ide: add ->exec_command method
[safe/jmp/linux-2.6] / drivers / ide / ide-iops.c
1 /*
2  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
3  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
4  *
5  */
6
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
25
26 #include <asm/byteorder.h>
27 #include <asm/irq.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30
31 /*
32  *      Conventional PIO operations for ATA devices
33  */
34
35 static u8 ide_inb (unsigned long port)
36 {
37         return (u8) inb(port);
38 }
39
40 static void ide_outb (u8 val, unsigned long port)
41 {
42         outb(val, port);
43 }
44
45 static void ide_outbsync(ide_hwif_t *hwif, u8 addr, unsigned long port)
46 {
47         outb(addr, port);
48 }
49
50 void default_hwif_iops (ide_hwif_t *hwif)
51 {
52         hwif->OUTB      = ide_outb;
53         hwif->OUTBSYNC  = ide_outbsync;
54         hwif->INB       = ide_inb;
55 }
56
57 /*
58  *      MMIO operations, typically used for SATA controllers
59  */
60
61 static u8 ide_mm_inb (unsigned long port)
62 {
63         return (u8) readb((void __iomem *) port);
64 }
65
66 static void ide_mm_outb (u8 value, unsigned long port)
67 {
68         writeb(value, (void __iomem *) port);
69 }
70
71 static void ide_mm_outbsync(ide_hwif_t *hwif, u8 value, unsigned long port)
72 {
73         writeb(value, (void __iomem *) port);
74 }
75
76 void default_hwif_mmiops (ide_hwif_t *hwif)
77 {
78         hwif->OUTB      = ide_mm_outb;
79         /* Most systems will need to override OUTBSYNC, alas however
80            this one is controller specific! */
81         hwif->OUTBSYNC  = ide_mm_outbsync;
82         hwif->INB       = ide_mm_inb;
83 }
84
85 EXPORT_SYMBOL(default_hwif_mmiops);
86
87 void SELECT_DRIVE (ide_drive_t *drive)
88 {
89         ide_hwif_t *hwif = drive->hwif;
90         const struct ide_port_ops *port_ops = hwif->port_ops;
91
92         if (port_ops && port_ops->selectproc)
93                 port_ops->selectproc(drive);
94
95         hwif->OUTB(drive->select.all, hwif->io_ports.device_addr);
96 }
97
98 void SELECT_MASK(ide_drive_t *drive, int mask)
99 {
100         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
101
102         if (port_ops && port_ops->maskproc)
103                 port_ops->maskproc(drive, mask);
104 }
105
106 static void ide_exec_command(ide_hwif_t *hwif, u8 cmd)
107 {
108         if (hwif->host_flags & IDE_HFLAG_MMIO)
109                 writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
110         else
111                 outb(cmd, hwif->io_ports.command_addr);
112 }
113
114 static u8 ide_read_sff_dma_status(ide_hwif_t *hwif)
115 {
116         if (hwif->host_flags & IDE_HFLAG_MMIO)
117                 return readb((void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
118         else
119                 return inb(hwif->dma_base + ATA_DMA_STATUS);
120 }
121
122 static void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
123 {
124         ide_hwif_t *hwif = drive->hwif;
125         struct ide_io_ports *io_ports = &hwif->io_ports;
126         struct ide_taskfile *tf = &task->tf;
127         void (*tf_outb)(u8 addr, unsigned long port);
128         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
129         u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
130
131         if (mmio)
132                 tf_outb = ide_mm_outb;
133         else
134                 tf_outb = ide_outb;
135
136         if (task->tf_flags & IDE_TFLAG_FLAGGED)
137                 HIHI = 0xFF;
138
139         if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
140                 u16 data = (tf->hob_data << 8) | tf->data;
141
142                 if (mmio)
143                         writew(data, (void __iomem *)io_ports->data_addr);
144                 else
145                         outw(data, io_ports->data_addr);
146         }
147
148         if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
149                 tf_outb(tf->hob_feature, io_ports->feature_addr);
150         if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
151                 tf_outb(tf->hob_nsect, io_ports->nsect_addr);
152         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
153                 tf_outb(tf->hob_lbal, io_ports->lbal_addr);
154         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
155                 tf_outb(tf->hob_lbam, io_ports->lbam_addr);
156         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
157                 tf_outb(tf->hob_lbah, io_ports->lbah_addr);
158
159         if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
160                 tf_outb(tf->feature, io_ports->feature_addr);
161         if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
162                 tf_outb(tf->nsect, io_ports->nsect_addr);
163         if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
164                 tf_outb(tf->lbal, io_ports->lbal_addr);
165         if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
166                 tf_outb(tf->lbam, io_ports->lbam_addr);
167         if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
168                 tf_outb(tf->lbah, io_ports->lbah_addr);
169
170         if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
171                 tf_outb((tf->device & HIHI) | drive->select.all,
172                          io_ports->device_addr);
173 }
174
175 static void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
176 {
177         ide_hwif_t *hwif = drive->hwif;
178         struct ide_io_ports *io_ports = &hwif->io_ports;
179         struct ide_taskfile *tf = &task->tf;
180         void (*tf_outb)(u8 addr, unsigned long port);
181         u8 (*tf_inb)(unsigned long port);
182         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
183
184         if (mmio) {
185                 tf_outb = ide_mm_outb;
186                 tf_inb  = ide_mm_inb;
187         } else {
188                 tf_outb = ide_outb;
189                 tf_inb  = ide_inb;
190         }
