ide: WIN_* -> ATA_CMD_*
[safe/jmp/linux-2.6] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58                              int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60         int ret = 1;
61         int error = 0;
62
63         if (uptodate <= 0)
64                 error = uptodate ? uptodate : -EIO;
65
66         /*
67          * if failfast is set on a request, override number of sectors and
68          * complete the whole request right now
69          */
70         if (blk_noretry_request(rq) && error)
71                 nr_bytes = rq->hard_nr_sectors << 9;
72
73         if (!blk_fs_request(rq) && error && !rq->errors)
74                 rq->errors = -EIO;
75
76         /*
77          * decide whether to reenable DMA -- 3 is a random magic for now,
78          * if we DMA timeout more than 3 times, just stay in PIO
79          */
80         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
81                 drive->state = 0;
82                 ide_dma_on(drive);
83         }
84
85         if (!__blk_end_request(rq, error, nr_bytes)) {
86                 if (dequeue)
87                         HWGROUP(drive)->rq = NULL;
88                 ret = 0;
89         }
90
91         return ret;
92 }
93
94 /**
95  *      ide_end_request         -       complete an IDE I/O
96  *      @drive: IDE device for the I/O
97  *      @uptodate:
98  *      @nr_sectors: number of sectors completed
99  *
100  *      This is our end_request wrapper function. We complete the I/O
101  *      update random number input and dequeue the request, which if
102  *      it was tagged may be out of order.
103  */
104
105 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
106 {
107         unsigned int nr_bytes = nr_sectors << 9;
108         struct request *rq;
109         unsigned long flags;
110         int ret = 1;
111
112         /*
113          * room for locking improvements here, the calls below don't
114          * need the queue lock held at all
115          */
116         spin_lock_irqsave(&ide_lock, flags);
117         rq = HWGROUP(drive)->rq;
118
119         if (!nr_bytes) {
120                 if (blk_pc_request(rq))
121                         nr_bytes = rq->data_len;
122                 else
123                         nr_bytes = rq->hard_cur_sectors << 9;
124         }
125
126         ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
127
128         spin_unlock_irqrestore(&ide_lock, flags);
129         return ret;
130 }
131 EXPORT_SYMBOL(ide_end_request);
132
133 /*
134  * Power Management state machine. This one is rather trivial for now,
135  * we should probably add more, like switching back to PIO on suspend
136  * to help some BIOSes, re-do the door locking on resume, etc...
137  */
138
139 enum {
140         ide_pm_flush_cache      = ide_pm_state_start_suspend,
141         idedisk_pm_standby,
142
143         idedisk_pm_restore_pio  = ide_pm_state_start_resume,
144         idedisk_pm_idle,
145         ide_pm_restore_dma,
146 };
147
148 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
149 {
150         struct request_pm_state *pm = rq->data;
151
152         if (drive->media != ide_disk)
153                 return;
154
155         switch (pm->pm_step) {
156         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
157                 if (pm->pm_state == PM_EVENT_FREEZE)
158                         pm->pm_step = ide_pm_state_completed;
159                 else
160                         pm->pm_step = idedisk_pm_standby;
161                 break;
162         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
163                 pm->pm_step = ide_pm_state_completed;
164                 break;
165         case idedisk_pm_restore_pio:    /* Resume step 1 complete */
166                 pm->pm_step = idedisk_pm_idle;
167                 break;
168         case idedisk_pm_idle:           /* Resume step 2 (idle) complete */
169                 pm->pm_step = ide_pm_restore_dma;
170                 break;
171         }
172 }
173
174 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
175 {
176         struct request_pm_state *pm = rq->data;
177         ide_task_t *args = rq->special;
178
179         memset(args, 0, sizeof(*args));
180
181         switch (pm->pm_step) {
182         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
183                 if (drive->media != ide_disk)
184                         break;
185                 /* Not supported? Switch to next step now. */
186                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
187                         ide_complete_power_step(drive, rq, 0, 0);
188                         return ide_stopped;
189                 }
190                 if (ide_id_has_flush_cache_ext(drive->id))
191                         args->tf.command = ATA_CMD_FLUSH_EXT;
192                 else
193                         args->tf.command = ATA_CMD_FLUSH;
194                 goto out_do_tf;
195
196         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
197                 args->tf.command = ATA_CMD_STANDBYNOW1;
198                 goto out_do_tf;
199
200         case idedisk_pm_restore_pio:    /* Resume step 1 (restore PIO) */
201                 ide_set_max_pio(drive);
202                 /*
203                  * skip idedisk_pm_idle for ATAPI devices
204                  */
205                 if (drive->media != ide_disk)
206                         pm->pm_step = ide_pm_restore_dma;
207                 else
208                         ide_complete_power_step(drive, rq, 0, 0);
209                 return ide_stopped;
210
211         case idedisk_pm_idle:           /* Resume step 2 (idle) */
212                 args->tf.command = ATA_CMD_IDLEIMMEDIATE;
213                 goto out_do_tf;
214
215         case ide_pm_restore_dma:        /* Resume step 3 (restore DMA) */
216                 /*
217                  * Right now, all we do is call ide_set_dma(drive),
218                  * we could be smarter and check for current xfer_speed
219                  * in struct drive etc...
220                  */
221                 if (drive->hwif->dma_ops == NULL)
222                         break;
223                 /*
224                  * TODO: respect ->using_dma setting
225                  */
226                 ide_set_dma(drive);
227                 break;
228         }
229         pm->pm_step = ide_pm_state_completed;
230         return ide_stopped;
231
232 out_do_tf:
233         args->tf_flags   = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
234         args->data_phase = TASKFILE_NO_DATA;
235         return do_rw_taskfile(drive, args);
236 }
237
238 /**
239  *      ide_end_dequeued_request        -       complete an IDE I/O
240  *      @drive: IDE device for the I/O
241  *      @uptodate:
242  *      @nr_sectors: number of sectors completed
243  *
244  *      Complete an I/O that is no longer on the request queue. This
245  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
246  *      We must still finish the old request but we must not tamper with the
247  *      queue in the meantime.
