17cad6c39ee30451ce366c5774f1cb3e7c309a98
[safe/jmp/linux-2.6] / drivers / ide / ide-iops.c
1 /*
2  *  Copyright (C) 2000-2002     Andre Hedrick <andre@linux-ide.org>
3  *  Copyright (C) 2003          Red Hat <alan@redhat.com>
4  *
5  */
6
7 #include <linux/module.h>
8 #include <linux/types.h>
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/timer.h>
12 #include <linux/mm.h>
13 #include <linux/interrupt.h>
14 #include <linux/major.h>
15 #include <linux/errno.h>
16 #include <linux/genhd.h>
17 #include <linux/blkpg.h>
18 #include <linux/slab.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hdreg.h>
22 #include <linux/ide.h>
23 #include <linux/bitops.h>
24 #include <linux/nmi.h>
25
26 #include <asm/byteorder.h>
27 #include <asm/irq.h>
28 #include <asm/uaccess.h>
29 #include <asm/io.h>
30
31 /*
32  *      Conventional PIO operations for ATA devices
33  */
34
35 static u8 ide_inb (unsigned long port)
36 {
37         return (u8) inb(port);
38 }
39
40 static void ide_outb (u8 val, unsigned long port)
41 {
42         outb(val, port);
43 }
44
45 static void ide_outbsync(ide_hwif_t *hwif, u8 addr, unsigned long port)
46 {
47         outb(addr, port);
48 }
49
50 void default_hwif_iops (ide_hwif_t *hwif)
51 {
52         hwif->OUTB      = ide_outb;
53         hwif->OUTBSYNC  = ide_outbsync;
54         hwif->INB       = ide_inb;
55 }
56
57 /*
58  *      MMIO operations, typically used for SATA controllers
59  */
60
61 static u8 ide_mm_inb (unsigned long port)
62 {
63         return (u8) readb((void __iomem *) port);
64 }
65
66 static void ide_mm_outb (u8 value, unsigned long port)
67 {
68         writeb(value, (void __iomem *) port);
69 }
70
71 static void ide_mm_outbsync(ide_hwif_t *hwif, u8 value, unsigned long port)
72 {
73         writeb(value, (void __iomem *) port);
74 }
75
76 void default_hwif_mmiops (ide_hwif_t *hwif)
77 {
78         hwif->OUTB      = ide_mm_outb;
79         /* Most systems will need to override OUTBSYNC, alas however
80            this one is controller specific! */
81         hwif->OUTBSYNC  = ide_mm_outbsync;
82         hwif->INB       = ide_mm_inb;
83 }
84
85 EXPORT_SYMBOL(default_hwif_mmiops);
86
87 void SELECT_DRIVE (ide_drive_t *drive)
88 {
89         ide_hwif_t *hwif = drive->hwif;
90         const struct ide_port_ops *port_ops = hwif->port_ops;
91
92         if (port_ops && port_ops->selectproc)
93                 port_ops->selectproc(drive);
94
95         hwif->OUTB(drive->select.all, hwif->io_ports.device_addr);
96 }
97
98 void SELECT_MASK(ide_drive_t *drive, int mask)
99 {
100         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
101
102         if (port_ops && port_ops->maskproc)
103                 port_ops->maskproc(drive, mask);
104 }
105
106 static u8 ide_read_sff_dma_status(ide_hwif_t *hwif)
107 {
108         if (hwif->host_flags & IDE_HFLAG_MMIO)
109                 return readb((void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
110         else
111                 return inb(hwif->dma_base + ATA_DMA_STATUS);
112 }
113
114 static void ide_tf_load(ide_drive_t *drive, ide_task_t *task)
115 {
116         ide_hwif_t *hwif = drive->hwif;
117         struct ide_io_ports *io_ports = &hwif->io_ports;
118         struct ide_taskfile *tf = &task->tf;
119         void (*tf_outb)(u8 addr, unsigned long port);
120         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
121         u8 HIHI = (task->tf_flags & IDE_TFLAG_LBA48) ? 0xE0 : 0xEF;
122
123         if (mmio)
124                 tf_outb = ide_mm_outb;
125         else
126                 tf_outb = ide_outb;
127
128         if (task->tf_flags & IDE_TFLAG_FLAGGED)
129                 HIHI = 0xFF;
130
131         if (task->tf_flags & IDE_TFLAG_OUT_DATA) {
132                 u16 data = (tf->hob_data << 8) | tf->data;
133
134                 if (mmio)
135                         writew(data, (void __iomem *)io_ports->data_addr);
136                 else
137                         outw(data, io_ports->data_addr);
138         }
139
140         if (task->tf_flags & IDE_TFLAG_OUT_HOB_FEATURE)
141                 tf_outb(tf->hob_feature, io_ports->feature_addr);
142         if (task->tf_flags & IDE_TFLAG_OUT_HOB_NSECT)
143                 tf_outb(tf->hob_nsect, io_ports->nsect_addr);
144         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAL)
145                 tf_outb(tf->hob_lbal, io_ports->lbal_addr);
146         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAM)
