ide: factor out completion of taskfile from ide_end_drive_cmd()
[safe/jmp/linux-2.6] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
52
53 #include <asm/byteorder.h>
54 #include <asm/irq.h>
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59                              int uptodate, unsigned int nr_bytes, int dequeue)
60 {
61         int ret = 1;
62         int error = 0;
63
64         if (uptodate <= 0)
65                 error = uptodate ? uptodate : -EIO;
66
67         /*
68          * if failfast is set on a request, override number of sectors and
69          * complete the whole request right now
70          */
71         if (blk_noretry_request(rq) && error)
72                 nr_bytes = rq->hard_nr_sectors << 9;
73
74         if (!blk_fs_request(rq) && error && !rq->errors)
75                 rq->errors = -EIO;
76
77         /*
78          * decide whether to reenable DMA -- 3 is a random magic for now,
79          * if we DMA timeout more than 3 times, just stay in PIO
80          */
81         if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82             drive->retry_pio <= 3) {
83                 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84                 ide_dma_on(drive);
85         }
86
87         if (!blk_end_request(rq, error, nr_bytes))
88                 ret = 0;
89
90         if (ret == 0 && dequeue)
91                 drive->hwif->rq = NULL;
92
93         return ret;
94 }
95
96 /**
97  *      ide_end_request         -       complete an IDE I/O
98  *      @drive: IDE device for the I/O
99  *      @uptodate:
100  *      @nr_sectors: number of sectors completed
101  *
102  *      This is our end_request wrapper function. We complete the I/O
103  *      update random number input and dequeue the request, which if
104  *      it was tagged may be out of order.
105  */
106
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108 {
109         unsigned int nr_bytes = nr_sectors << 9;
110         struct request *rq = drive->hwif->rq;
111
112         if (!nr_bytes) {
113                 if (blk_pc_request(rq))
114                         nr_bytes = rq->data_len;
115                 else
116                         nr_bytes = rq->hard_cur_sectors << 9;
117         }
118
119         return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
120 }
121 EXPORT_SYMBOL(ide_end_request);
122
123 /**
124  *      ide_end_dequeued_request        -       complete an IDE I/O
125  *      @drive: IDE device for the I/O
126  *      @uptodate:
127  *      @nr_sectors: number of sectors completed
128  *
129  *      Complete an I/O that is no longer on the request queue. This
130  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
131  *      We must still finish the old request but we must not tamper with the
132  *      queue in the meantime.
133  *
134  *      NOTE: This path does not handle barrier, but barrier is not supported
135  *      on ide-cd anyway.
136  */
137
138 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
139                              int uptodate, int nr_sectors)
140 {
141         BUG_ON(!blk_rq_started(rq));
142
143         return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
144 }
145 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
146
147 static void ide_complete_task(ide_drive_t *drive, ide_task_t *task,
148                               u8 stat, u8 err)
149 {
150         struct ide_taskfile *tf = &task->tf;
151
152         tf->error = err;
153         tf->status = stat;
154
155         drive->hwif->tp_ops->tf_read(drive, task);
156
157         if (task->tf_flags & IDE_TFLAG_DYN)
158                 kfree(task);
159 }
160
161 /**
162  *      ide_end_drive_cmd       -       end an explicit drive command
163  *      @drive: command 
164  *      @stat: status bits
165  *      @err: error bits
166  *
167  *      Clean up after success/failure of an explicit drive command.
168  *      These get thrown onto the queue so they are synchronized with
169  *      real I/O operations on the drive.
170  *
171  *      In LBA48 mode we have to read the register set twice to get
172  *      all the extra information out.
