ide: add ide_read_bcount_and_ireason() helper
[safe/jmp/linux-2.6] / drivers / ide / ide-iops.c
1 /*
2  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
3  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
4  *
5  */
6
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
25
26 #include <asm/byteorder.h>
27 #include <asm/irq.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30
31 /*
32  *      Conventional PIO operations for ATA devices
33  */
34
35 static u8 ide_inb (unsigned long port)
36 {
37         return (u8) inb(port);
38 }
39
40 static void ide_outb (u8 val, unsigned long port)
41 {
42         outb(val, port);
43 }
44
45 static void ide_outbsync(ide_hwif_t *hwif, u8 addr, unsigned long port)
46 {
47         outb(addr, port);
48 }
49
50 void default_hwif_iops (ide_hwif_t *hwif)
51 {
52         hwif->OUTB      = ide_outb;
53         hwif->OUTBSYNC  = ide_outbsync;
54         hwif->INB       = ide_inb;
55 }
56
57 /*
58  *      MMIO operations, typically used for SATA controllers
59  */
60
61 static u8 ide_mm_inb (unsigned long port)
62 {
63         return (u8) readb((void __iomem *) port);
64 }
65
66 static void ide_mm_outb (u8 value, unsigned long port)
67 {
68         writeb(value, (void __iomem *) port);
69 }
70
71 static void ide_mm_outbsync(ide_hwif_t *hwif, u8 value, unsigned long port)
72 {
73         writeb(value, (void __iomem *) port);
74 }
75
76 void default_hwif_mmiops (ide_hwif_t *hwif)
77 {
78         hwif->OUTB      = ide_mm_outb;
79         /* Most systems will need to override OUTBSYNC, alas however
80            this one is controller specific! */
81         hwif->OUTBSYNC  = ide_mm_outbsync;
82         hwif->INB       = ide_mm_inb;
83 }
84
85 EXPORT_SYMBOL(default_hwif_mmiops);
86
87 void SELECT_DRIVE (ide_drive_t *drive)
88 {
89         ide_hwif_t *hwif = drive->hwif;
90         const struct ide_port_ops *port_ops = hwif->port_ops;
91         ide_task_t task;
92
93         if (port_ops && port_ops->selectproc)
94                 port_ops->selectproc(drive);
95
96         memset(&task, 0, sizeof(task));
97         task.tf_flags = IDE_TFLAG_OUT_DEVICE;
98
99         drive->hwif->tf_load(drive, &task);
100 }
101
102 void SELECT_MASK(ide_drive_t *drive, int mask)
103 {
104         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
105
106         if (port_ops && port_ops->maskproc)
107                 port_ops->maskproc(drive, mask);
108 }
109
110 static void ide_exec_command(ide_hwif_t *hwif, u8 cmd)
111 {
112         if (hwif->host_flags & IDE_HFLAG_MMIO)
113                 writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
114         else
115                 outb(cmd, hwif->io_ports.command_addr);
116 }
117
118 static u8 ide_read_status(ide_hwif_t *hwif)
119 {
120         if (hwif->host_flags & IDE_HFLAG_MMIO)
121                 return readb((void __iomem *)hwif->io_ports.status_addr);
122         else
123                 return inb(hwif->io_ports.status_addr);
124 }
125
126 static u8 ide_read_altstatus(ide_hwif_t *hwif)
127 {
128         if (hwif->host_flags & IDE_HFLAG_MMIO)
129                 return readb((void __iomem *)hwif->io_ports.ctl_addr);
130         else
131                 return inb(hwif->io_ports.ctl_addr);
132 }
133
134 static u8 ide_read_sff_dma_status(ide_hwif_t *hwif)
135 {
136         if (hwif->host_flags & IDE_HFLAG_MMIO)
137                 return readb((void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
138         else
139                 return inb(hwif->dma_base + ATA_DMA_STATUS);
140 }
141
142 static void ide_set_irq(ide_hwif_t *hwif, int on)
143 {
144         u8 ctl = ATA_DEVCTL_OBS;
145
146         if (on == 4) { /* hack for SRST */
147                 ctl |= 4;
148                 on &= ~4;
149         }
150
151         ctl |= on ? 0 : 2;
152
153         if (hwif->host_flags & IDE_HFLAG_MMIO)
154                 writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
155         else
156                 outb(ctl, hwif->io_ports.ctl_addr);
157 }
158
159 static void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
160 {
161         ide_hwif_t *hwif = drive->hwif;
162         struct ide_io_ports *io_ports = &hwif->io_ports;
163         struct ide_taskfile *tf = &task->tf;
164         void (*tf_outb)(u8 addr, unsigned long port);
165         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
166         u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
167
168         if (mmio)
169                 tf_outb = ide_mm_outb;
170         else
171                 tf_outb = ide_outb;
172
173         if (task->tf_flags & IDE_TFLAG_FLAGGED)
174                 HIHI = 0xFF;
175
176         if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
177                 u16 data = (tf->hob_data << 8) | tf->data;
178
179                 if (mmio)
180                         writew(data, (void __iomem *)io_ports->data_addr);
181                 else
182                         outw(data, io_ports->data_addr);
183         }
184
185         if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
