ide: add ->read_altstatus method
[safe/jmp/linux-2.6] / drivers / ide / ide-iops.c
1 /*
2  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
3  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
4  *
5  */
6
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
25
26 #include <asm/byteorder.h>
27 #include <asm/irq.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30
31 /*
32  *      Conventional PIO operations for ATA devices
33  */
34
35 static u8 ide_inb (unsigned long port)
36 {
37         return (u8) inb(port);
38 }
39
40 static void ide_outb (u8 val, unsigned long port)
41 {
42         outb(val, port);
43 }
44
45 static void ide_outbsync(ide_hwif_t *hwif, u8 addr, unsigned long port)
46 {
47         outb(addr, port);
48 }
49
50 void default_hwif_iops (ide_hwif_t *hwif)
51 {
52         hwif->OUTB      = ide_outb;
53         hwif->OUTBSYNC  = ide_outbsync;
54         hwif->INB       = ide_inb;
55 }
56
57 /*
58  *      MMIO operations, typically used for SATA controllers
59  */
60
61 static u8 ide_mm_inb (unsigned long port)
62 {
63         return (u8) readb((void __iomem *) port);
64 }
65
66 static void ide_mm_outb (u8 value, unsigned long port)
67 {
68         writeb(value, (void __iomem *) port);
69 }
70
71 static void ide_mm_outbsync(ide_hwif_t *hwif, u8 value, unsigned long port)
72 {
73         writeb(value, (void __iomem *) port);
74 }
75
76 void default_hwif_mmiops (ide_hwif_t *hwif)
77 {
78         hwif->OUTB      = ide_mm_outb;
79         /* Most systems will need to override OUTBSYNC, alas however
80            this one is controller specific! */
81         hwif->OUTBSYNC  = ide_mm_outbsync;
82         hwif->INB       = ide_mm_inb;
83 }
84
85 EXPORT_SYMBOL(default_hwif_mmiops);
86
87 void SELECT_DRIVE (ide_drive_t *drive)
88 {
89         ide_hwif_t *hwif = drive->hwif;
90         const struct ide_port_ops *port_ops = hwif->port_ops;
91
92         if (port_ops && port_ops->selectproc)
93                 port_ops->selectproc(drive);
94
95         hwif->OUTB(drive->select.all, hwif->io_ports.device_addr);
96 }
97
98 void SELECT_MASK(ide_drive_t *drive, int mask)
99 {
100         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
101
102         if (port_ops && port_ops->maskproc)
103                 port_ops->maskproc(drive, mask);
104 }
105
106 static void ide_exec_command(ide_hwif_t *hwif, u8 cmd)
107 {
108         if (hwif->host_flags & IDE_HFLAG_MMIO)
109                 writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
110         else
111                 outb(cmd, hwif->io_ports.command_addr);
112 }
113
114 static u8 ide_read_status(ide_hwif_t *hwif)
115 {
116         if (hwif->host_flags & IDE_HFLAG_MMIO)
117                 return readb((void __iomem *)hwif->io_ports.status_addr);
118         else
119                 return inb(hwif->io_ports.status_addr);
120 }
121
122 static u8 ide_read_altstatus(ide_hwif_t *hwif)
123 {
124         if (hwif->host_flags & IDE_HFLAG_MMIO)
125                 return readb((void __iomem *)hwif->io_ports.ctl_addr);
126         else
127                 return inb(hwif->io_ports.ctl_addr);
128 }
129
130 static u8 ide_read_sff_dma_status(ide_hwif_t *hwif)
131 {
132         if (hwif->host_flags & IDE_HFLAG_MMIO)
133                 return readb((void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
134         else
135                 return inb(hwif->dma_base + ATA_DMA_STATUS);
136 }
137
138 static void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
139 {
140         ide_hwif_t *hwif = drive->hwif;
141         struct ide_io_ports *io_ports = &hwif->io_ports;
142         struct ide_taskfile *tf = &task->tf;
143         void (*tf_outb)(u8 addr, unsigned long port);
144         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
145         u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
146
147         if (mmio)
148                 tf_outb = ide_mm_outb;
149         else
150                 tf_outb = ide_outb;
151
152         if (task->tf_flags & IDE_TFLAG_FLAGGED)
153                 HIHI = 0xFF;
154
155         if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
156                 u16 data = (tf->hob_data << 8) | tf->data;
157
158                 if (mmio)
159                         writew(data, (void __iomem *)io_ports->data_addr);
160                 else
161                         outw(data, io_ports->data_addr);
162         }
163
164         if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
165                 tf_outb(tf->hob_feature, io_ports->feature_addr);
166         if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
167                 tf_outb(tf->hob_nsect, io_ports->nsect_addr);
168         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
169                 tf_outb(tf->hob_lbal, io_ports->lbal_addr);
170         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
171                 tf_outb(tf->hob_lbam, io_ports->lbam_addr);
172         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
173                 tf_outb(tf->hob_lbah, io_ports->lbah_addr);
174
175         if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
176                 tf_outb(tf->feature, io_ports->feature_addr);
177         if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
178                 tf_outb(tf->nsect, io_ports->nsect_addr);
179         if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
180                 tf_outb(tf->lbal, io_ports->lbal_addr);
181         if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
182                 tf_outb(tf->lbam, io_ports->lbam_addr);
183         if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
184                 tf_outb(tf->lbah, io_ports->lbah_addr);
185
186         if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
187                 tf_outb((tf->device & HIHI) | drive->select.all,
188                          io_ports->device_addr);
189 }
190
191 static void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
192 {
193         ide_hwif_t *hwif = drive->hwif;
194         struct ide_io_ports *io_ports = &hwif->io_ports;
195         struct ide_taskfile *tf = &task->tf;
196         void (*tf_outb)(u8 addr, unsigned long port);