173  */
174  
175 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
176 {
177         ide_hwif_t *hwif = drive->hwif;
178         struct request *rq = hwif->rq;
179
180         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
181                 ide_task_t *task = (ide_task_t *)rq->special;
182
183                 if (task)
184                         ide_complete_task(drive, task, stat, err);
185         } else if (blk_pm_request(rq)) {
186                 ide_complete_pm_rq(drive, rq);
187                 return;
188         }
189
190         hwif->rq = NULL;
191
192         rq->errors = err;
193
194         if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
195                                      blk_rq_bytes(rq))))
196                 BUG();
197 }
198 EXPORT_SYMBOL(ide_end_drive_cmd);
199
200 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
201 {
202         if (rq->rq_disk) {
203                 struct ide_driver *drv;
204
205                 drv = *(struct ide_driver **)rq->rq_disk->private_data;
206                 drv->end_request(drive, 0, 0);
207         } else
208                 ide_end_request(drive, 0, 0);
209 }
210
211 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
212 {
213         tf->nsect   = drive->sect;
214         tf->lbal    = drive->sect;
215         tf->lbam    = drive->cyl;
216         tf->lbah    = drive->cyl >> 8;
217         tf->device  = (drive->head - 1) | drive->select;
218         tf->command = ATA_CMD_INIT_DEV_PARAMS;
219 }
220
221 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
222 {
223         tf->nsect   = drive->sect;
224         tf->command = ATA_CMD_RESTORE;
225 }
226
227 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
228 {
229         tf->nsect   = drive->mult_req;
230         tf->command = ATA_CMD_SET_MULTI;
231 }
232
233 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
234 {
235         special_t *s = &drive->special;
236         ide_task_t args;
237
238         memset(&args, 0, sizeof(ide_task_t));
239         args.data_phase = TASKFILE_NO_DATA;
240
241         if (s->b.set_geometry) {
242                 s->b.set_geometry = 0;
243                 ide_tf_set_specify_cmd(drive, &args.tf);
244         } else if (s->b.recalibrate) {
245                 s->b.recalibrate = 0;
246                 ide_tf_set_restore_cmd(drive, &args.tf);
247         } else if (s->b.set_multmode) {
248                 s->b.set_multmode = 0;
249                 ide_tf_set_setmult_cmd(drive, &args.tf);
250         } else if (s->all) {
251                 int special = s->all;
252                 s->all = 0;
253                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
254                 return ide_stopped;
255         }
256
257         args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
258                         IDE_TFLAG_CUSTOM_HANDLER;
259
260         do_rw_taskfile(drive, &args);
261
262         return ide_started;
263 }
264
265 /**
266  *      do_special              -       issue some special commands
267  *      @drive: drive the command is for
268  *
269  *      do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
270  *      ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
271  *
272  *      It used to do much more, but has been scaled back.
273  */
274
275 static ide_startstop_t do_special (ide_drive_t *drive)
276 {
277         special_t *s = &drive->special;
278
279 #ifdef DEBUG
280         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
281 #endif
282         if (drive->media == ide_disk)
283                 return ide_disk_special(drive);
284
285         s->all = 0;
286         drive->mult_req = 0;
287         return ide_stopped;
288 }
289
290 void ide_map_sg(ide_drive_t *drive, struct request *rq)
291 {
292         ide_hwif_t *hwif = drive->hwif;
293         struct scatterlist *sg = hwif->sg_table;
294
295         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
296                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
297                 hwif->sg_nents = 1;
298         } else if (!rq->bio) {
299                 sg_init_one(sg, rq->data, rq->data_len);
300                 hwif->sg_nents = 1;
301         } else {
302                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
303         }
304 }
305
306 EXPORT_SYMBOL_GPL(ide_map_sg);
307
308 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
309 {
310         ide_hwif_t *hwif = drive->hwif;
311
312         hwif->nsect = hwif->nleft = rq->nr_sectors;
313         hwif->cursg_ofs = 0;
314         hwif->cursg = NULL;
315 }
316
317 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
318
319 /**
320  *      execute_drive_command   -       issue special drive command
321  *      @drive: the drive to issue the command on
322  *      @rq: the request structure holding the command
323  *
324  *      execute_drive_cmd() issues a special drive command,  usually 
325  *      initiated by ioctl() from the external hdparm program. The
326  *      command can be a drive command, drive task or taskfile 
327  *      operation. Weirdly you can call it with NULL to wait for
328  *      all commands to finish. Don't do this as that is due to change
329  */
330
331 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
332                 struct request *rq)
333 {
334         ide_hwif_t *hwif = drive->hwif;
335         ide_task_t *task = rq->special;
336
337         if (task) {
338                 hwif->data_phase = task->data_phase;
339
340                 switch (hwif->data_phase) {
341                 case TASKFILE_MULTI_OUT:
342                 case TASKFILE_OUT:
343                 case TASKFILE_MULTI_IN:
344                 case TASKFILE_IN:
345                         ide_init_sg_cmd(drive, rq);
346                         ide_map_sg(drive, rq);
347                 default:
348                         break;
349                 }
350
351                 return do_rw_taskfile(drive, task);
352         }
353
354         /*
355          * NULL is actually a valid way of waiting for
356          * all current requests to be flushed from the queue.