186                 tf_outb(tf->hob_feature, io_ports->feature_addr);
187         if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
188                 tf_outb(tf->hob_nsect, io_ports->nsect_addr);
189         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
190                 tf_outb(tf->hob_lbal, io_ports->lbal_addr);
191         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
192                 tf_outb(tf->hob_lbam, io_ports->lbam_addr);
193         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
194                 tf_outb(tf->hob_lbah, io_ports->lbah_addr);
195
196         if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
197                 tf_outb(tf->feature, io_ports->feature_addr);
198         if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
199                 tf_outb(tf->nsect, io_ports->nsect_addr);
200         if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
201                 tf_outb(tf->lbal, io_ports->lbal_addr);
202         if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
203                 tf_outb(tf->lbam, io_ports->lbam_addr);
204         if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
205                 tf_outb(tf->lbah, io_ports->lbah_addr);
206
207         if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
208                 tf_outb((tf->device & HIHI) | drive->select.all,
209                          io_ports->device_addr);
210 }
211
212 static void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
213 {
214         ide_hwif_t *hwif = drive->hwif;
215         struct ide_io_ports *io_ports = &hwif->io_ports;
216         struct ide_taskfile *tf = &task->tf;
217         void (*tf_outb)(u8 addr, unsigned long port);
218         u8 (*tf_inb)(unsigned long port);
219         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
220
221         if (mmio) {
222                 tf_outb = ide_mm_outb;
223                 tf_inb  = ide_mm_inb;
224         } else {
225                 tf_outb = ide_outb;
226                 tf_inb  = ide_inb;
227         }
228
229         if (task->tf_flags & IDE_TFLAG_IN_DATA) {
230                 u16 data;
231
232                 if (mmio)
233                         data = readw((void __iomem *)io_ports->data_addr);
234                 else
235                         data = inw(io_ports->data_addr);
236
237                 tf->data = data & 0xff;
238                 tf->hob_data = (data >> 8) & 0xff;
239         }
240
241         /* be sure we're looking at the low order bits */
242         tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
243
244         if (task->tf_flags & IDE_TFLAG_IN_FEATURE)
245                 tf->feature = tf_inb(io_ports->feature_addr);
246         if (task->tf_flags & IDE_TFLAG_IN_NSECT)
247                 tf->nsect  = tf_inb(io_ports->nsect_addr);
248         if (task->tf_flags & IDE_TFLAG_IN_LBAL)
249                 tf->lbal   = tf_inb(io_ports->lbal_addr);
250         if (task->tf_flags & IDE_TFLAG_IN_LBAM)
251                 tf->lbam   = tf_inb(io_ports->lbam_addr);
252         if (task->tf_flags & IDE_TFLAG_IN_LBAH)
253                 tf->lbah   = tf_inb(io_ports->lbah_addr);
254         if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
255                 tf->device = tf_inb(io_ports->device_addr);
256
257         if (task->tf_flags & IDE_TFLAG_LBA48) {
258                 tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
259
260                 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
261                         tf->hob_feature = tf_inb(io_ports->feature_addr);
262                 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
263                         tf->hob_nsect   = tf_inb(io_ports->nsect_addr);
264                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
265                         tf->hob_lbal    = tf_inb(io_ports->lbal_addr);
266                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
267                         tf->hob_lbam    = tf_inb(io_ports->lbam_addr);
268                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
269                         tf->hob_lbah    = tf_inb(io_ports->lbah_addr);
270         }
271 }
272
273 /*
274  * Some localbus EIDE interfaces require a special access sequence
275  * when using 32-bit I/O instructions to transfer data.  We call this
276  * the "vlb_sync" sequence, which consists of three successive reads
277  * of the sector count register location, with interrupts disabled
278  * to ensure that the reads all happen together.
279  */
280 static void ata_vlb_sync(unsigned long port)
281 {
282         (void)inb(port);
283         (void)inb(port);
284         (void)inb(port);
285 }
286
287 /*
288  * This is used for most PIO data transfers *from* the IDE interface
289  *
290  * These routines will round up any request for an odd number of bytes,
291  * so if an odd len is specified, be sure that there's at least one
292  * extra byte allocated for the buffer.