147                 tf_outb(tf->hob_lbam, io_ports->lbam_addr);
148         if (task->tf_flags & IDE_TFLAG_OUT_HOB_LBAH)
149                 tf_outb(tf->hob_lbah, io_ports->lbah_addr);
150
151         if (task->tf_flags & IDE_TFLAG_OUT_FEATURE)
152                 tf_outb(tf->feature, io_ports->feature_addr);
153         if (task->tf_flags & IDE_TFLAG_OUT_NSECT)
154                 tf_outb(tf->nsect, io_ports->nsect_addr);
155         if (task->tf_flags & IDE_TFLAG_OUT_LBAL)
156                 tf_outb(tf->lbal, io_ports->lbal_addr);
157         if (task->tf_flags & IDE_TFLAG_OUT_LBAM)
158                 tf_outb(tf->lbam, io_ports->lbam_addr);
159         if (task->tf_flags & IDE_TFLAG_OUT_LBAH)
160                 tf_outb(tf->lbah, io_ports->lbah_addr);
161
162         if (task->tf_flags & IDE_TFLAG_OUT_DEVICE)
163                 tf_outb((tf->device & HIHI) | drive->select.all,
164                          io_ports->device_addr);
165 }
166
167 static void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
168 {
169         ide_hwif_t *hwif = drive->hwif;
170         struct ide_io_ports *io_ports = &hwif->io_ports;
171         struct ide_taskfile *tf = &task->tf;
172         void (*tf_outb)(u8 addr, unsigned long port);
173         u8 (*tf_inb)(unsigned long port);
174         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
175
176         if (mmio) {
177                 tf_outb = ide_mm_outb;
178                 tf_inb  = ide_mm_inb;
179         } else {
180                 tf_outb = ide_outb;
181                 tf_inb  = ide_inb;
182         }
183
184         if (task->tf_flags & IDE_TFLAG_IN_DATA) {
185                 u16 data;
186
187                 if (mmio)
188                         data = readw((void __iomem *)io_ports->data_addr);
189                 else
190                         data = inw(io_ports->data_addr);
191
192                 tf->data = data & 0xff;
193                 tf->hob_data = (data >> 8) & 0xff;
194         }
195
196         /* be sure we're looking at the low order bits */
197         tf_outb(ATA_DEVCTL_OBS & ~0x80, io_ports->ctl_addr);
198
199         if (task->tf_flags & IDE_TFLAG_IN_NSECT)
200                 tf->nsect  = tf_inb(io_ports->nsect_addr);
201         if (task->tf_flags & IDE_TFLAG_IN_LBAL)
202                 tf->lbal   = tf_inb(io_ports->lbal_addr);
203         if (task->tf_flags & IDE_TFLAG_IN_LBAM)
204                 tf->lbam   = tf_inb(io_ports->lbam_addr);
205         if (task->tf_flags & IDE_TFLAG_IN_LBAH)
206                 tf->lbah   = tf_inb(io_ports->lbah_addr);
207         if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
208                 tf->device = tf_inb(io_ports->device_addr);
209
210         if (task->tf_flags & IDE_TFLAG_LBA48) {
211                 tf_outb(ATA_DEVCTL_OBS | 0x80, io_ports->ctl_addr);
212
213                 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
214                         tf->hob_feature = tf_inb(io_ports->feature_addr);
215                 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
216                         tf->hob_nsect   = tf_inb(io_ports->nsect_addr);
217                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
218                         tf->hob_lbal    = tf_inb(io_ports->lbal_addr);
219                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
220                         tf->hob_lbam    = tf_inb(io_ports->lbam_addr);
221                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
222                         tf->hob_lbah    = tf_inb(io_ports->lbah_addr);
223         }
224 }
225
226 /*
227  * Some localbus EIDE interfaces require a special access sequence
228  * when using 32-bit I/O instructions to transfer data.  We call this
229  * the "vlb_sync" sequence, which consists of three successive reads
230  * of the sector count register location, with interrupts disabled
231  * to ensure that the reads all happen together.
232  */
233 static void ata_vlb_sync(unsigned long port)
234 {
235         (void)inb(port);
236         (void)inb(port);
237         (void)inb(port);
238 }
239
240 /*
241  * This is used for most PIO data transfers *from* the IDE interface
242  *
243  * These routines will round up any request for an odd number of bytes,
244  * so if an odd len is specified, be sure that there's at least one
245  * extra byte allocated for the buffer.