191
192         if (task->tf_flags & IDE_TFLAG_IN_DATA) {
193                 u16 data;
194
195                 if (mmio)
196                         data = readw((void __iomem *)io_ports->data_addr);
197                 else
198                         data = inw(io_ports->data_addr);
199
200                 tf->data = data & 0xff;
201                 tf->hob_data = (data >> 8) & 0xff;
202         }
203
204         /* be sure we're looking at the low order bits */
205         tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
206
207         if (task->tf_flags & IDE_TFLAG_IN_NSECT)
208                 tf->nsect  = tf_inb(io_ports->nsect_addr);
209         if (task->tf_flags & IDE_TFLAG_IN_LBAL)
210                 tf->lbal   = tf_inb(io_ports->lbal_addr);
211         if (task->tf_flags & IDE_TFLAG_IN_LBAM)
212                 tf->lbam   = tf_inb(io_ports->lbam_addr);
213         if (task->tf_flags & IDE_TFLAG_IN_LBAH)
214                 tf->lbah   = tf_inb(io_ports->lbah_addr);
215         if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
216                 tf->device = tf_inb(io_ports->device_addr);
217
218         if (task->tf_flags & IDE_TFLAG_LBA48) {
219                 tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
220
221                 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
222                         tf->hob_feature = tf_inb(io_ports->feature_addr);
223                 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
224                         tf->hob_nsect   = tf_inb(io_ports->nsect_addr);
225                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
226                         tf->hob_lbal    = tf_inb(io_ports->lbal_addr);
227                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
228                         tf->hob_lbam    = tf_inb(io_ports->lbam_addr);
229                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
230                         tf->hob_lbah    = tf_inb(io_ports->lbah_addr);
231         }
232 }
233
234 /*
235  * Some localbus EIDE interfaces require a special access sequence
236  * when using 32-bit I/O instructions to transfer data.  We call this
237  * the "vlb_sync" sequence, which consists of three successive reads
238  * of the sector count register location, with interrupts disabled
239  * to ensure that the reads all happen together.
240  */
241 static void ata_vlb_sync(unsigned long port)
242 {
243         (void)inb(port);
244         (void)inb(port);
245         (void)inb(port);
246 }
247
248 /*
249  * This is used for most PIO data transfers *from* the IDE interface
250  *
251  * These routines will round up any request for an odd number of bytes,
252  * so if an odd len is specified, be sure that there's at least one
253  * extra byte allocated for the buffer.
254  */
255 static void ata_input_data(ide_drive_t *drive, struct request *rq,
256                            void *buf, unsigned int len)
257 {
258         ide_hwif_t *hwif = drive->hwif;
259         struct ide_io_ports *io_ports = &hwif->io_ports;
260         unsigned long data_addr = io_ports->data_addr;
261         u8 io_32bit = drive->io_32bit;
262         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
263
264         len++;
265
266         if (io_32bit) {
267                 unsigned long uninitialized_var(flags);
268
269                 if ((io_32bit & 2) && !mmio) {
270                         local_irq_save(flags);
271                         ata_vlb_sync(io_ports->nsect_addr);
272                 }
273
274                 if (mmio)
275                         __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
276                 else
277                         insl(data_addr, buf, len / 4);
278
279                 if ((io_32bit & 2) && !mmio)
280                         local_irq_restore(flags);
281
282                 if ((len & 3) >= 2) {
283                         if (mmio)
284                                 __ide_mm_insw((void __iomem *)data_addr,
285                                                 (u8 *)buf + (len & ~3), 1);
286                         else
287                                 insw(data_addr, (u8 *)buf + (len & ~3), 1);
288                 }
289         } else {
290                 if (mmio)
291                         __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
292                 else
293                         insw(data_addr, buf, len / 2);
294         }
295 }
296
297 /*
298  * This is used for most PIO data transfers *to* the IDE interface
299  */
300 static void ata_output_data(ide_drive_t *drive, struct request *rq,
301                             void *buf, unsigned int len)
302 {
303         ide_hwif_t *hwif = drive->hwif;
304         struct ide_io_ports *io_ports = &hwif->io_ports;
305         unsigned long data_addr = io_ports->data_addr;
306         u8 io_32bit = drive->io_32bit;
307         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
308
309         if (io_32bit) {
310                 unsigned long uninitialized_var(flags);
311
312                 if ((io_32bit & 2) && !mmio) {
313                         local_irq_save(flags);
314                         ata_vlb_sync(io_ports->nsect_addr);
315                 }
316
317                 if (mmio)
318                         __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
319                 else
320                         outsl(data_addr, buf, len / 4);
321
322                 if ((io_32bit & 2) && !mmio)
323                         local_irq_restore(flags);
324
325                 if ((len & 3) >= 2) {
326                         if (mmio)
327                                 __ide_mm_outsw((void __iomem *)data_addr,
328                                                  (u8 *)buf + (len & ~3), 1);
329                         else
330                                 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
331                 }
332         } else {
333                 if (mmio)