357          */
358 #ifdef DEBUG
359         printk("%s: DRIVE_CMD (null)\n", drive->name);
360 #endif
361         ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
362                           ide_read_error(drive));
363
364         return ide_stopped;
365 }
366
367 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
368 {
369         u8 cmd = rq->cmd[0];
370
371         switch (cmd) {
372         case REQ_PARK_HEADS:
373         case REQ_UNPARK_HEADS:
374                 return ide_do_park_unpark(drive, rq);
375         case REQ_DEVSET_EXEC:
376                 return ide_do_devset(drive, rq);
377         case REQ_DRIVE_RESET:
378                 return ide_do_reset(drive);
379         default:
380                 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
381                 ide_end_request(drive, 0, 0);
382                 return ide_stopped;
383         }
384 }
385
386 /**
387  *      start_request   -       start of I/O and command issuing for IDE
388  *
389  *      start_request() initiates handling of a new I/O request. It
390  *      accepts commands and I/O (read/write) requests.
391  *
392  *      FIXME: this function needs a rename
393  */
394  
395 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
396 {
397         ide_startstop_t startstop;
398
399         BUG_ON(!blk_rq_started(rq));
400
401 #ifdef DEBUG
402         printk("%s: start_request: current=0x%08lx\n",
403                 drive->hwif->name, (unsigned long) rq);
404 #endif
405
406         /* bail early if we've exceeded max_failures */
407         if (drive->max_failures && (drive->failures > drive->max_failures)) {
408                 rq->cmd_flags |= REQ_FAILED;
409                 goto kill_rq;
410         }
411
412         if (blk_pm_request(rq))
413                 ide_check_pm_state(drive, rq);
414
415         SELECT_DRIVE(drive);
416         if (ide_wait_stat(&startstop, drive, drive->ready_stat,
417                           ATA_BUSY | ATA_DRQ, WAIT_READY)) {
418                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
419                 return startstop;
420         }
421         if (!drive->special.all) {
422                 struct ide_driver *drv;
423
424                 /*
425                  * We reset the drive so we need to issue a SETFEATURES.
426                  * Do it _after_ do_special() restored device parameters.
427                  */
428                 if (drive->current_speed == 0xff)
429                         ide_config_drive_speed(drive, drive->desired_speed);
430
431                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
432                         return execute_drive_cmd(drive, rq);
433                 else if (blk_pm_request(rq)) {
434                         struct request_pm_state *pm = rq->data;
435 #ifdef DEBUG_PM
436                         printk("%s: start_power_step(step: %d)\n",
437                                 drive->name, pm->pm_step);
438 #endif
439                         startstop = ide_start_power_step(drive, rq);
440                         if (startstop == ide_stopped &&
441                             pm->pm_step == IDE_PM_COMPLETED)
442                                 ide_complete_pm_rq(drive, rq);
443                         return startstop;
444                 } else if (!rq->rq_disk && blk_special_request(rq))
445                         /*
446                          * TODO: Once all ULDs have been modified to
447                          * check for specific op codes rather than
448                          * blindly accepting any special request, the
449                          * check for ->rq_disk above may be replaced
450                          * by a more suitable mechanism or even
451                          * dropped entirely.
452                          */
453                         return ide_special_rq(drive, rq);
454
455                 drv = *(struct ide_driver **)rq->rq_disk->private_data;
456
457                 return drv->do_request(drive, rq, rq->sector);
458         }
459         return do_special(drive);
460 kill_rq:
461         ide_kill_rq(drive, rq);
462         return ide_stopped;
463 }
464
465 /**
466  *      ide_stall_queue         -       pause an IDE device
467  *      @drive: drive to stall
468  *      @timeout: time to stall for (jiffies)
469  *
470  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
471  *      to the port by sleeping for timeout jiffies.
