ide: move rq->errors quirk out from ide_end_request()
[safe/jmp/linux-2.6] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 int ide_end_rq(ide_drive_t *drive, struct request *rq, int error,
58                unsigned int nr_bytes)
59 {
60         /*
61          * decide whether to reenable DMA -- 3 is a random magic for now,
62          * if we DMA timeout more than 3 times, just stay in PIO
63          */
64         if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
65             drive->retry_pio <= 3) {
66                 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
67                 ide_dma_on(drive);
68         }
69
70         return blk_end_request(rq, error, nr_bytes);
71 }
72 EXPORT_SYMBOL_GPL(ide_end_rq);
73
74 /**
75  *      ide_end_request         -       complete an IDE I/O
76  *      @drive: IDE device for the I/O
77  *      @uptodate:
78  *      @nr_sectors: number of sectors completed
79  *
80  *      This is our end_request wrapper function. We complete the I/O
81  *      update random number input and dequeue the request, which if
82  *      it was tagged may be out of order.
83  */
84
85 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
86 {
87         unsigned int nr_bytes = nr_sectors << 9;
88         struct request *rq = drive->hwif->rq;
89         int rc, error = 0;
90
91         if (!nr_bytes) {
92                 if (blk_pc_request(rq))
93                         nr_bytes = rq->data_len;
94                 else
95                         nr_bytes = rq->hard_cur_sectors << 9;
96         }
97
98         /*
99          * if failfast is set on a request, override number of sectors
100          * and complete the whole request right now
101          */
102         if (blk_noretry_request(rq) && uptodate <= 0)
103                 nr_bytes = rq->hard_nr_sectors << 9;
104
105         if (uptodate <= 0)
106                 error = uptodate ? uptodate : -EIO;
107
108         rc = ide_end_rq(drive, rq, error, nr_bytes);
109         if (rc == 0)
110                 drive->hwif->rq = NULL;
111
112         return rc;
113 }
114 EXPORT_SYMBOL(ide_end_request);
115
116 void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
117 {
118         struct ide_taskfile *tf = &cmd->tf;
119         struct request *rq = cmd->rq;
120         u8 tf_cmd = tf->command;
121
122         tf->error = err;
123         tf->status = stat;
124
125         drive->hwif->tp_ops->tf_read(drive, cmd);
126
127         if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
128             tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
129                 if (tf->lbal != 0xc4) {
130                         printk(KERN_ERR "%s: head unload failed!\n",
131                                drive->name);
132                         ide_tf_dump(drive->name, tf);
133                 } else
134                         drive->dev_flags |= IDE_DFLAG_PARKED;
135         }
136
137         if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
138                 memcpy(rq->special, cmd, sizeof(*cmd));
139
140         if (cmd->tf_flags & IDE_TFLAG_DYN)
141                 kfree(cmd);
142 }
143
144 void ide_complete_rq(ide_drive_t *drive, int error)
145 {
146         ide_hwif_t *hwif = drive->hwif;
147         struct request *rq = hwif->rq;
148
149         hwif->rq = NULL;
150
151         if (unlikely(blk_end_request(rq, error, blk_rq_bytes(rq))))
152                 BUG();
153 }
154 EXPORT_SYMBOL(ide_complete_rq);
155
156 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
157 {
158         u8 drv_req = blk_special_request(rq) && rq->rq_disk;
159         u8 media = drive->media;
160
161         drive->failed_pc = NULL;
162
163         if ((media == ide_floppy || media == ide_tape) && drv_req) {
164                 rq->errors = 0;
165                 ide_complete_rq(drive, 0);
166         } else {
167                 if (media == ide_tape)
168                         rq->errors = IDE_DRV_ERROR_GENERAL;
169                 else if (blk_fs_request(rq) == 0 && rq->errors == 0)
170                         rq->errors = -EIO;
171                 ide_end_request(drive, 0, 0);
172         }
173 }
174
175 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
176 {
177         tf->nsect   = drive->sect;
178         tf->lbal    = drive->sect;
179         tf->lbam    = drive->cyl;
180         tf->lbah    = drive->cyl >> 8;