293  */
294 static void ata_input_data(ide_drive_t *drive, struct request *rq,
295                            void *buf, unsigned int len)
296 {
297         ide_hwif_t *hwif = drive->hwif;
298         struct ide_io_ports *io_ports = &hwif->io_ports;
299         unsigned long data_addr = io_ports->data_addr;
300         u8 io_32bit = drive->io_32bit;
301         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
302
303         len++;
304
305         if (io_32bit) {
306                 unsigned long uninitialized_var(flags);
307
308                 if ((io_32bit & 2) && !mmio) {
309                         local_irq_save(flags);
310                         ata_vlb_sync(io_ports->nsect_addr);
311                 }
312
313                 if (mmio)
314                         __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
315                 else
316                         insl(data_addr, buf, len / 4);
317
318                 if ((io_32bit & 2) && !mmio)
319                         local_irq_restore(flags);
320
321                 if ((len & 3) >= 2) {
322                         if (mmio)
323                                 __ide_mm_insw((void __iomem *)data_addr,
324                                                 (u8 *)buf + (len & ~3), 1);
325                         else
326                                 insw(data_addr, (u8 *)buf + (len & ~3), 1);
327                 }
328         } else {
329                 if (mmio)
330                         __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
331                 else
332                         insw(data_addr, buf, len / 2);
333         }
334 }
335
336 /*
337  * This is used for most PIO data transfers *to* the IDE interface
338  */
339 static void ata_output_data(ide_drive_t *drive, struct request *rq,
340                             void *buf, unsigned int len)
341 {
342         ide_hwif_t *hwif = drive->hwif;
343         struct ide_io_ports *io_ports = &hwif->io_ports;
344         unsigned long data_addr = io_ports->data_addr;
345         u8 io_32bit = drive->io_32bit;
346         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
347
348         if (io_32bit) {
349                 unsigned long uninitialized_var(flags);
350
351                 if ((io_32bit & 2) && !mmio) {
352                         local_irq_save(flags);
353                         ata_vlb_sync(io_ports->nsect_addr);
354                 }
355
356                 if (mmio)
357                         __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
358                 else
359                         outsl(data_addr, buf, len / 4);
360
361                 if ((io_32bit & 2) && !mmio)
362                         local_irq_restore(flags);
363
364                 if ((len & 3) >= 2) {
365                         if (mmio)
366                                 __ide_mm_outsw((void __iomem *)data_addr,
367                                                  (u8 *)buf + (len & ~3), 1);
368                         else
369                                 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
370                 }
371         } else {
372                 if (mmio)
373                         __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
374                 else
375                         outsw(data_addr, buf, len / 2);
376         }
377 }
378
379 void default_hwif_transport(ide_hwif_t *hwif)
380 {
381         hwif->exec_command        = ide_exec_command;
382         hwif->read_status         = ide_read_status;
383         hwif->read_altstatus      = ide_read_altstatus;
384         hwif->read_sff_dma_status = ide_read_sff_dma_status;
385
386         hwif->set_irq     = ide_set_irq;
387
388         hwif->tf_load     = ide_tf_load;
389         hwif->tf_read     = ide_tf_read;
390
391         hwif->input_data  = ata_input_data;
392         hwif->output_data = ata_output_data;
393 }
394
395 u8 ide_read_error(ide_drive_t *drive)
396 {
397         ide_task_t task;
398
399         memset(&task, 0, sizeof(task));
400         task.tf_flags = IDE_TFLAG_IN_FEATURE;
401
402         drive->hwif->tf_read(drive, &task);
403
404         return task.tf.error;
405 }
406 EXPORT_SYMBOL_GPL(ide_read_error);
407
408 void ide_read_bcount_and_ireason(ide_drive_t *drive, u16 *bcount, u8 *ireason)
409 {
410         ide_task_t task;
411
412         memset(&task, 0, sizeof(task));
413         task.tf_flags = IDE_TFLAG_IN_LBAH | IDE_TFLAG_IN_LBAM |
414                         IDE_TFLAG_IN_NSECT;
415
416         drive->hwif->tf_read(drive, &task);
417
418         *bcount = (task.tf.lbah << 8) | task.tf.lbam;
419         *ireason = task.tf.nsect & 3;
420 }
421 EXPORT_SYMBOL_GPL(ide_read_bcount_and_ireason);
422
423 void ide_fix_driveid (struct hd_driveid *id)
424 {
425 #ifndef __LITTLE_ENDIAN
426 # ifdef __BIG_ENDIAN
427         int i;
428         u16 *stringcast;
429
430         id->config         = __le16_to_cpu(id->config);
431         id->cyls           = __le16_to_cpu(id->cyls);
432         id->reserved2      = __le16_to_cpu(id->reserved2);
433         id->heads          = __le16_to_cpu(id->heads);
434         id->track_bytes    = __le16_to_cpu(id->track_bytes);
435         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
436         id->sectors        = __le16_to_cpu(id->sectors);
437         id->vendor0        = __le16_to_cpu(id->vendor0);
438         id->vendor1        = __le16_to_cpu(id->vendor1);
439         id->vendor2        = __le16_to_cpu(id->vendor2);
440         stringcast = (u16 *)&id->serial_no[0];
441         for (i = 0; i < (20/2); i++)
442                 stringcast[i] = __le16_to_cpu(stringcast[i]);
443         id->buf_type       = __le16_to_cpu(id->buf_type);
444         id->buf_size       = __le16_to_cpu(id->buf_size);
445         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
446         stringcast = (u16 *)&id->fw_rev[0];
447         for (i = 0; i < (8/2); i++)
448                 stringcast[i] = __le16_to_cpu(stringcast[i]);
449         stringcast = (u16 *)&id->model[0];
450         for (i = 0; i < (40/2); i++)
451                 stringcast[i] = __le16_to_cpu(stringcast[i]);
452         id->dword_io       = __le16_to_cpu(id->dword_io);
453         id->reserved50     = __le16_to_cpu(id->reserved50);
454         id->field_valid    = __le16_to_cpu(id->field_valid);
455         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
456         id->cur_heads      = __le16_to_cpu(id->cur_heads);
457         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
458         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
459         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
460         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
461         id->dma_1word      = __le16_to_cpu(id->dma_1word);
462         id->dma_mword      = __le16_to_cpu(id->dma_mword);
463         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
464         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
465         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
466         id->eide_pio       = __le16_to_cpu(id->eide_pio);
467         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
468         for (i = 0; i < 2; ++i)
469                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
