop;
2078         u8 ireason;
2079
2080         if (ide_wait_stat(&startstop,drive,DRQ_STAT,BUSY_STAT,WAIT_READY)) {
2081                 printk(KERN_ERR "ide-tape: Strange, packet command initiated yet DRQ isn't asserted\n");
2082                 return startstop;
2083         }
2084         ireason = hwif->INB(IDE_IREASON_REG);
2085         while (retries-- && ((ireason & CD) == 0 || (ireason & IO))) {
2086                 printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while issuing "
2087                                 "a packet command, retrying\n");
2088                 udelay(100);
2089                 ireason = hwif->INB(IDE_IREASON_REG);
2090                 if (retries == 0) {
2091                         printk(KERN_ERR "ide-tape: (IO,CoD != (0,1) while "
2092                                         "issuing a packet command, ignoring\n");
2093                         ireason |= CD;
2094                         ireason &= ~IO;
2095                 }
2096         }
2097         if ((ireason & CD) == 0 || (ireason & IO)) {
2098                 printk(KERN_ERR "ide-tape: (IO,CoD) != (0,1) while issuing "
2099                                 "a packet command\n");
2100                 return ide_do_reset(drive);
2101         }
2102         /* Set the interrupt routine */
2103         ide_set_handler(drive, &idetape_pc_intr, IDETAPE_WAIT_CMD, NULL);
2104 #ifdef CONFIG_BLK_DEV_IDEDMA
2105         /* Begin DMA, if necessary */
2106         if (test_bit(PC_DMA_IN_PROGRESS, &pc->flags))
2107                 hwif->dma_start(drive);
2108 #endif
2109         /* Send the actual packet */
2110         HWIF(drive)->atapi_output_bytes(drive, pc->c, 12);
2111         return ide_started;
2112 }
2113
2114 static ide_startstop_t idetape_issue_packet_command (ide_drive_t *drive, idetape_pc_t *pc)
2115 {
2116         ide_hwif_t *hwif = drive->hwif;
2117         idetape_tape_t *tape = drive->driver_data;
2118         int dma_ok = 0;
2119         u16 bcount;
2120
2121 #if IDETAPE_DEBUG_BUGS
2122         if (tape->pc->c[0] == IDETAPE_REQUEST_SENSE_CMD &&
2123             pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
2124                 printk(KERN_ERR "ide-tape: possible ide-tape.c bug - "
2125                         "Two request sense in serial were issued\n");
2126         }
2127 #endif /* IDETAPE_DEBUG_BUGS */
2128
2129         if (tape->failed_pc == NULL && pc->c[0] != IDETAPE_REQUEST_SENSE_CMD)
2130                 tape->failed_pc = pc;
2131         /* Set the current packet command */
2132         tape->pc = pc;
2133
2134         if (pc->retries > IDETAPE_MAX_PC_RETRIES ||
2135             test_bit(PC_ABORT, &pc->flags)) {
2136                 /*
2137                  *      We will "abort" retrying a packet command in case
2138                  *      a legitimate error code was received (crossing a
2139                  *      filemark, or end of the media, for example).
2140                  */
2141                 if (!test_bit(PC_ABORT, &pc->flags)) {
2142                         if (!(pc->c[0] == IDETAPE_TEST_UNIT_READY_CMD &&
2143                               tape->sense_key == 2 && tape->asc == 4 &&
2144                              (tape->ascq == 1 || tape->ascq == 8))) {
2145                                 printk(KERN_ERR "ide-tape: %s: I/O error, "
2146                                                 "pc = %2x, key = %2x, "
2147                                                 "asc = %2x, ascq = %2x\n",
2148                                                 tape->name, pc->c[0],
2149                                                 tape->sense_key, tape->asc,
2150                                                 tape->ascq);
2151                         }
2152                         /* Giving up */
2153                         pc->error = IDETAPE_ERROR_GENERAL;
2154                 }
2155                 tape->failed_pc = NULL;
2156                 return pc->callback(drive);
2157         }
2158 #if IDETAPE_DEBUG_LOG
2159         if (tape->debug_level >= 2)
2160                 printk(KERN_INFO "ide-tape: Retry number - %d, cmd = %02X\n", pc->retries, pc->c[0]);
2161 #endif /* IDETAPE_DEBUG_LOG */
2162
2163         pc->retries++;
2164         /* We haven't transferred any data yet */
2165         pc->actually_transferred = 0;
2166         pc->current_position = pc->buffer;
2167         /* Request to transfer the entire buffer at once */
2168         bcount = pc->request_transfer;
2169
2170         if (test_and_clear_bit(PC_DMA_ERROR, &pc->flags)) {
2171                 printk(KERN_WARNING "ide-tape: DMA disabled, "
2172                                 "reverting to PIO\n");
2173                 ide_dma_off(drive);
2174         }
2175         if (test_bit(PC_DMA_RECOMMENDED, &pc->flags) && drive->using_dma)
2176                 dma_ok = !hwif->dma_setup(drive);
2177
2178         ide_pktcmd_tf_load(drive, IDE_TFLAG_NO_SELECT_MASK |
2179                            IDE_TFLAG_OUT_DEVICE, bcount, dma_ok);
2180
2181         if (dma_ok)                     /* Will begin DMA later */
2182                 set_bit(PC_DMA_IN_PROGRESS, &pc->flags);
2183         if (test_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags)) {
2184                 ide_execute_command(drive, WIN_PACKETCMD, &idetape_transfer_pc,
2185                                     IDETAPE_WAIT_CMD, NULL);
2186                 return ide_started;
2187         } else {
2188                 hwif->OUTB(WIN_PACKETCMD, IDE_COMMAND_REG);
2189                 return idetape_transfer_pc(drive);
2190         }
2191 }
2192
2193 /*
2194  *      General packet command callback function.
2195  */
2196 static ide_startstop_t idetape_pc_callback (ide_drive_t *drive)
2197 {
2198         idetape_tape_t *tape = drive->driver_data;
2199         
2200 #if IDETAPE_DEBUG_LOG
2201         if (tape->debug_level >= 4)
2202                 printk(KERN_INFO "ide-tape: Reached idetape_pc_callback\n");
2203 #endif /* IDETAPE_DEBUG_LOG */
2204
2205         idetape_end_request(drive, tape->pc->error ? 0 : 1, 0);
2206         return ide_stopped;
2207 }
2208
2209 /*
2210  *      A mode sense command is used to "sense" tape parameters.
2211  */
2212 static void idetape_create_mode_sense_cmd (idetape_pc_t *pc, u8 page_code)
2213 {
2214         idetape_init_pc(pc);
2215         pc->c[0] = IDETAPE_MODE_SENSE_CMD;
2216         if (page_code != IDETAPE_BLOCK_DESCRIPTOR)
2217                 pc->c[1] = 8;   /* DBD = 1 - Don't return block descriptors */
2218         pc->c[2] = page_code;
2219         /*
2220          * Changed pc->c[3] to 0 (255 will at best return unused info).
2221          *
2222          * For SCSI this byte is defined as subpage instead of high byte
2223          * of length and some IDE drives seem to interpret it this way
2224          * and return an error when 255 is used.
2225          */
2226         pc->c[3] = 0;
2227         pc->c[4] = 255;         /* (We will just discard data in that case) */
2228         if (page_code == IDETAPE_BLOCK_DESCRIPTOR)
2229                 pc->request_transfer = 12;
2230         else if (page_code == IDETAPE_CAPABILITIES_PAGE)
2231                 pc->request_transfer = 24;
2232         else
2233                 pc->request_transfer = 50;
2234         pc->callback = &idetape_pc_callback;
2235 }
2236
2237 static void calculate_speeds(ide_drive_t *drive)
2238 {
2239         idetape_tape_t *tape = drive->driver_data;
2240         int full = 125, empty = 75;
2241
2242         if (time_after(jiffies, tape->controlled_pipeline_head_time + 120 * HZ)) {
2243                 tape->controlled_previous_pipeline_head = tape->controlled_last_pipeline_head;
2244                 tape->controlled_previous_head_time = tape->controlled_pipeline_head_time;
2245                 tape->controlled_last_pipeline_head = tape->pipeline_head;
2246                 tape->controlled_pipeline_head_time = jiffies;
2247         }
2248         if (time_after(jiffies, tape->controlled_pipeline_head_time + 60 * HZ))
2249                 tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_last_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_pipeline_head_time);
2250         else if (time_after(jiffies, tape->controlled_previous_head_time))
2251                 tape->controlled_pipeline_head_speed = (tape->pipeline_head - tape->controlled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->controlled_previous_head_time);
2252
2253         if (tape->nr_pending_stages < tape->max_stages /*- 1 */) {
2254                 /* -1 for read mode error recovery */
2255                 if (time_after(jiffies, tape->uncontrolled_previous_head_time + 10 * HZ)) {
2256                         tape->uncontrolled_pipeline_head_time = jiffies;
2257                         tape->uncontrolled_pipeline_head_speed = (tape->pipeline_head - tape->uncontrolled_previous_pipeline_head) * 32 * HZ / (jiffies - tape->uncontrolled_previous_head_time);
2258                 }
2259         } else {
2260                 tape->uncontrolled_previous_head_time = jiffies;
2261                 tape->uncontrolled_previous_pipeline_head = tape->pipeline_head;
2262                 if (time_after(jiffies, tape->uncontrolled_pipeline_head_time + 30 * HZ)) {
2263                         tape->uncontrolled_pipeline_head_time = jiffies;
2264                 }
2265         }
2266         tape->pipeline_head_speed = max(tape->uncontrolled_pipeline_head_speed, tape->controlled_pipeline_head_speed);
2267         if (tape->speed_control == 0) {
2268                 tape->max_insert_speed = 5000;
2269         } else if (tape->speed_control == 1) {
2270                 if (tape->nr_pending_stages >= tape->max_stages / 2)
2271                         tape->max_insert_speed = tape->pipeline_head_speed +
2272                                 (1100 - tape->pipeline_head_speed) * 2 * (tape->nr_pending_stages - tape->max_stages / 2) / tape->max_stages;
2273                 else
2274                         tape->max_insert_speed = 500 +
2275                                 (tape->pipeline_head_speed - 500) * 2 * tape->nr_pending_stages / tape->max_stages;
2276                 if (tape->nr_pending_stages >= tape->max_stages * 99 / 100)
2277                         tape->max_insert_speed = 5000;
2278         } else if (tape->speed_control == 2) {
2279                 tape->max_insert_speed = tape->pipeline_head_speed * empty / 100 +
2280                         (tape->pipeline_head_speed * full / 100 - tape->pipeline_head_speed * empty / 100) * tape->nr_pending_stages / tape->max_stages;
2281         } else
2282                 tape->max_insert_speed = tape->speed_control;
2283         tape->max_insert_speed = max(tape->max_insert_speed, 500);
2284 }
2285
2286 static ide_startstop_t idetape_media_access_finished (ide_drive_t *drive)
2287 {
2288         idetape_tape_t *tape = drive->driver_data;
2289         idetape_pc_t *pc = tape->pc;
2290         u8 stat;
2291
2292         stat = drive->hwif->INB(IDE_STATUS_REG);
2293         if (stat & SEEK_STAT) {
2294                 if (stat & ERR_STAT) {
2295                         /* Error detected */
2296                         if (pc->c[0] != IDETAPE_TEST_UNIT_READY_CMD)
2297                                 printk(KERN_ERR "ide-tape: %s: I/O error, ",
2298                                                 tape->name);
2299                         /* Retry operation */
2300                         return idetape_retry_pc(drive);
2301                 }
2302                 pc->error = 0;
2303                 if (tape->failed_pc == pc)
2304                         tape->failed_pc = NULL;
2305         } else {
2306                 pc->error = IDETAPE_ERROR_GENERAL;
2307                 tape->failed_pc = NULL;
2308         }
2309         return pc->callback(drive);
2310 }
2311
2312 static ide_startstop_t idetape_rw_callback (ide_drive_t *drive)
2313 {
2314         idetape_tape_t *tape = drive->driver_data;
2315         struct request *rq = HWGROUP(drive)->rq;
2316         int blocks = tape->pc->actually_transferred / tape->tape_block_size;
2317
2318         tape->avg_size += blocks * tape->tape_block_size;
2319         tape->insert_size += blocks * tape->tape_block_size;
2320         if (tape->insert_size > 1024 * 1024)
2321                 tape->measure_insert_time = 1;
2322         if (tape->measure_insert_time) {
2323                 tape->measure_insert_time = 0;
2324                 tape->insert_time = jiffies;
2325                 tape->insert_size = 0;
2326         }
2327         if (time_after(jiffies, tape->insert_time))
2328                 tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time);
2329         if (time_after_eq(jiffies, tape->avg_time + HZ)) {
2330                 tape->avg_speed = tape->avg_size * HZ / (jiffies - tape->avg_time) / 1024;
2331                 tape->avg_size = 0;
2332                 tape->avg_time = jiffies;
2333         }
2334
2335 #if IDETAPE_DEBUG_LOG   
2336         if (tape->debug_level >= 4)
2337                 printk(KERN_INFO "ide-tape: Reached idetape_rw_callback\n");
2338 #endif /* IDETAPE_DEBUG_LOG */
2339
2340         tape->first_frame_position += blocks;
2341         rq->current_nr_sectors -= blocks;
2342
2343         if (!tape->pc->error)
2344                 idetape_end_request(drive, 1, 0);
2345         else
2346                 idetape_end_request(drive, tape->pc->error, 0);
2347         return ide_stopped;
2348 }
2349
2350 static void idetape_create_read_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2351 {
2352         idetape_init_pc(pc);
2353         pc->c[0] = IDETAPE_READ_CMD;
2354         put_unaligned(htonl(length), (unsigned int *) &pc->c[1]);
2355         pc->c[1] = 1;
2356         pc->callback = &idetape_rw_callback;
2357         pc->bh = bh;
2358         atomic_set(&bh->b_count, 0);
2359         pc->buffer = NULL;
2360         pc->request_transfer = pc->buffer_size = length * tape->tape_block_size;
2361         if (pc->request_transfer == tape->stage_size)
2362                 set_bit(PC_DMA_RECOMMENDED, &pc->flags);
2363 }
2364
2365 static void idetape_create_read_buffer_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2366 {
2367         int size = 32768;
2368         struct idetape_bh *p = bh;
2369
2370         idetape_init_pc(pc);
2371         pc->c[0] = IDETAPE_READ_BUFFER_CMD;
2372         pc->c[1] = IDETAPE_RETRIEVE_FAULTY_BLOCK;
2373         pc->c[7] = size >> 8;
2374         pc->c[8] = size & 0xff;
2375         pc->callback = &idetape_pc_callback;
2376         pc->bh = bh;
2377         atomic_set(&bh->b_count, 0);
2378         pc->buffer = NULL;
2379         while (p) {
2380                 atomic_set(&p->b_count, 0);
2381                 p = p->b_reqnext;
2382         }
2383         pc->request_transfer = pc->buffer_size = size;
2384 }
2385
2386 static void idetape_create_write_cmd(idetape_tape_t *tape, idetape_pc_t *pc, unsigned int length, struct idetape_bh *bh)
2387 {
2388         idetape_init_pc(pc);
2389         pc->c[0] = IDETAPE_WRITE_CMD;
2390         put_unaligned(htonl(length), (unsigned int *) &pc->c[1]);
2391         pc->c[1] = 1;
2392         pc->callback = &idetape_rw_callback;
2393         set_bit(PC_WRITING, &pc->flags);
2394         pc->bh = bh;
2395         pc->b_data = bh->b_data;
2396         pc->b_count = atomic_read(&bh->b_count);
2397         pc->buffer = NULL;
2398         pc->request_transfer = pc->buffer_size = length * tape->tape_block_size;
2399         if (pc->request_transfer == tape->stage_size)
2400                 set_bit(PC_DMA_RECOMMENDED, &pc->flags);
2401 }
2402
2403 /*
2404  * idetape_do_request is our request handling function. 