472  */
473  
474 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
475 {
476         if (timeout > WAIT_WORSTCASE)
477                 timeout = WAIT_WORSTCASE;
478         drive->sleep = timeout + jiffies;
479         drive->dev_flags |= IDE_DFLAG_SLEEPING;
480 }
481 EXPORT_SYMBOL(ide_stall_queue);
482
483 static inline int ide_lock_port(ide_hwif_t *hwif)
484 {
485         if (hwif->busy)
486                 return 1;
487
488         hwif->busy = 1;
489
490         return 0;
491 }
492
493 static inline void ide_unlock_port(ide_hwif_t *hwif)
494 {
495         hwif->busy = 0;
496 }
497
498 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
499 {
500         int rc = 0;
501
502         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
503                 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
504                 if (rc == 0) {
505                         if (host->get_lock)
506                                 host->get_lock(ide_intr, hwif);
507                 }
508         }
509         return rc;
510 }
511
512 static inline void ide_unlock_host(struct ide_host *host)
513 {
514         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
515                 if (host->release_lock)
516                         host->release_lock();
517                 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
518         }
519 }
520
521 /*
522  * Issue a new request to a device.
523  */
524 void do_ide_request(struct request_queue *q)
525 {
526         ide_drive_t     *drive = q->queuedata;
527         ide_hwif_t      *hwif = drive->hwif;
528         struct ide_host *host = hwif->host;
529         struct request  *rq = NULL;
530         ide_startstop_t startstop;
531
532         /*
533          * drive is doing pre-flush, ordered write, post-flush sequence. even
534          * though that is 3 requests, it must be seen as a single transaction.
535          * we must not preempt this drive until that is complete
536          */
537         if (blk_queue_flushing(q))
538                 /*
539                  * small race where queue could get replugged during
540                  * the 3-request flush cycle, just yank the plug since
541                  * we want it to finish asap
542                  */
543                 blk_remove_plug(q);
544
545         spin_unlock_irq(q->queue_lock);
546
547         if (ide_lock_host(host, hwif))
548                 goto plug_device_2;
549
550         spin_lock_irq(&hwif->lock);
551
552         if (!ide_lock_port(hwif)) {
553                 ide_hwif_t *prev_port;
554 repeat:
555                 prev_port = hwif->host->cur_port;
556                 hwif->rq = NULL;
557
558                 if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
559                         if (time_before(drive->sleep, jiffies)) {
560                                 ide_unlock_port(hwif);
561                                 goto plug_device;
562                         }
563                 }
564
565                 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
566                     hwif != prev_port) {
567                         /*
568                          * set nIEN for previous port, drives in the
569                          * quirk_list may not like intr setups/cleanups
570                          */
571                         if (prev_port && prev_port->cur_dev->quirk_list == 0)
572                                 prev_port->tp_ops->set_irq(prev_port, 0);
573
574                         hwif->host->cur_port = hwif;
575                 }
576                 hwif->cur_dev = drive;
577                 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
578
579                 spin_unlock_irq(&hwif->lock);
580                 spin_lock_irq(q->queue_lock);
581                 /*
582                  * we know that the queue isn't empty, but this can happen
583                  * if the q->prep_rq_fn() decides to kill a request
584                  */
585                 rq = elv_next_request(drive->queue);
586                 spin_unlock_irq(q->queue_lock);
587                 spin_lock_irq(&hwif->lock);
588
589                 if (!rq) {
590                         ide_unlock_port(hwif);
591                         goto out;
592                 }
593
594                 /*
595                  * Sanity: don't accept a request that isn't a PM request
596                  * if we are currently power managed. This is very important as
597                  * blk_stop_queue() doesn't prevent the elv_next_request()
598                  * above to return us whatever is in the queue. Since we call
599                  * ide_do_request() ourselves, we end up taking requests while
600                  * the queue is blocked...