334                         __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
335                 else
336                         outsw(data_addr, buf, len / 2);
337         }
338 }
339
340 void default_hwif_transport(ide_hwif_t *hwif)
341 {
342         hwif->exec_command        = ide_exec_command;
343         hwif->read_sff_dma_status = ide_read_sff_dma_status;
344
345         hwif->tf_load     = ide_tf_load;
346         hwif->tf_read     = ide_tf_read;
347
348         hwif->input_data  = ata_input_data;
349         hwif->output_data = ata_output_data;
350 }
351
352 void ide_fix_driveid (struct hd_driveid *id)
353 {
354 #ifndef __LITTLE_ENDIAN
355 # ifdef __BIG_ENDIAN
356         int i;
357         u16 *stringcast;
358
359         id->config         = __le16_to_cpu(id->config);
360         id->cyls           = __le16_to_cpu(id->cyls);
361         id->reserved2      = __le16_to_cpu(id->reserved2);
362         id->heads          = __le16_to_cpu(id->heads);
363         id->track_bytes    = __le16_to_cpu(id->track_bytes);
364         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
365         id->sectors        = __le16_to_cpu(id->sectors);
366         id->vendor0        = __le16_to_cpu(id->vendor0);
367         id->vendor1        = __le16_to_cpu(id->vendor1);
368         id->vendor2        = __le16_to_cpu(id->vendor2);
369         stringcast = (u16 *)&id->serial_no[0];
370         for (i = 0; i < (20/2); i++)
371                 stringcast[i] = __le16_to_cpu(stringcast[i]);
372         id->buf_type       = __le16_to_cpu(id->buf_type);
373         id->buf_size       = __le16_to_cpu(id->buf_size);
374         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
375         stringcast = (u16 *)&id->fw_rev[0];
376         for (i = 0; i < (8/2); i++)
377                 stringcast[i] = __le16_to_cpu(stringcast[i]);
378         stringcast = (u16 *)&id->model[0];
379         for (i = 0; i < (40/2); i++)
380                 stringcast[i] = __le16_to_cpu(stringcast[i]);
381         id->dword_io       = __le16_to_cpu(id->dword_io);
382         id->reserved50     = __le16_to_cpu(id->reserved50);
383         id->field_valid    = __le16_to_cpu(id->field_valid);
384         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
385         id->cur_heads      = __le16_to_cpu(id->cur_heads);
386         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
387         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
388         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
389         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
390         id->dma_1word      = __le16_to_cpu(id->dma_1word);
391         id->dma_mword      = __le16_to_cpu(id->dma_mword);
392         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
393         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
394         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
395         id->eide_pio       = __le16_to_cpu(id->eide_pio);
396         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
397         for (i = 0; i < 2; ++i)
398                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
399         for (i = 0; i < 4; ++i)
400                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
401         id->queue_depth    = __le16_to_cpu(id->queue_depth);
402         for (i = 0; i < 4; ++i)
403                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
404         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
405         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
406         id->command_set_1  = __le16_to_cpu(id->command_set_1);
407         id->command_set_2  = __le16_to_cpu(id->command_set_2);
408         id->cfsse          = __le16_to_cpu(id->cfsse);
409         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
410         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
411         id->csf_default    = __le16_to_cpu(id->csf_default);
412         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
413         id->trseuc         = __le16_to_cpu(id->trseuc);
414         id->trsEuc         = __le16_to_cpu(id->trsEuc);
415         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
416         id->mprc           = __le16_to_cpu(id->mprc);
417         id->hw_config      = __le16_to_cpu(id->hw_config);
418         id->acoustic       = __le16_to_cpu(id->acoustic);
419         id->msrqs          = __le16_to_cpu(id->msrqs);
420         id->sxfert         = __le16_to_cpu(id->sxfert);
421         id->sal            = __le16_to_cpu(id->sal);
422         id->spg            = __le32_to_cpu(id->spg);
423         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
424         for (i = 0; i < 22; i++)
425                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
426         id->last_lun       = __le16_to_cpu(id->last_lun);
427         id->word127        = __le16_to_cpu(id->word127);
428         id->dlf            = __le16_to_cpu(id->dlf);
429         id->csfo           = __le16_to_cpu(id->csfo);
430         for (i = 0; i < 26; i++)
431                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
432         id->word156        = __le16_to_cpu(id->word156);
433         for (i = 0; i < 3; i++)
434                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
435         id->cfa_power      = __le16_to_cpu(id->cfa_power);
436         for (i = 0; i < 14; i++)
437                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
438         for (i = 0; i < 31; i++)
439                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
440         for (i = 0; i < 48; i++)
441                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
442         id->integrity_word  = __le16_to_cpu(id->integrity_word);
443 # else
444 #  error "Please fix <asm/byteorder.h>"
445 # endif
446 #endif
447 }
448
449 /*
450  * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
451  * removing leading/trailing blanks and compressing internal blanks.