2405  */
2406 static ide_startstop_t idetape_do_request(ide_drive_t *drive,
2407                                           struct request *rq, sector_t block)
2408 {
2409         idetape_tape_t *tape = drive->driver_data;
2410         idetape_pc_t *pc = NULL;
2411         struct request *postponed_rq = tape->postponed_rq;
2412         u8 stat;
2413
2414 #if IDETAPE_DEBUG_LOG
2415 #if 0
2416         if (tape->debug_level >= 5)
2417                 printk(KERN_INFO "ide-tape:  %d, "
2418                         "dev: %s, cmd: %ld, errors: %d\n",
2419                          rq->rq_disk->disk_name, rq->cmd[0], rq->errors);
2420 #endif
2421         if (tape->debug_level >= 2)
2422                 printk(KERN_INFO "ide-tape: sector: %ld, "
2423                         "nr_sectors: %ld, current_nr_sectors: %d\n",
2424                         rq->sector, rq->nr_sectors, rq->current_nr_sectors);
2425 #endif /* IDETAPE_DEBUG_LOG */
2426
2427         if (!blk_special_request(rq)) {
2428                 /*
2429                  * We do not support buffer cache originated requests.
2430                  */
2431                 printk(KERN_NOTICE "ide-tape: %s: Unsupported request in "
2432                         "request queue (%d)\n", drive->name, rq->cmd_type);
2433                 ide_end_request(drive, 0, 0);
2434                 return ide_stopped;
2435         }
2436
2437         /*
2438          *      Retry a failed packet command
2439          */
2440         if (tape->failed_pc != NULL &&
2441             tape->pc->c[0] == IDETAPE_REQUEST_SENSE_CMD) {
2442                 return idetape_issue_packet_command(drive, tape->failed_pc);
2443         }
2444 #if IDETAPE_DEBUG_BUGS
2445         if (postponed_rq != NULL)
2446                 if (rq != postponed_rq) {
2447                         printk(KERN_ERR "ide-tape: ide-tape.c bug - "
2448                                         "Two DSC requests were queued\n");
2449                         idetape_end_request(drive, 0, 0);
2450                         return ide_stopped;
2451                 }
2452 #endif /* IDETAPE_DEBUG_BUGS */
2453
2454         tape->postponed_rq = NULL;
2455
2456         /*
2457          * If the tape is still busy, postpone our request and service
2458          * the other device meanwhile.
2459          */
2460         stat = drive->hwif->INB(IDE_STATUS_REG);
2461
2462         if (!drive->dsc_overlap && !(rq->cmd[0] & REQ_IDETAPE_PC2))
2463                 set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
2464
2465         if (drive->post_reset == 1) {
2466                 set_bit(IDETAPE_IGNORE_DSC, &tape->flags);
2467                 drive->post_reset = 0;
2468         }
2469
2470         if (tape->tape_still_time > 100 && tape->tape_still_time < 200)
2471                 tape->measure_insert_time = 1;
2472         if (time_after(jiffies, tape->insert_time))
2473                 tape->insert_speed = tape->insert_size / 1024 * HZ / (jiffies - tape->insert_time);
2474         calculate_speeds(drive);
2475         if (!test_and_clear_bit(IDETAPE_IGNORE_DSC, &tape->flags) &&
2476             (stat & SEEK_STAT) == 0) {
2477                 if (postponed_rq == NULL) {
2478                         tape->dsc_polling_start = jiffies;
2479                         tape->dsc_polling_frequency = tape->best_dsc_rw_frequency;
2480                         tape->dsc_timeout = jiffies + IDETAPE_DSC_RW_TIMEOUT;
2481                 } else if (time_after(jiffies, tape->dsc_timeout)) {
2482                         printk(KERN_ERR "ide-tape: %s: DSC timeout\n",
2483                                 tape->name);
2484                         if (rq->cmd[0] & REQ_IDETAPE_PC2) {
2485                                 idetape_media_access_finished(drive);
2486                                 return ide_stopped;
2487                         } else {
2488                                 return ide_do_reset(drive);
2489                         }
2490                 } else if (time_after(jiffies, tape->dsc_polling_start + IDETAPE_DSC_MA_THRESHOLD))
2491                         tape->dsc_polling_frequency = IDETAPE_DSC_MA_SLOW;
2492                 idetape_postpone_request(drive);
2493                 return ide_stopped;
2494         }
2495         if (rq->cmd[0] & REQ_IDETAPE_READ) {
2496                 tape->buffer_head++;
2497                 tape->postpone_cnt = 0;
2498                 pc = idetape_next_pc_storage(drive);
2499                 idetape_create_read_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2500                 goto out;
2501         }
2502         if (rq->cmd[0] & REQ_IDETAPE_WRITE) {
2503                 tape->buffer_head++;
2504                 tape->postpone_cnt = 0;
2505                 pc = idetape_next_pc_storage(drive);
2506                 idetape_create_write_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2507                 goto out;
2508         }
2509         if (rq->cmd[0] & REQ_IDETAPE_READ_BUFFER) {
2510                 tape->postpone_cnt = 0;
2511                 pc = idetape_next_pc_storage(drive);
2512                 idetape_create_read_buffer_cmd(tape, pc, rq->current_nr_sectors, (struct idetape_bh *)rq->special);
2513                 goto out;
2514         }
2515         if (rq->cmd[0] & REQ_IDETAPE_PC1) {
2516                 pc = (idetape_pc_t *) rq->buffer;
2517                 rq->cmd[0] &= ~(REQ_IDETAPE_PC1);
2518                 rq->cmd[0] |= REQ_IDETAPE_PC2;
2519                 goto out;
2520         }
2521         if (rq->cmd[0] & REQ_IDETAPE_PC2) {
2522                 idetape_media_access_finished(drive);
2523                 return ide_stopped;
2524         }
2525         BUG();
2526 out:
2527         return idetape_issue_packet_command(drive, pc);
2528 }
2529
2530 /*
2531  *      Pipeline related functions
2532  */
2533 static inline int idetape_pipeline_active (idetape_tape_t *tape)
2534 {
2535         int rc1, rc2;
2536
2537         rc1 = test_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
2538         rc2 = (tape->active_data_request != NULL);
2539         return rc1;
2540 }
2541
2542 /*
2543  *      idetape_kmalloc_stage uses __get_free_page to allocate a pipeline
2544  *      stage, along with all the necessary small buffers which together make
2545  *      a buffer of size tape->stage_size (or a bit more). We attempt to
2546  *      combine sequential pages as much as possible.
2547  *
2548  *      Returns a pointer to the new allocated stage, or NULL if we
2549  *      can't (or don't want to) allocate a stage.
2550  *
2551  *      Pipeline stages are optional and are used to increase performance.
2552  *      If we can't allocate them, we'll manage without them.
2553  */
2554 static idetape_stage_t *__idetape_kmalloc_stage (idetape_tape_t *tape, int full, int clear)
2555 {
2556         idetape_stage_t *stage;
2557         struct idetape_bh *prev_bh, *bh;
2558         int pages = tape->pages_per_stage;
2559         char *b_data = NULL;
2560
2561         if ((stage = kmalloc(sizeof (idetape_stage_t),GFP_KERNEL)) == NULL)
2562                 return NULL;
2563         stage->next = NULL;
2564
2565         bh = stage->bh = kmalloc(sizeof(struct idetape_bh), GFP_KERNEL);
2566         if (bh == NULL)
2567                 goto abort;
2568         bh->b_reqnext = NULL;
2569         if ((bh->b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL)
2570                 goto abort;
2571         if (clear)
2572                 memset(bh->b_data, 0, PAGE_SIZE);
2573         bh->b_size = PAGE_SIZE;
2574         atomic_set(&bh->b_count, full ? bh->b_size : 0);
2575
2576         while (--pages) {
2577                 if ((b_data = (char *) __get_free_page (GFP_KERNEL)) == NULL)
2578                         goto abort;
2579                 if (clear)
2580                         memset(b_data, 0, PAGE_SIZE);
2581                 if (bh->b_data == b_data + PAGE_SIZE) {
2582                         bh->b_size += PAGE_SIZE;
2583                         bh->b_data -= PAGE_SIZE;
2584                         if (full)
2585                                 atomic_add(PAGE_SIZE, &bh->b_count);
2586                         continue;
2587                 }
2588                 if (b_data == bh->b_data + bh->b_size) {
2589                         bh->b_size += PAGE_SIZE;
2590                         if (full)
2591                                 atomic_add(PAGE_SIZE, &bh->b_count);
2592                         continue;
2593                 }
2594                 prev_bh = bh;
2595                 if ((bh = kmalloc(sizeof(struct idetape_bh), GFP_KERNEL)) == NULL) {
2596                         free_page((unsigned long) b_data);
2597                         goto abort;
2598                 }
2599                 bh->b_reqnext = NULL;
2600                 bh->b_data = b_data;
2601                 bh->b_size = PAGE_SIZE;
2602                 atomic_set(&bh->b_count, full ? bh->b_size : 0);
2603                 prev_bh->b_reqnext = bh;
2604         }
2605         bh->b_size -= tape->excess_bh_size;
2606         if (full)
2607                 atomic_sub(tape->excess_bh_size, &bh->b_count);
2608         return stage;
2609 abort:
2610         __idetape_kfree_stage(stage);
2611         return NULL;
2612 }
2613
2614 static idetape_stage_t *idetape_kmalloc_stage (idetape_tape_t *tape)
2615 {
2616         idetape_stage_t *cache_stage = tape->cache_stage;
2617
2618 #if IDETAPE_DEBUG_LOG
2619         if (tape->debug_level >= 4)
2620                 printk(KERN_INFO "ide-tape: Reached idetape_kmalloc_stage\n");
2621 #endif /* IDETAPE_DEBUG_LOG */
2622
2623         if (tape->nr_stages >= tape->max_stages)
2624                 return NULL;
2625         if (cache_stage != NULL) {
2626                 tape->cache_stage = NULL;
2627                 return cache_stage;
2628         }
2629         return __idetape_kmalloc_stage(tape, 0, 0);
2630 }
2631
2632 static int idetape_copy_stage_from_user (idetape_tape_t *tape, idetape_stage_t *stage, const char __user *buf, int n)
2633 {
2634         struct idetape_bh *bh = tape->bh;
2635         int count;
2636         int ret = 0;
2637
2638         while (n) {
2639 #if IDETAPE_DEBUG_BUGS
2640                 if (bh == NULL) {
2641                         printk(KERN_ERR "ide-tape: bh == NULL in "
2642                                 "idetape_copy_stage_from_user\n");
2643                         return 1;
2644                 }
2645 #endif /* IDETAPE_DEBUG_BUGS */
2646                 count = min((unsigned int)(bh->b_size - atomic_read(&bh->b_count)), (unsigned int)n);
2647                 if (copy_from_user(bh->b_data + atomic_read(&bh->b_count), buf, count))
2648                         ret = 1;
2649                 n -= count;
2650                 atomic_add(count, &bh->b_count);
2651                 buf += count;
2652                 if (atomic_read(&bh->b_count) == bh->b_size) {
2653                         bh = bh->b_reqnext;
2654                         if (bh)
2655                                 atomic_set(&bh->b_count, 0);
2656                 }
2657         }
2658         tape->bh = bh;
2659         return ret;
2660 }
2661
2662 static int idetape_copy_stage_to_user (idetape_tape_t *tape, char __user *buf, idetape_stage_t *stage, int n)
2663 {
2664         struct idetape_bh *bh = tape->bh;
2665         int count;
2666         int ret = 0;
2667
2668         while (n) {
2669 #if IDETAPE_DEBUG_BUGS
2670                 if (bh == NULL) {
2671                         printk(KERN_ERR "ide-tape: bh == NULL in "
2672                                 "idetape_copy_stage_to_user\n");
2673                         return 1;
2674                 }
2675 #endif /* IDETAPE_DEBUG_BUGS */
2676                 count = min(tape->b_count, n);
2677                 if  (copy_to_user(buf, tape->b_data, count))
2678                         ret = 1;
2679                 n -= count;
2680                 tape->b_data += count;
2681                 tape->b_count -= count;
2682                 buf += count;
2683                 if (!tape->b_count) {
2684                         tape->bh = bh = bh->b_reqnext;
2685                         if (bh) {
2686                                 tape->b_data = bh->b_data;
2687                                 tape->b_count = atomic_read(&bh->b_count);
2688                         }
2689                 }
2690         }
2691         return ret;
2692 }
2693
2694 static void idetape_init_merge_stage (idetape_tape_t *tape)
2695 {
2696         struct idetape_bh *bh = tape->merge_stage->bh;
2697         
2698         tape->bh = bh;
2699         if (tape->chrdev_direction == idetape_direction_write)
2700                 atomic_set(&bh->b_count, 0);
2701         else {
2702                 tape->b_data = bh->b_data;
2703                 tape->b_count = atomic_read(&bh->b_count);
2704         }
2705 }
2706
2707 static void idetape_switch_buffers (idetape_tape_t *tape, idetape_stage_t *stage)
2708 {
2709         struct idetape_bh *tmp;
2710
2711         tmp = stage->bh;
2712         stage->bh = tape->merge_stage->bh;
2713         tape->merge_stage->bh = tmp;
2714         idetape_init_merge_stage(tape);
2715 }
2716
2717 /*
2718  *      idetape_add_stage_tail adds a new stage at the end of the pipeline.
2719  */
2720 static void idetape_add_stage_tail (ide_drive_t *drive,idetape_stage_t *stage)
2721 {
2722         idetape_tape_t *tape = drive->driver_data;
2723         unsigned long flags;
2724         
2725 #if IDETAPE_DEBUG_LOG
2726         if (tape->debug_level >= 4)
2727                 printk (KERN_INFO "ide-tape: Reached idetape_add_stage_tail\n");
2728 #endif /* IDETAPE_DEBUG_LOG */
2729         spin_lock_irqsave(&tape->spinlock, flags);
2730         stage->next = NULL;
2731         if (tape->last_stage != NULL)
2732                 tape->last_stage->next=stage;
2733         else
2734                 tape->first_stage = tape->next_stage=stage;
2735         tape->last_stage = stage;
2736         if (tape->next_stage == NULL)
2737                 tape->next_stage = tape->last_stage;
2738         tape->nr_stages++;
2739         tape->nr_pending_stages++;
2740         spin_unlock_irqrestore(&tape->spinlock, flags);
2741 }
2742
2743 /*
2744  *      idetape_wait_for_request installs a completion in a pending request
2745  *      and sleeps until it is serviced.
2746  *
2747  *      The caller should ensure that the request will not be serviced
2748  *      before we install the completion (usually by disabling interrupts).