470         for (i = 0; i < 4; ++i)
471                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
472         id->queue_depth    = __le16_to_cpu(id->queue_depth);
473         for (i = 0; i < 4; ++i)
474                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
475         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
476         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
477         id->command_set_1  = __le16_to_cpu(id->command_set_1);
478         id->command_set_2  = __le16_to_cpu(id->command_set_2);
479         id->cfsse          = __le16_to_cpu(id->cfsse);
480         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
481         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
482         id->csf_default    = __le16_to_cpu(id->csf_default);
483         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
484         id->trseuc         = __le16_to_cpu(id->trseuc);
485         id->trsEuc         = __le16_to_cpu(id->trsEuc);
486         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
487         id->mprc           = __le16_to_cpu(id->mprc);
488         id->hw_config      = __le16_to_cpu(id->hw_config);
489         id->acoustic       = __le16_to_cpu(id->acoustic);
490         id->msrqs          = __le16_to_cpu(id->msrqs);
491         id->sxfert         = __le16_to_cpu(id->sxfert);
492         id->sal            = __le16_to_cpu(id->sal);
493         id->spg            = __le32_to_cpu(id->spg);
494         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
495         for (i = 0; i < 22; i++)
496                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
497         id->last_lun       = __le16_to_cpu(id->last_lun);
498         id->word127        = __le16_to_cpu(id->word127);
499         id->dlf            = __le16_to_cpu(id->dlf);
500         id->csfo           = __le16_to_cpu(id->csfo);
501         for (i = 0; i < 26; i++)
502                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
503         id->word156        = __le16_to_cpu(id->word156);
504         for (i = 0; i < 3; i++)
505                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
506         id->cfa_power      = __le16_to_cpu(id->cfa_power);
507         for (i = 0; i < 14; i++)
508                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
509         for (i = 0; i < 31; i++)
510                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
511         for (i = 0; i < 48; i++)
512                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
513         id->integrity_word  = __le16_to_cpu(id->integrity_word);
514 # else
515 #  error "Please fix <asm/byteorder.h>"
516 # endif
517 #endif
518 }
519
520 /*
521  * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
522  * removing leading/trailing blanks and compressing internal blanks.
523  * It is primarily used to tidy up the model name/number fields as
524  * returned by the WIN_[P]IDENTIFY commands.
525  */
526
527 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
528 {
529         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
530
531         if (byteswap) {
532                 /* convert from big-endian to host byte order */
533                 for (p = end ; p != s;) {
534                         unsigned short *pp = (unsigned short *) (p -= 2);
535                         *pp = ntohs(*pp);
536                 }
537         }
538         /* strip leading blanks */
539         while (s != end && *s == ' ')
540                 ++s;
541         /* compress internal blanks and strip trailing blanks */
542         while (s != end && *s) {
543                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
544                         *p++ = *(s-1);
545         }
546         /* wipe out trailing garbage */
547         while (p != end)
548                 *p++ = '\0';
549 }
550
551 EXPORT_SYMBOL(ide_fixstring);
552
553 /*
554  * Needed for PCI irq sharing
555  */
556 int drive_is_ready (ide_drive_t *drive)
557 {
558         ide_hwif_t *hwif        = HWIF(drive);
559         u8 stat                 = 0;
560
561         if (drive->waiting_for_dma)
562                 return hwif->dma_ops->dma_test_irq(drive);
563
564 #if 0
565         /* need to guarantee 400ns since last command was issued */
566         udelay(1);
567 #endif
568
569         /*
570          * We do a passive status test under shared PCI interrupts on
571          * cards that truly share the ATA side interrupt, but may also share
572          * an interrupt with another pci card/device.  We make no assumptions
573          * about possible isa-pnp and pci-pnp issues yet.
574          */
575         if (hwif->io_ports.ctl_addr)
576                 stat = hwif->read_altstatus(hwif);
577         else
578                 /* Note: this may clear a pending IRQ!! */
579                 stat = hwif->read_status(hwif);
580
581         if (stat & BUSY_STAT)
582                 /* drive busy:  definitely not interrupting */
583                 return 0;
584
585         /* drive ready: *might* be interrupting */
586         return 1;
587 }
588
589 EXPORT_SYMBOL(drive_is_ready);
590
591 /*
592  * This routine busy-waits for the drive status to be not "busy".
593  * It then checks the status for all of the "good" bits and none
594  * of the "bad" bits, and if all is okay it returns 0.  All other
595  * cases return error -- caller may then invoke ide_error().
596  *
597  * This routine should get fixed to not hog the cpu during extra long waits..
598  * That could be done by busy-waiting for the first jiffy or two, and then
599  * setting a timer to wake up at half second intervals thereafter,
600  * until timeout is achieved, before timing out.
601  */
602 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
603 {
604         ide_hwif_t *hwif = drive->hwif;
605         unsigned long flags;
606         int i;
607         u8 stat;
608
609         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
610         stat = hwif->read_status(hwif);
611
612         if (stat & BUSY_STAT) {
613                 local_irq_set(flags);
614                 timeout += jiffies;
615                 while ((stat = hwif->read_status(hwif)) & BUSY_STAT) {
616                         if (time_after(jiffies, timeout)) {
617                                 /*
618                                  * One last read after the timeout in case
619                                  * heavy interrupt load made us not make any
620                                  * progress during the timeout..
621                                  */
622                                 stat = hwif->read_status(hwif);
623                                 if (!(stat & BUSY_STAT))
624                                         break;
625
626                                 local_irq_restore(flags);
627                                 *rstat = stat;
628                                 return -EBUSY;
629                         }
630                 }
631                 local_irq_restore(flags);
632         }
633         /*
634          * Allow status to settle, then read it again.
635          * A few rare drives vastly violate the 400ns spec here,
636          * so we'll wait up to 10usec for a "good" status
637          * rather than expensively fail things immediately.