246  */
247 static void ata_input_data(ide_drive_t *drive, struct request *rq,
248                            void *buf, unsigned int len)
249 {
250         ide_hwif_t *hwif = drive->hwif;
251         struct ide_io_ports *io_ports = &hwif->io_ports;
252         unsigned long data_addr = io_ports->data_addr;
253         u8 io_32bit = drive->io_32bit;
254         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
255
256         len++;
257
258         if (io_32bit) {
259                 unsigned long uninitialized_var(flags);
260
261                 if ((io_32bit & 2) && !mmio) {
262                         local_irq_save(flags);
263                         ata_vlb_sync(io_ports->nsect_addr);
264                 }
265
266                 if (mmio)
267                         __ide_mm_insl((void __iomem *)data_addr, buf, len / 4);
268                 else
269                         insl(data_addr, buf, len / 4);
270
271                 if ((io_32bit & 2) && !mmio)
272                         local_irq_restore(flags);
273
274                 if ((len & 3) >= 2) {
275                         if (mmio)
276                                 __ide_mm_insw((void __iomem *)data_addr,
277                                                 (u8 *)buf + (len & ~3), 1);
278                         else
279                                 insw(data_addr, (u8 *)buf + (len & ~3), 1);
280                 }
281         } else {
282                 if (mmio)
283                         __ide_mm_insw((void __iomem *)data_addr, buf, len / 2);
284                 else
285                         insw(data_addr, buf, len / 2);
286         }
287 }
288
289 /*
290  * This is used for most PIO data transfers *to* the IDE interface
291  */
292 static void ata_output_data(ide_drive_t *drive, struct request *rq,
293                             void *buf, unsigned int len)
294 {
295         ide_hwif_t *hwif = drive->hwif;
296         struct ide_io_ports *io_ports = &hwif->io_ports;
297         unsigned long data_addr = io_ports->data_addr;
298         u8 io_32bit = drive->io_32bit;
299         u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
300
301         if (io_32bit) {
302                 unsigned long uninitialized_var(flags);
303
304                 if ((io_32bit & 2) && !mmio) {
305                         local_irq_save(flags);
306                         ata_vlb_sync(io_ports->nsect_addr);
307                 }
308
309                 if (mmio)
310                         __ide_mm_outsl((void __iomem *)data_addr, buf, len / 4);
311                 else
312                         outsl(data_addr, buf, len / 4);
313
314                 if ((io_32bit & 2) && !mmio)
315                         local_irq_restore(flags);
316
317                 if ((len & 3) >= 2) {
318                         if (mmio)
319                                 __ide_mm_outsw((void __iomem *)data_addr,
320                                                  (u8 *)buf + (len & ~3), 1);
321                         else
322                                 outsw(data_addr, (u8 *)buf + (len & ~3), 1);
323                 }
324         } else {
325                 if (mmio)
326                         __ide_mm_outsw((void __iomem *)data_addr, buf, len / 2);
327                 else
328                         outsw(data_addr, buf, len / 2);
329         }
330 }
331
332 void default_hwif_transport(ide_hwif_t *hwif)
333 {
334         hwif->read_sff_dma_status = ide_read_sff_dma_status;
335
336         hwif->tf_load     = ide_tf_load;
337         hwif->tf_read     = ide_tf_read;
338
339         hwif->input_data  = ata_input_data;
340         hwif->output_data = ata_output_data;
341 }
342
343 void ide_fix_driveid (struct hd_driveid *id)
344 {
345 #ifndef __LITTLE_ENDIAN
346 # ifdef __BIG_ENDIAN
347         int i;
348         u16 *stringcast;
349
350         id->config         = __le16_to_cpu(id->config);
351         id->cyls           = __le16_to_cpu(id->cyls);
352         id->reserved2      = __le16_to_cpu(id->reserved2);
353         id->heads          = __le16_to_cpu(id->heads);
354         id->track_bytes    = __le16_to_cpu(id->track_bytes);
355         id->sector_bytes   = __le16_to_cpu(id->sector_bytes);
356         id->sectors        = __le16_to_cpu(id->sectors);
357         id->vendor0        = __le16_to_cpu(id->vendor0);
358         id->vendor1        = __le16_to_cpu(id->vendor1);
359         id->vendor2        = __le16_to_cpu(id->vendor2);
360         stringcast = (u16 *)&id->serial_no[0];
361         for (i = 0; i < (20/2); i++)
362                 stringcast[i] = __le16_to_cpu(stringcast[i]);
363         id->buf_type       = __le16_to_cpu(id->buf_type);
364         id->buf_size       = __le16_to_cpu(id->buf_size);
365         id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes);
366         stringcast = (u16 *)&id->fw_rev[0];
367         for (i = 0; i < (8/2); i++)
368                 stringcast[i] = __le16_to_cpu(stringcast[i]);
369         stringcast = (u16 *)&id->model[0];
370         for (i = 0; i < (40/2); i++)
371                 stringcast[i] = __le16_to_cpu(stringcast[i]);
372         id->dword_io       = __le16_to_cpu(id->dword_io);
373         id->reserved50     = __le16_to_cpu(id->reserved50);
374         id->field_valid    = __le16_to_cpu(id->field_valid);
375         id->cur_cyls       = __le16_to_cpu(id->cur_cyls);
376         id->cur_heads      = __le16_to_cpu(id->cur_heads);
377         id->cur_sectors    = __le16_to_cpu(id->cur_sectors);
378         id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0);
379         id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1);
380         id->lba_capacity   = __le32_to_cpu(id->lba_capacity);
381         id->dma_1word      = __le16_to_cpu(id->dma_1word);
382         id->dma_mword      = __le16_to_cpu(id->dma_mword);
383         id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
384         id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min);
385         id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time);
386         id->eide_pio       = __le16_to_cpu(id->eide_pio);
387         id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
388         for (i = 0; i < 2; ++i)
389                 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
390         for (i = 0; i < 4; ++i)
391                 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
392         id->queue_depth    = __le16_to_cpu(id->queue_depth);
393         for (i = 0; i < 4; ++i)
394                 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
395         id->major_rev_num  = __le16_to_cpu(id->major_rev_num);
396         id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num);
397         id->command_set_1  = __le16_to_cpu(id->command_set_1);
398         id->command_set_2  = __le16_to_cpu(id->command_set_2);
399         id->cfsse          = __le16_to_cpu(id->cfsse);
400         id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1);
401         id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2);
402         id->csf_default    = __le16_to_cpu(id->csf_default);
403         id->dma_ultra      = __le16_to_cpu(id->dma_ultra);
404         id->trseuc         = __le16_to_cpu(id->trseuc);
405         id->trsEuc         = __le16_to_cpu(id->trsEuc);
406         id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues);
407         id->mprc           = __le16_to_cpu(id->mprc);
408         id->hw_config      = __le16_to_cpu(id->hw_config);
409         id->acoustic       = __le16_to_cpu(id->acoustic);
410         id->msrqs          = __le16_to_cpu(id->msrqs);
411         id->sxfert         = __le16_to_cpu(id->sxfert);
412         id->sal            = __le16_to_cpu(id->sal);
413         id->spg            = __le32_to_cpu(id->spg);
414         id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
415         for (i = 0; i < 22; i++)
416                 id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]);
417         id->last_lun       = __le16_to_cpu(id->last_lun);
418         id->word127        = __le16_to_cpu(id->word127);
419         id->dlf            = __le16_to_cpu(id->dlf);
420         id->csfo           = __le16_to_cpu(id->csfo);
421         for (i = 0; i < 26; i++)
422                 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
423         id->word156        = __le16_to_cpu(id->word156);
424         for (i = 0; i < 3; i++)
425                 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
426         id->cfa_power      = __le16_to_cpu(id->cfa_power);
427         for (i = 0; i < 14; i++)
428                 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
429         for (i = 0; i < 31; i++)
430                 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
431         for (i = 0; i < 48; i++)
432                 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
433         id->integrity_word  = __le16_to_cpu(id->integrity_word);
434 # else
435 #  error "Please fix <asm/byteorder.h>"
436 # endif
437 #endif
438 }
439
440 /*
441  * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
442  * removing leading/trailing blanks and compressing internal blanks.