181         tf->device  = (drive->head - 1) | drive->select;
182         tf->command = ATA_CMD_INIT_DEV_PARAMS;
183 }
184
185 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
186 {
187         tf->nsect   = drive->sect;
188         tf->command = ATA_CMD_RESTORE;
189 }
190
191 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
192 {
193         tf->nsect   = drive->mult_req;
194         tf->command = ATA_CMD_SET_MULTI;
195 }
196
197 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
198 {
199         special_t *s = &drive->special;
200         struct ide_cmd cmd;
201
202         memset(&cmd, 0, sizeof(cmd));
203         cmd.protocol = ATA_PROT_NODATA;
204
205         if (s->b.set_geometry) {
206                 s->b.set_geometry = 0;
207                 ide_tf_set_specify_cmd(drive, &cmd.tf);
208         } else if (s->b.recalibrate) {
209                 s->b.recalibrate = 0;
210                 ide_tf_set_restore_cmd(drive, &cmd.tf);
211         } else if (s->b.set_multmode) {
212                 s->b.set_multmode = 0;
213                 ide_tf_set_setmult_cmd(drive, &cmd.tf);
214         } else if (s->all) {
215                 int special = s->all;
216                 s->all = 0;
217                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
218                 return ide_stopped;
219         }
220
221         cmd.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
222                        IDE_TFLAG_CUSTOM_HANDLER;
223
224         do_rw_taskfile(drive, &cmd);
225
226         return ide_started;
227 }
228
229 /**
230  *      do_special              -       issue some special commands
231  *      @drive: drive the command is for
232  *
233  *      do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
234  *      ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
235  *
236  *      It used to do much more, but has been scaled back.
237  */
238
239 static ide_startstop_t do_special (ide_drive_t *drive)
240 {
241         special_t *s = &drive->special;
242
243 #ifdef DEBUG
244         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
245 #endif
246         if (drive->media == ide_disk)
247                 return ide_disk_special(drive);
248
249         s->all = 0;
250         drive->mult_req = 0;
251         return ide_stopped;
252 }
253
254 void ide_map_sg(ide_drive_t *drive, struct request *rq)
255 {
256         ide_hwif_t *hwif = drive->hwif;
257         struct ide_cmd *cmd = &hwif->cmd;
258         struct scatterlist *sg = hwif->sg_table;
259
260         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
261                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
262                 cmd->sg_nents = 1;
263         } else if (!rq->bio) {
264                 sg_init_one(sg, rq->data, rq->data_len);
265                 cmd->sg_nents = 1;
266         } else
267                 cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
268 }
269 EXPORT_SYMBOL_GPL(ide_map_sg);
270
271 void ide_init_sg_cmd(struct ide_cmd *cmd, int nsect)
272 {
273         cmd->nsect = cmd->nleft = nsect;
274         cmd->cursg_ofs = 0;
275         cmd->cursg = NULL;
276 }
277 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
278
279 /**
280  *      execute_drive_command   -       issue special drive command
281  *      @drive: the drive to issue the command on
282  *      @rq: the request structure holding the command
283  *
284  *      execute_drive_cmd() issues a special drive command,  usually 
285  *      initiated by ioctl() from the external hdparm program. The
286  *      command can be a drive command, drive task or taskfile 
287  *      operation. Weirdly you can call it with NULL to wait for
288  *      all commands to finish. Don't do this as that is due to change
289  */
290
291 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
292                 struct request *rq)
293 {
294         struct ide_cmd *cmd = rq->special;
295
296         if (cmd) {
297                 if (cmd->protocol == ATA_PROT_PIO) {
298                         ide_init_sg_cmd(cmd, rq->nr_sectors);
299                         ide_map_sg(drive, rq);
300                 }
301
302                 return do_rw_taskfile(drive, cmd);
303         }
304
305         /*
306          * NULL is actually a valid way of waiting for
307          * all current requests to be flushed from the queue.