601                  * 
602                  * We let requests forced at head of queue with ide-preempt
603                  * though. I hope that doesn't happen too much, hopefully not
604                  * unless the subdriver triggers such a thing in its own PM
605                  * state machine.
606                  */
607                 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
608                     blk_pm_request(rq) == 0 &&
609                     (rq->cmd_flags & REQ_PREEMPT) == 0) {
610                         /* there should be no pending command at this point */
611                         ide_unlock_port(hwif);
612                         goto plug_device;
613                 }
614
615                 hwif->rq = rq;
616
617                 spin_unlock_irq(&hwif->lock);
618                 startstop = start_request(drive, rq);
619                 spin_lock_irq(&hwif->lock);
620
621                 if (startstop == ide_stopped)
622                         goto repeat;
623         } else
624                 goto plug_device;
625 out:
626         spin_unlock_irq(&hwif->lock);
627         if (rq == NULL)
628                 ide_unlock_host(host);
629         spin_lock_irq(q->queue_lock);
630         return;
631
632 plug_device:
633         spin_unlock_irq(&hwif->lock);
634         ide_unlock_host(host);
635 plug_device_2:
636         spin_lock_irq(q->queue_lock);
637
638         if (!elv_queue_empty(q))
639                 blk_plug_device(q);
640 }
641
642 static void ide_plug_device(ide_drive_t *drive)
643 {
644         struct request_queue *q = drive->queue;
645         unsigned long flags;
646
647         spin_lock_irqsave(q->queue_lock, flags);
648         if (!elv_queue_empty(q))
649                 blk_plug_device(q);
650         spin_unlock_irqrestore(q->queue_lock, flags);
651 }
652
653 static int drive_is_ready(ide_drive_t *drive)
654 {
655         ide_hwif_t *hwif = drive->hwif;
656         u8 stat = 0;
657
658         if (drive->waiting_for_dma)
659                 return hwif->dma_ops->dma_test_irq(drive);
660
661         if (hwif->io_ports.ctl_addr &&
662             (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
663                 stat = hwif->tp_ops->read_altstatus(hwif);
664         else
665                 /* Note: this may clear a pending IRQ!! */
666                 stat = hwif->tp_ops->read_status(hwif);
667
668         if (stat & ATA_BUSY)
669                 /* drive busy: definitely not interrupting */
670                 return 0;
671
672         /* drive ready: *might* be interrupting */
673         return 1;
674 }
675
676 /**
677  *      ide_timer_expiry        -       handle lack of an IDE interrupt
678  *      @data: timer callback magic (hwif)
679  *
680  *      An IDE command has timed out before the expected drive return
681  *      occurred. At this point we attempt to clean up the current
682  *      mess. If the current handler includes an expiry handler then
683  *      we invoke the expiry handler, and providing it is happy the
684  *      work is done. If that fails we apply generic recovery rules
685  *      invoking the handler and checking the drive DMA status. We
686  *      have an excessively incestuous relationship with the DMA
687  *      logic that wants cleaning up.
688  */
689  
690 void ide_timer_expiry (unsigned long data)
691 {
692         ide_hwif_t      *hwif = (ide_hwif_t *)data;
693         ide_drive_t     *uninitialized_var(drive);
694         ide_handler_t   *handler;
695         unsigned long   flags;
696         int             wait = -1;
697         int             plug_device = 0;
698
699         spin_lock_irqsave(&hwif->lock, flags);
700
701         handler = hwif->handler;
702
703         if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
704                 /*
705                  * Either a marginal timeout occurred
706                  * (got the interrupt just as timer expired),
707                  * or we were "sleeping" to give other devices a chance.
708                  * Either way, we don't really want to complain about anything.