452  * It is primarily used to tidy up the model name/number fields as
453  * returned by the WIN_[P]IDENTIFY commands.
454  */
455
456 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
457 {
458         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
459
460         if (byteswap) {
461                 /* convert from big-endian to host byte order */
462                 for (p = end ; p != s;) {
463                         unsigned short *pp = (unsigned short *) (p -= 2);
464                         *pp = ntohs(*pp);
465                 }
466         }
467         /* strip leading blanks */
468         while (s != end && *s == ' ')
469                 ++s;
470         /* compress internal blanks and strip trailing blanks */
471         while (s != end && *s) {
472                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
473                         *p++ = *(s-1);
474         }
475         /* wipe out trailing garbage */
476         while (p != end)
477                 *p++ = '\0';
478 }
479
480 EXPORT_SYMBOL(ide_fixstring);
481
482 /*
483  * Needed for PCI irq sharing
484  */
485 int drive_is_ready (ide_drive_t *drive)
486 {
487         ide_hwif_t *hwif        = HWIF(drive);
488         u8 stat                 = 0;
489
490         if (drive->waiting_for_dma)
491                 return hwif->dma_ops->dma_test_irq(drive);
492
493 #if 0
494         /* need to guarantee 400ns since last command was issued */
495         udelay(1);
496 #endif
497
498         /*
499          * We do a passive status test under shared PCI interrupts on
500          * cards that truly share the ATA side interrupt, but may also share
501          * an interrupt with another pci card/device.  We make no assumptions
502          * about possible isa-pnp and pci-pnp issues yet.
503          */
504         if (hwif->io_ports.ctl_addr)
505                 stat = ide_read_altstatus(drive);
506         else
507                 /* Note: this may clear a pending IRQ!! */
508                 stat = ide_read_status(drive);
509
510         if (stat & BUSY_STAT)
511                 /* drive busy:  definitely not interrupting */
512                 return 0;
513
514         /* drive ready: *might* be interrupting */
515         return 1;
516 }
517
518 EXPORT_SYMBOL(drive_is_ready);
519
520 /*
521  * This routine busy-waits for the drive status to be not "busy".
522  * It then checks the status for all of the "good" bits and none
523  * of the "bad" bits, and if all is okay it returns 0.  All other
524  * cases return error -- caller may then invoke ide_error().
525  *
526  * This routine should get fixed to not hog the cpu during extra long waits..
527  * That could be done by busy-waiting for the first jiffy or two, and then
528  * setting a timer to wake up at half second intervals thereafter,
529  * until timeout is achieved, before timing out.
530  */
531 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
532 {
533         unsigned long flags;
534         int i;
535         u8 stat;
536
537         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
538         stat = ide_read_status(drive);
539
540         if (stat & BUSY_STAT) {
541                 local_irq_set(flags);
542                 timeout += jiffies;
543                 while ((stat = ide_read_status(drive)) & BUSY_STAT) {
544                         if (time_after(jiffies, timeout)) {
545                                 /*
546                                  * One last read after the timeout in case
547                                  * heavy interrupt load made us not make any
548                                  * progress during the timeout..
549                                  */
550                                 stat = ide_read_status(drive);
551                                 if (!(stat & BUSY_STAT))
552                                         break;
553
554                                 local_irq_restore(flags);
555                                 *rstat = stat;
556                                 return -EBUSY;
557                         }
558                 }
559                 local_irq_restore(flags);
560         }
561         /*
562          * Allow status to settle, then read it again.
563          * A few rare drives vastly violate the 400ns spec here,
564          * so we'll wait up to 10usec for a "good" status
565          * rather than expensively fail things immediately.
566          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
567          */
568         for (i = 0; i < 10; i++) {
569                 udelay(1);
570                 stat = ide_read_status(drive);
571
572                 if (OK_STAT(stat, good, bad)) {
573                         *rstat = stat;
574                         return 0;
575                 }
576         }
577         *rstat = stat;
578         return -EFAULT;
579 }
580
581 /*
582  * In case of error returns error value after doing "*startstop = ide_error()".
583  * The caller should return the updated value of "startstop" in this case,
584  * "startstop" is unchanged when the function returns 0.
585  */
586 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
587 {
588         int err;
589         u8 stat;
590
591         /* bail early if we've exceeded max_failures */
592         if (drive->max_failures && (drive->failures > drive->max_failures)) {
593                 *startstop = ide_stopped;
594                 return 1;
595         }
596
597         err = __ide_wait_stat(drive, good, bad, timeout, &stat);
598
599         if (err) {
600                 char *s = (err == -EBUSY) ? "status timeout" : "status error";
601                 *startstop = ide_error(drive, s, stat);
602         }
603
604         return err;
605 }
606
607 EXPORT_SYMBOL(ide_wait_stat);
608
609 /**
610  *      ide_in_drive_list       -       look for drive in black/white list
611  *      @id: drive identifier
612  *      @drive_table: list to inspect
613  *
614  *      Look for a drive in the blacklist and the whitelist tables
615  *      Returns 1 if the drive is found in the table.