308          */
309 #ifdef DEBUG
310         printk("%s: DRIVE_CMD (null)\n", drive->name);
311 #endif
312         rq->errors = 0;
313         ide_complete_rq(drive, 0);
314
315         return ide_stopped;
316 }
317
318 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
319 {
320         u8 cmd = rq->cmd[0];
321
322         switch (cmd) {
323         case REQ_PARK_HEADS:
324         case REQ_UNPARK_HEADS:
325                 return ide_do_park_unpark(drive, rq);
326         case REQ_DEVSET_EXEC:
327                 return ide_do_devset(drive, rq);
328         case REQ_DRIVE_RESET:
329                 return ide_do_reset(drive);
330         default:
331                 BUG();
332         }
333 }
334
335 /**
336  *      start_request   -       start of I/O and command issuing for IDE
337  *
338  *      start_request() initiates handling of a new I/O request. It
339  *      accepts commands and I/O (read/write) requests.
340  *
341  *      FIXME: this function needs a rename
342  */
343  
344 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
345 {
346         ide_startstop_t startstop;
347
348         BUG_ON(!blk_rq_started(rq));
349
350 #ifdef DEBUG
351         printk("%s: start_request: current=0x%08lx\n",
352                 drive->hwif->name, (unsigned long) rq);
353 #endif
354
355         /* bail early if we've exceeded max_failures */
356         if (drive->max_failures && (drive->failures > drive->max_failures)) {
357                 rq->cmd_flags |= REQ_FAILED;
358                 goto kill_rq;
359         }
360
361         if (blk_pm_request(rq))
362                 ide_check_pm_state(drive, rq);
363
364         SELECT_DRIVE(drive);
365         if (ide_wait_stat(&startstop, drive, drive->ready_stat,
366                           ATA_BUSY | ATA_DRQ, WAIT_READY)) {
367                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
368                 return startstop;
369         }
370         if (!drive->special.all) {
371                 struct ide_driver *drv;
372
373                 /*
374                  * We reset the drive so we need to issue a SETFEATURES.
375                  * Do it _after_ do_special() restored device parameters.
376                  */
377                 if (drive->current_speed == 0xff)
378                         ide_config_drive_speed(drive, drive->desired_speed);
379
380                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
381                         return execute_drive_cmd(drive, rq);
382                 else if (blk_pm_request(rq)) {
383                         struct request_pm_state *pm = rq->data;
384 #ifdef DEBUG_PM
385                         printk("%s: start_power_step(step: %d)\n",
386                                 drive->name, pm->pm_step);
387 #endif
388                         startstop = ide_start_power_step(drive, rq);
389                         if (startstop == ide_stopped &&
390                             pm->pm_step == IDE_PM_COMPLETED)
391                                 ide_complete_pm_rq(drive, rq);
392                         return startstop;
393                 } else if (!rq->rq_disk && blk_special_request(rq))
394                         /*
395                          * TODO: Once all ULDs have been modified to
396                          * check for specific op codes rather than
397                          * blindly accepting any special request, the
398                          * check for ->rq_disk above may be replaced
399                          * by a more suitable mechanism or even
400                          * dropped entirely.
401                          */
402                         return ide_special_rq(drive, rq);
403
404                 drv = *(struct ide_driver **)rq->rq_disk->private_data;
405
406                 return drv->do_request(drive, rq, rq->sector);
407         }
408         return do_special(drive);
409 kill_rq:
410         ide_kill_rq(drive, rq);
411         return ide_stopped;
412 }
413
414 /**
415  *      ide_stall_queue         -       pause an IDE device
416  *      @drive: drive to stall
417  *      @timeout: time to stall for (jiffies)
418  *
419  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
420  *      to the port by sleeping for timeout jiffies.