2749  */
2750 static void idetape_wait_for_request (ide_drive_t *drive, struct request *rq)
2751 {
2752         DECLARE_COMPLETION_ONSTACK(wait);
2753         idetape_tape_t *tape = drive->driver_data;
2754
2755 #if IDETAPE_DEBUG_BUGS
2756         if (rq == NULL || !blk_special_request(rq)) {
2757                 printk (KERN_ERR "ide-tape: bug: Trying to sleep on non-valid request\n");
2758                 return;
2759         }
2760 #endif /* IDETAPE_DEBUG_BUGS */
2761         rq->end_io_data = &wait;
2762         rq->end_io = blk_end_sync_rq;
2763         spin_unlock_irq(&tape->spinlock);
2764         wait_for_completion(&wait);
2765         /* The stage and its struct request have been deallocated */
2766         spin_lock_irq(&tape->spinlock);
2767 }
2768
2769 static ide_startstop_t idetape_read_position_callback (ide_drive_t *drive)
2770 {
2771         idetape_tape_t *tape = drive->driver_data;
2772         idetape_read_position_result_t *result;
2773         
2774 #if IDETAPE_DEBUG_LOG
2775         if (tape->debug_level >= 4)
2776                 printk(KERN_INFO "ide-tape: Reached idetape_read_position_callback\n");
2777 #endif /* IDETAPE_DEBUG_LOG */
2778
2779         if (!tape->pc->error) {
2780                 result = (idetape_read_position_result_t *) tape->pc->buffer;
2781 #if IDETAPE_DEBUG_LOG
2782                 if (tape->debug_level >= 2)
2783                         printk(KERN_INFO "ide-tape: BOP - %s\n",result->bop ? "Yes":"No");
2784                 if (tape->debug_level >= 2)
2785                         printk(KERN_INFO "ide-tape: EOP - %s\n",result->eop ? "Yes":"No");
2786 #endif /* IDETAPE_DEBUG_LOG */
2787                 if (result->bpu) {
2788                         printk(KERN_INFO "ide-tape: Block location is unknown to the tape\n");
2789                         clear_bit(IDETAPE_ADDRESS_VALID, &tape->flags);
2790                         idetape_end_request(drive, 0, 0);
2791                 } else {
2792 #if IDETAPE_DEBUG_LOG
2793                         if (tape->debug_level >= 2)
2794                                 printk(KERN_INFO "ide-tape: Block Location - %u\n", ntohl(result->first_block));
2795 #endif /* IDETAPE_DEBUG_LOG */
2796                         tape->partition = result->partition;
2797                         tape->first_frame_position = ntohl(result->first_block);
2798                         tape->last_frame_position = ntohl(result->last_block);
2799                         tape->blocks_in_buffer = result->blocks_in_buffer[2];
2800                         set_bit(IDETAPE_ADDRESS_VALID, &tape->flags);
2801                         idetape_end_request(drive, 1, 0);
2802                 }
2803         } else {
2804                 idetape_end_request(drive, 0, 0);
2805         }
2806         return ide_stopped;
2807 }
2808
2809 /*
2810  *      idetape_create_write_filemark_cmd will:
2811  *
2812  *              1.      Write a filemark if write_filemark=1.
2813  *              2.      Flush the device buffers without writing a filemark
2814  *                      if write_filemark=0.
2815  *
2816  */
2817 static void idetape_create_write_filemark_cmd (ide_drive_t *drive, idetape_pc_t *pc,int write_filemark)
2818 {
2819         idetape_init_pc(pc);
2820         pc->c[0] = IDETAPE_WRITE_FILEMARK_CMD;
2821         pc->c[4] = write_filemark;
2822         set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2823         pc->callback = &idetape_pc_callback;
2824 }
2825
2826 static void idetape_create_test_unit_ready_cmd(idetape_pc_t *pc)
2827 {
2828         idetape_init_pc(pc);
2829         pc->c[0] = IDETAPE_TEST_UNIT_READY_CMD;
2830         pc->callback = &idetape_pc_callback;
2831 }
2832
2833 /*
2834  *      idetape_queue_pc_tail is based on the following functions:
2835  *
2836  *      ide_do_drive_cmd from ide.c
2837  *      cdrom_queue_request and cdrom_queue_packet_command from ide-cd.c
2838  *
2839  *      We add a special packet command request to the tail of the request
2840  *      queue, and wait for it to be serviced.
2841  *
2842  *      This is not to be called from within the request handling part
2843  *      of the driver ! We allocate here data in the stack, and it is valid
2844  *      until the request is finished. This is not the case for the bottom
2845  *      part of the driver, where we are always leaving the functions to wait
2846  *      for an interrupt or a timer event.
2847  *
2848  *      From the bottom part of the driver, we should allocate safe memory
2849  *      using idetape_next_pc_storage and idetape_next_rq_storage, and add
2850  *      the request to the request list without waiting for it to be serviced !
2851  *      In that case, we usually use idetape_queue_pc_head.
2852  */
2853 static int __idetape_queue_pc_tail (ide_drive_t *drive, idetape_pc_t *pc)
2854 {
2855         struct ide_tape_obj *tape = drive->driver_data;
2856         struct request rq;
2857
2858         idetape_init_rq(&rq, REQ_IDETAPE_PC1);
2859         rq.buffer = (char *) pc;
2860         rq.rq_disk = tape->disk;
2861         return ide_do_drive_cmd(drive, &rq, ide_wait);
2862 }
2863
2864 static void idetape_create_load_unload_cmd (ide_drive_t *drive, idetape_pc_t *pc,int cmd)
2865 {
2866         idetape_init_pc(pc);
2867         pc->c[0] = IDETAPE_LOAD_UNLOAD_CMD;
2868         pc->c[4] = cmd;
2869         set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2870         pc->callback = &idetape_pc_callback;
2871 }
2872
2873 static int idetape_wait_ready(ide_drive_t *drive, unsigned long timeout)
2874 {
2875         idetape_tape_t *tape = drive->driver_data;
2876         idetape_pc_t pc;
2877         int load_attempted = 0;
2878
2879         /*
2880          * Wait for the tape to become ready
2881          */
2882         set_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags);
2883         timeout += jiffies;
2884         while (time_before(jiffies, timeout)) {
2885                 idetape_create_test_unit_ready_cmd(&pc);
2886                 if (!__idetape_queue_pc_tail(drive, &pc))
2887                         return 0;
2888                 if ((tape->sense_key == 2 && tape->asc == 4 && tape->ascq == 2)
2889                     || (tape->asc == 0x3A)) {   /* no media */
2890                         if (load_attempted)
2891                                 return -ENOMEDIUM;
2892                         idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK);
2893                         __idetape_queue_pc_tail(drive, &pc);
2894                         load_attempted = 1;
2895                 /* not about to be ready */
2896                 } else if (!(tape->sense_key == 2 && tape->asc == 4 &&
2897                              (tape->ascq == 1 || tape->ascq == 8)))
2898                         return -EIO;
2899                 msleep(100);
2900         }
2901         return -EIO;
2902 }
2903
2904 static int idetape_queue_pc_tail (ide_drive_t *drive,idetape_pc_t *pc)
2905 {
2906         return __idetape_queue_pc_tail(drive, pc);
2907 }
2908
2909 static int idetape_flush_tape_buffers (ide_drive_t *drive)
2910 {
2911         idetape_pc_t pc;
2912         int rc;
2913
2914         idetape_create_write_filemark_cmd(drive, &pc, 0);
2915         if ((rc = idetape_queue_pc_tail(drive, &pc)))
2916                 return rc;
2917         idetape_wait_ready(drive, 60 * 5 * HZ);
2918         return 0;
2919 }
2920
2921 static void idetape_create_read_position_cmd (idetape_pc_t *pc)
2922 {
2923         idetape_init_pc(pc);
2924         pc->c[0] = IDETAPE_READ_POSITION_CMD;
2925         pc->request_transfer = 20;
2926         pc->callback = &idetape_read_position_callback;
2927 }
2928
2929 static int idetape_read_position (ide_drive_t *drive)
2930 {
2931         idetape_tape_t *tape = drive->driver_data;
2932         idetape_pc_t pc;
2933         int position;
2934
2935 #if IDETAPE_DEBUG_LOG
2936         if (tape->debug_level >= 4)
2937                 printk(KERN_INFO "ide-tape: Reached idetape_read_position\n");
2938 #endif /* IDETAPE_DEBUG_LOG */
2939
2940         idetape_create_read_position_cmd(&pc);
2941         if (idetape_queue_pc_tail(drive, &pc))
2942                 return -1;
2943         position = tape->first_frame_position;
2944         return position;
2945 }
2946
2947 static void idetape_create_locate_cmd (ide_drive_t *drive, idetape_pc_t *pc, unsigned int block, u8 partition, int skip)
2948 {
2949         idetape_init_pc(pc);
2950         pc->c[0] = IDETAPE_LOCATE_CMD;
2951         pc->c[1] = 2;
2952         put_unaligned(htonl(block), (unsigned int *) &pc->c[3]);
2953         pc->c[8] = partition;
2954         set_bit(PC_WAIT_FOR_DSC, &pc->flags);
2955         pc->callback = &idetape_pc_callback;
2956 }
2957
2958 static int idetape_create_prevent_cmd (ide_drive_t *drive, idetape_pc_t *pc, int prevent)
2959 {
2960         idetape_tape_t *tape = drive->driver_data;
2961
2962         if (!tape->capabilities.lock)
2963                 return 0;
2964
2965         idetape_init_pc(pc);
2966         pc->c[0] = IDETAPE_PREVENT_CMD;
2967         pc->c[4] = prevent;
2968         pc->callback = &idetape_pc_callback;
2969         return 1;
2970 }
2971
2972 static int __idetape_discard_read_pipeline (ide_drive_t *drive)
2973 {
2974         idetape_tape_t *tape = drive->driver_data;
2975         unsigned long flags;
2976         int cnt;
2977
2978         if (tape->chrdev_direction != idetape_direction_read)
2979                 return 0;
2980
2981         /* Remove merge stage. */
2982         cnt = tape->merge_stage_size / tape->tape_block_size;
2983         if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags))
2984                 ++cnt;          /* Filemarks count as 1 sector */
2985         tape->merge_stage_size = 0;
2986         if (tape->merge_stage != NULL) {
2987                 __idetape_kfree_stage(tape->merge_stage);
2988                 tape->merge_stage = NULL;
2989         }
2990
2991         /* Clear pipeline flags. */
2992         clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
2993         tape->chrdev_direction = idetape_direction_none;
2994
2995         /* Remove pipeline stages. */
2996         if (tape->first_stage == NULL)
2997                 return 0;
2998
2999         spin_lock_irqsave(&tape->spinlock, flags);
3000         tape->next_stage = NULL;
3001         if (idetape_pipeline_active(tape))
3002                 idetape_wait_for_request(drive, tape->active_data_request);
3003         spin_unlock_irqrestore(&tape->spinlock, flags);
3004
3005         while (tape->first_stage != NULL) {
3006                 struct request *rq_ptr = &tape->first_stage->rq;
3007
3008                 cnt += rq_ptr->nr_sectors - rq_ptr->current_nr_sectors; 
3009                 if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
3010                         ++cnt;
3011                 idetape_remove_stage_head(drive);
3012         }
3013         tape->nr_pending_stages = 0;
3014         tape->max_stages = tape->min_pipeline;
3015         return cnt;
3016 }
3017
3018 /*
3019  *      idetape_position_tape positions the tape to the requested block
3020  *      using the LOCATE packet command. A READ POSITION command is then
3021  *      issued to check where we are positioned.
3022  *
3023  *      Like all higher level operations, we queue the commands at the tail
3024  *      of the request queue and wait for their completion.
3025  *      
3026  */
3027 static int idetape_position_tape (ide_drive_t *drive, unsigned int block, u8 partition, int skip)
3028 {
3029         idetape_tape_t *tape = drive->driver_data;
3030         int retval;
3031         idetape_pc_t pc;
3032
3033         if (tape->chrdev_direction == idetape_direction_read)
3034                 __idetape_discard_read_pipeline(drive);
3035         idetape_wait_ready(drive, 60 * 5 * HZ);
3036         idetape_create_locate_cmd(drive, &pc, block, partition, skip);
3037         retval = idetape_queue_pc_tail(drive, &pc);
3038         if (retval)
3039                 return (retval);
3040
3041         idetape_create_read_position_cmd(&pc);
3042         return (idetape_queue_pc_tail(drive, &pc));
3043 }
3044
3045 static void idetape_discard_read_pipeline (ide_drive_t *drive, int restore_position)
3046 {
3047         idetape_tape_t *tape = drive->driver_data;
3048         int cnt;
3049         int seek, position;
3050
3051         cnt = __idetape_discard_read_pipeline(drive);
3052         if (restore_position) {
3053                 position = idetape_read_position(drive);
3054                 seek = position > cnt ? position - cnt : 0;
3055                 if (idetape_position_tape(drive, seek, 0, 0)) {
3056                         printk(KERN_INFO "ide-tape: %s: position_tape failed in discard_pipeline()\n", tape->name);
3057                         return;
3058                 }
3059         }
3060 }
3061
3062 /*
3063  * idetape_queue_rw_tail generates a read/write request for the block
3064  * device interface and wait for it to be serviced.
3065  */
3066 static int idetape_queue_rw_tail(ide_drive_t *drive, int cmd, int blocks, struct idetape_bh *bh)
3067 {
3068         idetape_tape_t *tape = drive->driver_data;
3069         struct request rq;
3070
3071 #if IDETAPE_DEBUG_LOG
3072         if (tape->debug_level >= 2)
3073                 printk(KERN_INFO "ide-tape: idetape_queue_rw_tail: cmd=%d\n",cmd);
3074 #endif /* IDETAPE_DEBUG_LOG */
3075 #if IDETAPE_DEBUG_BUGS
3076         if (idetape_pipeline_active(tape)) {
3077                 printk(KERN_ERR "ide-tape: bug: the pipeline is active in idetape_queue_rw_tail\n");
3078                 return (0);
3079         }
3080 #endif /* IDETAPE_DEBUG_BUGS */ 
3081
3082         idetape_init_rq(&rq, cmd);
3083         rq.rq_disk = tape->disk;
3084         rq.special = (void *)bh;
3085         rq.sector = tape->first_frame_position;
3086         rq.nr_sectors = rq.current_nr_sectors = blocks;
3087         (void) ide_do_drive_cmd(drive, &rq, ide_wait);
3088
3089         if ((cmd & (REQ_IDETAPE_READ | REQ_IDETAPE_WRITE)) == 0)
3090                 return 0;
3091
3092         if (tape->merge_stage)
3093                 idetape_init_merge_stage(tape);
3094         if (rq.errors == IDETAPE_ERROR_GENERAL)
3095                 return -EIO;
3096         return (tape->tape_block_size * (blocks-rq.current_nr_sectors));
3097 }
3098
3099 /*
3100  *      idetape_insert_pipeline_into_queue is used to start servicing the
3101  *      pipeline stages, starting from tape->next_stage.
3102  */
3103 static void idetape_insert_pipeline_into_queue (ide_drive_t *drive)
3104 {
3105         idetape_tape_t *tape = drive->driver_data;
3106
3107         if (tape->next_stage == NULL)
3108                 return;
3109         if (!idetape_pipeline_active(tape)) {
3110                 set_bit(IDETAPE_PIPELINE_ACTIVE, &tape->flags);
3111                 idetape_active_next_stage(drive);
3112                 (void) ide_do_drive_cmd(drive, tape->active_data_request, ide_end);
3113         }
3114 }
3115
3116 static void idetape_create_inquiry_cmd (idetape_pc_t *pc)
3117 {
3118         idetape_init_pc(pc);
3119         pc->c[0] = IDETAPE_INQUIRY_CMD;
3120         pc->c[4] = pc->request_transfer = 254;
3121         pc->callback = &idetape_pc_callback;
3122 }
3123
3124 static void idetape_create_rewind_cmd (ide_drive_t *drive, idetape_pc_t *pc)
3125 {
3126         idetape_init_pc(pc);
3127         pc->c[0] = IDETAPE_REWIND_CMD;
3128         set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3129         pc->callback = &idetape_pc_callback;
3130 }
3131
3132 #if 0
3133 static void idetape_create_mode_select_cmd (idetape_pc_t *pc, int length)
3134 {
3135         idetape_init_pc(pc);
3136         set_bit(PC_WRITING, &pc->flags);
3137         pc->c[0] = IDETAPE_MODE_SELECT_CMD;
3138         pc->c[1] = 0x10;
3139         put_unaligned(htons(length), (unsigned short *) &pc->c[3]);
3140         pc->request_transfer = 255;
3141         pc->callback = &idetape_pc_callback;
3142 }
3143 #endif
3144
3145 static void idetape_create_erase_cmd (idetape_pc_t *pc)
3146 {
3147         idetape_init_pc(pc);
3148         pc->c[0] = IDETAPE_ERASE_CMD;
3149         pc->c[1] = 1;
3150         set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3151         pc->callback = &idetape_pc_callback;
3152 }
3153
3154 static void idetape_create_space_cmd (idetape_pc_t *pc,int count, u8 cmd)
3155 {
3156         idetape_init_pc(pc);
3157         pc->c[0] = IDETAPE_SPACE_CMD;
3158         put_unaligned(htonl(count), (unsigned int *) &pc->c[1]);
3159         pc->c[1] = cmd;
3160         set_bit(PC_WAIT_FOR_DSC, &pc->flags);
3161         pc->callback = &idetape_pc_callback;
3162 }
3163
3164 static void idetape_wait_first_stage (ide_drive_t *drive)
3165 {
3166         idetape_tape_t *tape = drive->driver_data;
3167         unsigned long flags;
3168
3169         if (tape->first_stage == NULL)
3170                 return;
3171         spin_lock_irqsave(&tape->spinlock, flags);
3172         if (tape->active_stage == tape->first_stage)
3173                 idetape_wait_for_request(drive, tape->active_data_request);
3174         spin_unlock_irqrestore(&tape->spinlock, flags);
3175 }
3176
3177 /*
3178  *      idetape_add_chrdev_write_request tries to add a character device
3179  *      originated write request to our pipeline. In case we don't succeed,
3180  *      we revert to non-pipelined operation mode for this request.