638          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
639          */
640         for (i = 0; i < 10; i++) {
641                 udelay(1);
642                 stat = hwif->read_status(hwif);
643
644                 if (OK_STAT(stat, good, bad)) {
645                         *rstat = stat;
646                         return 0;
647                 }
648         }
649         *rstat = stat;
650         return -EFAULT;
651 }
652
653 /*
654  * In case of error returns error value after doing "*startstop = ide_error()".
655  * The caller should return the updated value of "startstop" in this case,
656  * "startstop" is unchanged when the function returns 0.
657  */
658 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
659 {
660         int err;
661         u8 stat;
662
663         /* bail early if we've exceeded max_failures */
664         if (drive->max_failures && (drive->failures > drive->max_failures)) {
665                 *startstop = ide_stopped;
666                 return 1;
667         }
668
669         err = __ide_wait_stat(drive, good, bad, timeout, &stat);
670
671         if (err) {
672                 char *s = (err == -EBUSY) ? "status timeout" : "status error";
673                 *startstop = ide_error(drive, s, stat);
674         }
675
676         return err;
677 }
678
679 EXPORT_SYMBOL(ide_wait_stat);
680
681 /**
682  *      ide_in_drive_list       -       look for drive in black/white list
683  *      @id: drive identifier
684  *      @drive_table: list to inspect
685  *
686  *      Look for a drive in the blacklist and the whitelist tables
687  *      Returns 1 if the drive is found in the table.
688  */
689
690 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
691 {
692         for ( ; drive_table->id_model; drive_table++)
693                 if ((!strcmp(drive_table->id_model, id->model)) &&
694                     (!drive_table->id_firmware ||
695                      strstr(id->fw_rev, drive_table->id_firmware)))
696                         return 1;
697         return 0;
698 }
699
700 EXPORT_SYMBOL_GPL(ide_in_drive_list);
701
702 /*
703  * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
704  * We list them here and depend on the device side cable detection for them.
705  *
706  * Some optical devices with the buggy firmwares have the same problem.
707  */
708 static const struct drive_list_entry ivb_list[] = {
709         { "QUANTUM FIREBALLlct10 05"    , "A03.0900"    },
710         { "TSSTcorp CDDVDW SH-S202J"    , "SB00"        },
711         { "TSSTcorp CDDVDW SH-S202J"    , "SB01"        },
712         { "TSSTcorp CDDVDW SH-S202N"    , "SB00"        },
713         { "TSSTcorp CDDVDW SH-S202N"    , "SB01"        },
714         { "TSSTcorp CDDVDW SH-S202H"    , "SB00"        },
715         { "TSSTcorp CDDVDW SH-S202H"    , "SB01"        },
716         { NULL                          , NULL          }
717 };
718
719 /*
720  *  All hosts that use the 80c ribbon must use!
721  *  The name is derived from upper byte of word 93 and the 80c ribbon.
722  */
723 u8 eighty_ninty_three (ide_drive_t *drive)
724 {
725         ide_hwif_t *hwif = drive->hwif;
726         struct hd_driveid *id = drive->id;
727         int ivb = ide_in_drive_list(id, ivb_list);
728
729         if (hwif->cbl == ATA_CBL_PATA40_SHORT)
730                 return 1;
731
732         if (ivb)
733                 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
734                                   drive->name);
735
736         if (ide_dev_is_sata(id) && !ivb)
737                 return 1;
738
739         if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
740                 goto no_80w;
741
742         /*
743          * FIXME:
744          * - change master/slave IDENTIFY order
745          * - force bit13 (80c cable present) check also for !ivb devices
746          *   (unless the slave device is pre-ATA3)
747          */
748         if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
749                 return 1;
750
751 no_80w:
752         if (drive->udma33_warned == 1)
753                 return 0;
754
755         printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
756                             "limiting max speed to UDMA33\n",
757                             drive->name,
758                             hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
759
760         drive->udma33_warned = 1;
761
762         return 0;
763 }
764
765 int ide_driveid_update(ide_drive_t *drive)
766 {
767         ide_hwif_t *hwif = drive->hwif;
768         struct hd_driveid *id;
769         unsigned long timeout, flags;
770         u8 stat;
771
772         /*
773          * Re-read drive->id for possible DMA mode
774          * change (copied from ide-probe.c)
775          */
776
777         SELECT_MASK(drive, 1);
778         hwif->set_irq(hwif, 0);
779         msleep(50);
780         hwif->exec_command(hwif, WIN_IDENTIFY);
781         timeout = jiffies + WAIT_WORSTCASE;
782         do {
783                 if (time_after(jiffies, timeout)) {
784                         SELECT_MASK(drive, 0);
785                         return 0;       /* drive timed-out */
786                 }
787
788                 msleep(50);     /* give drive a breather */
789                 stat = hwif->read_altstatus(hwif);
790         } while (stat & BUSY_STAT);
791
792         msleep(50);     /* wait for IRQ and DRQ_STAT */
793         stat = hwif->read_status(hwif);
794
795         if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
796                 SELECT_MASK(drive, 0);
797                 printk("%s: CHECK for good STATUS\n", drive->name);
798                 return 0;
799         }
800         local_irq_save(flags);
801         SELECT_MASK(drive, 0);
802         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
803         if (!id) {
804                 local_irq_restore(flags);
805                 return 0;
806         }
807         hwif->input_data(drive, NULL, id, SECTOR_SIZE);
808         (void)hwif->read_status(hwif);  /* clear drive IRQ */
809         local_irq_enable();
810         local_irq_restore(flags);
811         ide_fix_driveid(id);
812         if (id) {
813                 drive->id->dma_ultra = id->dma_ultra;
814                 drive->id->dma_mword = id->dma_mword;
815                 drive->id->dma_1word = id->dma_1word;
816                 /* anything more ? */
817                 kfree(id);
818
819                 if (drive->using_dma && ide_id_dma_bug(drive))
820                         ide_dma_off(drive);
821         }
822
823         return 1;
824 }
825
826 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
827 {
828         ide_hwif_t *hwif = drive->hwif;
829         int error = 0;
830         u8 stat;
831         ide_task_t task;
832
833 #ifdef CONFIG_BLK_DEV_IDEDMA
834         if (hwif->dma_ops)      /* check if host supports DMA */
835                 hwif->dma_ops->dma_host_set(drive, 0);
836 #endif
837
838         /* Skip setting PIO flow-control modes on pre-EIDE drives */
839         if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
840                 goto skip;
841
842         /*
843          * Don't use ide_wait_cmd here - it will
844          * attempt to set_geometry and recalibrate,
845          * but for some reason these don't work at
846          * this point (lost interrupt).