248  *
249  *      NOTE: This path does not handle barrier, but barrier is not supported
250  *      on ide-cd anyway.
251  */
252
253 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
254                              int uptodate, int nr_sectors)
255 {
256         unsigned long flags;
257         int ret;
258
259         spin_lock_irqsave(&ide_lock, flags);
260         BUG_ON(!blk_rq_started(rq));
261         ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
262         spin_unlock_irqrestore(&ide_lock, flags);
263
264         return ret;
265 }
266 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
267
268
269 /**
270  *      ide_complete_pm_request - end the current Power Management request
271  *      @drive: target drive
272  *      @rq: request
273  *
274  *      This function cleans up the current PM request and stops the queue
275  *      if necessary.
276  */
277 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
278 {
279         unsigned long flags;
280
281 #ifdef DEBUG_PM
282         printk("%s: completing PM request, %s\n", drive->name,
283                blk_pm_suspend_request(rq) ? "suspend" : "resume");
284 #endif
285         spin_lock_irqsave(&ide_lock, flags);
286         if (blk_pm_suspend_request(rq)) {
287                 blk_stop_queue(drive->queue);
288         } else {
289                 drive->blocked = 0;
290                 blk_start_queue(drive->queue);
291         }
292         HWGROUP(drive)->rq = NULL;
293         if (__blk_end_request(rq, 0, 0))
294                 BUG();
295         spin_unlock_irqrestore(&ide_lock, flags);
296 }
297
298 /**
299  *      ide_end_drive_cmd       -       end an explicit drive command
300  *      @drive: command 
301  *      @stat: status bits
302  *      @err: error bits
303  *
304  *      Clean up after success/failure of an explicit drive command.
305  *      These get thrown onto the queue so they are synchronized with
306  *      real I/O operations on the drive.
307  *
308  *      In LBA48 mode we have to read the register set twice to get
309  *      all the extra information out.
310  */
311  
312 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
313 {
314         unsigned long flags;
315         struct request *rq;
316
317         spin_lock_irqsave(&ide_lock, flags);
318         rq = HWGROUP(drive)->rq;
319         spin_unlock_irqrestore(&ide_lock, flags);
320
321         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
322                 ide_task_t *task = (ide_task_t *)rq->special;
323
324                 if (rq->errors == 0)
325                         rq->errors = !OK_STAT(stat, READY_STAT, BAD_STAT);
326
327                 if (task) {
328                         struct ide_taskfile *tf = &task->tf;
329
330                         tf->error = err;
331                         tf->status = stat;
332
333                         drive->hwif->tp_ops->tf_read(drive, task);
334
335                         if (task->tf_flags & IDE_TFLAG_DYN)
336                                 kfree(task);
337                 }
338         } else if (blk_pm_request(rq)) {
339                 struct request_pm_state *pm = rq->data;
340 #ifdef DEBUG_PM
341                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
342                         drive->name, rq->pm->pm_step, stat, err);
343 #endif
344                 ide_complete_power_step(drive, rq, stat, err);
345                 if (pm->pm_step == ide_pm_state_completed)
346                         ide_complete_pm_request(drive, rq);
347                 return;
348         }
349
350         spin_lock_irqsave(&ide_lock, flags);
351         HWGROUP(drive)->rq = NULL;
352         rq->errors = err;
353         if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
354                                        blk_rq_bytes(rq))))
355                 BUG();
356         spin_unlock_irqrestore(&ide_lock, flags);
357 }
358
359 EXPORT_SYMBOL(ide_end_drive_cmd);
360
361 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
362 {
363         if (rq->rq_disk) {
364                 ide_driver_t *drv;
365
366                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
367                 drv->end_request(drive, 0, 0);
368         } else
369                 ide_end_request(drive, 0, 0);
370 }
371
372 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
373 {
374         ide_hwif_t *hwif = drive->hwif;
375
376         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
377                 /* other bits are useless when BUSY */
378                 rq->errors |= ERROR_RESET;
379         } else if (stat & ERR_STAT) {
380                 /* err has different meaning on cdrom and tape */
381                 if (err == ABRT_ERR) {
382                         if (drive->select.b.lba &&
383                             /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
384                             hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
385                                 return ide_stopped;
386                 } else if ((err & BAD_CRC) == BAD_CRC) {
387                         /* UDMA crc error, just retry the operation */
388                         drive->crc_count++;
389                 } else if (err & (BBD_ERR | ECC_ERR)) {
390                         /* retries won't help these */
391                         rq->errors = ERROR_MAX;
392                 } else if (err & TRK0_ERR) {
393                         /* help it find track zero */
394                         rq->errors |= ERROR_RECAL;
395                 }
396         }
397
398         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
399             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
400                 int nsect = drive->mult_count ? drive->mult_count : 1;
401
402                 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
403         }
404
405         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
406                 ide_kill_rq(drive, rq);
407                 return ide_stopped;
408         }
409
410         if (hwif->tp_ops->read_status(hwif) & (BUSY_STAT | DRQ_STAT))
411                 rq->errors |= ERROR_RESET;
412
413         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
414                 ++rq->errors;
415                 return ide_do_reset(drive);
416         }
417
418         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
419                 drive->special.b.recalibrate = 1;
420
421         ++rq->errors;
422
423         return ide_stopped;
424 }
425
426 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
427 {
428         ide_hwif_t *hwif = drive->hwif;
429
430         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
431                 /* other bits are useless when BUSY */
432                 rq->errors |= ERROR_RESET;
433         } else {
434                 /* add decoding error stuff */
435         }
436
437         if (hwif->tp_ops->read_status(hwif) & (BUSY_STAT | DRQ_STAT))
438                 /* force an abort */
439                 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
440
441         if (rq->errors >= ERROR_MAX) {
442                 ide_kill_rq(drive, rq);
443         } else {
444                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
445                         ++rq->errors;
446                         return ide_do_reset(drive);
447                 }
448                 ++rq->errors;
449         }
450
451         return ide_stopped;
452 }
453
454 ide_startstop_t
455 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
456 {
457         if (drive->media == ide_disk)
458                 return ide_ata_error(drive, rq, stat, err);
459         return ide_atapi_error(drive, rq, stat, err);
460 }
461
462 EXPORT_SYMBOL_GPL(__ide_error);
463
464 /**
465  *      ide_error       -       handle an error on the IDE
466  *      @drive: drive the error occurred on
467  *      @msg: message to report
468  *      @stat: status bits
469  *
470  *      ide_error() takes action based on the error returned by the drive.