616  */
617
618 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
619 {
620         for ( ; drive_table->id_model; drive_table++)
621                 if ((!strcmp(drive_table->id_model, id->model)) &&
622                     (!drive_table->id_firmware ||
623                      strstr(id->fw_rev, drive_table->id_firmware)))
624                         return 1;
625         return 0;
626 }
627
628 EXPORT_SYMBOL_GPL(ide_in_drive_list);
629
630 /*
631  * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
632  * We list them here and depend on the device side cable detection for them.
633  *
634  * Some optical devices with the buggy firmwares have the same problem.
635  */
636 static const struct drive_list_entry ivb_list[] = {
637         { "QUANTUM FIREBALLlct10 05"    , "A03.0900"    },
638         { "TSSTcorp CDDVDW SH-S202J"    , "SB00"        },
639         { "TSSTcorp CDDVDW SH-S202J"    , "SB01"        },
640         { "TSSTcorp CDDVDW SH-S202N"    , "SB00"        },
641         { "TSSTcorp CDDVDW SH-S202N"    , "SB01"        },
642         { "TSSTcorp CDDVDW SH-S202H"    , "SB00"        },
643         { "TSSTcorp CDDVDW SH-S202H"    , "SB01"        },
644         { NULL                          , NULL          }
645 };
646
647 /*
648  *  All hosts that use the 80c ribbon must use!
649  *  The name is derived from upper byte of word 93 and the 80c ribbon.
650  */
651 u8 eighty_ninty_three (ide_drive_t *drive)
652 {
653         ide_hwif_t *hwif = drive->hwif;
654         struct hd_driveid *id = drive->id;
655         int ivb = ide_in_drive_list(id, ivb_list);
656
657         if (hwif->cbl == ATA_CBL_PATA40_SHORT)
658                 return 1;
659
660         if (ivb)
661                 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
662                                   drive->name);
663
664         if (ide_dev_is_sata(id) && !ivb)
665                 return 1;
666
667         if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
668                 goto no_80w;
669
670         /*
671          * FIXME:
672          * - change master/slave IDENTIFY order
673          * - force bit13 (80c cable present) check also for !ivb devices
674          *   (unless the slave device is pre-ATA3)
675          */
676         if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
677                 return 1;
678
679 no_80w:
680         if (drive->udma33_warned == 1)
681                 return 0;
682
683         printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
684                             "limiting max speed to UDMA33\n",
685                             drive->name,
686                             hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
687
688         drive->udma33_warned = 1;
689
690         return 0;
691 }
692
693 int ide_driveid_update(ide_drive_t *drive)
694 {
695         ide_hwif_t *hwif = drive->hwif;
696         struct hd_driveid *id;
697         unsigned long timeout, flags;
698         u8 stat;
699
700         /*
701          * Re-read drive->id for possible DMA mode
702          * change (copied from ide-probe.c)
703          */
704
705         SELECT_MASK(drive, 1);
706         ide_set_irq(drive, 0);
707         msleep(50);
708         hwif->exec_command(hwif, WIN_IDENTIFY);
709         timeout = jiffies + WAIT_WORSTCASE;
710         do {
711                 if (time_after(jiffies, timeout)) {
712                         SELECT_MASK(drive, 0);
713                         return 0;       /* drive timed-out */
714                 }
715
716                 msleep(50);     /* give drive a breather */
717                 stat = ide_read_altstatus(drive);
718         } while (stat & BUSY_STAT);
719
720         msleep(50);     /* wait for IRQ and DRQ_STAT */
721         stat = ide_read_status(drive);
722
723         if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
724                 SELECT_MASK(drive, 0);
725                 printk("%s: CHECK for good STATUS\n", drive->name);
726                 return 0;
727         }
728         local_irq_save(flags);
729         SELECT_MASK(drive, 0);
730         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
731         if (!id) {
732                 local_irq_restore(flags);
733                 return 0;
734         }
735         hwif->input_data(drive, NULL, id, SECTOR_SIZE);
736         (void)ide_read_status(drive);   /* clear drive IRQ */
737         local_irq_enable();
738         local_irq_restore(flags);
739         ide_fix_driveid(id);
740         if (id) {
741                 drive->id->dma_ultra = id->dma_ultra;
742                 drive->id->dma_mword = id->dma_mword;
743                 drive->id->dma_1word = id->dma_1word;
744                 /* anything more ? */
745                 kfree(id);
746
747                 if (drive->using_dma && ide_id_dma_bug(drive))
748                         ide_dma_off(drive);
749         }
750
751         return 1;
752 }
753
754 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
755 {
756         ide_hwif_t *hwif = drive->hwif;
757         struct ide_io_ports *io_ports = &hwif->io_ports;
758         int error = 0;
759         u8 stat;
760
761 #ifdef CONFIG_BLK_DEV_IDEDMA
762         if (hwif->dma_ops)      /* check if host supports DMA */
763                 hwif->dma_ops->dma_host_set(drive, 0);
764 #endif
765
766         /* Skip setting PIO flow-control modes on pre-EIDE drives */
767         if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
768                 goto skip;
769
770         /*
771          * Don't use ide_wait_cmd here - it will
772          * attempt to set_geometry and recalibrate,
773          * but for some reason these don't work at
774          * this point (lost interrupt).