197         u8 (*tf_inb)(unsigned long port);
198         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
199
200         if (mmio) {
201                 tf_outb = ide_mm_outb;
202                 tf_inb  = ide_mm_inb;
203         } else {
204                 tf_outb = ide_outb;
205                 tf_inb  = ide_inb;
206         }
207
208         if (task->tf_flags & IDE_TFLAG_IN_DATA) {
209                 u16 data;
210
211                 if (mmio)
212                         data = readw((void __iomem *)io_ports->data_addr);
213                 else
214                         data = inw(io_ports->data_addr);
215
216                 tf->data = data & 0xff;
217                 tf->hob_data = (data >> 8) & 0xff;
218         }
219
220         /* be sure we're looking at the low order bits */
221         tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
222
223         if (task->tf_flags & IDE_TFLAG_IN_NSECT)
224                 tf->nsect  = tf_inb(io_ports->nsect_addr);
225         if (task->tf_flags & IDE_TFLAG_IN_LBAL)
226                 tf->lbal   = tf_inb(io_ports->lbal_addr);
227         if (task->tf_flags & IDE_TFLAG_IN_LBAM)
228                 tf->lbam   = tf_inb(io_ports->lbam_addr);
229         if (task->tf_flags & IDE_TFLAG_IN_LBAH)
230                 tf->lbah   = tf_inb(io_ports->lbah_addr);
231         if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
232                 tf->device = tf_inb(io_ports->device_addr);
233
234         if (task->tf_flags & IDE_TFLAG_LBA48) {
235                 tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
236
237                 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
238                         tf->hob_feature = tf_inb(io_ports->feature_addr);
239                 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
240                         tf->hob_nsect   = tf_inb(io_ports->nsect_addr);
241                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
242                         tf->hob_lbal    = tf_inb(io_ports->lbal_addr);
243                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
244                         tf->hob_lbam    = tf_inb(io_ports->lbam_addr);
245                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
246                         tf->hob_lbah    = tf_inb(io_ports->lbah_addr);
247         }
248 }
249
250 /*
251  * Some localbus EIDE interfaces require a special access sequence
252  * when using 32-bit I/O instructions to transfer data.  We call this
253  * the "vlb_sync" sequence, which consists of three successive reads
254  * of the sector count register location, with interrupts disabled
255  * to ensure that the reads all happen together.
256  */
257 static void ata_vlb_sync(unsigned long port)
258 {
259         (void)inb(port);
260         (void)inb(port);
261         (void)inb(port);
262 }
263
264 /*
265  * This is used for most PIO data transfers *from* the IDE interface
266  *
267  * These routines will round up any request for an odd number of bytes,
268  * so if an odd len is specified, be sure that there's at least one
269  * extra byte allocated for the buffer.
270  */
271 static void ata_input_data(ide_drive_t *drive, struct request *rq,
272                            void *buf, unsigned int len)
273 {
274         ide_hwif_t *hwif = drive->hwif;
275         struct ide_io_ports *io_ports = &hwif->io_ports;
276         unsigned long data_addr = io_ports->data_addr;
277         u8 io_32bit = drive->io_32bit;
278         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
279
280         len++;
281
282         if (io_32bit) {
283                 unsigned long uninitialized_var(flags);
284
285                 if ((io_32bit & 2) && !mmio) {
286                         local_irq_save(flags);
287                         ata_vlb_sync(io_ports->nsect_addr);
288                 }
289
290                 if (mmio)
291                         __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
292                 else
293                         insl(data_addr, buf, len / 4);
294
295                 if ((io_32bit & 2) && !mmio)
296                         local_irq_restore(flags);
297
298                 if ((len & 3) >= 2) {
299                         if (mmio)
300                                 __ide_mm_insw((void __iomem *)data_addr,
301                                                 (u8 *)buf + (len & ~3), 1);
302                         else
303                                 insw(data_addr, (u8 *)buf + (len & ~3), 1);
304                 }
305         } else {
306                 if (mmio)
307                         __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
308                 else
309                         insw(data_addr, buf, len / 2);
310         }
311 }
312
313 /*
314  * This is used for most PIO data transfers *to* the IDE interface
315  */
316 static void ata_output_data(ide_drive_t *drive, struct request *rq,
317                             void *buf, unsigned int len)
318 {
319         ide_hwif_t *hwif = drive->hwif;
320         struct ide_io_ports *io_ports = &hwif->io_ports;
321         unsigned long data_addr = io_ports->data_addr;
322         u8 io_32bit = drive->io_32bit;
323         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
324
325         if (io_32bit) {
326                 unsigned long uninitialized_var(flags);
327
328                 if ((io_32bit & 2) && !mmio) {
329                         local_irq_save(flags);
330                         ata_vlb_sync(io_ports->nsect_addr);
331                 }
332
333                 if (mmio)
334                         __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
335                 else
336                         outsl(data_addr, buf, len / 4);
337
338                 if ((io_32bit & 2) && !mmio)
339                         local_irq_restore(flags);
340
341                 if ((len & 3) >= 2) {
342                         if (mmio)
343                                 __ide_mm_outsw((void __iomem *)data_addr,
344                                                  (u8 *)buf + (len & ~3), 1);
345                         else
346                                 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