471  *      For normal I/O that may well include retries. We deal with
472  *      both new-style (taskfile) and old style command handling here.
473  *      In the case of taskfile command handling there is work left to
474  *      do
475  */
476  
477 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
478 {
479         struct request *rq;
480         u8 err;
481
482         err = ide_dump_status(drive, msg, stat);
483
484         if ((rq = HWGROUP(drive)->rq) == NULL)
485                 return ide_stopped;
486
487         /* retry only "normal" I/O: */
488         if (!blk_fs_request(rq)) {
489                 rq->errors = 1;
490                 ide_end_drive_cmd(drive, stat, err);
491                 return ide_stopped;
492         }
493
494         if (rq->rq_disk) {
495                 ide_driver_t *drv;
496
497                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
498                 return drv->error(drive, rq, stat, err);
499         } else
500                 return __ide_error(drive, rq, stat, err);
501 }
502
503 EXPORT_SYMBOL_GPL(ide_error);
504
505 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
506 {
507         tf->nsect   = drive->sect;
508         tf->lbal    = drive->sect;
509         tf->lbam    = drive->cyl;
510         tf->lbah    = drive->cyl >> 8;
511         tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
512         tf->command = ATA_CMD_INIT_DEV_PARAMS;
513 }
514
515 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
516 {
517         tf->nsect   = drive->sect;
518         tf->command = ATA_CMD_RESTORE;
519 }
520
521 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
522 {
523         tf->nsect   = drive->mult_req;
524         tf->command = ATA_CMD_SET_MULTI;
525 }
526
527 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
528 {
529         special_t *s = &drive->special;
530         ide_task_t args;
531
532         memset(&args, 0, sizeof(ide_task_t));
533         args.data_phase = TASKFILE_NO_DATA;
534
535         if (s->b.set_geometry) {
536                 s->b.set_geometry = 0;
537                 ide_tf_set_specify_cmd(drive, &args.tf);
538         } else if (s->b.recalibrate) {
539                 s->b.recalibrate = 0;
540                 ide_tf_set_restore_cmd(drive, &args.tf);
541         } else if (s->b.set_multmode) {
542                 s->b.set_multmode = 0;
543                 ide_tf_set_setmult_cmd(drive, &args.tf);
544         } else if (s->all) {
545                 int special = s->all;
546                 s->all = 0;
547                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
548                 return ide_stopped;
549         }
550
551         args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
552                         IDE_TFLAG_CUSTOM_HANDLER;
553
554         do_rw_taskfile(drive, &args);
555
556         return ide_started;
557 }
558
559 /*
560  * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
561  */
562 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
563 {
564         switch (req_pio) {
565         case 202:
566         case 201:
567         case 200:
568         case 102:
569         case 101:
570         case 100:
571                 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
572         case 9:
573         case 8:
574                 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
575         case 7:
576         case 6:
577                 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
578         default:
579                 return 0;
580         }
581 }
582
583 /**
584  *      do_special              -       issue some special commands
585  *      @drive: drive the command is for
586  *
587  *      do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
588  *      ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
589  *
590  *      It used to do much more, but has been scaled back.
591  */
592
593 static ide_startstop_t do_special (ide_drive_t *drive)
594 {
595         special_t *s = &drive->special;
596
597 #ifdef DEBUG
598         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
599 #endif
600         if (s->b.set_tune) {
601                 ide_hwif_t *hwif = drive->hwif;
602                 const struct ide_port_ops *port_ops = hwif->port_ops;
603                 u8 req_pio = drive->tune_req;
604
605                 s->b.set_tune = 0;
606
607                 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
608                         /*
609                          * take ide_lock for drive->[no_]unmask/[no_]io_32bit
610                          */
611                         if (req_pio == 8 || req_pio == 9) {
612                                 unsigned long flags;
613
614                                 spin_lock_irqsave(&ide_lock, flags);
615                                 port_ops->set_pio_mode(drive, req_pio);
616                                 spin_unlock_irqrestore(&ide_lock, flags);
617                         } else
618                                 port_ops->set_pio_mode(drive, req_pio);
619                 } else {
620                         int keep_dma = drive->using_dma;
621
622                         ide_set_pio(drive, req_pio);
623
624                         if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
625                                 if (keep_dma)
626                                         ide_dma_on(drive);
627                         }
628                 }
629
630                 return ide_stopped;
631         } else {
632                 if (drive->media == ide_disk)
633                         return ide_disk_special(drive);
634
635                 s->all = 0;
636                 drive->mult_req = 0;
637                 return ide_stopped;
638         }
639 }
640
641 void ide_map_sg(ide_drive_t *drive, struct request *rq)
642 {
643         ide_hwif_t *hwif = drive->hwif;
644         struct scatterlist *sg = hwif->sg_table;
645
646         if (hwif->sg_mapped)    /* needed by ide-scsi */
647                 return;
648
649         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
650                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
651         } else {
652                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
653                 hwif->sg_nents = 1;
654         }
655 }
656
657 EXPORT_SYMBOL_GPL(ide_map_sg);
658
659 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
660 {
661         ide_hwif_t *hwif = drive->hwif;
662
663         hwif->nsect = hwif->nleft = rq->nr_sectors;
664         hwif->cursg_ofs = 0;
665         hwif->cursg = NULL;
666 }
667
668 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
669
670 /**
671  *      execute_drive_command   -       issue special drive command
672  *      @drive: the drive to issue the command on
673  *      @rq: the request structure holding the command
674  *
675  *      execute_drive_cmd() issues a special drive command,  usually 
676  *      initiated by ioctl() from the external hdparm program. The
677  *      command can be a drive command, drive task or taskfile 
678  *      operation. Weirdly you can call it with NULL to wait for
679  *      all commands to finish. Don't do this as that is due to change
680  */
681
682 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
683                 struct request *rq)
684 {
685         ide_hwif_t *hwif = HWIF(drive);
686         ide_task_t *task = rq->special;
687
688         if (task) {
689                 hwif->data_phase = task->data_phase;
690
691                 switch (hwif->data_phase) {
692                 case TASKFILE_MULTI_OUT:
693                 case TASKFILE_OUT:
694                 case TASKFILE_MULTI_IN:
695                 case TASKFILE_IN:
696                         ide_init_sg_cmd(drive, rq);
697                         ide_map_sg(drive, rq);
698                 default:
699                         break;
700                 }
701
702                 return do_rw_taskfile(drive, task);
703         }
704
705         /*
706          * NULL is actually a valid way of waiting for
707          * all current requests to be flushed from the queue.