3181  *
3182  *      1.      Try to allocate a new pipeline stage.
3183  *      2.      If we can't, wait for more and more requests to be serviced
3184  *              and try again each time.
3185  *      3.      If we still can't allocate a stage, fallback to
3186  *              non-pipelined operation mode for this request.
3187  */
3188 static int idetape_add_chrdev_write_request (ide_drive_t *drive, int blocks)
3189 {
3190         idetape_tape_t *tape = drive->driver_data;
3191         idetape_stage_t *new_stage;
3192         unsigned long flags;
3193         struct request *rq;
3194
3195 #if IDETAPE_DEBUG_LOG
3196         if (tape->debug_level >= 3)
3197                 printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_write_request\n");
3198 #endif /* IDETAPE_DEBUG_LOG */
3199
3200         /*
3201          *      Attempt to allocate a new stage.
3202          *      Pay special attention to possible race conditions.
3203          */
3204         while ((new_stage = idetape_kmalloc_stage(tape)) == NULL) {
3205                 spin_lock_irqsave(&tape->spinlock, flags);
3206                 if (idetape_pipeline_active(tape)) {
3207                         idetape_wait_for_request(drive, tape->active_data_request);
3208                         spin_unlock_irqrestore(&tape->spinlock, flags);
3209                 } else {
3210                         spin_unlock_irqrestore(&tape->spinlock, flags);
3211                         idetape_insert_pipeline_into_queue(drive);
3212                         if (idetape_pipeline_active(tape))
3213                                 continue;
3214                         /*
3215                          *      Linux is short on memory. Fallback to
3216                          *      non-pipelined operation mode for this request.
3217                          */
3218                         return idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh);
3219                 }
3220         }
3221         rq = &new_stage->rq;
3222         idetape_init_rq(rq, REQ_IDETAPE_WRITE);
3223         /* Doesn't actually matter - We always assume sequential access */
3224         rq->sector = tape->first_frame_position;
3225         rq->nr_sectors = rq->current_nr_sectors = blocks;
3226
3227         idetape_switch_buffers(tape, new_stage);
3228         idetape_add_stage_tail(drive, new_stage);
3229         tape->pipeline_head++;
3230         calculate_speeds(drive);
3231
3232         /*
3233          *      Estimate whether the tape has stopped writing by checking
3234          *      if our write pipeline is currently empty. If we are not
3235          *      writing anymore, wait for the pipeline to be full enough
3236          *      (90%) before starting to service requests, so that we will
3237          *      be able to keep up with the higher speeds of the tape.
3238          */
3239         if (!idetape_pipeline_active(tape)) {
3240                 if (tape->nr_stages >= tape->max_stages * 9 / 10 ||
3241                     tape->nr_stages >= tape->max_stages - tape->uncontrolled_pipeline_head_speed * 3 * 1024 / tape->tape_block_size) {
3242                         tape->measure_insert_time = 1;
3243                         tape->insert_time = jiffies;
3244                         tape->insert_size = 0;
3245                         tape->insert_speed = 0;
3246                         idetape_insert_pipeline_into_queue(drive);
3247                 }
3248         }
3249         if (test_and_clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
3250                 /* Return a deferred error */
3251                 return -EIO;
3252         return blocks;
3253 }
3254
3255 /*
3256  *      idetape_wait_for_pipeline will wait until all pending pipeline
3257  *      requests are serviced. Typically called on device close.
3258  */
3259 static void idetape_wait_for_pipeline (ide_drive_t *drive)
3260 {
3261         idetape_tape_t *tape = drive->driver_data;
3262         unsigned long flags;
3263
3264         while (tape->next_stage || idetape_pipeline_active(tape)) {
3265                 idetape_insert_pipeline_into_queue(drive);
3266                 spin_lock_irqsave(&tape->spinlock, flags);
3267                 if (idetape_pipeline_active(tape))
3268                         idetape_wait_for_request(drive, tape->active_data_request);
3269                 spin_unlock_irqrestore(&tape->spinlock, flags);
3270         }
3271 }
3272
3273 static void idetape_empty_write_pipeline (ide_drive_t *drive)
3274 {
3275         idetape_tape_t *tape = drive->driver_data;
3276         int blocks, min;
3277         struct idetape_bh *bh;
3278         
3279 #if IDETAPE_DEBUG_BUGS
3280         if (tape->chrdev_direction != idetape_direction_write) {
3281                 printk(KERN_ERR "ide-tape: bug: Trying to empty write pipeline, but we are not writing.\n");
3282                 return;
3283         }
3284         if (tape->merge_stage_size > tape->stage_size) {
3285                 printk(KERN_ERR "ide-tape: bug: merge_buffer too big\n");
3286                 tape->merge_stage_size = tape->stage_size;
3287         }
3288 #endif /* IDETAPE_DEBUG_BUGS */
3289         if (tape->merge_stage_size) {
3290                 blocks = tape->merge_stage_size / tape->tape_block_size;
3291                 if (tape->merge_stage_size % tape->tape_block_size) {
3292                         unsigned int i;
3293
3294                         blocks++;
3295                         i = tape->tape_block_size - tape->merge_stage_size % tape->tape_block_size;
3296                         bh = tape->bh->b_reqnext;
3297                         while (bh) {
3298                                 atomic_set(&bh->b_count, 0);
3299                                 bh = bh->b_reqnext;
3300                         }
3301                         bh = tape->bh;
3302                         while (i) {
3303                                 if (bh == NULL) {
3304
3305                                         printk(KERN_INFO "ide-tape: bug, bh NULL\n");
3306                                         break;
3307                                 }
3308                                 min = min(i, (unsigned int)(bh->b_size - atomic_read(&bh->b_count)));
3309                                 memset(bh->b_data + atomic_read(&bh->b_count), 0, min);
3310                                 atomic_add(min, &bh->b_count);
3311                                 i -= min;
3312                                 bh = bh->b_reqnext;
3313                         }
3314                 }
3315                 (void) idetape_add_chrdev_write_request(drive, blocks);
3316                 tape->merge_stage_size = 0;
3317         }
3318         idetape_wait_for_pipeline(drive);
3319         if (tape->merge_stage != NULL) {
3320                 __idetape_kfree_stage(tape->merge_stage);
3321                 tape->merge_stage = NULL;
3322         }
3323         clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
3324         tape->chrdev_direction = idetape_direction_none;
3325
3326         /*
3327          *      On the next backup, perform the feedback loop again.
3328          *      (I don't want to keep sense information between backups,
3329          *       as some systems are constantly on, and the system load
3330          *       can be totally different on the next backup).
3331          */
3332         tape->max_stages = tape->min_pipeline;
3333 #if IDETAPE_DEBUG_BUGS
3334         if (tape->first_stage != NULL ||
3335             tape->next_stage != NULL ||
3336             tape->last_stage != NULL ||
3337             tape->nr_stages != 0) {
3338                 printk(KERN_ERR "ide-tape: ide-tape pipeline bug, "
3339                         "first_stage %p, next_stage %p, "
3340                         "last_stage %p, nr_stages %d\n",
3341                         tape->first_stage, tape->next_stage,
3342                         tape->last_stage, tape->nr_stages);
3343         }
3344 #endif /* IDETAPE_DEBUG_BUGS */
3345 }
3346
3347 static void idetape_restart_speed_control (ide_drive_t *drive)
3348 {
3349         idetape_tape_t *tape = drive->driver_data;
3350
3351         tape->restart_speed_control_req = 0;
3352         tape->pipeline_head = 0;
3353         tape->controlled_last_pipeline_head = tape->uncontrolled_last_pipeline_head = 0;
3354         tape->controlled_previous_pipeline_head = tape->uncontrolled_previous_pipeline_head = 0;
3355         tape->pipeline_head_speed = tape->controlled_pipeline_head_speed = 5000;
3356         tape->uncontrolled_pipeline_head_speed = 0;
3357         tape->controlled_pipeline_head_time = tape->uncontrolled_pipeline_head_time = jiffies;
3358         tape->controlled_previous_head_time = tape->uncontrolled_previous_head_time = jiffies;
3359 }
3360
3361 static int idetape_initiate_read (ide_drive_t *drive, int max_stages)
3362 {
3363         idetape_tape_t *tape = drive->driver_data;
3364         idetape_stage_t *new_stage;
3365         struct request rq;
3366         int bytes_read;
3367         int blocks = tape->capabilities.ctl;
3368
3369         /* Initialize read operation */
3370         if (tape->chrdev_direction != idetape_direction_read) {
3371                 if (tape->chrdev_direction == idetape_direction_write) {
3372                         idetape_empty_write_pipeline(drive);
3373                         idetape_flush_tape_buffers(drive);
3374                 }
3375 #if IDETAPE_DEBUG_BUGS
3376                 if (tape->merge_stage || tape->merge_stage_size) {
3377                         printk (KERN_ERR "ide-tape: merge_stage_size should be 0 now\n");
3378                         tape->merge_stage_size = 0;
3379                 }
3380 #endif /* IDETAPE_DEBUG_BUGS */
3381                 if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL)
3382                         return -ENOMEM;
3383                 tape->chrdev_direction = idetape_direction_read;
3384
3385                 /*
3386                  *      Issue a read 0 command to ensure that DSC handshake
3387                  *      is switched from completion mode to buffer available
3388                  *      mode.
3389                  *      No point in issuing this if DSC overlap isn't supported,
3390                  *      some drives (Seagate STT3401A) will return an error.
3391                  */
3392                 if (drive->dsc_overlap) {
3393                         bytes_read = idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, 0, tape->merge_stage->bh);
3394                         if (bytes_read < 0) {
3395                                 __idetape_kfree_stage(tape->merge_stage);
3396                                 tape->merge_stage = NULL;
3397                                 tape->chrdev_direction = idetape_direction_none;
3398                                 return bytes_read;
3399                         }
3400                 }
3401         }
3402         if (tape->restart_speed_control_req)
3403                 idetape_restart_speed_control(drive);
3404         idetape_init_rq(&rq, REQ_IDETAPE_READ);
3405         rq.sector = tape->first_frame_position;
3406         rq.nr_sectors = rq.current_nr_sectors = blocks;
3407         if (!test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags) &&
3408             tape->nr_stages < max_stages) {
3409                 new_stage = idetape_kmalloc_stage(tape);
3410                 while (new_stage != NULL) {
3411                         new_stage->rq = rq;
3412                         idetape_add_stage_tail(drive, new_stage);
3413                         if (tape->nr_stages >= max_stages)
3414                                 break;
3415                         new_stage = idetape_kmalloc_stage(tape);
3416                 }
3417         }
3418         if (!idetape_pipeline_active(tape)) {
3419                 if (tape->nr_pending_stages >= 3 * max_stages / 4) {
3420                         tape->measure_insert_time = 1;
3421                         tape->insert_time = jiffies;
3422                         tape->insert_size = 0;
3423                         tape->insert_speed = 0;
3424                         idetape_insert_pipeline_into_queue(drive);
3425                 }
3426         }
3427         return 0;
3428 }
3429
3430 /*
3431  *      idetape_add_chrdev_read_request is called from idetape_chrdev_read
3432  *      to service a character device read request and add read-ahead
3433  *      requests to our pipeline.
3434  */
3435 static int idetape_add_chrdev_read_request (ide_drive_t *drive,int blocks)
3436 {
3437         idetape_tape_t *tape = drive->driver_data;
3438         unsigned long flags;
3439         struct request *rq_ptr;
3440         int bytes_read;
3441
3442 #if IDETAPE_DEBUG_LOG
3443         if (tape->debug_level >= 4)
3444                 printk(KERN_INFO "ide-tape: Reached idetape_add_chrdev_read_request, %d blocks\n", blocks);
3445 #endif /* IDETAPE_DEBUG_LOG */
3446
3447         /*
3448          * If we are at a filemark, return a read length of 0
3449          */
3450         if (test_bit(IDETAPE_FILEMARK, &tape->flags))
3451                 return 0;
3452
3453         /*
3454          * Wait for the next block to be available at the head
3455          * of the pipeline
3456          */
3457         idetape_initiate_read(drive, tape->max_stages);
3458         if (tape->first_stage == NULL) {
3459                 if (test_bit(IDETAPE_PIPELINE_ERROR, &tape->flags))
3460                         return 0;
3461                 return idetape_queue_rw_tail(drive, REQ_IDETAPE_READ, blocks, tape->merge_stage->bh);
3462         }
3463         idetape_wait_first_stage(drive);
3464         rq_ptr = &tape->first_stage->rq;
3465         bytes_read = tape->tape_block_size * (rq_ptr->nr_sectors - rq_ptr->current_nr_sectors);
3466         rq_ptr->nr_sectors = rq_ptr->current_nr_sectors = 0;
3467
3468
3469         if (rq_ptr->errors == IDETAPE_ERROR_EOD)
3470                 return 0;
3471         else {
3472                 idetape_switch_buffers(tape, tape->first_stage);
3473                 if (rq_ptr->errors == IDETAPE_ERROR_FILEMARK)
3474                         set_bit(IDETAPE_FILEMARK, &tape->flags);
3475                 spin_lock_irqsave(&tape->spinlock, flags);
3476                 idetape_remove_stage_head(drive);
3477                 spin_unlock_irqrestore(&tape->spinlock, flags);
3478                 tape->pipeline_head++;
3479                 calculate_speeds(drive);
3480         }
3481 #if IDETAPE_DEBUG_BUGS
3482         if (bytes_read > blocks * tape->tape_block_size) {
3483                 printk(KERN_ERR "ide-tape: bug: trying to return more bytes than requested\n");
3484                 bytes_read = blocks * tape->tape_block_size;
3485         }
3486 #endif /* IDETAPE_DEBUG_BUGS */
3487         return (bytes_read);
3488 }
3489
3490 static void idetape_pad_zeros (ide_drive_t *drive, int bcount)
3491 {
3492         idetape_tape_t *tape = drive->driver_data;
3493         struct idetape_bh *bh;
3494         int blocks;
3495         
3496         while (bcount) {
3497                 unsigned int count;
3498
3499                 bh = tape->merge_stage->bh;
3500                 count = min(tape->stage_size, bcount);
3501                 bcount -= count;
3502                 blocks = count / tape->tape_block_size;
3503                 while (count) {
3504                         atomic_set(&bh->b_count, min(count, (unsigned int)bh->b_size));
3505                         memset(bh->b_data, 0, atomic_read(&bh->b_count));
3506                         count -= atomic_read(&bh->b_count);
3507                         bh = bh->b_reqnext;
3508                 }
3509                 idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, blocks, tape->merge_stage->bh);
3510         }
3511 }
3512
3513 static int idetape_pipeline_size (ide_drive_t *drive)
3514 {
3515         idetape_tape_t *tape = drive->driver_data;
3516         idetape_stage_t *stage;
3517         struct request *rq;
3518         int size = 0;
3519
3520         idetape_wait_for_pipeline(drive);
3521         stage = tape->first_stage;
3522         while (stage != NULL) {
3523                 rq = &stage->rq;
3524                 size += tape->tape_block_size * (rq->nr_sectors-rq->current_nr_sectors);
3525                 if (rq->errors == IDETAPE_ERROR_FILEMARK)
3526                         size += tape->tape_block_size;
3527                 stage = stage->next;
3528         }
3529         size += tape->merge_stage_size;
3530         return size;
3531 }
3532
3533 /*
3534  *      Rewinds the tape to the Beginning Of the current Partition (BOP).