775          */
776         /*
777          * Select the drive, and issue the SETFEATURES command
778          */
779         disable_irq_nosync(hwif->irq);
780         
781         /*
782          *      FIXME: we race against the running IRQ here if
783          *      this is called from non IRQ context. If we use
784          *      disable_irq() we hang on the error path. Work
785          *      is needed.
786          */
787          
788         udelay(1);
789         SELECT_DRIVE(drive);
790         SELECT_MASK(drive, 0);
791         udelay(1);
792         ide_set_irq(drive, 0);
793         hwif->OUTB(speed, io_ports->nsect_addr);
794         hwif->OUTB(SETFEATURES_XFER, io_ports->feature_addr);
795         hwif->exec_command(hwif, WIN_SETFEATURES);
796         if (drive->quirk_list == 2)
797                 ide_set_irq(drive, 1);
798
799         error = __ide_wait_stat(drive, drive->ready_stat,
800                                 BUSY_STAT|DRQ_STAT|ERR_STAT,
801                                 WAIT_CMD, &stat);
802
803         SELECT_MASK(drive, 0);
804
805         enable_irq(hwif->irq);
806
807         if (error) {
808                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
809                 return error;
810         }
811
812         drive->id->dma_ultra &= ~0xFF00;
813         drive->id->dma_mword &= ~0x0F00;
814         drive->id->dma_1word &= ~0x0F00;
815
816  skip:
817 #ifdef CONFIG_BLK_DEV_IDEDMA
818         if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
819             drive->using_dma)
820                 hwif->dma_ops->dma_host_set(drive, 1);
821         else if (hwif->dma_ops) /* check if host supports DMA */
822                 ide_dma_off_quietly(drive);
823 #endif
824
825         switch(speed) {
826                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
827                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
828                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
829                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
830                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
831                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
832                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
833                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
834                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
835                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
836                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
837                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
838                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
839                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
840                 default: break;
841         }
842         if (!drive->init_speed)
843                 drive->init_speed = speed;
844         drive->current_speed = speed;
845         return error;
846 }
847
848 /*
849  * This should get invoked any time we exit the driver to
850  * wait for an interrupt response from a drive.  handler() points
851  * at the appropriate code to handle the next interrupt, and a
852  * timer is started to prevent us from waiting forever in case
853  * something goes wrong (see the ide_timer_expiry() handler later on).
854  *
855  * See also ide_execute_command
856  */
857 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
858                       unsigned int timeout, ide_expiry_t *expiry)
859 {
860         ide_hwgroup_t *hwgroup = HWGROUP(drive);
861
862         BUG_ON(hwgroup->handler);
863         hwgroup->handler        = handler;
864         hwgroup->expiry         = expiry;
865         hwgroup->timer.expires  = jiffies + timeout;
866         hwgroup->req_gen_timer  = hwgroup->req_gen;
867         add_timer(&hwgroup->timer);
868 }
869
870 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
871                       unsigned int timeout, ide_expiry_t *expiry)
872 {
873         unsigned long flags;
874         spin_lock_irqsave(&ide_lock, flags);
875         __ide_set_handler(drive, handler, timeout, expiry);
876         spin_unlock_irqrestore(&ide_lock, flags);
877 }
878
879 EXPORT_SYMBOL(ide_set_handler);
880  
881 /**
882  *      ide_execute_command     -       execute an IDE command
883  *      @drive: IDE drive to issue the command against
884  *      @command: command byte to write
885  *      @handler: handler for next phase
886  *      @timeout: timeout for command
887  *      @expiry:  handler to run on timeout
888  *
889  *      Helper function to issue an IDE command. This handles the
890  *      atomicity requirements, command timing and ensures that the 
891  *      handler and IRQ setup do not race. All IDE command kick off
892  *      should go via this function or do equivalent locking.
893  */
894
895 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
896                          unsigned timeout, ide_expiry_t *expiry)
897 {
898         unsigned long flags;
899         ide_hwif_t *hwif = HWIF(drive);
900
901         spin_lock_irqsave(&ide_lock, flags);
902         __ide_set_handler(drive, handler, timeout, expiry);
903         hwif->exec_command(hwif, cmd);
904         /*
905          * Drive takes 400nS to respond, we must avoid the IRQ being
906          * serviced before that.