708          */
709 #ifdef DEBUG
710         printk("%s: DRIVE_CMD (null)\n", drive->name);
711 #endif
712         ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
713                           ide_read_error(drive));
714
715         return ide_stopped;
716 }
717
718 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
719 {
720         switch (rq->cmd[0]) {
721         case REQ_DRIVE_RESET:
722                 return ide_do_reset(drive);
723         default:
724                 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
725                 ide_end_request(drive, 0, 0);
726                 return ide_stopped;
727         }
728 }
729
730 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
731 {
732         struct request_pm_state *pm = rq->data;
733
734         if (blk_pm_suspend_request(rq) &&
735             pm->pm_step == ide_pm_state_start_suspend)
736                 /* Mark drive blocked when starting the suspend sequence. */
737                 drive->blocked = 1;
738         else if (blk_pm_resume_request(rq) &&
739                  pm->pm_step == ide_pm_state_start_resume) {
740                 /* 
741                  * The first thing we do on wakeup is to wait for BSY bit to
742                  * go away (with a looong timeout) as a drive on this hwif may
743                  * just be POSTing itself.
744                  * We do that before even selecting as the "other" device on
745                  * the bus may be broken enough to walk on our toes at this
746                  * point.
747                  */
748                 ide_hwif_t *hwif = drive->hwif;
749                 int rc;
750 #ifdef DEBUG_PM
751                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
752 #endif
753                 rc = ide_wait_not_busy(hwif, 35000);
754                 if (rc)
755                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
756                 SELECT_DRIVE(drive);
757                 hwif->tp_ops->set_irq(hwif, 1);
758                 rc = ide_wait_not_busy(hwif, 100000);
759                 if (rc)
760                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
761         }
762 }
763
764 /**
765  *      start_request   -       start of I/O and command issuing for IDE
766  *
767  *      start_request() initiates handling of a new I/O request. It
768  *      accepts commands and I/O (read/write) requests. It also does
769  *      the final remapping for weird stuff like EZDrive. Once 
770  *      device mapper can work sector level the EZDrive stuff can go away
771  *
772  *      FIXME: this function needs a rename
773  */
774  
775 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
776 {
777         ide_startstop_t startstop;
778         sector_t block;
779
780         BUG_ON(!blk_rq_started(rq));
781
782 #ifdef DEBUG
783         printk("%s: start_request: current=0x%08lx\n",
784                 HWIF(drive)->name, (unsigned long) rq);
785 #endif
786
787         /* bail early if we've exceeded max_failures */
788         if (drive->max_failures && (drive->failures > drive->max_failures)) {
789                 rq->cmd_flags |= REQ_FAILED;
790                 goto kill_rq;
791         }
792
793         block    = rq->sector;
794         if (blk_fs_request(rq) &&
795             (drive->media == ide_disk || drive->media == ide_floppy)) {
796                 block += drive->sect0;
797         }
798         /* Yecch - this will shift the entire interval,
799            possibly killing some innocent following sector */
800         if (block == 0 && drive->remap_0_to_1 == 1)
801                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
802
803         if (blk_pm_request(rq))
804                 ide_check_pm_state(drive, rq);
805
806         SELECT_DRIVE(drive);
807         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
808                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
809                 return startstop;
810         }
811         if (!drive->special.all) {
812                 ide_driver_t *drv;
813
814                 /*
815                  * We reset the drive so we need to issue a SETFEATURES.
816                  * Do it _after_ do_special() restored device parameters.
817                  */
818                 if (drive->current_speed == 0xff)
819                         ide_config_drive_speed(drive, drive->desired_speed);
820
821                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
822                         return execute_drive_cmd(drive, rq);
823                 else if (blk_pm_request(rq)) {
824                         struct request_pm_state *pm = rq->data;
825 #ifdef DEBUG_PM
826                         printk("%s: start_power_step(step: %d)\n",
827                                 drive->name, rq->pm->pm_step);
828 #endif
829                         startstop = ide_start_power_step(drive, rq);
830                         if (startstop == ide_stopped &&
831                             pm->pm_step == ide_pm_state_completed)
832                                 ide_complete_pm_request(drive, rq);
833                         return startstop;
834                 } else if (!rq->rq_disk && blk_special_request(rq))
835                         /*
836                          * TODO: Once all ULDs have been modified to
837                          * check for specific op codes rather than
838                          * blindly accepting any special request, the
839                          * check for ->rq_disk above may be replaced
840                          * by a more suitable mechanism or even
841                          * dropped entirely.
842                          */
843                         return ide_special_rq(drive, rq);
844
845                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
846                 return drv->do_request(drive, rq, block);
847         }
848         return do_special(drive);
849 kill_rq:
850         ide_kill_rq(drive, rq);
851         return ide_stopped;
852 }
853
854 /**
855  *      ide_stall_queue         -       pause an IDE device
856  *      @drive: drive to stall
857  *      @timeout: time to stall for (jiffies)
858  *
859  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
860  *      to the hwgroup by sleeping for timeout jiffies.