443  * It is primarily used to tidy up the model name/number fields as
444  * returned by the WIN_[P]IDENTIFY commands.
445  */
446
447 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
448 {
449         u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
450
451         if (byteswap) {
452                 /* convert from big-endian to host byte order */
453                 for (p = end ; p != s;) {
454                         unsigned short *pp = (unsigned short *) (p -= 2);
455                         *pp = ntohs(*pp);
456                 }
457         }
458         /* strip leading blanks */
459         while (s != end && *s == ' ')
460                 ++s;
461         /* compress internal blanks and strip trailing blanks */
462         while (s != end && *s) {
463                 if (*s++ != ' ' || (s != end && *s && *s != ' '))
464                         *p++ = *(s-1);
465         }
466         /* wipe out trailing garbage */
467         while (p != end)
468                 *p++ = '\0';
469 }
470
471 EXPORT_SYMBOL(ide_fixstring);
472
473 /*
474  * Needed for PCI irq sharing
475  */
476 int drive_is_ready (ide_drive_t *drive)
477 {
478         ide_hwif_t *hwif        = HWIF(drive);
479         u8 stat                 = 0;
480
481         if (drive->waiting_for_dma)
482                 return hwif->dma_ops->dma_test_irq(drive);
483
484 #if 0
485         /* need to guarantee 400ns since last command was issued */
486         udelay(1);
487 #endif
488
489         /*
490          * We do a passive status test under shared PCI interrupts on
491          * cards that truly share the ATA side interrupt, but may also share
492          * an interrupt with another pci card/device.  We make no assumptions
493          * about possible isa-pnp and pci-pnp issues yet.
494          */
495         if (hwif->io_ports.ctl_addr)
496                 stat = ide_read_altstatus(drive);
497         else
498                 /* Note: this may clear a pending IRQ!! */
499                 stat = ide_read_status(drive);
500
501         if (stat & BUSY_STAT)
502                 /* drive busy:  definitely not interrupting */
503                 return 0;
504
505         /* drive ready: *might* be interrupting */
506         return 1;
507 }
508
509 EXPORT_SYMBOL(drive_is_ready);
510
511 /*
512  * This routine busy-waits for the drive status to be not "busy".
513  * It then checks the status for all of the "good" bits and none
514  * of the "bad" bits, and if all is okay it returns 0.  All other
515  * cases return error -- caller may then invoke ide_error().
516  *
517  * This routine should get fixed to not hog the cpu during extra long waits..
518  * That could be done by busy-waiting for the first jiffy or two, and then
519  * setting a timer to wake up at half second intervals thereafter,
520  * until timeout is achieved, before timing out.
521  */
522 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
523 {
524         unsigned long flags;
525         int i;
526         u8 stat;
527
528         udelay(1);      /* spec allows drive 400ns to assert "BUSY" */
529         stat = ide_read_status(drive);
530
531         if (stat & BUSY_STAT) {
532                 local_irq_set(flags);
533                 timeout += jiffies;
534                 while ((stat = ide_read_status(drive)) & BUSY_STAT) {
535                         if (time_after(jiffies, timeout)) {
536                                 /*
537                                  * One last read after the timeout in case
538                                  * heavy interrupt load made us not make any
539                                  * progress during the timeout..
540                                  */
541                                 stat = ide_read_status(drive);
542                                 if (!(stat & BUSY_STAT))
543                                         break;
544
545                                 local_irq_restore(flags);
546                                 *rstat = stat;
547                                 return -EBUSY;
548                         }
549                 }
550                 local_irq_restore(flags);
551         }
552         /*
553          * Allow status to settle, then read it again.
554          * A few rare drives vastly violate the 400ns spec here,
555          * so we'll wait up to 10usec for a "good" status
556          * rather than expensively fail things immediately.
557          * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
558          */
559         for (i = 0; i < 10; i++) {
560                 udelay(1);
561                 stat = ide_read_status(drive);
562
563                 if (OK_STAT(stat, good, bad)) {
564                         *rstat = stat;
565                         return 0;
566                 }
567         }
568         *rstat = stat;
569         return -EFAULT;
570 }
571
572 /*
573  * In case of error returns error value after doing "*startstop = ide_error()".