347                 }
348         } else {
349                 if (mmio)
350                         __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
351                 else
352                         outsw(data_addr, buf, len / 2);
353         }
354 }
355
356 void default_hwif_transport(ide_hwif_t *hwif)
357 {
358         hwif->exec_command        = ide_exec_command;
359         hwif->read_status         = ide_read_status;
360         hwif->read_altstatus      = ide_read_altstatus;
361         hwif->read_sff_dma_status = ide_read_sff_dma_status;
362
363         hwif->tf_load     = ide_tf_load;
364         hwif->tf_read     = ide_tf_read;
365
366         hwif->input_data  = ata_input_data;
367         hwif->output_data = ata_output_data;
368 }
369
370 void ide_fix_driveid (struct hd_driveid *id)
371 {
372 #ifndef __LITTLE_ENDIAN
373 # ifdef __BIG_ENDIAN
374         int i;
375         u16 *stringcast;
376
377         id->config         = __le16_to_cpu(id->config);
378         id->cyls           = __le16_to_cpu(id->cyls);
379         id->reserved2      = __le16_to_cpu(id->reserved2);
380         id->heads          = __le16_to_cpu(id->heads);
381         id->track_bytes    = __le16_to_cpu(id->track_bytes);
382         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
383         id->sectors        = __le16_to_cpu(id->sectors);
384         id->vendor0        = __le16_to_cpu(id->vendor0);
385         id->vendor1        = __le16_to_cpu(id->vendor1);
386         id->vendor2        = __le16_to_cpu(id->vendor2);
387         stringcast = (u16 *)&id->serial_no[0];
388         for (i = 0; i < (20/2); i++)
389                 stringcast[i] = __le16_to_cpu(stringcast[i]);
390         id->buf_type       = __le16_to_cpu(id->buf_type);
391         id->buf_size       = __le16_to_cpu(id->buf_size);
392         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
393         stringcast = (u16 *)&id->fw_rev[0];
394         for (i = 0; i < (8/2); i++)
395                 stringcast[i] = __le16_to_cpu(stringcast[i]);
396         stringcast = (u16 *)&id->model[0];
397         for (i = 0; i < (40/2); i++)
398                 stringcast[i] = __le16_to_cpu(stringcast[i]);
399         id->dword_io       = __le16_to_cpu(id->dword_io);
400         id->reserved50     = __le16_to_cpu(id->reserved50);
401         id->field_valid    = __le16_to_cpu(id->field_valid);
402         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
403         id->cur_heads      = __le16_to_cpu(id->cur_heads);
404         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
405         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
406         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
407         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
408         id->dma_1word      = __le16_to_cpu(id->dma_1word);
409         id->dma_mword      = __le16_to_cpu(id->dma_mword);
410         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
411         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
412         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
413         id->eide_pio       = __le16_to_cpu(id->eide_pio);
414         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
415         for (i = 0; i < 2; ++i)
416                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
417         for (i = 0; i < 4; ++i)
418                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
419         id->queue_depth    = __le16_to_cpu(id->queue_depth);
420         for (i = 0; i < 4; ++i)
421                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
422         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
423         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
424         id->command_set_1  = __le16_to_cpu(id->command_set_1);
425         id->command_set_2  = __le16_to_cpu(id->command_set_2);
426         id->cfsse          = __le16_to_cpu(id->cfsse);
427         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
428         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
429         id->csf_default    = __le16_to_cpu(id->csf_default);
430         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
431         id->trseuc         = __le16_to_cpu(id->trseuc);
432         id->trsEuc         = __le16_to_cpu(id->trsEuc);
433         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
434         id->mprc           = __le16_to_cpu(id->mprc);
435         id->hw_config      = __le16_to_cpu(id->hw_config);
436         id->acoustic       = __le16_to_cpu(id->acoustic);
437         id->msrqs          = __le16_to_cpu(id->msrqs);
438         id->sxfert         = __le16_to_cpu(id->sxfert);
439         id->sal            = __le16_to_cpu(id->sal);
440         id->spg            = __le32_to_cpu(id->spg);
441         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
442         for (i = 0; i < 22; i++)
443                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
444         id->last_lun       = __le16_to_cpu(id->last_lun);
445         id->word127        = __le16_to_cpu(id->word127);
446         id->dlf            = __le16_to_cpu(id->dlf);
447         id->csfo           = __le16_to_cpu(id->csfo);
448         for (i = 0; i < 26; i++)
449                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
450         id->word156        = __le16_to_cpu(id->word156);
451         for (i = 0; i < 3; i++)
452                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
453         id->cfa_power      = __le16_to_cpu(id->cfa_power);
454         for (i = 0; i < 14; i++)
455                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
456         for (i = 0; i < 31; i++)
457                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
458         for (i = 0; i < 48; i++)
459                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
460         id->integrity_word  = __le16_to_cpu(id->integrity_word);
461 # else
462 #  error "Please fix <asm/byteorder.h>"
463 # endif
464 #endif
465 }
466
467 /*
468  * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
469  * removing leading/trailing blanks and compressing internal blanks.