861  */
862  
863 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
864 {
865         if (timeout > WAIT_WORSTCASE)
866                 timeout = WAIT_WORSTCASE;
867         drive->sleep = timeout + jiffies;
868         drive->sleeping = 1;
869 }
870
871 EXPORT_SYMBOL(ide_stall_queue);
872
873 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
874
875 /**
876  *      choose_drive            -       select a drive to service
877  *      @hwgroup: hardware group to select on
878  *
879  *      choose_drive() selects the next drive which will be serviced.
880  *      This is necessary because the IDE layer can't issue commands
881  *      to both drives on the same cable, unlike SCSI.
882  */
883  
884 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
885 {
886         ide_drive_t *drive, *best;
887
888 repeat: 
889         best = NULL;
890         drive = hwgroup->drive;
891
892         /*
893          * drive is doing pre-flush, ordered write, post-flush sequence. even
894          * though that is 3 requests, it must be seen as a single transaction.
895          * we must not preempt this drive until that is complete
896          */
897         if (blk_queue_flushing(drive->queue)) {
898                 /*
899                  * small race where queue could get replugged during
900                  * the 3-request flush cycle, just yank the plug since
901                  * we want it to finish asap
902                  */
903                 blk_remove_plug(drive->queue);
904                 return drive;
905         }
906
907         do {
908                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
909                     && !elv_queue_empty(drive->queue)) {
910                         if (!best
911                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
912                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
913                         {
914                                 if (!blk_queue_plugged(drive->queue))
915                                         best = drive;
916                         }
917                 }
918         } while ((drive = drive->next) != hwgroup->drive);
919         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
920                 long t = (signed long)(WAKEUP(best) - jiffies);
921                 if (t >= WAIT_MIN_SLEEP) {
922                 /*
923                  * We *may* have some time to spare, but first let's see if
924                  * someone can potentially benefit from our nice mood today..
925                  */
926                         drive = best->next;
927                         do {
928                                 if (!drive->sleeping
929                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
930                                  && time_before(WAKEUP(drive), jiffies + t))
931                                 {
932                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
933                                         goto repeat;
934                                 }
935                         } while ((drive = drive->next) != best);
936                 }
937         }
938         return best;
939 }
940
941 /*
942  * Issue a new request to a drive from hwgroup
943  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
944  *
945  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
946  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
947  * may have both interfaces in a single hwgroup to "serialize" access.
948  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
949  * together into one hwgroup for serialized access.
950  *
951  * Note also that several hwgroups can end up sharing a single IRQ,
952  * possibly along with many other devices.  This is especially common in
953  * PCI-based systems with off-board IDE controller cards.
954  *
955  * The IDE driver uses the single global ide_lock spinlock to protect
956  * access to the request queues, and to protect the hwgroup->busy flag.
957  *
958  * The first thread into the driver for a particular hwgroup sets the
959  * hwgroup->busy flag to indicate that this hwgroup is now active,
960  * and then initiates processing of the top request from the request queue.
961  *
962  * Other threads attempting entry notice the busy setting, and will simply
963  * queue their new requests and exit immediately.  Note that hwgroup->busy
964  * remains set even when the driver is merely awaiting the next interrupt.
965  * Thus, the meaning is "this hwgroup is busy processing a request".
966  *
967  * When processing of a request completes, the completing thread or IRQ-handler
968  * will start the next request from the queue.  If no more work remains,
969  * the driver will clear the hwgroup->busy flag and exit.
970  *
971  * The ide_lock (spinlock) is used to protect all access to the
972  * hwgroup->busy flag, but is otherwise not needed for most processing in
973  * the driver.  This makes the driver much more friendlier to shared IRQs
974  * than previous designs, while remaining 100% (?) SMP safe and capable.
975  */
976 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
977 {
978         ide_drive_t     *drive;
979         ide_hwif_t      *hwif;
980         struct request  *rq;
981         ide_startstop_t startstop;
982         int             loops = 0;
983
984         /* for atari only: POSSIBLY BROKEN HERE(?) */
985         ide_get_lock(ide_intr, hwgroup);
986
987         /* caller must own ide_lock */
988         BUG_ON(!irqs_disabled());
989
990         while (!hwgroup->busy) {
991                 hwgroup->busy = 1;
992                 drive = choose_drive(hwgroup);
993                 if (drive == NULL) {
994                         int sleeping = 0;
995                         unsigned long sleep = 0; /* shut up, gcc */
996                         hwgroup->rq = NULL;
997                         drive = hwgroup->drive;
998                         do {
999                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1000                                         sleeping = 1;
1001                                         sleep = drive->sleep;
1002                                 }
1003                         } while ((drive = drive->next) != hwgroup->drive);
1004                         if (sleeping) {
1005                 /*
1006                  * Take a short snooze, and then wake up this hwgroup again.
1007                  * This gives other hwgroups on the same a chance to
1008                  * play fairly with us, just in case there are big differences
1009                  * in relative throughputs.. don't want to hog the cpu too much.
1010                  */
1011                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1012                                         sleep = jiffies + WAIT_MIN_SLEEP;
1013 #if 1
1014                                 if (timer_pending(&hwgroup->timer))
1015                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1016 #endif
1017                                 /* so that ide_timer_expiry knows what to do */
1018                                 hwgroup->sleeping = 1;
1019                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1020                                 mod_timer(&hwgroup->timer, sleep);
1021                                 /* we purposely leave hwgroup->busy==1
1022                                  * while sleeping */
1023                         } else {
1024                                 /* Ugly, but how can we sleep for the lock
1025                                  * otherwise? perhaps from tq_disk?