907          *
908          * FIXME: we could skip this delay with care on non shared devices
909          */
910         ndelay(400);
911         spin_unlock_irqrestore(&ide_lock, flags);
912 }
913 EXPORT_SYMBOL(ide_execute_command);
914
915 void ide_execute_pkt_cmd(ide_drive_t *drive)
916 {
917         ide_hwif_t *hwif = drive->hwif;
918         unsigned long flags;
919
920         spin_lock_irqsave(&ide_lock, flags);
921         hwif->exec_command(hwif, WIN_PACKETCMD);
922         ndelay(400);
923         spin_unlock_irqrestore(&ide_lock, flags);
924 }
925 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
926
927 static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
928 {
929         struct request *rq = drive->hwif->hwgroup->rq;
930
931         if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
932                 ide_end_request(drive, err ? err : 1, 0);
933 }
934
935 /* needed below */
936 static ide_startstop_t do_reset1 (ide_drive_t *, int);
937
938 /*
939  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
940  * during an atapi drive reset operation. If the drive has not yet responded,
941  * and we have not yet hit our maximum waiting time, then the timer is restarted
942  * for another 50ms.
943  */
944 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
945 {
946         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
947         u8 stat;
948
949         SELECT_DRIVE(drive);
950         udelay (10);
951         stat = ide_read_status(drive);
952
953         if (OK_STAT(stat, 0, BUSY_STAT))
954                 printk("%s: ATAPI reset complete\n", drive->name);
955         else {
956                 if (time_before(jiffies, hwgroup->poll_timeout)) {
957                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
958                         /* continue polling */
959                         return ide_started;
960                 }
961                 /* end of polling */
962                 hwgroup->polling = 0;
963                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
964                                 drive->name, stat);
965                 /* do it the old fashioned way */
966                 return do_reset1(drive, 1);
967         }
968         /* done polling */
969         hwgroup->polling = 0;
970         ide_complete_drive_reset(drive, 0);
971         return ide_stopped;
972 }
973
974 /*
975  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
976  * during an ide reset operation. If the drives have not yet responded,
977  * and we have not yet hit our maximum waiting time, then the timer is restarted
978  * for another 50ms.
979  */
980 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
981 {
982         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
983         ide_hwif_t *hwif        = HWIF(drive);
984         const struct ide_port_ops *port_ops = hwif->port_ops;
985         u8 tmp;
986         int err = 0;
987
988         if (port_ops && port_ops->reset_poll) {
989                 err = port_ops->reset_poll(drive);
990                 if (err) {
991                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
992                                 hwif->name, drive->name);
993                         goto out;
994                 }
995         }
996
997         tmp = ide_read_status(drive);
998
999         if (!OK_STAT(tmp, 0, BUSY_STAT)) {
1000                 if (time_before(jiffies, hwgroup->poll_timeout)) {
1001                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1002                         /* continue polling */
1003                         return ide_started;
1004                 }
1005                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1006                 drive->failures++;
1007                 err = -EIO;
1008         } else  {
1009                 printk("%s: reset: ", hwif->name);
1010                 tmp = ide_read_error(drive);
1011
1012                 if (tmp == 1) {
1013                         printk("success\n");
1014                         drive->failures = 0;
1015                 } else {
1016                         drive->failures++;
1017                         printk("master: ");
1018                         switch (tmp & 0x7f) {
1019                                 case 1: printk("passed");
1020                                         break;
1021                                 case 2: printk("formatter device error");
1022                                         break;
1023                                 case 3: printk("sector buffer error");
1024                                         break;
1025                                 case 4: printk("ECC circuitry error");
1026                                         break;
1027                                 case 5: printk("controlling MPU error");
1028                                         break;
1029                                 default:printk("error (0x%02x?)", tmp);
1030                         }
1031                         if (tmp & 0x80)
1032                                 printk("; slave: failed");
1033                         printk("\n");
1034                         err = -EIO;
1035                 }
1036         }
1037 out:
1038         hwgroup->polling = 0;   /* done polling */
1039         ide_complete_drive_reset(drive, err);
1040         return ide_stopped;
1041 }
1042
1043 static void ide_disk_pre_reset(ide_drive_t *drive)
1044 {
1045         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1046
1047         drive->special.all = 0;
1048         drive->special.b.set_geometry = legacy;
1049         drive->special.b.recalibrate  = legacy;
1050         drive->mult_count = 0;
1051         if (!drive->keep_settings && !drive->using_dma)
1052                 drive->mult_req = 0;
1053         if (drive->mult_req != drive->mult_count)
1054                 drive->special.b.set_multmode = 1;
1055 }
1056
1057 static void pre_reset(ide_drive_t *drive)
1058 {
1059         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1060
1061         if (drive->media == ide_disk)
1062                 ide_disk_pre_reset(drive);
1063         else
1064                 drive->post_reset = 1;
1065
1066         if (drive->using_dma) {
1067                 if (drive->crc_count)
1068                         ide_check_dma_crc(drive);
1069                 else
1070                         ide_dma_off(drive);
1071         }
1072
1073         if (!drive->keep_settings) {
1074                 if (!drive->using_dma) {
1075                         drive->unmask = 0;
1076                         drive->io_32bit = 0;
1077                 }
1078                 return;
1079         }
1080
1081         if (port_ops && port_ops->pre_reset)
1082                 port_ops->pre_reset(drive);
1083
1084         if (drive->current_speed != 0xff)
1085                 drive->desired_speed = drive->current_speed;
1086         drive->current_speed = 0xff;
1087 }
1088
1089 /*
1090  * do_reset1() attempts to recover a confused drive by resetting it.