847          */
848         /*
849          * Select the drive, and issue the SETFEATURES command
850          */
851         disable_irq_nosync(hwif->irq);
852         
853         /*
854          *      FIXME: we race against the running IRQ here if
855          *      this is called from non IRQ context. If we use
856          *      disable_irq() we hang on the error path. Work
857          *      is needed.
858          */
859          
860         udelay(1);
861         SELECT_DRIVE(drive);
862         SELECT_MASK(drive, 0);
863         udelay(1);
864         hwif->set_irq(hwif, 0);
865
866         memset(&task, 0, sizeof(task));
867         task.tf_flags = IDE_TFLAG_OUT_FEATURE | IDE_TFLAG_OUT_NSECT;
868         task.tf.feature = SETFEATURES_XFER;
869         task.tf.nsect   = speed;
870
871         hwif->tf_load(drive, &task);
872
873         hwif->exec_command(hwif, WIN_SETFEATURES);
874
875         if (drive->quirk_list == 2)
876                 hwif->set_irq(hwif, 1);
877
878         error = __ide_wait_stat(drive, drive->ready_stat,
879                                 BUSY_STAT|DRQ_STAT|ERR_STAT,
880                                 WAIT_CMD, &stat);
881
882         SELECT_MASK(drive, 0);
883
884         enable_irq(hwif->irq);
885
886         if (error) {
887                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
888                 return error;
889         }
890
891         drive->id->dma_ultra &= ~0xFF00;
892         drive->id->dma_mword &= ~0x0F00;
893         drive->id->dma_1word &= ~0x0F00;
894
895  skip:
896 #ifdef CONFIG_BLK_DEV_IDEDMA
897         if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
898             drive->using_dma)
899                 hwif->dma_ops->dma_host_set(drive, 1);
900         else if (hwif->dma_ops) /* check if host supports DMA */
901                 ide_dma_off_quietly(drive);
902 #endif
903
904         switch(speed) {
905                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
906                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
907                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
908                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
909                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
910                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
911                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
912                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
913                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
914                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
915                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
916                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
917                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
918                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
919                 default: break;
920         }
921         if (!drive->init_speed)
922                 drive->init_speed = speed;
923         drive->current_speed = speed;
924         return error;
925 }
926
927 /*
928  * This should get invoked any time we exit the driver to
929  * wait for an interrupt response from a drive.  handler() points
930  * at the appropriate code to handle the next interrupt, and a
931  * timer is started to prevent us from waiting forever in case
932  * something goes wrong (see the ide_timer_expiry() handler later on).
933  *
934  * See also ide_execute_command
935  */
936 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
937                       unsigned int timeout, ide_expiry_t *expiry)
938 {
939         ide_hwgroup_t *hwgroup = HWGROUP(drive);
940
941         BUG_ON(hwgroup->handler);
942         hwgroup->handler        = handler;
943         hwgroup->expiry         = expiry;
944         hwgroup->timer.expires  = jiffies + timeout;
945         hwgroup->req_gen_timer  = hwgroup->req_gen;
946         add_timer(&hwgroup->timer);
947 }
948
949 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
950                       unsigned int timeout, ide_expiry_t *expiry)
951 {
952         unsigned long flags;
953         spin_lock_irqsave(&ide_lock, flags);
954         __ide_set_handler(drive, handler, timeout, expiry);
955         spin_unlock_irqrestore(&ide_lock, flags);
956 }
957
958 EXPORT_SYMBOL(ide_set_handler);
959  
960 /**
961  *      ide_execute_command     -       execute an IDE command
962  *      @drive: IDE drive to issue the command against
963  *      @command: command byte to write
964  *      @handler: handler for next phase
965  *      @timeout: timeout for command
966  *      @expiry:  handler to run on timeout
967  *
968  *      Helper function to issue an IDE command. This handles the
969  *      atomicity requirements, command timing and ensures that the 
970  *      handler and IRQ setup do not race. All IDE command kick off
971  *      should go via this function or do equivalent locking.
972  */
973
974 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
975                          unsigned timeout, ide_expiry_t *expiry)
976 {
977         unsigned long flags;
978         ide_hwif_t *hwif = HWIF(drive);
979
980         spin_lock_irqsave(&ide_lock, flags);
981         __ide_set_handler(drive, handler, timeout, expiry);
982         hwif->exec_command(hwif, cmd);
983         /*
984          * Drive takes 400nS to respond, we must avoid the IRQ being
985          * serviced before that.