709                  */
710         } else {
711                 ide_expiry_t *expiry = hwif->expiry;
712                 ide_startstop_t startstop = ide_stopped;
713
714                 drive = hwif->cur_dev;
715
716                 if (expiry) {
717                         wait = expiry(drive);
718                         if (wait > 0) { /* continue */
719                                 /* reset timer */
720                                 hwif->timer.expires = jiffies + wait;
721                                 hwif->req_gen_timer = hwif->req_gen;
722                                 add_timer(&hwif->timer);
723                                 spin_unlock_irqrestore(&hwif->lock, flags);
724                                 return;
725                         }
726                 }
727                 hwif->handler = NULL;
728                 /*
729                  * We need to simulate a real interrupt when invoking
730                  * the handler() function, which means we need to
731                  * globally mask the specific IRQ:
732                  */
733                 spin_unlock(&hwif->lock);
734                 /* disable_irq_nosync ?? */
735                 disable_irq(hwif->irq);
736                 /* local CPU only, as if we were handling an interrupt */
737                 local_irq_disable();
738                 if (hwif->polling) {
739                         startstop = handler(drive);
740                 } else if (drive_is_ready(drive)) {
741                         if (drive->waiting_for_dma)
742                                 hwif->dma_ops->dma_lost_irq(drive);
743                         if (hwif->ack_intr)
744                                 hwif->ack_intr(hwif);
745                         printk(KERN_WARNING "%s: lost interrupt\n",
746                                 drive->name);
747                         startstop = handler(drive);
748                 } else {
749                         if (drive->waiting_for_dma)
750                                 startstop = ide_dma_timeout_retry(drive, wait);
751                         else
752                                 startstop = ide_error(drive, "irq timeout",
753                                         hwif->tp_ops->read_status(hwif));
754                 }
755                 spin_lock_irq(&hwif->lock);
756                 enable_irq(hwif->irq);
757                 if (startstop == ide_stopped) {
758                         ide_unlock_port(hwif);
759                         plug_device = 1;
760                 }
761         }
762         spin_unlock_irqrestore(&hwif->lock, flags);
763
764         if (plug_device) {
765                 ide_unlock_host(hwif->host);
766                 ide_plug_device(drive);
767         }
768 }
769
770 /**
771  *      unexpected_intr         -       handle an unexpected IDE interrupt
772  *      @irq: interrupt line
773  *      @hwif: port being processed
774  *
775  *      There's nothing really useful we can do with an unexpected interrupt,
776  *      other than reading the status register (to clear it), and logging it.
777  *      There should be no way that an irq can happen before we're ready for it,
778  *      so we needn't worry much about losing an "important" interrupt here.
779  *
780  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
781  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
782  *      looks "good", we just ignore the interrupt completely.
783  *
784  *      This routine assumes __cli() is in effect when called.
785  *
786  *      If an unexpected interrupt happens on irq15 while we are handling irq14
787  *      and if the two interfaces are "serialized" (CMD640), then it looks like
788  *      we could screw up by interfering with a new request being set up for 
789  *      irq15.
790  *
791  *      In reality, this is a non-issue.  The new command is not sent unless 
792  *      the drive is ready to accept one, in which case we know the drive is
793  *      not trying to interrupt us.  And ide_set_handler() is always invoked
794  *      before completing the issuance of any new drive command, so we will not
795  *      be accidentally invoked as a result of any valid command completion
796  *      interrupt.
797  */
798
799 static void unexpected_intr(int irq, ide_hwif_t *hwif)
800 {
801         u8 stat = hwif->tp_ops->read_status(hwif);
802
803         if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
804                 /* Try to not flood the console with msgs */
805                 static unsigned long last_msgtime, count;
806                 ++count;
807
808                 if (time_after(jiffies, last_msgtime + HZ)) {
809                         last_msgtime = jiffies;
810                         printk(KERN_ERR "%s: unexpected interrupt, "
811                                 "status=0x%02x, count=%ld\n",
812                                 hwif->name, stat, count);
813                 }
814         }
815 }
816
817 /**
818  *      ide_intr        -       default IDE interrupt handler
819  *      @irq: interrupt number
820  *      @dev_id: hwif
821  *      @regs: unused weirdness from the kernel irq layer
822  *
823  *      This is the default IRQ handler for the IDE layer. You should
824  *      not need to override it. If you do be aware it is subtle in
825  *      places
826  *
827  *      hwif is the interface in the group currently performing
828  *      a command. hwif->cur_dev is the drive and hwif->handler is
829  *      the IRQ handler to call. As we issue a command the handlers
830  *      step through multiple states, reassigning the handler to the
831  *      next step in the process. Unlike a smart SCSI controller IDE
832  *      expects the main processor to sequence the various transfer
833  *      stages. We also manage a poll timer to catch up with most
834  *      timeout situations. There are still a few where the handlers
835  *      don't ever decide to give up.
