ide: ide_lock + __blk_end_request() -> blk_end_request()
[safe/jmp/linux-2.6] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
52
53 #include <asm/byteorder.h>
54 #include <asm/irq.h>
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59                              int uptodate, unsigned int nr_bytes, int dequeue)
60 {
61         int ret = 1;
62         int error = 0;
63
64         if (uptodate <= 0)
65                 error = uptodate ? uptodate : -EIO;
66
67         /*
68          * if failfast is set on a request, override number of sectors and
69          * complete the whole request right now
70          */
71         if (blk_noretry_request(rq) && error)
72                 nr_bytes = rq->hard_nr_sectors << 9;
73
74         if (!blk_fs_request(rq) && error && !rq->errors)
75                 rq->errors = -EIO;
76
77         /*
78          * decide whether to reenable DMA -- 3 is a random magic for now,
79          * if we DMA timeout more than 3 times, just stay in PIO
80          */
81         if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82             drive->retry_pio <= 3) {
83                 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84                 ide_dma_on(drive);
85         }
86
87         if (!blk_end_request(rq, error, nr_bytes))
88                 ret = 0;
89
90         if (ret == 0 && dequeue)
91                 drive->hwif->hwgroup->rq = NULL;
92
93         return ret;
94 }
95
96 /**
97  *      ide_end_request         -       complete an IDE I/O
98  *      @drive: IDE device for the I/O
99  *      @uptodate:
100  *      @nr_sectors: number of sectors completed
101  *
102  *      This is our end_request wrapper function. We complete the I/O
103  *      update random number input and dequeue the request, which if
104  *      it was tagged may be out of order.
105  */
106
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108 {
109         unsigned int nr_bytes = nr_sectors << 9;
110         struct request *rq = drive->hwif->hwgroup->rq;
111
112         if (!nr_bytes) {
113                 if (blk_pc_request(rq))
114                         nr_bytes = rq->data_len;
115                 else
116                         nr_bytes = rq->hard_cur_sectors << 9;
117         }
118
119         return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
120 }
121 EXPORT_SYMBOL(ide_end_request);
122
123 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq)
124 {
125         struct request_pm_state *pm = rq->data;
126
127 #ifdef DEBUG_PM
128         printk(KERN_INFO "%s: complete_power_step(step: %d)\n",
129                 drive->name, pm->pm_step);
130 #endif
131         if (drive->media != ide_disk)
132                 return;
133
134         switch (pm->pm_step) {
135         case IDE_PM_FLUSH_CACHE:        /* Suspend step 1 (flush cache) */
136                 if (pm->pm_state == PM_EVENT_FREEZE)
137                         pm->pm_step = IDE_PM_COMPLETED;
138                 else
139                         pm->pm_step = IDE_PM_STANDBY;
140                 break;
141         case IDE_PM_STANDBY:            /* Suspend step 2 (standby) */
142                 pm->pm_step = IDE_PM_COMPLETED;
143                 break;
144         case IDE_PM_RESTORE_PIO:        /* Resume step 1 (restore PIO) */
145                 pm->pm_step = IDE_PM_IDLE;
146                 break;
147         case IDE_PM_IDLE:               /* Resume step 2 (idle)*/
148                 pm->pm_step = IDE_PM_RESTORE_DMA;
149                 break;
150         }
151 }
152
153 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
154 {
155         struct request_pm_state *pm = rq->data;
156         ide_task_t *args = rq->special;
157
158         memset(args, 0, sizeof(*args));
159
160         switch (pm->pm_step) {
161         case IDE_PM_FLUSH_CACHE:        /* Suspend step 1 (flush cache) */
162                 if (drive->media != ide_disk)
163                         break;
164                 /* Not supported? Switch to next step now. */
165                 if (ata_id_flush_enabled(drive->id) == 0 ||
166                     (drive->dev_flags & IDE_DFLAG_WCACHE) == 0) {
167                         ide_complete_power_step(drive, rq);
168                         return ide_stopped;
169                 }
170                 if (ata_id_flush_ext_enabled(drive->id))
171                         args->tf.command = ATA_CMD_FLUSH_EXT;
172                 else
173                         args->tf.command = ATA_CMD_FLUSH;
174                 goto out_do_tf;
175         case IDE_PM_STANDBY:            /* Suspend step 2 (standby) */
176                 args->tf.command = ATA_CMD_STANDBYNOW1;
177                 goto out_do_tf;
178         case IDE_PM_RESTORE_PIO:        /* Resume step 1 (restore PIO) */
179                 ide_set_max_pio(drive);
180                 /*
181                  * skip IDE_PM_IDLE for ATAPI devices
182                  */
183                 if (drive->media != ide_disk)
184                         pm->pm_step = IDE_PM_RESTORE_DMA;
185                 else
186                         ide_complete_power_step(drive, rq);
187                 return ide_stopped;
188         case IDE_PM_IDLE:               /* Resume step 2 (idle) */
189                 args->tf.command = ATA_CMD_IDLEIMMEDIATE;
190                 goto out_do_tf;
191         case IDE_PM_RESTORE_DMA:        /* Resume step 3 (restore DMA) */
192                 /*
193                  * Right now, all we do is call ide_set_dma(drive),
194                  * we could be smarter and check for current xfer_speed
195                  * in struct drive etc...