574  * The caller should return the updated value of "startstop" in this case,
575  * "startstop" is unchanged when the function returns 0.
576  */
577 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
578 {
579         int err;
580         u8 stat;
581
582         /* bail early if we've exceeded max_failures */
583         if (drive->max_failures && (drive->failures > drive->max_failures)) {
584                 *startstop = ide_stopped;
585                 return 1;
586         }
587
588         err = __ide_wait_stat(drive, good, bad, timeout, &stat);
589
590         if (err) {
591                 char *s = (err == -EBUSY) ? "status timeout" : "status error";
592                 *startstop = ide_error(drive, s, stat);
593         }
594
595         return err;
596 }
597
598 EXPORT_SYMBOL(ide_wait_stat);
599
600 /**
601  *      ide_in_drive_list       -       look for drive in black/white list
602  *      @id: drive identifier
603  *      @drive_table: list to inspect
604  *
605  *      Look for a drive in the blacklist and the whitelist tables
606  *      Returns 1 if the drive is found in the table.
607  */
608
609 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
610 {
611         for ( ; drive_table->id_model; drive_table++)
612                 if ((!strcmp(drive_table->id_model, id->model)) &&
613                     (!drive_table->id_firmware ||
614                      strstr(id->fw_rev, drive_table->id_firmware)))
615                         return 1;
616         return 0;
617 }
618
619 EXPORT_SYMBOL_GPL(ide_in_drive_list);
620
621 /*
622  * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
623  * We list them here and depend on the device side cable detection for them.
624  *
625  * Some optical devices with the buggy firmwares have the same problem.
626  */
627 static const struct drive_list_entry ivb_list[] = {
628         { "QUANTUM FIREBALLlct10 05"    , "A03.0900"    },
629         { "TSSTcorp CDDVDW SH-S202J"    , "SB00"        },
630         { "TSSTcorp CDDVDW SH-S202J"    , "SB01"        },
631         { "TSSTcorp CDDVDW SH-S202N"    , "SB00"        },
632         { "TSSTcorp CDDVDW SH-S202N"    , "SB01"        },
633         { "TSSTcorp CDDVDW SH-S202H"    , "SB00"        },
634         { "TSSTcorp CDDVDW SH-S202H"    , "SB01"        },
635         { NULL                          , NULL          }
636 };
637
638 /*
639  *  All hosts that use the 80c ribbon must use!
640  *  The name is derived from upper byte of word 93 and the 80c ribbon.
641  */
642 u8 eighty_ninty_three (ide_drive_t *drive)
643 {
644         ide_hwif_t *hwif = drive->hwif;
645         struct hd_driveid *id = drive->id;
646         int ivb = ide_in_drive_list(id, ivb_list);
647
648         if (hwif->cbl == ATA_CBL_PATA40_SHORT)
649                 return 1;
650
651         if (ivb)
652                 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
653                                   drive->name);
654
655         if (ide_dev_is_sata(id) && !ivb)
656                 return 1;
657
658         if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
659                 goto no_80w;
660
661         /*
662          * FIXME:
663          * - change master/slave IDENTIFY order
664          * - force bit13 (80c cable present) check also for !ivb devices
665          *   (unless the slave device is pre-ATA3)
666          */
667         if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
668                 return 1;
669
670 no_80w:
671         if (drive->udma33_warned == 1)
672                 return 0;
673
674         printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
675                             "limiting max speed to UDMA33\n",
676                             drive->name,
677                             hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
678
679         drive->udma33_warned = 1;
680
681         return 0;
682 }
683
684 int ide_driveid_update(ide_drive_t *drive)
685 {
686         ide_hwif_t *hwif = drive->hwif;
687         struct hd_driveid *id;
688         unsigned long timeout, flags;
689         u8 stat;
690
691         /*
692          * Re-read drive->id for possible DMA mode
693          * change (copied from ide-probe.c)
694          */
695
696         SELECT_MASK(drive, 1);
697         ide_set_irq(drive, 0);
698         msleep(50);
699         hwif->OUTBSYNC(hwif, WIN_IDENTIFY, hwif->io_ports.command_addr);
700         timeout = jiffies + WAIT_WORSTCASE;
701         do {
702                 if (time_after(jiffies, timeout)) {
703                         SELECT_MASK(drive, 0);
704                         return 0;       /* drive timed-out */
705                 }
706
707                 msleep(50);     /* give drive a breather */
708                 stat = ide_read_altstatus(drive);
709         } while (stat & BUSY_STAT);
710
711         msleep(50);     /* wait for IRQ and DRQ_STAT */
712         stat = ide_read_status(drive);
713
714         if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
715                 SELECT_MASK(drive, 0);
716                 printk("%s: CHECK for good STATUS\n", drive->name);
717                 return 0;
718         }
719         local_irq_save(flags);
720         SELECT_MASK(drive, 0);
721         id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
722         if (!id) {
723                 local_irq_restore(flags);
724                 return 0;
725         }
726         hwif->input_data(drive, NULL, id, SECTOR_SIZE);
727         (void)ide_read_status(drive);   /* clear drive IRQ */
728         local_irq_enable();
729         local_irq_restore(flags);
730         ide_fix_driveid(id);
731         if (id) {
732                 drive->id->dma_ultra = id->dma_ultra;
733                 drive->id->dma_mword = id->dma_mword;
734                 drive->id->dma_1word = id->dma_1word;
735                 /* anything more ? */
736                 kfree(id);
737
738                 if (drive->using_dma && ide_id_dma_bug(drive))
739                         ide_dma_off(drive);
740         }
741
742         return 1;
743 }
744
745 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
746 {
747         ide_hwif_t *hwif = drive->hwif;
748         struct ide_io_ports *io_ports = &hwif->io_ports;
749         int error = 0;
750         u8 stat;
751
752 #ifdef CONFIG_BLK_DEV_IDEDMA
753         if (hwif->dma_ops)      /* check if host supports DMA */
754                 hwif->dma_ops->dma_host_set(drive, 0);
755 #endif
756
757         /* Skip setting PIO flow-control modes on pre-EIDE drives */
758         if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
759                 goto skip;
760
761         /*
762          * Don't use ide_wait_cmd here - it will
763          * attempt to set_geometry and recalibrate,
764          * but for some reason these don't work at
765          * this point (lost interrupt).