470  * It is primarily used to tidy up the model name/number fields as
471  * returned by the WIN_[P]IDENTIFY commands.
472  */
473
474 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
475 {
476         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
477
478         if (byteswap) {
479                 /* convert from big-endian to host byte order */
480                 for (p = end ; p != s;) {
481                         unsigned short *pp = (unsigned short *) (p -= 2);
482                         *pp = ntohs(*pp);
483                 }
484         }
485         /* strip leading blanks */
486         while (s != end && *s == ' ')
487                 ++s;
488         /* compress internal blanks and strip trailing blanks */
489         while (s != end && *s) {
490                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
491                         *p++ = *(s-1);
492         }
493         /* wipe out trailing garbage */
494         while (p != end)
495                 *p++ = '\0';
496 }
497
498 EXPORT_SYMBOL(ide_fixstring);
499
500 /*
501  * Needed for PCI irq sharing
502  */
503 int drive_is_ready (ide_drive_t *drive)
504 {
505         ide_hwif_t *hwif        = HWIF(drive);
506         u8 stat                 = 0;
507
508         if (drive->waiting_for_dma)
509                 return hwif->dma_ops->dma_test_irq(drive);
510
511 #if 0
512         /* need to guarantee 400ns since last command was issued */
513         udelay(1);
514 #endif
515
516         /*
517          * We do a passive status test under shared PCI interrupts on
518          * cards that truly share the ATA side interrupt, but may also share
519          * an interrupt with another pci card/device.  We make no assumptions
520          * about possible isa-pnp and pci-pnp issues yet.
521          */
522         if (hwif->io_ports.ctl_addr)
523                 stat = hwif->read_altstatus(hwif);
524         else
525                 /* Note: this may clear a pending IRQ!! */
526                 stat = hwif->read_status(hwif);
527
528         if (stat & BUSY_STAT)
529                 /* drive busy:  definitely not interrupting */
530                 return 0;
531
532         /* drive ready: *might* be interrupting */
533         return 1;
534 }
535
536 EXPORT_SYMBOL(drive_is_ready);
537
538 /*
539  * This routine busy-waits for the drive status to be not "busy".
540  * It then checks the status for all of the "good" bits and none
541  * of the "bad" bits, and if all is okay it returns 0.  All other
542  * cases return error -- caller may then invoke ide_error().
543  *
544  * This routine should get fixed to not hog the cpu during extra long waits..
545  * That could be done by busy-waiting for the first jiffy or two, and then
546  * setting a timer to wake up at half second intervals thereafter,
547  * until timeout is achieved, before timing out.
548  */
549 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
550 {
551         ide_hwif_t *hwif = drive->hwif;
552         unsigned long flags;
553         int i;
554         u8 stat;
555
556         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
557         stat = hwif->read_status(hwif);
558
559         if (stat & BUSY_STAT) {
560                 local_irq_set(flags);
561                 timeout += jiffies;
562                 while ((stat = hwif->read_status(hwif)) & BUSY_STAT) {
563                         if (time_after(jiffies, timeout)) {
564                                 /*
565                                  * One last read after the timeout in case
566                                  * heavy interrupt load made us not make any
567                                  * progress during the timeout..
568                                  */
569                                 stat = hwif->read_status(hwif);
570                                 if (!(stat & BUSY_STAT))
571                                         break;
572
573                                 local_irq_restore(flags);
574                                 *rstat = stat;
575                                 return -EBUSY;
576                         }
577                 }
578                 local_irq_restore(flags);
579         }
580         /*
581          * Allow status to settle, then read it again.
582          * A few rare drives vastly violate the 400ns spec here,
583          * so we'll wait up to 10usec for a "good" status
584          * rather than expensively fail things immediately.
585          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
586          */
587         for (i = 0; i < 10; i++) {
588                 udelay(1);
589                 stat = hwif->read_status(hwif);
590
591                 if (OK_STAT(stat, good, bad)) {
592                         *rstat = stat;
593                         return 0;
594                 }
595         }
596         *rstat = stat;
597         return -EFAULT;
598 }
599
600 /*
601  * In case of error returns error value after doing "*startstop = ide_error()".
602  * The caller should return the updated value of "startstop" in this case,
603  * "startstop" is unchanged when the function returns 0.
604  */
605 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
606 {
607         int err;
608         u8 stat;
609
610         /* bail early if we've exceeded max_failures */
611         if (drive->max_failures && (drive->failures > drive->max_failures)) {
612                 *startstop = ide_stopped;
613                 return 1;
614         }
615
616         err = __ide_wait_stat(drive, good, bad, timeout, &stat);
617
618         if (err) {
619                 char *s = (err == -EBUSY) ? "status timeout" : "status error";
620                 *startstop = ide_error(drive, s, stat);
621         }
622
623         return err;
624 }
625
626 EXPORT_SYMBOL(ide_wait_stat);
627
628 /**
629  *      ide_in_drive_list       -       look for drive in black/white list
630  *      @id: drive identifier
631  *      @drive_table: list to inspect
632  *
633  *      Look for a drive in the blacklist and the whitelist tables
634  *      Returns 1 if the drive is found in the table.