836  *
837  *      The handler eventually returns ide_stopped to indicate the
838  *      request completed. At this point we issue the next request
839  *      on the port and the process begins again.
840  */
841
842 irqreturn_t ide_intr (int irq, void *dev_id)
843 {
844         ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
845         struct ide_host *host = hwif->host;
846         ide_drive_t *uninitialized_var(drive);
847         ide_handler_t *handler;
848         unsigned long flags;
849         ide_startstop_t startstop;
850         irqreturn_t irq_ret = IRQ_NONE;
851         int plug_device = 0;
852
853         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
854                 if (hwif != host->cur_port)
855                         goto out_early;
856         }
857
858         spin_lock_irqsave(&hwif->lock, flags);
859
860         if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
861                 goto out;
862
863         handler = hwif->handler;
864
865         if (handler == NULL || hwif->polling) {
866                 /*
867                  * Not expecting an interrupt from this drive.
868                  * That means this could be:
869                  *      (1) an interrupt from another PCI device
870                  *      sharing the same PCI INT# as us.
871                  * or   (2) a drive just entered sleep or standby mode,
872                  *      and is interrupting to let us know.
873                  * or   (3) a spurious interrupt of unknown origin.
874                  *
875                  * For PCI, we cannot tell the difference,
876                  * so in that case we just ignore it and hope it goes away.
877                  */
878                 if ((host->irq_flags & IRQF_SHARED) == 0) {
879                         /*
880                          * Probably not a shared PCI interrupt,
881                          * so we can safely try to do something about it:
882                          */
883                         unexpected_intr(irq, hwif);
884                 } else {
885                         /*
886                          * Whack the status register, just in case
887                          * we have a leftover pending IRQ.
888                          */
889                         (void)hwif->tp_ops->read_status(hwif);
890                 }
891                 goto out;
892         }
893
894         drive = hwif->cur_dev;
895
896         if (!drive_is_ready(drive))
897                 /*
898                  * This happens regularly when we share a PCI IRQ with
899                  * another device.  Unfortunately, it can also happen
900                  * with some buggy drives that trigger the IRQ before
901                  * their status register is up to date.  Hopefully we have
902                  * enough advance overhead that the latter isn't a problem.
903                  */
904                 goto out;
905
906         hwif->handler = NULL;
907         hwif->req_gen++;
908         del_timer(&hwif->timer);
909         spin_unlock(&hwif->lock);
910
911         if (hwif->port_ops && hwif->port_ops->clear_irq)
912                 hwif->port_ops->clear_irq(drive);
913
914         if (drive->dev_flags & IDE_DFLAG_UNMASK)
915                 local_irq_enable_in_hardirq();
916
917         /* service this interrupt, may set handler for next interrupt */
918         startstop = handler(drive);
919
920         spin_lock_irq(&hwif->lock);
921         /*
922          * Note that handler() may have set things up for another
923          * interrupt to occur soon, but it cannot happen until
924          * we exit from this routine, because it will be the
925          * same irq as is currently being serviced here, and Linux
926          * won't allow another of the same (on any CPU) until we return.
927          */
928         if (startstop == ide_stopped) {
929                 BUG_ON(hwif->handler);
930                 ide_unlock_port(hwif);
931                 plug_device = 1;
932         }
933         irq_ret = IRQ_HANDLED;
934 out:
935         spin_unlock_irqrestore(&hwif->lock, flags);
936 out_early:
937         if (plug_device) {
938                 ide_unlock_host(hwif->host);
939                 ide_plug_device(drive);
940         }
941
942         return irq_ret;
943 }
944 EXPORT_SYMBOL_GPL(ide_intr);
945
946 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
947 {
948         ide_hwif_t *hwif = drive->hwif;
949         u8 buf[4] = { 0 };
950
951         while (len > 0) {
952                 if (write)
953                         hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
954                 else
955                         hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
956                 len -= 4;
957         }
958 }
959 EXPORT_SYMBOL_GPL(ide_pad_transfer);