3535  *
3536  *      We currently support only one partition.
3537  */ 
3538 static int idetape_rewind_tape (ide_drive_t *drive)
3539 {
3540         int retval;
3541         idetape_pc_t pc;
3542 #if IDETAPE_DEBUG_LOG
3543         idetape_tape_t *tape = drive->driver_data;
3544         if (tape->debug_level >= 2)
3545                 printk(KERN_INFO "ide-tape: Reached idetape_rewind_tape\n");
3546 #endif /* IDETAPE_DEBUG_LOG */  
3547         
3548         idetape_create_rewind_cmd(drive, &pc);
3549         retval = idetape_queue_pc_tail(drive, &pc);
3550         if (retval)
3551                 return retval;
3552
3553         idetape_create_read_position_cmd(&pc);
3554         retval = idetape_queue_pc_tail(drive, &pc);
3555         if (retval)
3556                 return retval;
3557         return 0;
3558 }
3559
3560 /*
3561  *      Our special ide-tape ioctl's.
3562  *
3563  *      Currently there aren't any ioctl's.
3564  *      mtio.h compatible commands should be issued to the character device
3565  *      interface.
3566  */
3567 static int idetape_blkdev_ioctl(ide_drive_t *drive, unsigned int cmd, unsigned long arg)
3568 {
3569         idetape_tape_t *tape = drive->driver_data;
3570         idetape_config_t config;
3571         void __user *argp = (void __user *)arg;
3572
3573 #if IDETAPE_DEBUG_LOG   
3574         if (tape->debug_level >= 4)
3575                 printk(KERN_INFO "ide-tape: Reached idetape_blkdev_ioctl\n");
3576 #endif /* IDETAPE_DEBUG_LOG */
3577         switch (cmd) {
3578                 case 0x0340:
3579                         if (copy_from_user(&config, argp, sizeof (idetape_config_t)))
3580                                 return -EFAULT;
3581                         tape->best_dsc_rw_frequency = config.dsc_rw_frequency;
3582                         tape->max_stages = config.nr_stages;
3583                         break;
3584                 case 0x0350:
3585                         config.dsc_rw_frequency = (int) tape->best_dsc_rw_frequency;
3586                         config.nr_stages = tape->max_stages; 
3587                         if (copy_to_user(argp, &config, sizeof (idetape_config_t)))
3588                                 return -EFAULT;
3589                         break;
3590                 default:
3591                         return -EIO;
3592         }
3593         return 0;
3594 }
3595
3596 /*
3597  *      idetape_space_over_filemarks is now a bit more complicated than just
3598  *      passing the command to the tape since we may have crossed some
3599  *      filemarks during our pipelined read-ahead mode.
3600  *
3601  *      As a minor side effect, the pipeline enables us to support MTFSFM when
3602  *      the filemark is in our internal pipeline even if the tape doesn't
3603  *      support spacing over filemarks in the reverse direction.
3604  */
3605 static int idetape_space_over_filemarks (ide_drive_t *drive,short mt_op,int mt_count)
3606 {
3607         idetape_tape_t *tape = drive->driver_data;
3608         idetape_pc_t pc;
3609         unsigned long flags;
3610         int retval,count=0;
3611
3612         if (mt_count == 0)
3613                 return 0;
3614         if (MTBSF == mt_op || MTBSFM == mt_op) {
3615                 if (!tape->capabilities.sprev)
3616                         return -EIO;
3617                 mt_count = - mt_count;
3618         }
3619
3620         if (tape->chrdev_direction == idetape_direction_read) {
3621                 /*
3622                  *      We have a read-ahead buffer. Scan it for crossed
3623                  *      filemarks.
3624                  */
3625                 tape->merge_stage_size = 0;
3626                 if (test_and_clear_bit(IDETAPE_FILEMARK, &tape->flags))
3627                         ++count;
3628                 while (tape->first_stage != NULL) {
3629                         if (count == mt_count) {
3630                                 if (mt_op == MTFSFM)
3631                                         set_bit(IDETAPE_FILEMARK, &tape->flags);
3632                                 return 0;
3633                         }
3634                         spin_lock_irqsave(&tape->spinlock, flags);
3635                         if (tape->first_stage == tape->active_stage) {
3636                                 /*
3637                                  *      We have reached the active stage in the read pipeline.
3638                                  *      There is no point in allowing the drive to continue
3639                                  *      reading any farther, so we stop the pipeline.
3640                                  *
3641                                  *      This section should be moved to a separate subroutine,
3642                                  *      because a similar function is performed in
3643                                  *      __idetape_discard_read_pipeline(), for example.
3644                                  */
3645                                 tape->next_stage = NULL;
3646                                 spin_unlock_irqrestore(&tape->spinlock, flags);
3647                                 idetape_wait_first_stage(drive);
3648                                 tape->next_stage = tape->first_stage->next;
3649                         } else
3650                                 spin_unlock_irqrestore(&tape->spinlock, flags);
3651                         if (tape->first_stage->rq.errors == IDETAPE_ERROR_FILEMARK)
3652                                 ++count;
3653                         idetape_remove_stage_head(drive);
3654                 }
3655                 idetape_discard_read_pipeline(drive, 0);
3656         }
3657
3658         /*
3659          *      The filemark was not found in our internal pipeline.
3660          *      Now we can issue the space command.
3661          */
3662         switch (mt_op) {
3663                 case MTFSF:
3664                 case MTBSF:
3665                         idetape_create_space_cmd(&pc,mt_count-count,IDETAPE_SPACE_OVER_FILEMARK);
3666                         return (idetape_queue_pc_tail(drive, &pc));
3667                 case MTFSFM:
3668                 case MTBSFM:
3669                         if (!tape->capabilities.sprev)
3670                                 return (-EIO);
3671                         retval = idetape_space_over_filemarks(drive, MTFSF, mt_count-count);
3672                         if (retval) return (retval);
3673                         count = (MTBSFM == mt_op ? 1 : -1);
3674                         return (idetape_space_over_filemarks(drive, MTFSF, count));
3675                 default:
3676                         printk(KERN_ERR "ide-tape: MTIO operation %d not supported\n",mt_op);
3677                         return (-EIO);
3678         }
3679 }
3680
3681
3682 /*
3683  *      Our character device read / write functions.
3684  *
3685  *      The tape is optimized to maximize throughput when it is transferring
3686  *      an integral number of the "continuous transfer limit", which is
3687  *      a parameter of the specific tape (26 KB on my particular tape).
3688  *      (32 kB for Onstream)
3689  *
3690  *      As of version 1.3 of the driver, the character device provides an
3691  *      abstract continuous view of the media - any mix of block sizes (even 1
3692  *      byte) on the same backup/restore procedure is supported. The driver
3693  *      will internally convert the requests to the recommended transfer unit,
3694  *      so that an unmatch between the user's block size to the recommended
3695  *      size will only result in a (slightly) increased driver overhead, but
3696  *      will no longer hit performance.
3697  *      This is not applicable to Onstream.
3698  */
3699 static ssize_t idetape_chrdev_read (struct file *file, char __user *buf,
3700                                     size_t count, loff_t *ppos)
3701 {
3702         struct ide_tape_obj *tape = ide_tape_f(file);
3703         ide_drive_t *drive = tape->drive;
3704         ssize_t bytes_read,temp, actually_read = 0, rc;
3705         ssize_t ret = 0;
3706
3707 #if IDETAPE_DEBUG_LOG
3708         if (tape->debug_level >= 3)
3709                 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_read, count %Zd\n", count);
3710 #endif /* IDETAPE_DEBUG_LOG */
3711
3712         if (tape->chrdev_direction != idetape_direction_read) {
3713                 if (test_bit(IDETAPE_DETECT_BS, &tape->flags))
3714                         if (count > tape->tape_block_size &&
3715                             (count % tape->tape_block_size) == 0)
3716                                 tape->user_bs_factor = count / tape->tape_block_size;
3717         }
3718         if ((rc = idetape_initiate_read(drive, tape->max_stages)) < 0)
3719                 return rc;
3720         if (count == 0)
3721                 return (0);
3722         if (tape->merge_stage_size) {
3723                 actually_read = min((unsigned int)(tape->merge_stage_size), (unsigned int)count);
3724                 if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage, actually_read))
3725                         ret = -EFAULT;
3726                 buf += actually_read;
3727                 tape->merge_stage_size -= actually_read;
3728                 count -= actually_read;
3729         }
3730         while (count >= tape->stage_size) {
3731                 bytes_read = idetape_add_chrdev_read_request(drive, tape->capabilities.ctl);
3732                 if (bytes_read <= 0)
3733                         goto finish;
3734                 if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage, bytes_read))
3735                         ret = -EFAULT;
3736                 buf += bytes_read;
3737                 count -= bytes_read;
3738                 actually_read += bytes_read;
3739         }
3740         if (count) {
3741                 bytes_read = idetape_add_chrdev_read_request(drive, tape->capabilities.ctl);
3742                 if (bytes_read <= 0)
3743                         goto finish;
3744                 temp = min((unsigned long)count, (unsigned long)bytes_read);
3745                 if (idetape_copy_stage_to_user(tape, buf, tape->merge_stage, temp))
3746                         ret = -EFAULT;
3747                 actually_read += temp;
3748                 tape->merge_stage_size = bytes_read-temp;
3749         }
3750 finish:
3751         if (!actually_read && test_bit(IDETAPE_FILEMARK, &tape->flags)) {
3752 #if IDETAPE_DEBUG_LOG
3753                 if (tape->debug_level >= 2)
3754                         printk(KERN_INFO "ide-tape: %s: spacing over filemark\n", tape->name);
3755 #endif
3756                 idetape_space_over_filemarks(drive, MTFSF, 1);
3757                 return 0;
3758         }
3759
3760         return (ret) ? ret : actually_read;
3761 }
3762
3763 static ssize_t idetape_chrdev_write (struct file *file, const char __user *buf,
3764                                      size_t count, loff_t *ppos)
3765 {
3766         struct ide_tape_obj *tape = ide_tape_f(file);
3767         ide_drive_t *drive = tape->drive;
3768         ssize_t actually_written = 0;
3769         ssize_t ret = 0;
3770
3771         /* The drive is write protected. */
3772         if (tape->write_prot)
3773                 return -EACCES;
3774
3775 #if IDETAPE_DEBUG_LOG
3776         if (tape->debug_level >= 3)
3777                 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_write, "
3778                         "count %Zd\n", count);
3779 #endif /* IDETAPE_DEBUG_LOG */
3780
3781         /* Initialize write operation */
3782         if (tape->chrdev_direction != idetape_direction_write) {
3783                 if (tape->chrdev_direction == idetape_direction_read)
3784                         idetape_discard_read_pipeline(drive, 1);
3785 #if IDETAPE_DEBUG_BUGS
3786                 if (tape->merge_stage || tape->merge_stage_size) {
3787                         printk(KERN_ERR "ide-tape: merge_stage_size "
3788                                 "should be 0 now\n");
3789                         tape->merge_stage_size = 0;
3790                 }
3791 #endif /* IDETAPE_DEBUG_BUGS */
3792                 if ((tape->merge_stage = __idetape_kmalloc_stage(tape, 0, 0)) == NULL)
3793                         return -ENOMEM;
3794                 tape->chrdev_direction = idetape_direction_write;
3795                 idetape_init_merge_stage(tape);
3796
3797                 /*
3798                  *      Issue a write 0 command to ensure that DSC handshake
3799                  *      is switched from completion mode to buffer available
3800                  *      mode.
3801                  *      No point in issuing this if DSC overlap isn't supported,
3802                  *      some drives (Seagate STT3401A) will return an error.
3803                  */
3804                 if (drive->dsc_overlap) {
3805                         ssize_t retval = idetape_queue_rw_tail(drive, REQ_IDETAPE_WRITE, 0, tape->merge_stage->bh);
3806                         if (retval < 0) {
3807                                 __idetape_kfree_stage(tape->merge_stage);
3808                                 tape->merge_stage = NULL;
3809                                 tape->chrdev_direction = idetape_direction_none;
3810                                 return retval;
3811                         }
3812                 }
3813         }
3814         if (count == 0)
3815                 return (0);
3816         if (tape->restart_speed_control_req)
3817                 idetape_restart_speed_control(drive);
3818         if (tape->merge_stage_size) {
3819 #if IDETAPE_DEBUG_BUGS
3820                 if (tape->merge_stage_size >= tape->stage_size) {
3821                         printk(KERN_ERR "ide-tape: bug: merge buffer too big\n");
3822                         tape->merge_stage_size = 0;
3823                 }
3824 #endif /* IDETAPE_DEBUG_BUGS */
3825                 actually_written = min((unsigned int)(tape->stage_size - tape->merge_stage_size), (unsigned int)count);
3826                 if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf, actually_written))
3827                                 ret = -EFAULT;
3828                 buf += actually_written;
3829                 tape->merge_stage_size += actually_written;
3830                 count -= actually_written;
3831
3832                 if (tape->merge_stage_size == tape->stage_size) {
3833                         ssize_t retval;
3834                         tape->merge_stage_size = 0;
3835                         retval = idetape_add_chrdev_write_request(drive, tape->capabilities.ctl);
3836                         if (retval <= 0)
3837                                 return (retval);
3838                 }
3839         }
3840         while (count >= tape->stage_size) {
3841                 ssize_t retval;
3842                 if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf, tape->stage_size))
3843                         ret = -EFAULT;
3844                 buf += tape->stage_size;
3845                 count -= tape->stage_size;
3846                 retval = idetape_add_chrdev_write_request(drive, tape->capabilities.ctl);
3847                 actually_written += tape->stage_size;
3848                 if (retval <= 0)
3849                         return (retval);
3850         }
3851         if (count) {
3852                 actually_written += count;
3853                 if (idetape_copy_stage_from_user(tape, tape->merge_stage, buf, count))
3854                         ret = -EFAULT;
3855                 tape->merge_stage_size += count;
3856         }
3857         return (ret) ? ret : actually_written;
3858 }
3859
3860 static int idetape_write_filemark (ide_drive_t *drive)
3861 {
3862         idetape_pc_t pc;
3863
3864         /* Write a filemark */
3865         idetape_create_write_filemark_cmd(drive, &pc, 1);
3866         if (idetape_queue_pc_tail(drive, &pc)) {
3867                 printk(KERN_ERR "ide-tape: Couldn't write a filemark\n");
3868                 return -EIO;
3869         }
3870         return 0;
3871 }
3872
3873 /*
3874  *      idetape_mtioctop is called from idetape_chrdev_ioctl when
3875  *      the general mtio MTIOCTOP ioctl is requested.
3876  *
3877  *      We currently support the following mtio.h operations:
3878  *
3879  *      MTFSF   -       Space over mt_count filemarks in the positive direction.
3880  *                      The tape is positioned after the last spaced filemark.