421  */
422  
423 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
424 {
425         if (timeout > WAIT_WORSTCASE)
426                 timeout = WAIT_WORSTCASE;
427         drive->sleep = timeout + jiffies;
428         drive->dev_flags |= IDE_DFLAG_SLEEPING;
429 }
430 EXPORT_SYMBOL(ide_stall_queue);
431
432 static inline int ide_lock_port(ide_hwif_t *hwif)
433 {
434         if (hwif->busy)
435                 return 1;
436
437         hwif->busy = 1;
438
439         return 0;
440 }
441
442 static inline void ide_unlock_port(ide_hwif_t *hwif)
443 {
444         hwif->busy = 0;
445 }
446
447 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
448 {
449         int rc = 0;
450
451         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
452                 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
453                 if (rc == 0) {
454                         if (host->get_lock)
455                                 host->get_lock(ide_intr, hwif);
456                 }
457         }
458         return rc;
459 }
460
461 static inline void ide_unlock_host(struct ide_host *host)
462 {
463         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
464                 if (host->release_lock)
465                         host->release_lock();
466                 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
467         }
468 }
469
470 /*
471  * Issue a new request to a device.
472  */
473 void do_ide_request(struct request_queue *q)
474 {
475         ide_drive_t     *drive = q->queuedata;
476         ide_hwif_t      *hwif = drive->hwif;
477         struct ide_host *host = hwif->host;
478         struct request  *rq = NULL;
479         ide_startstop_t startstop;
480
481         /*
482          * drive is doing pre-flush, ordered write, post-flush sequence. even
483          * though that is 3 requests, it must be seen as a single transaction.
484          * we must not preempt this drive until that is complete
485          */
486         if (blk_queue_flushing(q))
487                 /*
488                  * small race where queue could get replugged during
489                  * the 3-request flush cycle, just yank the plug since
490                  * we want it to finish asap
491                  */
492                 blk_remove_plug(q);
493
494         spin_unlock_irq(q->queue_lock);
495
496         if (ide_lock_host(host, hwif))
497                 goto plug_device_2;
498
499         spin_lock_irq(&hwif->lock);
500
501         if (!ide_lock_port(hwif)) {
502                 ide_hwif_t *prev_port;
503 repeat:
504                 prev_port = hwif->host->cur_port;
505                 hwif->rq = NULL;
506
507                 if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
508                         if (time_before(drive->sleep, jiffies)) {
509                                 ide_unlock_port(hwif);
510                                 goto plug_device;
511                         }
512                 }
513
514                 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
515                     hwif != prev_port) {
516                         /*
517                          * set nIEN for previous port, drives in the
518                          * quirk_list may not like intr setups/cleanups
519                          */
520                         if (prev_port && prev_port->cur_dev->quirk_list == 0)
521                                 prev_port->tp_ops->set_irq(prev_port, 0);
522
523                         hwif->host->cur_port = hwif;
524                 }
525                 hwif->cur_dev = drive;
526                 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
527
528                 spin_unlock_irq(&hwif->lock);
529                 spin_lock_irq(q->queue_lock);
530                 /*
531                  * we know that the queue isn't empty, but this can happen
532                  * if the q->prep_rq_fn() decides to kill a request
533                  */
534                 rq = elv_next_request(drive->queue);
535                 spin_unlock_irq(q->queue_lock);
536                 spin_lock_irq(&hwif->lock);
537
538                 if (!rq) {
539                         ide_unlock_port(hwif);
540                         goto out;
541                 }
542
543                 /*
544                  * Sanity: don't accept a request that isn't a PM request
545                  * if we are currently power managed. This is very important as
546                  * blk_stop_queue() doesn't prevent the elv_next_request()
547                  * above to return us whatever is in the queue. Since we call
548                  * ide_do_request() ourselves, we end up taking requests while
549                  * the queue is blocked...
550                  * 
551                  * We let requests forced at head of queue with ide-preempt
552                  * though. I hope that doesn't happen too much, hopefully not
553                  * unless the subdriver triggers such a thing in its own PM
554                  * state machine.