635  */
636
637 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
638 {
639         for ( ; drive_table->id_model; drive_table++)
640                 if ((!strcmp(drive_table->id_model, id->model)) &&
641                     (!drive_table->id_firmware ||
642                      strstr(id->fw_rev, drive_table->id_firmware)))
643                         return 1;
644         return 0;
645 }
646
647 EXPORT_SYMBOL_GPL(ide_in_drive_list);
648
649 /*
650  * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
651  * We list them here and depend on the device side cable detection for them.
652  *
653  * Some optical devices with the buggy firmwares have the same problem.
654  */
655 static const struct drive_list_entry ivb_list[] = {
656         { "QUANTUM FIREBALLlct10 05"    , "A03.0900"    },
657         { "TSSTcorp CDDVDW SH-S202J"    , "SB00"        },
658         { "TSSTcorp CDDVDW SH-S202J"    , "SB01"        },
659         { "TSSTcorp CDDVDW SH-S202N"    , "SB00"        },
660         { "TSSTcorp CDDVDW SH-S202N"    , "SB01"        },
661         { "TSSTcorp CDDVDW SH-S202H"    , "SB00"        },
662         { "TSSTcorp CDDVDW SH-S202H"    , "SB01"        },
663         { NULL                          , NULL          }
664 };
665
666 /*
667  *  All hosts that use the 80c ribbon must use!
668  *  The name is derived from upper byte of word 93 and the 80c ribbon.
669  */
670 u8 eighty_ninty_three (ide_drive_t *drive)
671 {
672         ide_hwif_t *hwif = drive->hwif;
673         struct hd_driveid *id = drive->id;
674         int ivb = ide_in_drive_list(id, ivb_list);
675
676         if (hwif->cbl == ATA_CBL_PATA40_SHORT)
677                 return 1;
678
679         if (ivb)
680                 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
681                                   drive->name);
682
683         if (ide_dev_is_sata(id) && !ivb)
684                 return 1;
685
686         if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
687                 goto no_80w;
688
689         /*
690          * FIXME:
691          * - change master/slave IDENTIFY order
692          * - force bit13 (80c cable present) check also for !ivb devices
693          *   (unless the slave device is pre-ATA3)
694          */
695         if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
696                 return 1;
697
698 no_80w:
699         if (drive->udma33_warned == 1)
700                 return 0;
701
702         printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
703                             "limiting max speed to UDMA33\n",
704                             drive->name,
705                             hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
706
707         drive->udma33_warned = 1;
708
709         return 0;
710 }
711
712 int ide_driveid_update(ide_drive_t *drive)
713 {
714         ide_hwif_t *hwif = drive->hwif;
715         struct hd_driveid *id;
716         unsigned long timeout, flags;
717         u8 stat;
718
719         /*
720          * Re-read drive->id for possible DMA mode
721          * change (copied from ide-probe.c)
722          */
723
724         SELECT_MASK(drive, 1);
725         ide_set_irq(drive, 0);
726         msleep(50);
727         hwif->exec_command(hwif, WIN_IDENTIFY);
728         timeout = jiffies + WAIT_WORSTCASE;
729         do {
730                 if (time_after(jiffies, timeout)) {
731                         SELECT_MASK(drive, 0);
732                         return 0;       /* drive timed-out */
733                 }
734
735                 msleep(50);     /* give drive a breather */
736                 stat = hwif->read_altstatus(hwif);
737         } while (stat & BUSY_STAT);
738
739         msleep(50);     /* wait for IRQ and DRQ_STAT */
740         stat = hwif->read_status(hwif);
741
742         if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
743                 SELECT_MASK(drive, 0);
744                 printk("%s: CHECK for good STATUS\n", drive->name);
745                 return 0;
746         }
747         local_irq_save(flags);
748         SELECT_MASK(drive, 0);
749         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
750         if (!id) {
751                 local_irq_restore(flags);
752                 return 0;
753         }
754         hwif->input_data(drive, NULL, id, SECTOR_SIZE);
755         (void)hwif->read_status(hwif);  /* clear drive IRQ */
756         local_irq_enable();
757         local_irq_restore(flags);
758         ide_fix_driveid(id);
759         if (id) {
760                 drive->id->dma_ultra = id->dma_ultra;
761                 drive->id->dma_mword = id->dma_mword;
762                 drive->id->dma_1word = id->dma_1word;
763                 /* anything more ? */
764                 kfree(id);
765
766                 if (drive->using_dma && ide_id_dma_bug(drive))
767                         ide_dma_off(drive);
768         }
769
770         return 1;
771 }
772
773 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
774 {
775         ide_hwif_t *hwif = drive->hwif;
776         struct ide_io_ports *io_ports = &hwif->io_ports;
777         int error = 0;
778         u8 stat;
779
780 #ifdef CONFIG_BLK_DEV_IDEDMA
781         if (hwif->dma_ops)      /* check if host supports DMA */
782                 hwif->dma_ops->dma_host_set(drive, 0);
783 #endif
784
785         /* Skip setting PIO flow-control modes on pre-EIDE drives */
786         if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
787                 goto skip;
788
789         /*
790          * Don't use ide_wait_cmd here - it will
791          * attempt to set_geometry and recalibrate,
792          * but for some reason these don't work at
793          * this point (lost interrupt).