766          */
767         /*
768          * Select the drive, and issue the SETFEATURES command
769          */
770         disable_irq_nosync(hwif->irq);
771         
772         /*
773          *      FIXME: we race against the running IRQ here if
774          *      this is called from non IRQ context. If we use
775          *      disable_irq() we hang on the error path. Work
776          *      is needed.
777          */
778          
779         udelay(1);
780         SELECT_DRIVE(drive);
781         SELECT_MASK(drive, 0);
782         udelay(1);
783         ide_set_irq(drive, 0);
784         hwif->OUTB(speed, io_ports->nsect_addr);
785         hwif->OUTB(SETFEATURES_XFER, io_ports->feature_addr);
786         hwif->OUTBSYNC(hwif, WIN_SETFEATURES, io_ports->command_addr);
787         if (drive->quirk_list == 2)
788                 ide_set_irq(drive, 1);
789
790         error = __ide_wait_stat(drive, drive->ready_stat,
791                                 BUSY_STAT|DRQ_STAT|ERR_STAT,
792                                 WAIT_CMD, &stat);
793
794         SELECT_MASK(drive, 0);
795
796         enable_irq(hwif->irq);
797
798         if (error) {
799                 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
800                 return error;
801         }
802
803         drive->id->dma_ultra &= ~0xFF00;
804         drive->id->dma_mword &= ~0x0F00;
805         drive->id->dma_1word &= ~0x0F00;
806
807  skip:
808 #ifdef CONFIG_BLK_DEV_IDEDMA
809         if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
810             drive->using_dma)
811                 hwif->dma_ops->dma_host_set(drive, 1);
812         else if (hwif->dma_ops) /* check if host supports DMA */
813                 ide_dma_off_quietly(drive);
814 #endif
815
816         switch(speed) {
817                 case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break;
818                 case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break;
819                 case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break;
820                 case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break;
821                 case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break;
822                 case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break;
823                 case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break;
824                 case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break;
825                 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
826                 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
827                 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
828                 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
829                 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
830                 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
831                 default: break;
832         }
833         if (!drive->init_speed)
834                 drive->init_speed = speed;
835         drive->current_speed = speed;
836         return error;
837 }
838
839 /*
840  * This should get invoked any time we exit the driver to
841  * wait for an interrupt response from a drive.  handler() points
842  * at the appropriate code to handle the next interrupt, and a
843  * timer is started to prevent us from waiting forever in case
844  * something goes wrong (see the ide_timer_expiry() handler later on).
845  *
846  * See also ide_execute_command
847  */
848 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
849                       unsigned int timeout, ide_expiry_t *expiry)
850 {
851         ide_hwgroup_t *hwgroup = HWGROUP(drive);
852
853         BUG_ON(hwgroup->handler);
854         hwgroup->handler        = handler;
855         hwgroup->expiry         = expiry;
856         hwgroup->timer.expires  = jiffies + timeout;
857         hwgroup->req_gen_timer  = hwgroup->req_gen;
858         add_timer(&hwgroup->timer);
859 }
860
861 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
862                       unsigned int timeout, ide_expiry_t *expiry)
863 {
864         unsigned long flags;
865         spin_lock_irqsave(&ide_lock, flags);
866         __ide_set_handler(drive, handler, timeout, expiry);
867         spin_unlock_irqrestore(&ide_lock, flags);
868 }
869
870 EXPORT_SYMBOL(ide_set_handler);
871  
872 /**
873  *      ide_execute_command     -       execute an IDE command
874  *      @drive: IDE drive to issue the command against
875  *      @command: command byte to write
876  *      @handler: handler for next phase
877  *      @timeout: timeout for command
878  *      @expiry:  handler to run on timeout
879  *
880  *      Helper function to issue an IDE command. This handles the
881  *      atomicity requirements, command timing and ensures that the 
882  *      handler and IRQ setup do not race. All IDE command kick off
883  *      should go via this function or do equivalent locking.
884  */
885
886 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
887                          unsigned timeout, ide_expiry_t *expiry)
888 {
889         unsigned long flags;
890         ide_hwif_t *hwif = HWIF(drive);
891
892         spin_lock_irqsave(&ide_lock, flags);
893         __ide_set_handler(drive, handler, timeout, expiry);
894         hwif->OUTBSYNC(hwif, cmd, hwif->io_ports.command_addr);
895         /*
896          * Drive takes 400nS to respond, we must avoid the IRQ being
897          * serviced before that.