1026                                  */
1027
1028                                 /* for atari only */
1029                                 ide_release_lock();
1030                                 hwgroup->busy = 0;
1031                         }
1032
1033                         /* no more work for this hwgroup (for now) */
1034                         return;
1035                 }
1036         again:
1037                 hwif = HWIF(drive);
1038                 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1039                         /*
1040                          * set nIEN for previous hwif, drives in the
1041                          * quirk_list may not like intr setups/cleanups
1042                          */
1043                         if (drive->quirk_list != 1)
1044                                 hwif->tp_ops->set_irq(hwif, 0);
1045                 }
1046                 hwgroup->hwif = hwif;
1047                 hwgroup->drive = drive;
1048                 drive->sleeping = 0;
1049                 drive->service_start = jiffies;
1050
1051                 if (blk_queue_plugged(drive->queue)) {
1052                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1053                         break;
1054                 }
1055
1056                 /*
1057                  * we know that the queue isn't empty, but this can happen
1058                  * if the q->prep_rq_fn() decides to kill a request
1059                  */
1060                 rq = elv_next_request(drive->queue);
1061                 if (!rq) {
1062                         hwgroup->busy = 0;
1063                         break;
1064                 }
1065
1066                 /*
1067                  * Sanity: don't accept a request that isn't a PM request
1068                  * if we are currently power managed. This is very important as
1069                  * blk_stop_queue() doesn't prevent the elv_next_request()
1070                  * above to return us whatever is in the queue. Since we call
1071                  * ide_do_request() ourselves, we end up taking requests while
1072                  * the queue is blocked...
1073                  * 
1074                  * We let requests forced at head of queue with ide-preempt
1075                  * though. I hope that doesn't happen too much, hopefully not
1076                  * unless the subdriver triggers such a thing in its own PM
1077                  * state machine.
1078                  *
1079                  * We count how many times we loop here to make sure we service
1080                  * all drives in the hwgroup without looping for ever
1081                  */
1082                 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1083                         drive = drive->next ? drive->next : hwgroup->drive;
1084                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1085                                 goto again;
1086                         /* We clear busy, there should be no pending ATA command at this point. */
1087                         hwgroup->busy = 0;
1088                         break;
1089                 }
1090
1091                 hwgroup->rq = rq;
1092
1093                 /*
1094                  * Some systems have trouble with IDE IRQs arriving while
1095                  * the driver is still setting things up.  So, here we disable
1096                  * the IRQ used by this interface while the request is being started.
1097                  * This may look bad at first, but pretty much the same thing
1098                  * happens anyway when any interrupt comes in, IDE or otherwise
1099                  *  -- the kernel masks the IRQ while it is being handled.
1100                  */
1101                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1102                         disable_irq_nosync(hwif->irq);
1103                 spin_unlock(&ide_lock);
1104                 local_irq_enable_in_hardirq();
1105                         /* allow other IRQs while we start this request */
1106                 startstop = start_request(drive, rq);
1107                 spin_lock_irq(&ide_lock);
1108                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1109                         enable_irq(hwif->irq);
1110                 if (startstop == ide_stopped)
1111                         hwgroup->busy = 0;
1112         }
1113 }
1114
1115 /*
1116  * Passes the stuff to ide_do_request
1117  */
1118 void do_ide_request(struct request_queue *q)
1119 {
1120         ide_drive_t *drive = q->queuedata;
1121
1122         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1123 }
1124
1125 /*
1126  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1127  * retry the current request in pio mode instead of risking tossing it
1128  * all away
1129  */
1130 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1131 {
1132         ide_hwif_t *hwif = HWIF(drive);
1133         struct request *rq;
1134         ide_startstop_t ret = ide_stopped;
1135
1136         /*
1137          * end current dma transaction
1138          */
1139
1140         if (error < 0) {
1141                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1142                 (void)hwif->dma_ops->dma_end(drive);
1143                 ret = ide_error(drive, "dma timeout error",
1144                                 hwif->tp_ops->read_status(hwif));
1145         } else {
1146                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1147                 hwif->dma_ops->dma_timeout(drive);
1148         }
1149
1150         /*
1151          * disable dma for now, but remember that we did so because of
1152          * a timeout -- we'll reenable after we finish this next request
1153          * (or rather the first chunk of it) in pio.
1154          */
1155         drive->retry_pio++;
1156         drive->state = DMA_PIO_RETRY;
1157         ide_dma_off_quietly(drive);
1158
1159         /*
1160          * un-busy drive etc (hwgroup->busy is cleared on return) and
1161          * make sure request is sane
1162          */
1163         rq = HWGROUP(drive)->rq;
1164
1165         if (!rq)
1166                 goto out;
1167
1168         HWGROUP(drive)->rq = NULL;
1169
1170         rq->errors = 0;
1171
1172         if (!rq->bio)
1173                 goto out;
1174
1175         rq->sector = rq->bio->bi_sector;
1176         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1177         rq->hard_cur_sectors = rq->current_nr_sectors;
1178         rq->buffer = bio_data(rq->bio);
1179 out:
1180         return ret;
1181 }
1182
1183 /**
1184  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1185  *      @data: timer callback magic (hwgroup)
1186  *
1187  *      An IDE command has timed out before the expected drive return
1188  *      occurred. At this point we attempt to clean up the current
1189  *      mess. If the current handler includes an expiry handler then
1190  *      we invoke the expiry handler, and providing it is happy the
1191  *      work is done. If that fails we apply generic recovery rules
1192  *      invoking the handler and checking the drive DMA status. We
1193  *      have an excessively incestuous relationship with the DMA
1194  *      logic that wants cleaning up.
1195  */
1196  
1197 void ide_timer_expiry (unsigned long data)
1198 {
1199         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1200         ide_handler_t   *handler;
1201         ide_expiry_t    *expiry;
1202         unsigned long   flags;
1203         unsigned long   wait = -1;
1204
1205         spin_lock_irqsave(&ide_lock, flags);
1206
1207         if (((handler = hwgroup->handler) == NULL) ||
1208             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1209                 /*
1210                  * Either a marginal timeout occurred
1211                  * (got the interrupt just as timer expired),
1212                  * or we were "sleeping" to give other devices a chance.
1213                  * Either way, we don't really want to complain about anything.