794          */
795         /*
796          * Select the drive, and issue the SETFEATURES command
797          */
798         disable_irq_nosync(hwif->irq);
799         
800         /*
801          *      FIXME: we race against the running IRQ here if
802          *      this is called from non IRQ context. If we use
803          *      disable_irq() we hang on the error path. Work
804          *      is needed.
805          */
806          
807         udelay(1);
808         SELECT_DRIVE(drive);
809         SELECT_MASK(drive, 0);
810         udelay(1);
811         ide_set_irq(drive, 0);
812         hwif->OUTB(speed, io_ports->nsect_addr);
813         hwif->OUTB(SETFEATURES_XFER, io_ports->feature_addr);
814         hwif->exec_command(hwif, WIN_SETFEATURES);
815         if (drive->quirk_list == 2)
816                 ide_set_irq(drive, 1);
817
818         error = __ide_wait_stat(drive, drive->ready_stat,
819                                 BUSY_STAT|DRQ_STAT|ERR_STAT,
820                                 WAIT_CMD, &stat);
821
822         SELECT_MASK(drive, 0);
823
824         enable_irq(hwif->irq);
825
826         if (error) {
827                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
828                 return error;
829         }
830
831         drive->id->dma_ultra &= ~0xFF00;
832         drive->id->dma_mword &= ~0x0F00;
833         drive->id->dma_1word &= ~0x0F00;
834
835  skip:
836 #ifdef CONFIG_BLK_DEV_IDEDMA
837         if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
838             drive->using_dma)
839                 hwif->dma_ops->dma_host_set(drive, 1);
840         else if (hwif->dma_ops) /* check if host supports DMA */
841                 ide_dma_off_quietly(drive);
842 #endif
843
844         switch(speed) {
845                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
846                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
847                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
848                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
849                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
850                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
851                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
852                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
853                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
854                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
855                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
856                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
857                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
858                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
859                 default: break;
860         }
861         if (!drive->init_speed)
862                 drive->init_speed = speed;
863         drive->current_speed = speed;
864         return error;
865 }
866
867 /*
868  * This should get invoked any time we exit the driver to
869  * wait for an interrupt response from a drive.  handler() points
870  * at the appropriate code to handle the next interrupt, and a
871  * timer is started to prevent us from waiting forever in case
872  * something goes wrong (see the ide_timer_expiry() handler later on).
873  *
874  * See also ide_execute_command
875  */
876 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
877                       unsigned int timeout, ide_expiry_t *expiry)
878 {
879         ide_hwgroup_t *hwgroup = HWGROUP(drive);
880
881         BUG_ON(hwgroup->handler);
882         hwgroup->handler        = handler;
883         hwgroup->expiry         = expiry;
884         hwgroup->timer.expires  = jiffies + timeout;
885         hwgroup->req_gen_timer  = hwgroup->req_gen;
886         add_timer(&hwgroup->timer);
887 }
888
889 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
890                       unsigned int timeout, ide_expiry_t *expiry)
891 {
892         unsigned long flags;
893         spin_lock_irqsave(&ide_lock, flags);
894         __ide_set_handler(drive, handler, timeout, expiry);
895         spin_unlock_irqrestore(&ide_lock, flags);
896 }
897
898 EXPORT_SYMBOL(ide_set_handler);
899  
900 /**
901  *      ide_execute_command     -       execute an IDE command
902  *      @drive: IDE drive to issue the command against
903  *      @command: command byte to write
904  *      @handler: handler for next phase
905  *      @timeout: timeout for command
906  *      @expiry:  handler to run on timeout
907  *
908  *      Helper function to issue an IDE command. This handles the
909  *      atomicity requirements, command timing and ensures that the 
910  *      handler and IRQ setup do not race. All IDE command kick off
911  *      should go via this function or do equivalent locking.
912  */
913
914 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
915                          unsigned timeout, ide_expiry_t *expiry)
916 {
917         unsigned long flags;
918         ide_hwif_t *hwif = HWIF(drive);
919
920         spin_lock_irqsave(&ide_lock, flags);
921         __ide_set_handler(drive, handler, timeout, expiry);
922         hwif->exec_command(hwif, cmd);
923         /*
924          * Drive takes 400nS to respond, we must avoid the IRQ being
925          * serviced before that.