898          *
899          * FIXME: we could skip this delay with care on non shared devices
900          */
901         ndelay(400);
902         spin_unlock_irqrestore(&ide_lock, flags);
903 }
904 EXPORT_SYMBOL(ide_execute_command);
905
906 void ide_execute_pkt_cmd(ide_drive_t *drive)
907 {
908         ide_hwif_t *hwif = drive->hwif;
909         unsigned long flags;
910
911         spin_lock_irqsave(&ide_lock, flags);
912         hwif->OUTBSYNC(hwif, WIN_PACKETCMD, hwif->io_ports.command_addr);
913         ndelay(400);
914         spin_unlock_irqrestore(&ide_lock, flags);
915 }
916 EXPORT_SYMBOL_GPL(ide_execute_pkt_cmd);
917
918 static inline void ide_complete_drive_reset(ide_drive_t *drive, int err)
919 {
920         struct request *rq = drive->hwif->hwgroup->rq;
921
922         if (rq && blk_special_request(rq) && rq->cmd[0] == REQ_DRIVE_RESET)
923                 ide_end_request(drive, err ? err : 1, 0);
924 }
925
926 /* needed below */
927 static ide_startstop_t do_reset1 (ide_drive_t *, int);
928
929 /*
930  * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
931  * during an atapi drive reset operation. If the drive has not yet responded,
932  * and we have not yet hit our maximum waiting time, then the timer is restarted
933  * for another 50ms.
934  */
935 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
936 {
937         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
938         u8 stat;
939
940         SELECT_DRIVE(drive);
941         udelay (10);
942         stat = ide_read_status(drive);
943
944         if (OK_STAT(stat, 0, BUSY_STAT))
945                 printk("%s: ATAPI reset complete\n", drive->name);
946         else {
947                 if (time_before(jiffies, hwgroup->poll_timeout)) {
948                         ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
949                         /* continue polling */
950                         return ide_started;
951                 }
952                 /* end of polling */
953                 hwgroup->polling = 0;
954                 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
955                                 drive->name, stat);
956                 /* do it the old fashioned way */
957                 return do_reset1(drive, 1);
958         }
959         /* done polling */
960         hwgroup->polling = 0;
961         ide_complete_drive_reset(drive, 0);
962         return ide_stopped;
963 }
964
965 /*
966  * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
967  * during an ide reset operation. If the drives have not yet responded,
968  * and we have not yet hit our maximum waiting time, then the timer is restarted
969  * for another 50ms.
970  */
971 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
972 {
973         ide_hwgroup_t *hwgroup  = HWGROUP(drive);
974         ide_hwif_t *hwif        = HWIF(drive);
975         const struct ide_port_ops *port_ops = hwif->port_ops;
976         u8 tmp;
977         int err = 0;
978
979         if (port_ops && port_ops->reset_poll) {
980                 err = port_ops->reset_poll(drive);
981                 if (err) {
982                         printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
983                                 hwif->name, drive->name);
984                         goto out;
985                 }
986         }
987
988         tmp = ide_read_status(drive);
989
990         if (!OK_STAT(tmp, 0, BUSY_STAT)) {
991                 if (time_before(jiffies, hwgroup->poll_timeout)) {
992                         ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
993                         /* continue polling */
994                         return ide_started;
995                 }
996                 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
997                 drive->failures++;
998                 err = -EIO;
999         } else  {
1000                 printk("%s: reset: ", hwif->name);
1001                 tmp = ide_read_error(drive);
1002
1003                 if (tmp == 1) {
1004                         printk("success\n");
1005                         drive->failures = 0;
1006                 } else {
1007                         drive->failures++;
1008                         printk("master: ");
1009                         switch (tmp & 0x7f) {
1010                                 case 1: printk("passed");
1011                                         break;
1012                                 case 2: printk("formatter device error");
1013                                         break;
1014                                 case 3: printk("sector buffer error");
1015                                         break;
1016                                 case 4: printk("ECC circuitry error");
1017                                         break;
1018                                 case 5: printk("controlling MPU error");
1019                                         break;
1020                                 default:printk("error (0x%02x?)", tmp);
1021                         }
1022                         if (tmp & 0x80)
1023                                 printk("; slave: failed");
1024                         printk("\n");
1025                         err = -EIO;
1026                 }
1027         }
1028 out:
1029         hwgroup->polling = 0;   /* done polling */
1030         ide_complete_drive_reset(drive, err);
1031         return ide_stopped;
1032 }
1033
1034 static void ide_disk_pre_reset(ide_drive_t *drive)
1035 {
1036         int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1037
1038         drive->special.all = 0;
1039         drive->special.b.set_geometry = legacy;
1040         drive->special.b.recalibrate  = legacy;
1041         drive->mult_count = 0;
1042         if (!drive->keep_settings && !drive->using_dma)
1043                 drive->mult_req = 0;
1044         if (drive->mult_req != drive->mult_count)
1045                 drive->special.b.set_multmode = 1;
1046 }
1047
1048 static void pre_reset(ide_drive_t *drive)
1049 {
1050         const struct ide_port_ops *port_ops = drive->hwif->port_ops;
1051
1052         if (drive->media == ide_disk)
1053                 ide_disk_pre_reset(drive);
1054         else
1055                 drive->post_reset = 1;
1056
1057         if (drive->using_dma) {
1058                 if (drive->crc_count)
1059                         ide_check_dma_crc(drive);
1060                 else
1061                         ide_dma_off(drive);
1062         }
1063
1064         if (!drive->keep_settings) {
1065                 if (!drive->using_dma) {
1066                         drive->unmask = 0;
1067                         drive->io_32bit = 0;
1068                 }
1069                 return;
1070         }
1071
1072         if (port_ops && port_ops->pre_reset)
1073                 port_ops->pre_reset(drive);
1074
1075         if (drive->current_speed != 0xff)
1076                 drive->desired_speed = drive->current_speed;
1077         drive->current_speed = 0xff;
1078 }
1079
1080 /*
1081  * do_reset1() attempts to recover a confused drive by resetting it.