3881  *
3882  *      MTFSFM  -       Same as MTFSF, but the tape is positioned before the
3883  *                      last filemark.
3884  *
3885  *      MTBSF   -       Steps background over mt_count filemarks, tape is
3886  *                      positioned before the last filemark.
3887  *
3888  *      MTBSFM  -       Like MTBSF, only tape is positioned after the last filemark.
3889  *
3890  *      Note:
3891  *
3892  *              MTBSF and MTBSFM are not supported when the tape doesn't
3893  *              support spacing over filemarks in the reverse direction.
3894  *              In this case, MTFSFM is also usually not supported (it is
3895  *              supported in the rare case in which we crossed the filemark
3896  *              during our read-ahead pipelined operation mode).
3897  *              
3898  *      MTWEOF  -       Writes mt_count filemarks. Tape is positioned after
3899  *                      the last written filemark.
3900  *
3901  *      MTREW   -       Rewinds tape.
3902  *
3903  *      MTLOAD  -       Loads the tape.
3904  *
3905  *      MTOFFL  -       Puts the tape drive "Offline": Rewinds the tape and
3906  *      MTUNLOAD        prevents further access until the media is replaced.
3907  *
3908  *      MTNOP   -       Flushes tape buffers.
3909  *
3910  *      MTRETEN -       Retension media. This typically consists of one end
3911  *                      to end pass on the media.
3912  *
3913  *      MTEOM   -       Moves to the end of recorded data.
3914  *
3915  *      MTERASE -       Erases tape.
3916  *
3917  *      MTSETBLK -      Sets the user block size to mt_count bytes. If
3918  *                      mt_count is 0, we will attempt to autodetect
3919  *                      the block size.
3920  *
3921  *      MTSEEK  -       Positions the tape in a specific block number, where
3922  *                      each block is assumed to contain which user_block_size
3923  *                      bytes.
3924  *
3925  *      MTSETPART -     Switches to another tape partition.
3926  *
3927  *      MTLOCK -        Locks the tape door.
3928  *
3929  *      MTUNLOCK -      Unlocks the tape door.
3930  *
3931  *      The following commands are currently not supported:
3932  *
3933  *      MTFSS, MTBSS, MTWSM, MTSETDENSITY,
3934  *      MTSETDRVBUFFER, MT_ST_BOOLEANS, MT_ST_WRITE_THRESHOLD.
3935  */
3936 static int idetape_mtioctop (ide_drive_t *drive,short mt_op,int mt_count)
3937 {
3938         idetape_tape_t *tape = drive->driver_data;
3939         idetape_pc_t pc;
3940         int i,retval;
3941
3942 #if IDETAPE_DEBUG_LOG
3943         if (tape->debug_level >= 1)
3944                 printk(KERN_INFO "ide-tape: Handling MTIOCTOP ioctl: "
3945                         "mt_op=%d, mt_count=%d\n", mt_op, mt_count);
3946 #endif /* IDETAPE_DEBUG_LOG */
3947         /*
3948          *      Commands which need our pipelined read-ahead stages.
3949          */
3950         switch (mt_op) {
3951                 case MTFSF:
3952                 case MTFSFM:
3953                 case MTBSF:
3954                 case MTBSFM:
3955                         if (!mt_count)
3956                                 return (0);
3957                         return (idetape_space_over_filemarks(drive,mt_op,mt_count));
3958                 default:
3959                         break;
3960         }
3961         switch (mt_op) {
3962                 case MTWEOF:
3963                         if (tape->write_prot)
3964                                 return -EACCES;
3965                         idetape_discard_read_pipeline(drive, 1);
3966                         for (i = 0; i < mt_count; i++) {
3967                                 retval = idetape_write_filemark(drive);
3968                                 if (retval)
3969                                         return retval;
3970                         }
3971                         return (0);
3972                 case MTREW:
3973                         idetape_discard_read_pipeline(drive, 0);
3974                         if (idetape_rewind_tape(drive))
3975                                 return -EIO;
3976                         return 0;
3977                 case MTLOAD:
3978                         idetape_discard_read_pipeline(drive, 0);
3979                         idetape_create_load_unload_cmd(drive, &pc, IDETAPE_LU_LOAD_MASK);
3980                         return (idetape_queue_pc_tail(drive, &pc));
3981                 case MTUNLOAD:
3982                 case MTOFFL:
3983                         /*
3984                          * If door is locked, attempt to unlock before
3985                          * attempting to eject.
3986                          */
3987                         if (tape->door_locked) {
3988                                 if (idetape_create_prevent_cmd(drive, &pc, 0))
3989                                         if (!idetape_queue_pc_tail(drive, &pc))
3990                                                 tape->door_locked = DOOR_UNLOCKED;
3991                         }
3992                         idetape_discard_read_pipeline(drive, 0);
3993                         idetape_create_load_unload_cmd(drive, &pc,!IDETAPE_LU_LOAD_MASK);
3994                         retval = idetape_queue_pc_tail(drive, &pc);
3995                         if (!retval)
3996                                 clear_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags);
3997                         return retval;
3998                 case MTNOP:
3999                         idetape_discard_read_pipeline(drive, 0);
4000                         return (idetape_flush_tape_buffers(drive));
4001                 case MTRETEN:
4002                         idetape_discard_read_pipeline(drive, 0);
4003                         idetape_create_load_unload_cmd(drive, &pc,IDETAPE_LU_RETENSION_MASK | IDETAPE_LU_LOAD_MASK);
4004                         return (idetape_queue_pc_tail(drive, &pc));
4005                 case MTEOM:
4006                         idetape_create_space_cmd(&pc, 0, IDETAPE_SPACE_TO_EOD);
4007                         return (idetape_queue_pc_tail(drive, &pc));
4008                 case MTERASE:
4009                         (void) idetape_rewind_tape(drive);
4010                         idetape_create_erase_cmd(&pc);
4011                         return (idetape_queue_pc_tail(drive, &pc));
4012                 case MTSETBLK:
4013                         if (mt_count) {
4014                                 if (mt_count < tape->tape_block_size || mt_count % tape->tape_block_size)
4015                                         return -EIO;
4016                                 tape->user_bs_factor = mt_count / tape->tape_block_size;
4017                                 clear_bit(IDETAPE_DETECT_BS, &tape->flags);
4018                         } else
4019                                 set_bit(IDETAPE_DETECT_BS, &tape->flags);
4020                         return 0;
4021                 case MTSEEK:
4022                         idetape_discard_read_pipeline(drive, 0);
4023                         return idetape_position_tape(drive, mt_count * tape->user_bs_factor, tape->partition, 0);
4024                 case MTSETPART:
4025                         idetape_discard_read_pipeline(drive, 0);
4026                         return (idetape_position_tape(drive, 0, mt_count, 0));
4027                 case MTFSR:
4028                 case MTBSR:
4029                 case MTLOCK:
4030                         if (!idetape_create_prevent_cmd(drive, &pc, 1))
4031                                 return 0;
4032                         retval = idetape_queue_pc_tail(drive, &pc);
4033                         if (retval) return retval;
4034                         tape->door_locked = DOOR_EXPLICITLY_LOCKED;
4035                         return 0;
4036                 case MTUNLOCK:
4037                         if (!idetape_create_prevent_cmd(drive, &pc, 0))
4038                                 return 0;
4039                         retval = idetape_queue_pc_tail(drive, &pc);
4040                         if (retval) return retval;
4041                         tape->door_locked = DOOR_UNLOCKED;
4042                         return 0;
4043                 default:
4044                         printk(KERN_ERR "ide-tape: MTIO operation %d not "
4045                                 "supported\n", mt_op);
4046                         return (-EIO);
4047         }
4048 }
4049
4050 /*
4051  *      Our character device ioctls.
4052  *
4053  *      General mtio.h magnetic io commands are supported here, and not in
4054  *      the corresponding block interface.
4055  *
4056  *      The following ioctls are supported:
4057  *
4058  *      MTIOCTOP -      Refer to idetape_mtioctop for detailed description.
4059  *
4060  *      MTIOCGET -      The mt_dsreg field in the returned mtget structure
4061  *                      will be set to (user block size in bytes <<
4062  *                      MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK.
4063  *
4064  *                      The mt_blkno is set to the current user block number.
4065  *                      The other mtget fields are not supported.
4066  *
4067  *      MTIOCPOS -      The current tape "block position" is returned. We
4068  *                      assume that each block contains user_block_size
4069  *                      bytes.
4070  *
4071  *      Our own ide-tape ioctls are supported on both interfaces.
4072  */
4073 static int idetape_chrdev_ioctl (struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
4074 {
4075         struct ide_tape_obj *tape = ide_tape_f(file);
4076         ide_drive_t *drive = tape->drive;
4077         struct mtop mtop;
4078         struct mtget mtget;
4079         struct mtpos mtpos;
4080         int block_offset = 0, position = tape->first_frame_position;
4081         void __user *argp = (void __user *)arg;
4082
4083 #if IDETAPE_DEBUG_LOG
4084         if (tape->debug_level >= 3)
4085                 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_ioctl, "
4086                         "cmd=%u\n", cmd);
4087 #endif /* IDETAPE_DEBUG_LOG */
4088
4089         tape->restart_speed_control_req = 1;
4090         if (tape->chrdev_direction == idetape_direction_write) {
4091                 idetape_empty_write_pipeline(drive);
4092                 idetape_flush_tape_buffers(drive);
4093         }
4094         if (cmd == MTIOCGET || cmd == MTIOCPOS) {
4095                 block_offset = idetape_pipeline_size(drive) / (tape->tape_block_size * tape->user_bs_factor);
4096                 if ((position = idetape_read_position(drive)) < 0)
4097                         return -EIO;
4098         }
4099         switch (cmd) {
4100                 case MTIOCTOP:
4101                         if (copy_from_user(&mtop, argp, sizeof (struct mtop)))
4102                                 return -EFAULT;
4103                         return (idetape_mtioctop(drive,mtop.mt_op,mtop.mt_count));
4104                 case MTIOCGET:
4105                         memset(&mtget, 0, sizeof (struct mtget));
4106                         mtget.mt_type = MT_ISSCSI2;
4107                         mtget.mt_blkno = position / tape->user_bs_factor - block_offset;
4108                         mtget.mt_dsreg = ((tape->tape_block_size * tape->user_bs_factor) << MT_ST_BLKSIZE_SHIFT) & MT_ST_BLKSIZE_MASK;
4109                         if (tape->drv_write_prot) {
4110                                 mtget.mt_gstat |= GMT_WR_PROT(0xffffffff);
4111                         }
4112                         if (copy_to_user(argp, &mtget, sizeof(struct mtget)))
4113                                 return -EFAULT;
4114                         return 0;
4115                 case MTIOCPOS:
4116                         mtpos.mt_blkno = position / tape->user_bs_factor - block_offset;
4117                         if (copy_to_user(argp, &mtpos, sizeof(struct mtpos)))
4118                                 return -EFAULT;
4119                         return 0;
4120                 default:
4121                         if (tape->chrdev_direction == idetape_direction_read)
4122                                 idetape_discard_read_pipeline(drive, 1);
4123                         return idetape_blkdev_ioctl(drive, cmd, arg);
4124         }
4125 }
4126
4127 static void idetape_get_blocksize_from_block_descriptor(ide_drive_t *drive);
4128
4129 /*
4130  *      Our character device open function.
4131  */
4132 static int idetape_chrdev_open (struct inode *inode, struct file *filp)
4133 {
4134         unsigned int minor = iminor(inode), i = minor & ~0xc0;
4135         ide_drive_t *drive;
4136         idetape_tape_t *tape;
4137         idetape_pc_t pc;
4138         int retval;
4139
4140         /*
4141          * We really want to do nonseekable_open(inode, filp); here, but some
4142          * versions of tar incorrectly call lseek on tapes and bail out if that
4143          * fails.  So we disallow pread() and pwrite(), but permit lseeks.
4144          */
4145         filp->f_mode &= ~(FMODE_PREAD | FMODE_PWRITE);
4146
4147 #if IDETAPE_DEBUG_LOG
4148         printk(KERN_INFO "ide-tape: Reached idetape_chrdev_open\n");
4149 #endif /* IDETAPE_DEBUG_LOG */
4150         
4151         if (i >= MAX_HWIFS * MAX_DRIVES)
4152                 return -ENXIO;
4153
4154         if (!(tape = ide_tape_chrdev_get(i)))
4155                 return -ENXIO;
4156
4157         drive = tape->drive;
4158
4159         filp->private_data = tape;
4160
4161         if (test_and_set_bit(IDETAPE_BUSY, &tape->flags)) {
4162                 retval = -EBUSY;
4163                 goto out_put_tape;
4164         }
4165
4166         retval = idetape_wait_ready(drive, 60 * HZ);
4167         if (retval) {
4168                 clear_bit(IDETAPE_BUSY, &tape->flags);
4169                 printk(KERN_ERR "ide-tape: %s: drive not ready\n", tape->name);
4170                 goto out_put_tape;
4171         }
4172
4173         idetape_read_position(drive);
4174         if (!test_bit(IDETAPE_ADDRESS_VALID, &tape->flags))
4175                 (void)idetape_rewind_tape(drive);
4176
4177         if (tape->chrdev_direction != idetape_direction_read)
4178                 clear_bit(IDETAPE_PIPELINE_ERROR, &tape->flags);
4179
4180         /* Read block size and write protect status from drive. */
4181         idetape_get_blocksize_from_block_descriptor(drive);
4182
4183         /* Set write protect flag if device is opened as read-only. */
4184         if ((filp->f_flags & O_ACCMODE) == O_RDONLY)
4185                 tape->write_prot = 1;
4186         else
4187                 tape->write_prot = tape->drv_write_prot;
4188
4189         /* Make sure drive isn't write protected if user wants to write. */
4190         if (tape->write_prot) {
4191                 if ((filp->f_flags & O_ACCMODE) == O_WRONLY ||
4192                     (filp->f_flags & O_ACCMODE) == O_RDWR) {
4193                         clear_bit(IDETAPE_BUSY, &tape->flags);
4194                         retval = -EROFS;
4195                         goto out_put_tape;
4196                 }
4197         }
4198
4199         /*
4200          * Lock the tape drive door so user can't eject.
4201          */
4202         if (tape->chrdev_direction == idetape_direction_none) {
4203                 if (idetape_create_prevent_cmd(drive, &pc, 1)) {
4204                         if (!idetape_queue_pc_tail(drive, &pc)) {
4205                                 if (tape->door_locked != DOOR_EXPLICITLY_LOCKED)
4206                                         tape->door_locked = DOOR_LOCKED;
4207                         }
4208                 }
4209         }
4210         idetape_restart_speed_control(drive);
4211         tape->restart_speed_control_req = 0;
4212         return 0;
4213
4214 out_put_tape:
4215         ide_tape_put(tape);
4216         return retval;
4217 }
4218
4219 static void idetape_write_release (ide_drive_t *drive, unsigned int minor)
4220 {
4221         idetape_tape_t *tape = drive->driver_data;
4222
4223         idetape_empty_write_pipeline(drive);
4224         tape->merge_stage = __idetape_kmalloc_stage(tape, 1, 0);
4225         if (tape->merge_stage != NULL) {
4226                 idetape_pad_zeros(drive, tape->tape_block_size * (tape->user_bs_factor - 1));
4227                 __idetape_kfree_stage(tape->merge_stage);
4228                 tape->merge_stage = NULL;
4229         }
4230         idetape_write_filemark(drive);
4231         idetape_flush_tape_buffers(drive);
4232         idetape_flush_tape_buffers(drive);
4233 }
4234
4235 /*
4236  *      Our character device release function.