926          *
927          * FIXME: we could skip this delay with care on non shared devices
928          */
929         ndelay(400);
930         spin_unlock_irqrestore(&ide_lock, flags);
931 }
932 EXPORT_SYMBOL(ide_execute_command);
933
934 void ide_execute_pkt_cmd(ide_drive_t *drive)
935 {
936         ide_hwif_t *hwif = drive->hwif;
937         unsigned long flags;
938
939         spin_lock_irqsave(&ide_lock, flags);
940         hwif->exec_command(hwif, WIN_PACKETCMD);
941         ndelay(400);
942         spin_unlock_irqrestore(&ide_lock, flags);
943 }
944 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
945
946 static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
947 {
948         struct request *rq = drive->hwif->hwgroup->rq;
949
950         if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
951                 ide_end_request(drive, err ? err : 1, 0);
952 }
953
954 /* needed below */
955 static ide_startstop_t do_reset1 (ide_drive_t *, int);
956
957 /*
958  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
959  * during an atapi drive reset operation. If the drive has not yet responded,
960  * and we have not yet hit our maximum waiting time, then the timer is restarted
961  * for another 50ms.
962  */
963 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
964 {
965         ide_hwif_t *hwif = drive->hwif;
966         ide_hwgroup_t *hwgroup = hwif->hwgroup;
967         u8 stat;
968
969         SELECT_DRIVE(drive);
970         udelay (10);
971         stat = hwif->read_status(hwif);
972
973         if (OK_STAT(stat, 0, BUSY_STAT))
974                 printk("%s: ATAPI reset complete\n", drive->name);
975         else {
976                 if (time_before(jiffies, hwgroup->poll_timeout)) {
977                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
978                         /* continue polling */
979                         return ide_started;
980                 }
981                 /* end of polling */
982                 hwgroup->polling = 0;
983                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
984                                 drive->name, stat);
985                 /* do it the old fashioned way */
986                 return do_reset1(drive, 1);
987         }
988         /* done polling */
989         hwgroup->polling = 0;
990         ide_complete_drive_reset(drive, 0);
991         return ide_stopped;
992 }
993
994 /*
995  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
996  * during an ide reset operation. If the drives have not yet responded,
997  * and we have not yet hit our maximum waiting time, then the timer is restarted
998  * for another 50ms.
999  */
1000 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
1001 {
1002         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
1003         ide_hwif_t *hwif        = HWIF(drive);
1004         const struct ide_port_ops *port_ops = hwif->port_ops;
1005         u8 tmp;
1006         int err = 0;
1007
1008         if (port_ops && port_ops->reset_poll) {
1009                 err = port_ops->reset_poll(drive);
1010                 if (err) {
1011                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
1012                                 hwif->name, drive->name);
1013                         goto out;
1014                 }
1015         }
1016
1017         tmp = hwif->read_status(hwif);
1018
1019         if (!OK_STAT(tmp, 0, BUSY_STAT)) {
1020                 if (time_before(jiffies, hwgroup->poll_timeout)) {
1021                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1022                         /* continue polling */
1023                         return ide_started;
1024                 }
1025                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1026                 drive->failures++;
1027                 err = -EIO;
1028         } else  {
1029                 printk("%s: reset: ", hwif->name);
1030                 tmp = ide_read_error(drive);
1031
1032                 if (tmp == 1) {
1033                         printk("success\n");
1034                         drive->failures = 0;
1035                 } else {
1036                         drive->failures++;
1037                         printk("master: ");
1038                         switch (tmp & 0x7f) {
1039                                 case 1: printk("passed");
1040                                         break;
1041                                 case 2: printk("formatter device error");
1042                                         break;
1043                                 case 3: printk("sector buffer error");
1044                                         break;
1045                                 case 4: printk("ECC circuitry error");
1046                                         break;
1047                                 case 5: printk("controlling MPU error");
1048                                         break;
1049                                 default:printk("error (0x%02x?)", tmp);
1050                         }
1051                         if (tmp & 0x80)
1052                                 printk("; slave: failed");
1053                         printk("\n");
1054                         err = -EIO;
1055                 }
1056         }
1057 out:
1058         hwgroup->polling = 0;   /* done polling */
1059         ide_complete_drive_reset(drive, err);
1060         return ide_stopped;
1061 }
1062
1063 static void ide_disk_pre_reset(ide_drive_t *drive)
1064 {
1065         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1066
1067         drive->special.all = 0;
1068         drive->special.b.set_geometry = legacy;
1069         drive->special.b.recalibrate  = legacy;
1070         drive->mult_count = 0;
1071         if (!drive->keep_settings && !drive->using_dma)
1072                 drive->mult_req = 0;
1073         if (drive->mult_req != drive->mult_count)
1074                 drive->special.b.set_multmode = 1;
1075 }
1076
1077 static void pre_reset(ide_drive_t *drive)
1078 {
1079         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1080
1081         if (drive->media == ide_disk)
1082                 ide_disk_pre_reset(drive);
1083         else
1084                 drive->post_reset = 1;
1085
1086         if (drive->using_dma) {
1087                 if (drive->crc_count)
1088                         ide_check_dma_crc(drive);
1089                 else
1090                         ide_dma_off(drive);
1091         }
1092
1093         if (!drive->keep_settings) {
1094                 if (!drive->using_dma) {
1095                         drive->unmask = 0;
1096                         drive->io_32bit = 0;
1097                 }
1098                 return;
1099         }
1100
1101         if (port_ops && port_ops->pre_reset)
1102                 port_ops->pre_reset(drive);
1103
1104         if (drive->current_speed != 0xff)
1105                 drive->desired_speed = drive->current_speed;
1106         drive->current_speed = 0xff;
1107 }
1108
1109 /*
1110  * do_reset1() attempts to recover a confused drive by resetting it.