1082  * Unfortunately, resetting a disk drive actually resets all devices on
1083  * the same interface, so it can really be thought of as resetting the
1084  * interface rather than resetting the drive.
1085  *
1086  * ATAPI devices have their own reset mechanism which allows them to be
1087  * individually reset without clobbering other devices on the same interface.
1088  *
1089  * Unfortunately, the IDE interface does not generate an interrupt to let
1090  * us know when the reset operation has finished, so we must poll for this.
1091  * Equally poor, though, is the fact that this may a very long time to complete,
1092  * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it,
1093  * we set a timer to poll at 50ms intervals.
1094  */
1095 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1096 {
1097         unsigned int unit;
1098         unsigned long flags;
1099         ide_hwif_t *hwif;
1100         ide_hwgroup_t *hwgroup;
1101         struct ide_io_ports *io_ports;
1102         const struct ide_port_ops *port_ops;
1103         u8 ctl;
1104
1105         spin_lock_irqsave(&ide_lock, flags);
1106         hwif = HWIF(drive);
1107         hwgroup = HWGROUP(drive);
1108
1109         io_ports = &hwif->io_ports;
1110
1111         /* We must not reset with running handlers */
1112         BUG_ON(hwgroup->handler != NULL);
1113
1114         /* For an ATAPI device, first try an ATAPI SRST. */
1115         if (drive->media != ide_disk && !do_not_try_atapi) {
1116                 pre_reset(drive);
1117                 SELECT_DRIVE(drive);
1118                 udelay (20);
1119                 hwif->OUTBSYNC(hwif, WIN_SRST, io_ports->command_addr);
1120                 ndelay(400);
1121                 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1122                 hwgroup->polling = 1;
1123                 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1124                 spin_unlock_irqrestore(&ide_lock, flags);
1125                 return ide_started;
1126         }
1127
1128         /*
1129          * First, reset any device state data we were maintaining
1130          * for any of the drives on this interface.
1131          */
1132         for (unit = 0; unit < MAX_DRIVES; ++unit)
1133                 pre_reset(&hwif->drives[unit]);
1134
1135         if (io_ports->ctl_addr == 0) {
1136                 spin_unlock_irqrestore(&ide_lock, flags);
1137                 ide_complete_drive_reset(drive, -ENXIO);
1138                 return ide_stopped;
1139         }
1140
1141         /*
1142          * Note that we also set nIEN while resetting the device,
1143          * to mask unwanted interrupts from the interface during the reset.
1144          * However, due to the design of PC hardware, this will cause an
1145          * immediate interrupt due to the edge transition it produces.
1146          * This single interrupt gives us a "fast poll" for drives that
1147          * recover from reset very quickly, saving us the first 50ms wait time.
1148          */
1149         /* set SRST and nIEN */
1150         hwif->OUTBSYNC(hwif, ATA_DEVCTL_OBS | 6, io_ports->ctl_addr);
1151         /* more than enough time */
1152         udelay(10);
1153         if (drive->quirk_list == 2)
1154                 ctl = ATA_DEVCTL_OBS;           /* clear SRST and nIEN */
1155         else
1156                 ctl = ATA_DEVCTL_OBS | 2;       /* clear SRST, leave nIEN */
1157         hwif->OUTBSYNC(hwif, ctl, io_ports->ctl_addr);
1158         /* more than enough time */
1159         udelay(10);
1160         hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1161         hwgroup->polling = 1;
1162         __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1163
1164         /*
1165          * Some weird controller like resetting themselves to a strange
1166          * state when the disks are reset this way. At least, the Winbond
1167          * 553 documentation says that
1168          */
1169         port_ops = hwif->port_ops;
1170         if (port_ops && port_ops->resetproc)
1171                 port_ops->resetproc(drive);
1172
1173         spin_unlock_irqrestore(&ide_lock, flags);
1174         return ide_started;
1175 }
1176
1177 /*
1178  * ide_do_reset() is the entry point to the drive/interface reset code.
1179  */
1180
1181 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1182 {
1183         return do_reset1(drive, 0);
1184 }
1185
1186 EXPORT_SYMBOL(ide_do_reset);
1187
1188 /*
1189  * ide_wait_not_busy() waits for the currently selected device on the hwif
1190  * to report a non-busy status, see comments in ide_probe_port().
1191  */
1192 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1193 {
1194         u8 stat = 0;
1195
1196         while(timeout--) {
1197                 /*
1198                  * Turn this into a schedule() sleep once I'm sure
1199                  * about locking issues (2.5 work ?).
1200                  */
1201                 mdelay(1);
1202                 stat = hwif->INB(hwif->io_ports.status_addr);
1203                 if ((stat & BUSY_STAT) == 0)
1204                         return 0;
1205                 /*
1206                  * Assume a value of 0xff means nothing is connected to
1207                  * the interface and it doesn't implement the pull-down
1208                  * resistor on D7.
1209                  */
1210                 if (stat == 0xff)
1211                         return -ENODEV;
1212                 touch_softlockup_watchdog();
1213                 touch_nmi_watchdog();
1214         }
1215         return -EBUSY;
1216 }
1217
1218 EXPORT_SYMBOL_GPL(ide_wait_not_busy);
1219