986          *
987          * FIXME: we could skip this delay with care on non shared devices
988          */
989         ndelay(400);
990         spin_unlock_irqrestore(&ide_lock, flags);
991 }
992 EXPORT_SYMBOL(ide_execute_command);
993
994 void ide_execute_pkt_cmd(ide_drive_t *drive)
995 {
996         ide_hwif_t *hwif = drive->hwif;
997         unsigned long flags;
998
999         spin_lock_irqsave(&ide_lock, flags);
1000         hwif->exec_command(hwif, WIN_PACKETCMD);
1001         ndelay(400);
1002         spin_unlock_irqrestore(&ide_lock, flags);
1003 }
1004 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
1005
1006 static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
1007 {
1008         struct request *rq = drive->hwif->hwgroup->rq;
1009
1010         if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
1011                 ide_end_request(drive, err ? err : 1, 0);
1012 }
1013
1014 /* needed below */
1015 static ide_startstop_t do_reset1 (ide_drive_t *, int);
1016
1017 /*
1018  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1019  * during an atapi drive reset operation. If the drive has not yet responded,
1020  * and we have not yet hit our maximum waiting time, then the timer is restarted
1021  * for another 50ms.
1022  */
1023 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
1024 {
1025         ide_hwif_t *hwif = drive->hwif;
1026         ide_hwgroup_t *hwgroup = hwif->hwgroup;
1027         u8 stat;
1028
1029         SELECT_DRIVE(drive);
1030         udelay (10);
1031         stat = hwif->read_status(hwif);
1032
1033         if (OK_STAT(stat, 0, BUSY_STAT))
1034                 printk("%s: ATAPI reset complete\n", drive->name);
1035         else {
1036                 if (time_before(jiffies, hwgroup->poll_timeout)) {
1037                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1038                         /* continue polling */
1039                         return ide_started;
1040                 }
1041                 /* end of polling */
1042                 hwgroup->polling = 0;
1043                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
1044                                 drive->name, stat);
1045                 /* do it the old fashioned way */
1046                 return do_reset1(drive, 1);
1047         }
1048         /* done polling */
1049         hwgroup->polling = 0;
1050         ide_complete_drive_reset(drive, 0);
1051         return ide_stopped;
1052 }
1053
1054 /*
1055  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1056  * during an ide reset operation. If the drives have not yet responded,
1057  * and we have not yet hit our maximum waiting time, then the timer is restarted
1058  * for another 50ms.
1059  */
1060 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
1061 {
1062         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
1063         ide_hwif_t *hwif        = HWIF(drive);
1064         const struct ide_port_ops *port_ops = hwif->port_ops;
1065         u8 tmp;
1066         int err = 0;
1067
1068         if (port_ops && port_ops->reset_poll) {
1069                 err = port_ops->reset_poll(drive);
1070                 if (err) {
1071                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
1072                                 hwif->name, drive->name);
1073                         goto out;
1074                 }
1075         }
1076
1077         tmp = hwif->read_status(hwif);
1078
1079         if (!OK_STAT(tmp, 0, BUSY_STAT)) {
1080                 if (time_before(jiffies, hwgroup->poll_timeout)) {
1081                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1082                         /* continue polling */
1083                         return ide_started;
1084                 }
1085                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
1086                 drive->failures++;
1087                 err = -EIO;
1088         } else  {
1089                 printk("%s: reset: ", hwif->name);
1090                 tmp = ide_read_error(drive);
1091
1092                 if (tmp == 1) {
1093                         printk("success\n");
1094                         drive->failures = 0;
1095                 } else {
1096                         drive->failures++;
1097                         printk("master: ");
1098                         switch (tmp & 0x7f) {
1099                                 case 1: printk("passed");
1100                                         break;
1101                                 case 2: printk("formatter device error");
1102                                         break;
1103                                 case 3: printk("sector buffer error");
1104                                         break;
1105                                 case 4: printk("ECC circuitry error");
1106                                         break;
1107                                 case 5: printk("controlling MPU error");
1108                                         break;
1109                                 default:printk("error (0x%02x?)", tmp);
1110                         }
1111                         if (tmp & 0x80)
1112                                 printk("; slave: failed");
1113                         printk("\n");
1114                         err = -EIO;
1115                 }
1116         }
1117 out:
1118         hwgroup->polling = 0;   /* done polling */
1119         ide_complete_drive_reset(drive, err);
1120         return ide_stopped;
1121 }
1122
1123 static void ide_disk_pre_reset(ide_drive_t *drive)
1124 {
1125         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1126
1127         drive->special.all = 0;
1128         drive->special.b.set_geometry = legacy;
1129         drive->special.b.recalibrate  = legacy;
1130         drive->mult_count = 0;
1131         if (!drive->keep_settings && !drive->using_dma)
1132                 drive->mult_req = 0;
1133         if (drive->mult_req != drive->mult_count)
1134                 drive->special.b.set_multmode = 1;
1135 }
1136
1137 static void pre_reset(ide_drive_t *drive)
1138 {
1139         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1140
1141         if (drive->media == ide_disk)
1142                 ide_disk_pre_reset(drive);
1143         else
1144                 drive->post_reset = 1;
1145
1146         if (drive->using_dma) {
1147                 if (drive->crc_count)
1148                         ide_check_dma_crc(drive);
1149                 else
1150                         ide_dma_off(drive);
1151         }
1152
1153         if (!drive->keep_settings) {
1154                 if (!drive->using_dma) {
1155                         drive->unmask = 0;
1156                         drive->io_32bit = 0;
1157                 }
1158                 return;
1159         }
1160
1161         if (port_ops && port_ops->pre_reset)
1162                 port_ops->pre_reset(drive);
1163
1164         if (drive->current_speed != 0xff)
1165                 drive->desired_speed = drive->current_speed;
1166         drive->current_speed = 0xff;
1167 }
1168
1169 /*
1170  * do_reset1() attempts to recover a confused drive by resetting it.