1214                  */
1215                 if (hwgroup->sleeping) {
1216                         hwgroup->sleeping = 0;
1217                         hwgroup->busy = 0;
1218                 }
1219         } else {
1220                 ide_drive_t *drive = hwgroup->drive;
1221                 if (!drive) {
1222                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1223                         hwgroup->handler = NULL;
1224                 } else {
1225                         ide_hwif_t *hwif;
1226                         ide_startstop_t startstop = ide_stopped;
1227                         if (!hwgroup->busy) {
1228                                 hwgroup->busy = 1;      /* paranoia */
1229                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1230                         }
1231                         if ((expiry = hwgroup->expiry) != NULL) {
1232                                 /* continue */
1233                                 if ((wait = expiry(drive)) > 0) {
1234                                         /* reset timer */
1235                                         hwgroup->timer.expires  = jiffies + wait;
1236                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1237                                         add_timer(&hwgroup->timer);
1238                                         spin_unlock_irqrestore(&ide_lock, flags);
1239                                         return;
1240                                 }
1241                         }
1242                         hwgroup->handler = NULL;
1243                         /*
1244                          * We need to simulate a real interrupt when invoking
1245                          * the handler() function, which means we need to
1246                          * globally mask the specific IRQ:
1247                          */
1248                         spin_unlock(&ide_lock);
1249                         hwif  = HWIF(drive);
1250                         /* disable_irq_nosync ?? */
1251                         disable_irq(hwif->irq);
1252                         /* local CPU only,
1253                          * as if we were handling an interrupt */
1254                         local_irq_disable();
1255                         if (hwgroup->polling) {
1256                                 startstop = handler(drive);
1257                         } else if (drive_is_ready(drive)) {
1258                                 if (drive->waiting_for_dma)
1259                                         hwif->dma_ops->dma_lost_irq(drive);
1260                                 (void)ide_ack_intr(hwif);
1261                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1262                                 startstop = handler(drive);
1263                         } else {
1264                                 if (drive->waiting_for_dma) {
1265                                         startstop = ide_dma_timeout_retry(drive, wait);
1266                                 } else
1267                                         startstop =
1268                                         ide_error(drive, "irq timeout",
1269                                                   hwif->tp_ops->read_status(hwif));
1270                         }
1271                         drive->service_time = jiffies - drive->service_start;
1272                         spin_lock_irq(&ide_lock);
1273                         enable_irq(hwif->irq);
1274                         if (startstop == ide_stopped)
1275                                 hwgroup->busy = 0;
1276                 }
1277         }
1278         ide_do_request(hwgroup, IDE_NO_IRQ);
1279         spin_unlock_irqrestore(&ide_lock, flags);
1280 }
1281
1282 /**
1283  *      unexpected_intr         -       handle an unexpected IDE interrupt
1284  *      @irq: interrupt line
1285  *      @hwgroup: hwgroup being processed
1286  *
1287  *      There's nothing really useful we can do with an unexpected interrupt,
1288  *      other than reading the status register (to clear it), and logging it.
1289  *      There should be no way that an irq can happen before we're ready for it,
1290  *      so we needn't worry much about losing an "important" interrupt here.
1291  *
1292  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1293  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1294  *      looks "good", we just ignore the interrupt completely.
1295  *
1296  *      This routine assumes __cli() is in effect when called.
1297  *
1298  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1299  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1300  *      we could screw up by interfering with a new request being set up for 
1301  *      irq15.
1302  *
1303  *      In reality, this is a non-issue.  The new command is not sent unless 
1304  *      the drive is ready to accept one, in which case we know the drive is
1305  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1306  *      before completing the issuance of any new drive command, so we will not
1307  *      be accidentally invoked as a result of any valid command completion
1308  *      interrupt.
1309  *
1310  *      Note that we must walk the entire hwgroup here. We know which hwif
1311  *      is doing the current command, but we don't know which hwif burped
1312  *      mysteriously.
1313  */
1314  
1315 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1316 {
1317         u8 stat;
1318         ide_hwif_t *hwif = hwgroup->hwif;
1319
1320         /*
1321          * handle the unexpected interrupt
1322          */
1323         do {
1324                 if (hwif->irq == irq) {
1325                         stat = hwif->tp_ops->read_status(hwif);
1326
1327                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1328                                 /* Try to not flood the console with msgs */
1329                                 static unsigned long last_msgtime, count;
1330                                 ++count;
1331                                 if (time_after(jiffies, last_msgtime + HZ)) {
1332                                         last_msgtime = jiffies;
1333                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1334                                                 "status=0x%02x, count=%ld\n",
1335                                                 hwif->name,
1336                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1337                                 }
1338                         }
1339                 }
1340         } while ((hwif = hwif->next) != hwgroup->hwif);
1341 }
1342
1343 /**
1344  *      ide_intr        -       default IDE interrupt handler
1345  *      @irq: interrupt number
1346  *      @dev_id: hwif group
1347  *      @regs: unused weirdness from the kernel irq layer
1348  *
1349  *      This is the default IRQ handler for the IDE layer. You should
1350  *      not need to override it. If you do be aware it is subtle in
1351  *      places
1352  *
1353  *      hwgroup->hwif is the interface in the group currently performing
1354  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1355  *      the IRQ handler to call. As we issue a command the handlers
1356  *      step through multiple states, reassigning the handler to the
1357  *      next step in the process. Unlike a smart SCSI controller IDE
1358  *      expects the main processor to sequence the various transfer
1359  *      stages. We also manage a poll timer to catch up with most
1360  *      timeout situations. There are still a few where the handlers
1361  *      don't ever decide to give up.
1362  *
1363  *      The handler eventually returns ide_stopped to indicate the
1364  *      request completed. At this point we issue the next request
1365  *      on the hwgroup and the process begins again.
1366  */
1367  
1368 irqreturn_t ide_intr (int irq, void *dev_id)
1369 {
1370         unsigned long flags;
1371         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1372         ide_hwif_t *hwif;
1373         ide_drive_t *drive;
1374         ide_handler_t *handler;
1375         ide_startstop_t startstop;
1376
1377         spin_lock_irqsave(&ide_lock, flags);
1378         hwif = hwgroup->hwif;
1379
1380         if (!ide_ack_intr(hwif)) {
1381                 spin_unlock_irqrestore(&ide_lock, flags);
1382                 return IRQ_NONE;
1383         }
1384
1385         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1386                 /*
1387                  * Not expecting an interrupt from this drive.
1388                  * That means this could be:
1389                  *      (1) an interrupt from another PCI device
1390                  *      sharing the same PCI INT# as us.