4237  */
4238 static int idetape_chrdev_release (struct inode *inode, struct file *filp)
4239 {
4240         struct ide_tape_obj *tape = ide_tape_f(filp);
4241         ide_drive_t *drive = tape->drive;
4242         idetape_pc_t pc;
4243         unsigned int minor = iminor(inode);
4244
4245         lock_kernel();
4246         tape = drive->driver_data;
4247 #if IDETAPE_DEBUG_LOG
4248         if (tape->debug_level >= 3)
4249                 printk(KERN_INFO "ide-tape: Reached idetape_chrdev_release\n");
4250 #endif /* IDETAPE_DEBUG_LOG */
4251
4252         if (tape->chrdev_direction == idetape_direction_write)
4253                 idetape_write_release(drive, minor);
4254         if (tape->chrdev_direction == idetape_direction_read) {
4255                 if (minor < 128)
4256                         idetape_discard_read_pipeline(drive, 1);
4257                 else
4258                         idetape_wait_for_pipeline(drive);
4259         }
4260         if (tape->cache_stage != NULL) {
4261                 __idetape_kfree_stage(tape->cache_stage);
4262                 tape->cache_stage = NULL;
4263         }
4264         if (minor < 128 && test_bit(IDETAPE_MEDIUM_PRESENT, &tape->flags))
4265                 (void) idetape_rewind_tape(drive);
4266         if (tape->chrdev_direction == idetape_direction_none) {
4267                 if (tape->door_locked == DOOR_LOCKED) {
4268                         if (idetape_create_prevent_cmd(drive, &pc, 0)) {
4269                                 if (!idetape_queue_pc_tail(drive, &pc))
4270                                         tape->door_locked = DOOR_UNLOCKED;
4271                         }
4272                 }
4273         }
4274         clear_bit(IDETAPE_BUSY, &tape->flags);
4275         ide_tape_put(tape);
4276         unlock_kernel();
4277         return 0;
4278 }
4279
4280 /*
4281  *      idetape_identify_device is called to check the contents of the
4282  *      ATAPI IDENTIFY command results. We return:
4283  *
4284  *      1       If the tape can be supported by us, based on the information
4285  *              we have so far.
4286  *
4287  *      0       If this tape driver is not currently supported by us.
4288  */
4289 static int idetape_identify_device (ide_drive_t *drive)
4290 {
4291         struct idetape_id_gcw gcw;
4292         struct hd_driveid *id = drive->id;
4293
4294         if (drive->id_read == 0)
4295                 return 1;
4296
4297         *((unsigned short *) &gcw) = id->config;
4298
4299 #if IDETAPE_DEBUG_INFO
4300         printk(KERN_INFO "ide-tape: Dumping ATAPI Identify Device tape parameters\n");
4301         printk(KERN_INFO "ide-tape: Protocol Type: ");
4302         switch (gcw.protocol) {
4303                 case 0: case 1: printk("ATA\n");break;
4304                 case 2: printk("ATAPI\n");break;
4305                 case 3: printk("Reserved (Unknown to ide-tape)\n");break;
4306         }
4307         printk(KERN_INFO "ide-tape: Device Type: %x - ",gcw.device_type);       
4308         switch (gcw.device_type) {
4309                 case 0: printk("Direct-access Device\n");break;
4310                 case 1: printk("Streaming Tape Device\n");break;
4311                 case 2: case 3: case 4: printk("Reserved\n");break;
4312                 case 5: printk("CD-ROM Device\n");break;
4313                 case 6: printk("Reserved\n");
4314                 case 7: printk("Optical memory Device\n");break;
4315                 case 0x1f: printk("Unknown or no Device type\n");break;
4316                 default: printk("Reserved\n");
4317         }
4318         printk(KERN_INFO "ide-tape: Removable: %s",gcw.removable ? "Yes\n":"No\n");     
4319         printk(KERN_INFO "ide-tape: Command Packet DRQ Type: ");
4320         switch (gcw.drq_type) {
4321                 case 0: printk("Microprocessor DRQ\n");break;
4322                 case 1: printk("Interrupt DRQ\n");break;
4323                 case 2: printk("Accelerated DRQ\n");break;
4324                 case 3: printk("Reserved\n");break;
4325         }
4326         printk(KERN_INFO "ide-tape: Command Packet Size: ");
4327         switch (gcw.packet_size) {
4328                 case 0: printk("12 bytes\n");break;
4329                 case 1: printk("16 bytes\n");break;
4330                 default: printk("Reserved\n");break;
4331         }
4332 #endif /* IDETAPE_DEBUG_INFO */
4333
4334         /* Check that we can support this device */
4335
4336         if (gcw.protocol !=2 )
4337                 printk(KERN_ERR "ide-tape: Protocol is not ATAPI\n");
4338         else if (gcw.device_type != 1)
4339                 printk(KERN_ERR "ide-tape: Device type is not set to tape\n");
4340         else if (!gcw.removable)
4341                 printk(KERN_ERR "ide-tape: The removable flag is not set\n");
4342         else if (gcw.packet_size != 0) {
4343                 printk(KERN_ERR "ide-tape: Packet size is not 12 bytes long\n");
4344                 if (gcw.packet_size == 1)
4345                         printk(KERN_ERR "ide-tape: Sorry, padding to 16 bytes is still not supported\n");
4346         } else
4347                 return 1;
4348         return 0;
4349 }
4350
4351 /*
4352  * Use INQUIRY to get the firmware revision
4353  */
4354 static void idetape_get_inquiry_results (ide_drive_t *drive)
4355 {
4356         char *r;
4357         idetape_tape_t *tape = drive->driver_data;
4358         idetape_pc_t pc;
4359         idetape_inquiry_result_t *inquiry;
4360         
4361         idetape_create_inquiry_cmd(&pc);
4362         if (idetape_queue_pc_tail(drive, &pc)) {
4363                 printk(KERN_ERR "ide-tape: %s: can't get INQUIRY results\n", tape->name);
4364                 return;
4365         }
4366         inquiry = (idetape_inquiry_result_t *) pc.buffer;
4367         memcpy(tape->vendor_id, inquiry->vendor_id, 8);
4368         memcpy(tape->product_id, inquiry->product_id, 16);
4369         memcpy(tape->firmware_revision, inquiry->revision_level, 4);
4370         ide_fixstring(tape->vendor_id, 10, 0);
4371         ide_fixstring(tape->product_id, 18, 0);
4372         ide_fixstring(tape->firmware_revision, 6, 0);
4373         r = tape->firmware_revision;
4374         if (*(r + 1) == '.')
4375                 tape->firmware_revision_num = (*r - '0') * 100 + (*(r + 2) - '0') * 10 + *(r + 3) - '0';
4376         printk(KERN_INFO "ide-tape: %s <-> %s: %s %s rev %s\n", drive->name, tape->name, tape->vendor_id, tape->product_id, tape->firmware_revision);
4377 }
4378
4379 /*
4380  *      idetape_get_mode_sense_results asks the tape about its various
4381  *      parameters. In particular, we will adjust our data transfer buffer
4382  *      size to the recommended value as returned by the tape.
4383  */
4384 static void idetape_get_mode_sense_results (ide_drive_t *drive)
4385 {
4386         idetape_tape_t *tape = drive->driver_data;
4387         idetape_pc_t pc;
4388         idetape_mode_parameter_header_t *header;
4389         idetape_capabilities_page_t *capabilities;
4390         
4391         idetape_create_mode_sense_cmd(&pc, IDETAPE_CAPABILITIES_PAGE);
4392         if (idetape_queue_pc_tail(drive, &pc)) {
4393                 printk(KERN_ERR "ide-tape: Can't get tape parameters - assuming some default values\n");
4394                 tape->tape_block_size = 512;
4395                 tape->capabilities.ctl = 52;
4396                 tape->capabilities.speed = 450;
4397                 tape->capabilities.buffer_size = 6 * 52;
4398                 return;
4399         }
4400         header = (idetape_mode_parameter_header_t *) pc.buffer;
4401         capabilities = (idetape_capabilities_page_t *) (pc.buffer + sizeof(idetape_mode_parameter_header_t) + header->bdl);
4402
4403         capabilities->max_speed = ntohs(capabilities->max_speed);
4404         capabilities->ctl = ntohs(capabilities->ctl);
4405         capabilities->speed = ntohs(capabilities->speed);
4406         capabilities->buffer_size = ntohs(capabilities->buffer_size);
4407
4408         if (!capabilities->speed) {
4409                 printk(KERN_INFO "ide-tape: %s: overriding capabilities->speed (assuming 650KB/sec)\n", drive->name);
4410                 capabilities->speed = 650;
4411         }
4412         if (!capabilities->max_speed) {
4413                 printk(KERN_INFO "ide-tape: %s: overriding capabilities->max_speed (assuming 650KB/sec)\n", drive->name);
4414                 capabilities->max_speed = 650;
4415         }
4416
4417         tape->capabilities = *capabilities;             /* Save us a copy */
4418         if (capabilities->blk512)
4419                 tape->tape_block_size = 512;
4420         else if (capabilities->blk1024)
4421                 tape->tape_block_size = 1024;
4422
4423 #if IDETAPE_DEBUG_INFO
4424         printk(KERN_INFO "ide-tape: Dumping the results of the MODE SENSE packet command\n");
4425         printk(KERN_INFO "ide-tape: Mode Parameter Header:\n");
4426         printk(KERN_INFO "ide-tape: Mode Data Length - %d\n",header->mode_data_length);
4427         printk(KERN_INFO "ide-tape: Medium Type - %d\n",header->medium_type);
4428         printk(KERN_INFO "ide-tape: Device Specific Parameter - %d\n",header->dsp);
4429         printk(KERN_INFO "ide-tape: Block Descriptor Length - %d\n",header->bdl);
4430         
4431         printk(KERN_INFO "ide-tape: Capabilities and Mechanical Status Page:\n");
4432         printk(KERN_INFO "ide-tape: Page code - %d\n",capabilities->page_code);
4433         printk(KERN_INFO "ide-tape: Page length - %d\n",capabilities->page_length);
4434         printk(KERN_INFO "ide-tape: Read only - %s\n",capabilities->ro ? "Yes":"No");
4435         printk(KERN_INFO "ide-tape: Supports reverse space - %s\n",capabilities->sprev ? "Yes":"No");
4436         printk(KERN_INFO "ide-tape: Supports erase initiated formatting - %s\n",capabilities->efmt ? "Yes":"No");
4437         printk(KERN_INFO "ide-tape: Supports QFA two Partition format - %s\n",capabilities->qfa ? "Yes":"No");
4438         printk(KERN_INFO "ide-tape: Supports locking the medium - %s\n",capabilities->lock ? "Yes":"No");
4439         printk(KERN_INFO "ide-tape: The volume is currently locked - %s\n",capabilities->locked ? "Yes":"No");
4440         printk(KERN_INFO "ide-tape: The device defaults in the prevent state - %s\n",capabilities->prevent ? "Yes":"No");
4441         printk(KERN_INFO "ide-tape: Supports ejecting the medium - %s\n",capabilities->eject ? "Yes":"No");
4442         printk(KERN_INFO "ide-tape: Supports error correction - %s\n",capabilities->ecc ? "Yes":"No");
4443         printk(KERN_INFO "ide-tape: Supports data compression - %s\n",capabilities->cmprs ? "Yes":"No");
4444         printk(KERN_INFO "ide-tape: Supports 512 bytes block size - %s\n",capabilities->blk512 ? "Yes":"No");
4445         printk(KERN_INFO "ide-tape: Supports 1024 bytes block size - %s\n",capabilities->blk1024 ? "Yes":"No");
4446         printk(KERN_INFO "ide-tape: Supports 32768 bytes block size / Restricted byte count for PIO transfers - %s\n",capabilities->blk32768 ? "Yes":"No");
4447         printk(KERN_INFO "ide-tape: Maximum supported speed in KBps - %d\n",capabilities->max_speed);
4448         printk(KERN_INFO "ide-tape: Continuous transfer limits in blocks - %d\n",capabilities->ctl);
4449         printk(KERN_INFO "ide-tape: Current speed in KBps - %d\n",capabilities->speed); 
4450         printk(KERN_INFO "ide-tape: Buffer size - %d\n",capabilities->buffer_size*512);
4451 #endif /* IDETAPE_DEBUG_INFO */
4452 }
4453
4454 /*
4455  *      ide_get_blocksize_from_block_descriptor does a mode sense page 0 with block descriptor
4456  *      and if it succeeds sets the tape block size with the reported value
4457  */
4458 static void idetape_get_blocksize_from_block_descriptor(ide_drive_t *drive)
4459 {
4460
4461         idetape_tape_t *tape = drive->driver_data;
4462         idetape_pc_t pc;
4463         idetape_mode_parameter_header_t *header;
4464         idetape_parameter_block_descriptor_t *block_descrp;
4465         
4466         idetape_create_mode_sense_cmd(&pc, IDETAPE_BLOCK_DESCRIPTOR);
4467         if (idetape_queue_pc_tail(drive, &pc)) {
4468                 printk(KERN_ERR "ide-tape: Can't get block descriptor\n");
4469                 if (tape->tape_block_size == 0) {
4470                         printk(KERN_WARNING "ide-tape: Cannot deal with zero block size, assume 32k\n");
4471                         tape->tape_block_size =  32768;
4472                 }
4473                 return;
4474         }
4475         header = (idetape_mode_parameter_header_t *) pc.buffer;
4476         block_descrp = (idetape_parameter_block_descriptor_t *) (pc.buffer + sizeof(idetape_mode_parameter_header_t));
4477         tape->tape_block_size =( block_descrp->length[0]<<16) + (block_descrp->length[1]<<8) + block_descrp->length[2];
4478         tape->drv_write_prot = (header->dsp & 0x80) >> 7;
4479
4480 #if IDETAPE_DEBUG_INFO
4481         printk(KERN_INFO "ide-tape: Adjusted block size - %d\n", tape->tape_block_size);
4482 #endif /* IDETAPE_DEBUG_INFO */
4483 }
4484
4485 #ifdef CONFIG_IDE_PROC_FS
4486 static void idetape_add_settings (ide_drive_t *drive)
4487 {
4488         idetape_tape_t *tape = drive->driver_data;
4489
4490 /*
4491  *                      drive   setting name            read/write      data type       min                     max                     mul_factor                      div_factor      data pointer                            set function
4492  */
4493         ide_add_setting(drive,  "buffer",               SETTING_READ,   TYPE_SHORT,     0,                      0xffff,                 1,                              2,              &tape->capabilities.buffer_size,        NULL);
4494         ide_add_setting(drive,  "pipeline_min",         SETTING_RW,     TYPE_INT,       1,                      0xffff,                 tape->stage_size / 1024,        1,              &tape->min_pipeline,                    NULL);
4495         ide_add_setting(drive,  "pipeline",             SETTING_RW,     TYPE_INT,       1,                      0xffff,                 tape->stage_size / 1024,        1,              &tape->max_stages,                      NULL);
4496         ide_add_setting(drive,  "pipeline_max",         SETTING_RW,     TYPE_INT,       1,                      0xffff,                 tape->stage_size / 1024,        1,              &tape->max_pipeline,                    NULL);
4497         ide_add_setting(drive,  "pipeline_used",        SETTING_READ,   TYPE_INT,       0,                      0xffff,                 tape->stage_size / 1024,        1,              &tape->nr_stages,                       NULL);
4498         ide_add_setting(drive,  "pipeline_pending",     SETTING_READ,   TYPE_INT,       0,                      0xffff,                 tape->stage_size / 1024,        1,              &tape->nr_pending_stages,               NULL);
4499         ide_add_setting(drive,  "speed",                SETTING_READ,   TYPE_SHORT,     0,                      0xffff,                 1,                              1,              &tape->capabilities.speed,              NULL);
4500         ide_add_setting(drive,  "stage",                SETTING_READ,   TYPE_INT,       0,                      0xffff,                 1,                              1024,           &tape->stage_size,                      NULL);
4501         ide_add_setting(drive,  "tdsc",                 SETTING_RW,     TYPE_INT,       IDETAPE_DSC_RW_MIN,     IDETAPE_DSC_RW_MAX,     1000,                           HZ,             &tape->best_dsc_rw_frequency,           NULL);
4502         ide_add_setting(drive,  "dsc_overlap",          SETTING_RW,     TYPE_BYTE,      0,                      1,                      1,                              1,              &drive->dsc_overlap,                    NULL);
4503         ide_add_setting(drive,  "pipeline_head_speed_c",SETTING_READ,   TYPE_INT,       0,                      0xffff,                 1,                              1,              &tape->controlled_pipeline_head_speed,  NULL);
4504         ide_add_setting(drive,  "pipeline_head_speed_u",SETTING_READ,   TYPE_INT,       0,                      0xffff,                 1,                              1,              &tape->uncontrolled_pipeline_head_speed,NULL);
4505         ide_add_setting(drive,  "avg_speed",            SETTING_READ,   TYPE_INT,       0,                      0xffff,                 1,                              1,              &tape->avg_speed,                       NULL);
4506         ide_add_setting(drive,  "debug_level",          SETTING_RW,     TYPE_INT,       0,                      0xffff,                 1,                              1,              &tape->debug_level,                     NULL);
4507 }
4508 #else
4509 static inline void idetape_add_settings(ide_drive_t *drive) { ; }
4510 #endif
4511
4512 /*
4513  *      ide_setup is called to:
4514  *
4515  *              1.      Initialize our various state variables.