555                  */
556                 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
557                     blk_pm_request(rq) == 0 &&
558                     (rq->cmd_flags & REQ_PREEMPT) == 0) {
559                         /* there should be no pending command at this point */
560                         ide_unlock_port(hwif);
561                         goto plug_device;
562                 }
563
564                 hwif->rq = rq;
565
566                 spin_unlock_irq(&hwif->lock);
567                 startstop = start_request(drive, rq);
568                 spin_lock_irq(&hwif->lock);
569
570                 if (startstop == ide_stopped)
571                         goto repeat;
572         } else
573                 goto plug_device;
574 out:
575         spin_unlock_irq(&hwif->lock);
576         if (rq == NULL)
577                 ide_unlock_host(host);
578         spin_lock_irq(q->queue_lock);
579         return;
580
581 plug_device:
582         spin_unlock_irq(&hwif->lock);
583         ide_unlock_host(host);
584 plug_device_2:
585         spin_lock_irq(q->queue_lock);
586
587         if (!elv_queue_empty(q))
588                 blk_plug_device(q);
589 }
590
591 static void ide_plug_device(ide_drive_t *drive)
592 {
593         struct request_queue *q = drive->queue;
594         unsigned long flags;
595
596         spin_lock_irqsave(q->queue_lock, flags);
597         if (!elv_queue_empty(q))
598                 blk_plug_device(q);
599         spin_unlock_irqrestore(q->queue_lock, flags);
600 }
601
602 static int drive_is_ready(ide_drive_t *drive)
603 {
604         ide_hwif_t *hwif = drive->hwif;
605         u8 stat = 0;
606
607         if (drive->waiting_for_dma)
608                 return hwif->dma_ops->dma_test_irq(drive);
609
610         if (hwif->io_ports.ctl_addr &&
611             (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
612                 stat = hwif->tp_ops->read_altstatus(hwif);
613         else
614                 /* Note: this may clear a pending IRQ!! */
615                 stat = hwif->tp_ops->read_status(hwif);
616
617         if (stat & ATA_BUSY)
618                 /* drive busy: definitely not interrupting */
619                 return 0;
620
621         /* drive ready: *might* be interrupting */
622         return 1;
623 }
624
625 /**
626  *      ide_timer_expiry        -       handle lack of an IDE interrupt
627  *      @data: timer callback magic (hwif)
628  *
629  *      An IDE command has timed out before the expected drive return
630  *      occurred. At this point we attempt to clean up the current
631  *      mess. If the current handler includes an expiry handler then
632  *      we invoke the expiry handler, and providing it is happy the
633  *      work is done. If that fails we apply generic recovery rules
634  *      invoking the handler and checking the drive DMA status. We
635  *      have an excessively incestuous relationship with the DMA
636  *      logic that wants cleaning up.
637  */
638  
639 void ide_timer_expiry (unsigned long data)
640 {
641         ide_hwif_t      *hwif = (ide_hwif_t *)data;
642         ide_drive_t     *uninitialized_var(drive);
643         ide_handler_t   *handler;
644         unsigned long   flags;
645         int             wait = -1;
646         int             plug_device = 0;
647
648         spin_lock_irqsave(&hwif->lock, flags);
649
650         handler = hwif->handler;
651
652         if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
653                 /*
654                  * Either a marginal timeout occurred
655                  * (got the interrupt just as timer expired),
656                  * or we were "sleeping" to give other devices a chance.
657                  * Either way, we don't really want to complain about anything.