1091  * Unfortunately, resetting a disk drive actually resets all devices on
1092  * the same interface, so it can really be thought of as resetting the
1093  * interface rather than resetting the drive.
1094  *
1095  * ATAPI devices have their own reset mechanism which allows them to be
1096  * individually reset without clobbering other devices on the same interface.
1097  *
1098  * Unfortunately, the IDE interface does not generate an interrupt to let
1099  * us know when the reset operation has finished, so we must poll for this.
1100  * Equally poor, though, is the fact that this may a very long time to complete,
1101  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1102  * we set a timer to poll at 50ms intervals.
1103  */
1104 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1105 {
1106         unsigned int unit;
1107         unsigned long flags;
1108         ide_hwif_t *hwif;
1109         ide_hwgroup_t *hwgroup;
1110         struct ide_io_ports *io_ports;
1111         const struct ide_port_ops *port_ops;
1112         u8 ctl;
1113
1114         spin_lock_irqsave(&ide_lock, flags);
1115         hwif = HWIF(drive);
1116         hwgroup = HWGROUP(drive);
1117
1118         io_ports = &hwif->io_ports;
1119
1120         /* We must not reset with running handlers */
1121         BUG_ON(hwgroup->handler != NULL);
1122
1123         /* For an ATAPI device, first try an ATAPI SRST. */
1124         if (drive->media != ide_disk && !do_not_try_atapi) {
1125                 pre_reset(drive);
1126                 SELECT_DRIVE(drive);
1127                 udelay (20);
1128                 hwif->exec_command(hwif, WIN_SRST);
1129                 ndelay(400);
1130                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1131                 hwgroup->polling = 1;
1132                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1133                 spin_unlock_irqrestore(&ide_lock, flags);
1134                 return ide_started;
1135         }
1136
1137         /*
1138          * First, reset any device state data we were maintaining
1139          * for any of the drives on this interface.
1140          */
1141         for (unit = 0; unit < MAX_DRIVES; ++unit)
1142                 pre_reset(&hwif->drives[unit]);
1143
1144         if (io_ports->ctl_addr == 0) {
1145                 spin_unlock_irqrestore(&ide_lock, flags);
1146                 ide_complete_drive_reset(drive, -ENXIO);
1147                 return ide_stopped;
1148         }
1149
1150         /*
1151          * Note that we also set nIEN while resetting the device,
1152          * to mask unwanted interrupts from the interface during the reset.
1153          * However, due to the design of PC hardware, this will cause an
1154          * immediate interrupt due to the edge transition it produces.
1155          * This single interrupt gives us a "fast poll" for drives that
1156          * recover from reset very quickly, saving us the first 50ms wait time.
1157          */
1158         /* set SRST and nIEN */
1159         hwif->OUTBSYNC(hwif, ATA_DEVCTL_OBS | 6, io_ports->ctl_addr);
1160         /* more than enough time */
1161         udelay(10);
1162         if (drive->quirk_list == 2)
1163                 ctl = ATA_DEVCTL_OBS;           /* clear SRST and nIEN */
1164         else
1165                 ctl = ATA_DEVCTL_OBS | 2;       /* clear SRST, leave nIEN */
1166         hwif->OUTBSYNC(hwif, ctl, io_ports->ctl_addr);
1167         /* more than enough time */
1168         udelay(10);
1169         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1170         hwgroup->polling = 1;
1171         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1172
1173         /*
1174          * Some weird controller like resetting themselves to a strange
1175          * state when the disks are reset this way. At least, the Winbond
1176          * 553 documentation says that
1177          */
1178         port_ops = hwif->port_ops;
1179         if (port_ops && port_ops->resetproc)
1180                 port_ops->resetproc(drive);
1181
1182         spin_unlock_irqrestore(&ide_lock, flags);
1183         return ide_started;
1184 }
1185
1186 /*
1187  * ide_do_reset() is the entry point to the drive/interface reset code.
1188  */
1189
1190 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1191 {
1192         return do_reset1(drive, 0);
1193 }
1194
1195 EXPORT_SYMBOL(ide_do_reset);
1196
1197 /*
1198  * ide_wait_not_busy() waits for the currently selected device on the hwif
1199  * to report a non-busy status, see comments in ide_probe_port().
1200  */
1201 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1202 {
1203         u8 stat = 0;
1204
1205         while(timeout--) {
1206                 /*
1207                  * Turn this into a schedule() sleep once I'm sure
1208                  * about locking issues (2.5 work ?).
1209                  */
1210                 mdelay(1);
1211                 stat = hwif->INB(hwif->io_ports.status_addr);
1212                 if ((stat & BUSY_STAT) == 0)
1213                         return 0;
1214                 /*
1215                  * Assume a value of 0xff means nothing is connected to
1216                  * the interface and it doesn't implement the pull-down
1217                  * resistor on D7.
1218                  */
1219                 if (stat == 0xff)
1220                         return -ENODEV;
1221                 touch_softlockup_watchdog();
1222                 touch_nmi_watchdog();
1223         }
1224         return -EBUSY;
1225 }
1226
1227 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1228