1111  * Unfortunately, resetting a disk drive actually resets all devices on
1112  * the same interface, so it can really be thought of as resetting the
1113  * interface rather than resetting the drive.
1114  *
1115  * ATAPI devices have their own reset mechanism which allows them to be
1116  * individually reset without clobbering other devices on the same interface.
1117  *
1118  * Unfortunately, the IDE interface does not generate an interrupt to let
1119  * us know when the reset operation has finished, so we must poll for this.
1120  * Equally poor, though, is the fact that this may a very long time to complete,
1121  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1122  * we set a timer to poll at 50ms intervals.
1123  */
1124 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1125 {
1126         unsigned int unit;
1127         unsigned long flags;
1128         ide_hwif_t *hwif;
1129         ide_hwgroup_t *hwgroup;
1130         struct ide_io_ports *io_ports;
1131         const struct ide_port_ops *port_ops;
1132         u8 ctl;
1133
1134         spin_lock_irqsave(&ide_lock, flags);
1135         hwif = HWIF(drive);
1136         hwgroup = HWGROUP(drive);
1137
1138         io_ports = &hwif->io_ports;
1139
1140         /* We must not reset with running handlers */
1141         BUG_ON(hwgroup->handler != NULL);
1142
1143         /* For an ATAPI device, first try an ATAPI SRST. */
1144         if (drive->media != ide_disk && !do_not_try_atapi) {
1145                 pre_reset(drive);
1146                 SELECT_DRIVE(drive);
1147                 udelay (20);
1148                 hwif->exec_command(hwif, WIN_SRST);
1149                 ndelay(400);
1150                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1151                 hwgroup->polling = 1;
1152                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1153                 spin_unlock_irqrestore(&ide_lock, flags);
1154                 return ide_started;
1155         }
1156
1157         /*
1158          * First, reset any device state data we were maintaining
1159          * for any of the drives on this interface.
1160          */
1161         for (unit = 0; unit < MAX_DRIVES; ++unit)
1162                 pre_reset(&hwif->drives[unit]);
1163
1164         if (io_ports->ctl_addr == 0) {
1165                 spin_unlock_irqrestore(&ide_lock, flags);
1166                 ide_complete_drive_reset(drive, -ENXIO);
1167                 return ide_stopped;
1168         }
1169
1170         /*
1171          * Note that we also set nIEN while resetting the device,
1172          * to mask unwanted interrupts from the interface during the reset.
1173          * However, due to the design of PC hardware, this will cause an
1174          * immediate interrupt due to the edge transition it produces.
1175          * This single interrupt gives us a "fast poll" for drives that
1176          * recover from reset very quickly, saving us the first 50ms wait time.
1177          */
1178         /* set SRST and nIEN */
1179         hwif->OUTBSYNC(hwif, ATA_DEVCTL_OBS | 6, io_ports->ctl_addr);
1180         /* more than enough time */
1181         udelay(10);
1182         if (drive->quirk_list == 2)
1183                 ctl = ATA_DEVCTL_OBS;           /* clear SRST and nIEN */
1184         else
1185                 ctl = ATA_DEVCTL_OBS | 2;       /* clear SRST, leave nIEN */
1186         hwif->OUTBSYNC(hwif, ctl, io_ports->ctl_addr);
1187         /* more than enough time */
1188         udelay(10);
1189         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1190         hwgroup->polling = 1;
1191         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1192
1193         /*
1194          * Some weird controller like resetting themselves to a strange
1195          * state when the disks are reset this way. At least, the Winbond
1196          * 553 documentation says that
1197          */
1198         port_ops = hwif->port_ops;
1199         if (port_ops && port_ops->resetproc)
1200                 port_ops->resetproc(drive);
1201
1202         spin_unlock_irqrestore(&ide_lock, flags);
1203         return ide_started;
1204 }
1205
1206 /*
1207  * ide_do_reset() is the entry point to the drive/interface reset code.
1208  */
1209
1210 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1211 {
1212         return do_reset1(drive, 0);
1213 }
1214
1215 EXPORT_SYMBOL(ide_do_reset);
1216
1217 /*
1218  * ide_wait_not_busy() waits for the currently selected device on the hwif
1219  * to report a non-busy status, see comments in ide_probe_port().
1220  */
1221 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1222 {
1223         u8 stat = 0;
1224
1225         while(timeout--) {
1226                 /*
1227                  * Turn this into a schedule() sleep once I'm sure
1228                  * about locking issues (2.5 work ?).
1229                  */
1230                 mdelay(1);
1231                 stat = hwif->read_status(hwif);
1232                 if ((stat & BUSY_STAT) == 0)
1233                         return 0;
1234                 /*
1235                  * Assume a value of 0xff means nothing is connected to
1236                  * the interface and it doesn't implement the pull-down
1237                  * resistor on D7.
1238                  */
1239                 if (stat == 0xff)
1240                         return -ENODEV;
1241                 touch_softlockup_watchdog();
1242                 touch_nmi_watchdog();
1243         }
1244         return -EBUSY;
1245 }
1246
1247 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1248