1391                  * or   (2) a drive just entered sleep or standby mode,
1392                  *      and is interrupting to let us know.
1393                  * or   (3) a spurious interrupt of unknown origin.
1394                  *
1395                  * For PCI, we cannot tell the difference,
1396                  * so in that case we just ignore it and hope it goes away.
1397                  *
1398                  * FIXME: unexpected_intr should be hwif-> then we can
1399                  * remove all the ifdef PCI crap
1400                  */
1401 #ifdef CONFIG_BLK_DEV_IDEPCI
1402                 if (hwif->chipset != ide_pci)
1403 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1404                 {
1405                         /*
1406                          * Probably not a shared PCI interrupt,
1407                          * so we can safely try to do something about it:
1408                          */
1409                         unexpected_intr(irq, hwgroup);
1410 #ifdef CONFIG_BLK_DEV_IDEPCI
1411                 } else {
1412                         /*
1413                          * Whack the status register, just in case
1414                          * we have a leftover pending IRQ.
1415                          */
1416                         (void)hwif->tp_ops->read_status(hwif);
1417 #endif /* CONFIG_BLK_DEV_IDEPCI */
1418                 }
1419                 spin_unlock_irqrestore(&ide_lock, flags);
1420                 return IRQ_NONE;
1421         }
1422         drive = hwgroup->drive;
1423         if (!drive) {
1424                 /*
1425                  * This should NEVER happen, and there isn't much
1426                  * we could do about it here.
1427                  *
1428                  * [Note - this can occur if the drive is hot unplugged]
1429                  */
1430                 spin_unlock_irqrestore(&ide_lock, flags);
1431                 return IRQ_HANDLED;
1432         }
1433         if (!drive_is_ready(drive)) {
1434                 /*
1435                  * This happens regularly when we share a PCI IRQ with
1436                  * another device.  Unfortunately, it can also happen
1437                  * with some buggy drives that trigger the IRQ before
1438                  * their status register is up to date.  Hopefully we have
1439                  * enough advance overhead that the latter isn't a problem.
1440                  */
1441                 spin_unlock_irqrestore(&ide_lock, flags);
1442                 return IRQ_NONE;
1443         }
1444         if (!hwgroup->busy) {
1445                 hwgroup->busy = 1;      /* paranoia */
1446                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1447         }
1448         hwgroup->handler = NULL;
1449         hwgroup->req_gen++;
1450         del_timer(&hwgroup->timer);
1451         spin_unlock(&ide_lock);
1452
1453         /* Some controllers might set DMA INTR no matter DMA or PIO;
1454          * bmdma status might need to be cleared even for
1455          * PIO interrupts to prevent spurious/lost irq.
1456          */
1457         if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1458                 /* ide_dma_end() needs bmdma status for error checking.
1459                  * So, skip clearing bmdma status here and leave it
1460                  * to ide_dma_end() if this is dma interrupt.
1461                  */
1462                 hwif->ide_dma_clear_irq(drive);
1463
1464         if (drive->unmask)
1465                 local_irq_enable_in_hardirq();
1466         /* service this interrupt, may set handler for next interrupt */
1467         startstop = handler(drive);
1468         spin_lock_irq(&ide_lock);
1469
1470         /*
1471          * Note that handler() may have set things up for another
1472          * interrupt to occur soon, but it cannot happen until
1473          * we exit from this routine, because it will be the
1474          * same irq as is currently being serviced here, and Linux
1475          * won't allow another of the same (on any CPU) until we return.
1476          */
1477         drive->service_time = jiffies - drive->service_start;
1478         if (startstop == ide_stopped) {
1479                 if (hwgroup->handler == NULL) { /* paranoia */
1480                         hwgroup->busy = 0;
1481                         ide_do_request(hwgroup, hwif->irq);
1482                 } else {
1483                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1484                                 "on exit\n", drive->name);
1485                 }
1486         }
1487         spin_unlock_irqrestore(&ide_lock, flags);
1488         return IRQ_HANDLED;
1489 }
1490
1491 /**
1492  *      ide_do_drive_cmd        -       issue IDE special command
1493  *      @drive: device to issue command
1494  *      @rq: request to issue
1495  *
1496  *      This function issues a special IDE device request
1497  *      onto the request queue.
1498  *
1499  *      the rq is queued at the head of the request queue, displacing
1500  *      the currently-being-processed request and this function
1501  *      returns immediately without waiting for the new rq to be
1502  *      completed.  This is VERY DANGEROUS, and is intended for
1503  *      careful use by the ATAPI tape/cdrom driver code.
1504  */
1505
1506 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1507 {
1508         unsigned long flags;
1509         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1510
1511         spin_lock_irqsave(&ide_lock, flags);
1512         hwgroup->rq = NULL;
1513         __elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 1);
1514         __generic_unplug_device(drive->queue);
1515         spin_unlock_irqrestore(&ide_lock, flags);
1516 }
1517
1518 EXPORT_SYMBOL(ide_do_drive_cmd);
1519
1520 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1521 {
1522         ide_hwif_t *hwif = drive->hwif;
1523         ide_task_t task;
1524
1525         memset(&task, 0, sizeof(task));
1526         task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1527                         IDE_TFLAG_OUT_FEATURE | tf_flags;
1528         task.tf.feature = dma;          /* Use PIO/DMA */
1529         task.tf.lbam    = bcount & 0xff;
1530         task.tf.lbah    = (bcount >> 8) & 0xff;
1531
1532         ide_tf_dump(drive->name, &task.tf);
1533         hwif->tp_ops->set_irq(hwif, 1);
1534         SELECT_MASK(drive, 0);
1535         hwif->tp_ops->tf_load(drive, &task);
1536 }
1537
1538 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1539
1540 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1541 {
1542         ide_hwif_t *hwif = drive->hwif;
1543         u8 buf[4] = { 0 };
1544
1545         while (len > 0) {
1546                 if (write)
1547                         hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1548                 else
1549                         hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1550                 len -= 4;
1551         }
1552 }
1553 EXPORT_SYMBOL_GPL(ide_pad_transfer);