658                  */
659         } else {
660                 ide_expiry_t *expiry = hwif->expiry;
661                 ide_startstop_t startstop = ide_stopped;
662
663                 drive = hwif->cur_dev;
664
665                 if (expiry) {
666                         wait = expiry(drive);
667                         if (wait > 0) { /* continue */
668                                 /* reset timer */
669                                 hwif->timer.expires = jiffies + wait;
670                                 hwif->req_gen_timer = hwif->req_gen;
671                                 add_timer(&hwif->timer);
672                                 spin_unlock_irqrestore(&hwif->lock, flags);
673                                 return;
674                         }
675                 }
676                 hwif->handler = NULL;
677                 /*
678                  * We need to simulate a real interrupt when invoking
679                  * the handler() function, which means we need to
680                  * globally mask the specific IRQ:
681                  */
682                 spin_unlock(&hwif->lock);
683                 /* disable_irq_nosync ?? */
684                 disable_irq(hwif->irq);
685                 /* local CPU only, as if we were handling an interrupt */
686                 local_irq_disable();
687                 if (hwif->polling) {
688                         startstop = handler(drive);
689                 } else if (drive_is_ready(drive)) {
690                         if (drive->waiting_for_dma)
691                                 hwif->dma_ops->dma_lost_irq(drive);
692                         if (hwif->ack_intr)
693                                 hwif->ack_intr(hwif);
694                         printk(KERN_WARNING "%s: lost interrupt\n",
695                                 drive->name);
696                         startstop = handler(drive);
697                 } else {
698                         if (drive->waiting_for_dma)
699                                 startstop = ide_dma_timeout_retry(drive, wait);
700                         else
701                                 startstop = ide_error(drive, "irq timeout",
702                                         hwif->tp_ops->read_status(hwif));
703                 }
704                 spin_lock_irq(&hwif->lock);
705                 enable_irq(hwif->irq);
706                 if (startstop == ide_stopped) {
707                         ide_unlock_port(hwif);
708                         plug_device = 1;
709                 }
710         }
711         spin_unlock_irqrestore(&hwif->lock, flags);
712
713         if (plug_device) {
714                 ide_unlock_host(hwif->host);
715                 ide_plug_device(drive);
716         }
717 }
718
719 /**
720  *      unexpected_intr         -       handle an unexpected IDE interrupt
721  *      @irq: interrupt line
722  *      @hwif: port being processed
723  *
724  *      There's nothing really useful we can do with an unexpected interrupt,
725  *      other than reading the status register (to clear it), and logging it.
726  *      There should be no way that an irq can happen before we're ready for it,
727  *      so we needn't worry much about losing an "important" interrupt here.
728  *
729  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
730  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
731  *      looks "good", we just ignore the interrupt completely.
732  *
733  *      This routine assumes __cli() is in effect when called.
734  *
735  *      If an unexpected interrupt happens on irq15 while we are handling irq14
736  *      and if the two interfaces are "serialized" (CMD640), then it looks like
737  *      we could screw up by interfering with a new request being set up for 
738  *      irq15.
739  *
740  *      In reality, this is a non-issue.  The new command is not sent unless 
741  *      the drive is ready to accept one, in which case we know the drive is
742  *      not trying to interrupt us.  And ide_set_handler() is always invoked
743  *      before completing the issuance of any new drive command, so we will not
744  *      be accidentally invoked as a result of any valid command completion
745  *      interrupt.
746  */
747
748 static void unexpected_intr(int irq, ide_hwif_t *hwif)
749 {
750         u8 stat = hwif->tp_ops->read_status(hwif);
751
752         if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
753                 /* Try to not flood the console with msgs */
754                 static unsigned long last_msgtime, count;
755                 ++count;
756
757                 if (time_after(jiffies, last_msgtime + HZ)) {
758                         last_msgtime = jiffies;
759                         printk(KERN_ERR "%s: unexpected interrupt, "
760                                 "status=0x%02x, count=%ld\n",
761                                 hwif->name, stat, count);
762                 }
763         }
764 }
765
766 /**
767  *      ide_intr        -       default IDE interrupt handler
768  *      @irq: interrupt number
769  *      @dev_id: hwif
770  *      @regs: unused weirdness from the kernel irq layer
771  *
772  *      This is the default IRQ handler for the IDE layer. You should
773  *      not need to override it. If you do be aware it is subtle in
774  *      places
775  *
776  *      hwif is the interface in the group currently performing
777  *      a command. hwif->cur_dev is the drive and hwif->handler is
778  *      the IRQ handler to call. As we issue a command the handlers
779  *      step through multiple states, reassigning the handler to the
780  *      next step in the process. Unlike a smart SCSI controller IDE
781  *      expects the main processor to sequence the various transfer
782  *      stages. We also manage a poll timer to catch up with most
783  *      timeout situations. There are still a few where the handlers
784  *      don't ever decide to give up.