4516  *              2.      Ask the tape for its capabilities.
4517  *              3.      Allocate a buffer which will be used for data
4518  *                      transfer. The buffer size is chosen based on
4519  *                      the recommendation which we received in step (2).
4520  *
4521  *      Note that at this point ide.c already assigned us an irq, so that
4522  *      we can queue requests here and wait for their completion.
4523  */
4524 static void idetape_setup (ide_drive_t *drive, idetape_tape_t *tape, int minor)
4525 {
4526         unsigned long t1, tmid, tn, t;
4527         int speed;
4528         struct idetape_id_gcw gcw;
4529         int stage_size;
4530         struct sysinfo si;
4531
4532         spin_lock_init(&tape->spinlock);
4533         drive->dsc_overlap = 1;
4534         if (drive->hwif->host_flags & IDE_HFLAG_NO_DSC) {
4535                 printk(KERN_INFO "ide-tape: %s: disabling DSC overlap\n",
4536                                  tape->name);
4537                 drive->dsc_overlap = 0;
4538         }
4539         /* Seagate Travan drives do not support DSC overlap. */
4540         if (strstr(drive->id->model, "Seagate STT3401"))
4541                 drive->dsc_overlap = 0;
4542         tape->minor = minor;
4543         tape->name[0] = 'h';
4544         tape->name[1] = 't';
4545         tape->name[2] = '0' + minor;
4546         tape->chrdev_direction = idetape_direction_none;
4547         tape->pc = tape->pc_stack;
4548         tape->max_insert_speed = 10000;
4549         tape->speed_control = 1;
4550         *((unsigned short *) &gcw) = drive->id->config;
4551         if (gcw.drq_type == 1)
4552                 set_bit(IDETAPE_DRQ_INTERRUPT, &tape->flags);
4553
4554         tape->min_pipeline = tape->max_pipeline = tape->max_stages = 10;
4555         
4556         idetape_get_inquiry_results(drive);
4557         idetape_get_mode_sense_results(drive);
4558         idetape_get_blocksize_from_block_descriptor(drive);
4559         tape->user_bs_factor = 1;
4560         tape->stage_size = tape->capabilities.ctl * tape->tape_block_size;
4561         while (tape->stage_size > 0xffff) {
4562                 printk(KERN_NOTICE "ide-tape: decreasing stage size\n");
4563                 tape->capabilities.ctl /= 2;
4564                 tape->stage_size = tape->capabilities.ctl * tape->tape_block_size;
4565         }
4566         stage_size = tape->stage_size;
4567         tape->pages_per_stage = stage_size / PAGE_SIZE;
4568         if (stage_size % PAGE_SIZE) {
4569                 tape->pages_per_stage++;
4570                 tape->excess_bh_size = PAGE_SIZE - stage_size % PAGE_SIZE;
4571         }
4572
4573         /*
4574          *      Select the "best" DSC read/write polling frequency
4575          *      and pipeline size.
4576          */
4577         speed = max(tape->capabilities.speed, tape->capabilities.max_speed);
4578
4579         tape->max_stages = speed * 1000 * 10 / tape->stage_size;
4580
4581         /*
4582          *      Limit memory use for pipeline to 10% of physical memory
4583          */
4584         si_meminfo(&si);
4585         if (tape->max_stages * tape->stage_size > si.totalram * si.mem_unit / 10)
4586                 tape->max_stages = si.totalram * si.mem_unit / (10 * tape->stage_size);
4587         tape->max_stages   = min(tape->max_stages, IDETAPE_MAX_PIPELINE_STAGES);
4588         tape->min_pipeline = min(tape->max_stages, IDETAPE_MIN_PIPELINE_STAGES);
4589         tape->max_pipeline = min(tape->max_stages * 2, IDETAPE_MAX_PIPELINE_STAGES);
4590         if (tape->max_stages == 0)
4591                 tape->max_stages = tape->min_pipeline = tape->max_pipeline = 1;
4592
4593         t1 = (tape->stage_size * HZ) / (speed * 1000);
4594         tmid = (tape->capabilities.buffer_size * 32 * HZ) / (speed * 125);
4595         tn = (IDETAPE_FIFO_THRESHOLD * tape->stage_size * HZ) / (speed * 1000);
4596
4597         if (tape->max_stages)
4598                 t = tn;
4599         else
4600                 t = t1;
4601
4602         /*
4603          *      Ensure that the number we got makes sense; limit
4604          *      it within IDETAPE_DSC_RW_MIN and IDETAPE_DSC_RW_MAX.
4605          */
4606         tape->best_dsc_rw_frequency = max_t(unsigned long, min_t(unsigned long, t, IDETAPE_DSC_RW_MAX), IDETAPE_DSC_RW_MIN);
4607         printk(KERN_INFO "ide-tape: %s <-> %s: %dKBps, %d*%dkB buffer, "
4608                 "%dkB pipeline, %lums tDSC%s\n",
4609                 drive->name, tape->name, tape->capabilities.speed,
4610                 (tape->capabilities.buffer_size * 512) / tape->stage_size,
4611                 tape->stage_size / 1024,
4612                 tape->max_stages * tape->stage_size / 1024,
4613                 tape->best_dsc_rw_frequency * 1000 / HZ,
4614                 drive->using_dma ? ", DMA":"");
4615
4616         idetape_add_settings(drive);
4617 }
4618
4619 static void ide_tape_remove(ide_drive_t *drive)
4620 {
4621         idetape_tape_t *tape = drive->driver_data;
4622
4623         ide_proc_unregister_driver(drive, tape->driver);
4624
4625         ide_unregister_region(tape->disk);
4626
4627         ide_tape_put(tape);
4628 }
4629
4630 static void ide_tape_release(struct kref *kref)
4631 {
4632         struct ide_tape_obj *tape = to_ide_tape(kref);
4633         ide_drive_t *drive = tape->drive;
4634         struct gendisk *g = tape->disk;
4635
4636         BUG_ON(tape->first_stage != NULL || tape->merge_stage_size);
4637
4638         drive->dsc_overlap = 0;
4639         drive->driver_data = NULL;
4640         device_destroy(idetape_sysfs_class, MKDEV(IDETAPE_MAJOR, tape->minor));
4641         device_destroy(idetape_sysfs_class, MKDEV(IDETAPE_MAJOR, tape->minor + 128));
4642         idetape_devs[tape->minor] = NULL;
4643         g->private_data = NULL;
4644         put_disk(g);
4645         kfree(tape);
4646 }
4647
4648 #ifdef CONFIG_IDE_PROC_FS
4649 static int proc_idetape_read_name
4650         (char *page, char **start, off_t off, int count, int *eof, void *data)
4651 {
4652         ide_drive_t     *drive = (ide_drive_t *) data;
4653         idetape_tape_t  *tape = drive->driver_data;
4654         char            *out = page;
4655         int             len;
4656
4657         len = sprintf(out, "%s\n", tape->name);
4658         PROC_IDE_READ_RETURN(page, start, off, count, eof, len);
4659 }
4660
4661 static ide_proc_entry_t idetape_proc[] = {
4662         { "capacity",   S_IFREG|S_IRUGO,        proc_ide_read_capacity, NULL },
4663         { "name",       S_IFREG|S_IRUGO,        proc_idetape_read_name, NULL },
4664         { NULL, 0, NULL, NULL }
4665 };
4666 #endif
4667
4668 static int ide_tape_probe(ide_drive_t *);
4669
4670 static ide_driver_t idetape_driver = {
4671         .gen_driver = {
4672                 .owner          = THIS_MODULE,
4673                 .name           = "ide-tape",
4674                 .bus            = &ide_bus_type,
4675         },
4676         .probe                  = ide_tape_probe,
4677         .remove                 = ide_tape_remove,
4678         .version                = IDETAPE_VERSION,
4679         .media                  = ide_tape,
4680         .supports_dsc_overlap   = 1,
4681         .do_request             = idetape_do_request,
4682         .end_request            = idetape_end_request,
4683         .error                  = __ide_error,
4684         .abort                  = __ide_abort,
4685 #ifdef CONFIG_IDE_PROC_FS
4686         .proc                   = idetape_proc,
4687 #endif
4688 };
4689
4690 /*
4691  *      Our character device supporting functions, passed to register_chrdev.
4692  */
4693 static const struct file_operations idetape_fops = {
4694         .owner          = THIS_MODULE,
4695         .read           = idetape_chrdev_read,
4696         .write          = idetape_chrdev_write,
4697         .ioctl          = idetape_chrdev_ioctl,
4698         .open           = idetape_chrdev_open,
4699         .release        = idetape_chrdev_release,
4700 };
4701
4702 static int idetape_open(struct inode *inode, struct file *filp)
4703 {
4704         struct gendisk *disk = inode->i_bdev->bd_disk;
4705         struct ide_tape_obj *tape;
4706
4707         if (!(tape = ide_tape_get(disk)))
4708                 return -ENXIO;
4709
4710         return 0;
4711 }
4712
4713 static int idetape_release(struct inode *inode, struct file *filp)
4714 {
4715         struct gendisk *disk = inode->i_bdev->bd_disk;
4716         struct ide_tape_obj *tape = ide_tape_g(disk);
4717
4718         ide_tape_put(tape);
4719
4720         return 0;
4721 }
4722
4723 static int idetape_ioctl(struct inode *inode, struct file *file,
4724                         unsigned int cmd, unsigned long arg)
4725 {
4726         struct block_device *bdev = inode->i_bdev;
4727         struct ide_tape_obj *tape = ide_tape_g(bdev->bd_disk);
4728         ide_drive_t *drive = tape->drive;
4729         int err = generic_ide_ioctl(drive, file, bdev, cmd, arg);
4730         if (err == -EINVAL)
4731                 err = idetape_blkdev_ioctl(drive, cmd, arg);
4732         return err;
4733 }
4734
4735 static struct block_device_operations idetape_block_ops = {
4736         .owner          = THIS_MODULE,
4737         .open           = idetape_open,
4738         .release        = idetape_release,
4739         .ioctl          = idetape_ioctl,
4740 };
4741
4742 static int ide_tape_probe(ide_drive_t *drive)
4743 {
4744         idetape_tape_t *tape;
4745         struct gendisk *g;
4746         int minor;
4747
4748         if (!strstr("ide-tape", drive->driver_req))
4749                 goto failed;
4750         if (!drive->present)
4751                 goto failed;
4752         if (drive->media != ide_tape)
4753                 goto failed;
4754         if (!idetape_identify_device (drive)) {
4755                 printk(KERN_ERR "ide-tape: %s: not supported by this version of ide-tape\n", drive->name);
4756                 goto failed;
4757         }
4758         if (drive->scsi) {
4759                 printk("ide-tape: passing drive %s to ide-scsi emulation.\n", drive->name);
4760                 goto failed;
4761         }
4762         if (strstr(drive->id->model, "OnStream DI-")) {
4763                 printk(KERN_WARNING "ide-tape: Use drive %s with ide-scsi emulation and osst.\n", drive->name);
4764                 printk(KERN_WARNING "ide-tape: OnStream support will be removed soon from ide-tape!\n");
4765         }
4766         tape = kzalloc(sizeof (idetape_tape_t), GFP_KERNEL);
4767         if (tape == NULL) {
4768                 printk(KERN_ERR "ide-tape: %s: Can't allocate a tape structure\n", drive->name);
4769                 goto failed;
4770         }
4771
4772         g = alloc_disk(1 << PARTN_BITS);
4773         if (!g)
4774                 goto out_free_tape;
4775
4776         ide_init_disk(g, drive);
4777
4778         ide_proc_register_driver(drive, &idetape_driver);
4779
4780         kref_init(&tape->kref);
4781
4782         tape->drive = drive;
4783         tape->driver = &idetape_driver;
4784         tape->disk = g;
4785
4786         g->private_data = &tape->driver;
4787
4788         drive->driver_data = tape;
4789
4790         mutex_lock(&idetape_ref_mutex);
4791         for (minor = 0; idetape_devs[minor]; minor++)
4792                 ;
4793         idetape_devs[minor] = tape;
4794         mutex_unlock(&idetape_ref_mutex);
4795
4796         idetape_setup(drive, tape, minor);
4797
4798         device_create(idetape_sysfs_class, &drive->gendev,
4799                       MKDEV(IDETAPE_MAJOR, minor), "%s", tape->name);
4800         device_create(idetape_sysfs_class, &drive->gendev,
4801                         MKDEV(IDETAPE_MAJOR, minor + 128), "n%s", tape->name);
4802
4803         g->fops = &idetape_block_ops;
4804         ide_register_region(g);
4805
4806         return 0;
4807
4808 out_free_tape:
4809         kfree(tape);
4810 failed:
4811         return -ENODEV;
4812 }
4813
4814 MODULE_DESCRIPTION("ATAPI Streaming TAPE Driver");
4815 MODULE_LICENSE("GPL");
4816
4817 static void __exit idetape_exit (void)
4818 {
4819         driver_unregister(&idetape_driver.gen_driver);
4820         class_destroy(idetape_sysfs_class);
4821         unregister_chrdev(IDETAPE_MAJOR, "ht");
4822 }
4823
4824 static int __init idetape_init(void)
4825 {
4826         int error = 1;
4827         idetape_sysfs_class = class_create(THIS_MODULE, "ide_tape");
4828         if (IS_ERR(idetape_sysfs_class)) {
4829                 idetape_sysfs_class = NULL;
4830                 printk(KERN_ERR "Unable to create sysfs class for ide tapes\n");
4831                 error = -EBUSY;
4832                 goto out;
4833         }
4834
4835         if (register_chrdev(IDETAPE_MAJOR, "ht", &idetape_fops)) {
4836                 printk(KERN_ERR "ide-tape: Failed to register character device interface\n");
4837                 error = -EBUSY;
4838                 goto out_free_class;
4839         }
4840
4841         error = driver_register(&idetape_driver.gen_driver);
4842         if (error)
4843                 goto out_free_driver;
4844
4845         return 0;
4846
4847 out_free_driver:
4848         driver_unregister(&idetape_driver.gen_driver);
4849 out_free_class:
4850         class_destroy(idetape_sysfs_class);
4851 out:
4852         return error;
4853 }
4854
4855 MODULE_ALIAS("ide:*m-tape*");
4856 module_init(idetape_init);
4857 module_exit(idetape_exit);
4858 MODULE_ALIAS_CHARDEV_MAJOR(IDETAPE_MAJOR);