1171  * Unfortunately, resetting a disk drive actually resets all devices on
1172  * the same interface, so it can really be thought of as resetting the
1173  * interface rather than resetting the drive.
1174  *
1175  * ATAPI devices have their own reset mechanism which allows them to be
1176  * individually reset without clobbering other devices on the same interface.
1177  *
1178  * Unfortunately, the IDE interface does not generate an interrupt to let
1179  * us know when the reset operation has finished, so we must poll for this.
1180  * Equally poor, though, is the fact that this may a very long time to complete,
1181  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1182  * we set a timer to poll at 50ms intervals.
1183  */
1184 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1185 {
1186         unsigned int unit;
1187         unsigned long flags;
1188         ide_hwif_t *hwif;
1189         ide_hwgroup_t *hwgroup;
1190         struct ide_io_ports *io_ports;
1191         const struct ide_port_ops *port_ops;
1192
1193         spin_lock_irqsave(&ide_lock, flags);
1194         hwif = HWIF(drive);
1195         hwgroup = HWGROUP(drive);
1196
1197         io_ports = &hwif->io_ports;
1198
1199         /* We must not reset with running handlers */
1200         BUG_ON(hwgroup->handler != NULL);
1201
1202         /* For an ATAPI device, first try an ATAPI SRST. */
1203         if (drive->media != ide_disk && !do_not_try_atapi) {
1204                 pre_reset(drive);
1205                 SELECT_DRIVE(drive);
1206                 udelay (20);
1207                 hwif->exec_command(hwif, WIN_SRST);
1208                 ndelay(400);
1209                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1210                 hwgroup->polling = 1;
1211                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1212                 spin_unlock_irqrestore(&ide_lock, flags);
1213                 return ide_started;
1214         }
1215
1216         /*
1217          * First, reset any device state data we were maintaining
1218          * for any of the drives on this interface.
1219          */
1220         for (unit = 0; unit < MAX_DRIVES; ++unit)
1221                 pre_reset(&hwif->drives[unit]);
1222
1223         if (io_ports->ctl_addr == 0) {
1224                 spin_unlock_irqrestore(&ide_lock, flags);
1225                 ide_complete_drive_reset(drive, -ENXIO);
1226                 return ide_stopped;
1227         }
1228
1229         /*
1230          * Note that we also set nIEN while resetting the device,
1231          * to mask unwanted interrupts from the interface during the reset.
1232          * However, due to the design of PC hardware, this will cause an
1233          * immediate interrupt due to the edge transition it produces.
1234          * This single interrupt gives us a "fast poll" for drives that
1235          * recover from reset very quickly, saving us the first 50ms wait time.
1236          *
1237          * TODO: add ->softreset method and stop abusing ->set_irq
1238          */
1239         /* set SRST and nIEN */
1240         hwif->set_irq(hwif, 4);
1241         /* more than enough time */
1242         udelay(10);
1243         /* clear SRST, leave nIEN (unless device is on the quirk list) */
1244         hwif->set_irq(hwif, drive->quirk_list == 2);
1245         /* more than enough time */
1246         udelay(10);
1247         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1248         hwgroup->polling = 1;
1249         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1250
1251         /*
1252          * Some weird controller like resetting themselves to a strange
1253          * state when the disks are reset this way. At least, the Winbond
1254          * 553 documentation says that
1255          */
1256         port_ops = hwif->port_ops;
1257         if (port_ops && port_ops->resetproc)
1258                 port_ops->resetproc(drive);
1259
1260         spin_unlock_irqrestore(&ide_lock, flags);
1261         return ide_started;
1262 }
1263
1264 /*
1265  * ide_do_reset() is the entry point to the drive/interface reset code.
1266  */
1267
1268 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1269 {
1270         return do_reset1(drive, 0);
1271 }
1272
1273 EXPORT_SYMBOL(ide_do_reset);
1274
1275 /*
1276  * ide_wait_not_busy() waits for the currently selected device on the hwif
1277  * to report a non-busy status, see comments in ide_probe_port().
1278  */
1279 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1280 {
1281         u8 stat = 0;
1282
1283         while(timeout--) {
1284                 /*
1285                  * Turn this into a schedule() sleep once I'm sure
1286                  * about locking issues (2.5 work ?).
1287                  */
1288                 mdelay(1);
1289                 stat = hwif->read_status(hwif);
1290                 if ((stat & BUSY_STAT) == 0)
1291                         return 0;
1292                 /*
1293                  * Assume a value of 0xff means nothing is connected to
1294                  * the interface and it doesn't implement the pull-down
1295                  * resistor on D7.
1296                  */
1297                 if (stat == 0xff)
1298                         return -ENODEV;
1299                 touch_softlockup_watchdog();
1300                 touch_nmi_watchdog();
1301         }
1302         return -EBUSY;
1303 }
1304
1305 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1306