785  *
786  *      The handler eventually returns ide_stopped to indicate the
787  *      request completed. At this point we issue the next request
788  *      on the port and the process begins again.
789  */
790
791 irqreturn_t ide_intr (int irq, void *dev_id)
792 {
793         ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
794         struct ide_host *host = hwif->host;
795         ide_drive_t *uninitialized_var(drive);
796         ide_handler_t *handler;
797         unsigned long flags;
798         ide_startstop_t startstop;
799         irqreturn_t irq_ret = IRQ_NONE;
800         int plug_device = 0;
801
802         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
803                 if (hwif != host->cur_port)
804                         goto out_early;
805         }
806
807         spin_lock_irqsave(&hwif->lock, flags);
808
809         if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
810                 goto out;
811
812         handler = hwif->handler;
813
814         if (handler == NULL || hwif->polling) {
815                 /*
816                  * Not expecting an interrupt from this drive.
817                  * That means this could be:
818                  *      (1) an interrupt from another PCI device
819                  *      sharing the same PCI INT# as us.
820                  * or   (2) a drive just entered sleep or standby mode,
821                  *      and is interrupting to let us know.
822                  * or   (3) a spurious interrupt of unknown origin.
823                  *
824                  * For PCI, we cannot tell the difference,
825                  * so in that case we just ignore it and hope it goes away.
826                  */
827                 if ((host->irq_flags & IRQF_SHARED) == 0) {
828                         /*
829                          * Probably not a shared PCI interrupt,
830                          * so we can safely try to do something about it:
831                          */
832                         unexpected_intr(irq, hwif);
833                 } else {
834                         /*
835                          * Whack the status register, just in case
836                          * we have a leftover pending IRQ.
837                          */
838                         (void)hwif->tp_ops->read_status(hwif);
839                 }
840                 goto out;
841         }
842
843         drive = hwif->cur_dev;
844
845         if (!drive_is_ready(drive))
846                 /*
847                  * This happens regularly when we share a PCI IRQ with
848                  * another device.  Unfortunately, it can also happen
849                  * with some buggy drives that trigger the IRQ before
850                  * their status register is up to date.  Hopefully we have
851                  * enough advance overhead that the latter isn't a problem.
852                  */
853                 goto out;
854
855         hwif->handler = NULL;
856         hwif->req_gen++;
857         del_timer(&hwif->timer);
858         spin_unlock(&hwif->lock);
859
860         if (hwif->port_ops && hwif->port_ops->clear_irq)
861                 hwif->port_ops->clear_irq(drive);
862
863         if (drive->dev_flags & IDE_DFLAG_UNMASK)
864                 local_irq_enable_in_hardirq();
865
866         /* service this interrupt, may set handler for next interrupt */
867         startstop = handler(drive);
868
869         spin_lock_irq(&hwif->lock);
870         /*
871          * Note that handler() may have set things up for another
872          * interrupt to occur soon, but it cannot happen until
873          * we exit from this routine, because it will be the
874          * same irq as is currently being serviced here, and Linux
875          * won't allow another of the same (on any CPU) until we return.
876          */
877         if (startstop == ide_stopped) {
878                 BUG_ON(hwif->handler);
879                 ide_unlock_port(hwif);
880                 plug_device = 1;
881         }
882         irq_ret = IRQ_HANDLED;
883 out:
884         spin_unlock_irqrestore(&hwif->lock, flags);
885 out_early:
886         if (plug_device) {
887                 ide_unlock_host(hwif->host);
888                 ide_plug_device(drive);
889         }
890
891         return irq_ret;
892 }
893 EXPORT_SYMBOL_GPL(ide_intr);
894
895 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
896 {
897         ide_hwif_t *hwif = drive->hwif;
898         u8 buf[4] = { 0 };
899
900         while (len > 0) {
901                 if (write)
902                         hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
903                 else
904                         hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
905                 len -= 4;
906         }
907 }
908 EXPORT_SYMBOL_GPL(ide_pad_transfer);