196                  */
197                 if (drive->hwif->dma_ops == NULL)
198                         break;
199                 /*
200                  * TODO: respect IDE_DFLAG_USING_DMA
201                  */
202                 ide_set_dma(drive);
203                 break;
204         }
205
206         pm->pm_step = IDE_PM_COMPLETED;
207         return ide_stopped;
208
209 out_do_tf:
210         args->tf_flags   = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
211         args->data_phase = TASKFILE_NO_DATA;
212         return do_rw_taskfile(drive, args);
213 }
214
215 /**
216  *      ide_end_dequeued_request        -       complete an IDE I/O
217  *      @drive: IDE device for the I/O
218  *      @uptodate:
219  *      @nr_sectors: number of sectors completed
220  *
221  *      Complete an I/O that is no longer on the request queue. This
222  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
223  *      We must still finish the old request but we must not tamper with the
224  *      queue in the meantime.
225  *
226  *      NOTE: This path does not handle barrier, but barrier is not supported
227  *      on ide-cd anyway.
228  */
229
230 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
231                              int uptodate, int nr_sectors)
232 {
233         BUG_ON(!blk_rq_started(rq));
234
235         return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
236 }
237 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
238
239
240 /**
241  *      ide_complete_pm_request - end the current Power Management request
242  *      @drive: target drive
243  *      @rq: request
244  *
245  *      This function cleans up the current PM request and stops the queue
246  *      if necessary.
247  */
248 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
249 {
250         unsigned long flags;
251
252 #ifdef DEBUG_PM
253         printk("%s: completing PM request, %s\n", drive->name,
254                blk_pm_suspend_request(rq) ? "suspend" : "resume");
255 #endif
256         spin_lock_irqsave(&ide_lock, flags);
257         if (blk_pm_suspend_request(rq)) {
258                 blk_stop_queue(drive->queue);
259         } else {
260                 drive->dev_flags &= ~IDE_DFLAG_BLOCKED;
261                 blk_start_queue(drive->queue);
262         }
263         spin_unlock_irqrestore(&ide_lock, flags);
264
265         drive->hwif->hwgroup->rq = NULL;
266
267         if (blk_end_request(rq, 0, 0))
268                 BUG();
269 }
270
271 /**
272  *      ide_end_drive_cmd       -       end an explicit drive command
273  *      @drive: command 
274  *      @stat: status bits
275  *      @err: error bits
276  *
277  *      Clean up after success/failure of an explicit drive command.
278  *      These get thrown onto the queue so they are synchronized with
279  *      real I/O operations on the drive.
280  *
281  *      In LBA48 mode we have to read the register set twice to get
282  *      all the extra information out.
283  */
284  
285 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
286 {
287         ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
288         struct request *rq = hwgroup->rq;
289
290         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
291                 ide_task_t *task = (ide_task_t *)rq->special;
292
293                 if (rq->errors == 0)
294                         rq->errors = !OK_STAT(stat, ATA_DRDY, BAD_STAT);
295
296                 if (task) {
297                         struct ide_taskfile *tf = &task->tf;
298
299                         tf->error = err;
300                         tf->status = stat;
301
302                         drive->hwif->tp_ops->tf_read(drive, task);
303
304                         if (task->tf_flags & IDE_TFLAG_DYN)
305                                 kfree(task);
306                 }
307         } else if (blk_pm_request(rq)) {
308                 struct request_pm_state *pm = rq->data;
309
310                 ide_complete_power_step(drive, rq);
311                 if (pm->pm_step == IDE_PM_COMPLETED)
312                         ide_complete_pm_request(drive, rq);
313                 return;
314         }
315
316         hwgroup->rq = NULL;
317
318         rq->errors = err;
319
320         if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
321                                      blk_rq_bytes(rq))))
322                 BUG();
323 }
324 EXPORT_SYMBOL(ide_end_drive_cmd);
325
326 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
327 {
328         if (rq->rq_disk) {
329                 ide_driver_t *drv;
330
331                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
332                 drv->end_request(drive, 0, 0);
333         } else
334                 ide_end_request(drive, 0, 0);
335 }
336
337 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
338 {
339         ide_hwif_t *hwif = drive->hwif;
340
341         if ((stat & ATA_BUSY) ||
342             ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
343                 /* other bits are useless when BUSY */
344                 rq->errors |= ERROR_RESET;
345         } else if (stat & ATA_ERR) {
346                 /* err has different meaning on cdrom and tape */
347                 if (err == ATA_ABORTED) {
348                         if ((drive->dev_flags & IDE_DFLAG_LBA) &&
349                             /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
350                             hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
351                                 return ide_stopped;
352                 } else if ((err & BAD_CRC) == BAD_CRC) {
353                         /* UDMA crc error, just retry the operation */
354                         drive->crc_count++;
355                 } else if (err & (ATA_BBK | ATA_UNC)) {
356                         /* retries won't help these */
357                         rq->errors = ERROR_MAX;
358                 } else if (err & ATA_TRK0NF) {
359                         /* help it find track zero */
360                         rq->errors |= ERROR_RECAL;
361                 }
362         }
363
364         if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
365             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
366                 int nsect = drive->mult_count ? drive->mult_count : 1;
367
368                 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
369         }
370
371         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
372                 ide_kill_rq(drive, rq);
373                 return ide_stopped;
374         }
375
376         if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
377                 rq->errors |= ERROR_RESET;
378
379         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
380                 ++rq->errors;
381                 return ide_do_reset(drive);
382         }
383
384         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
385                 drive->special.b.recalibrate = 1;
386
387         ++rq->errors;
388
389         return ide_stopped;
390 }
391
392 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
393 {
394         ide_hwif_t *hwif = drive->hwif;
395
396         if ((stat & ATA_BUSY) ||
397             ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
398                 /* other bits are useless when BUSY */
399                 rq->errors |= ERROR_RESET;
400         } else {
401                 /* add decoding error stuff */
402         }
403
404         if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
405                 /* force an abort */
406                 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
407
408         if (rq->errors >= ERROR_MAX) {
409                 ide_kill_rq(drive, rq);
410         } else {
411                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
412                         ++rq->errors;
413                         return ide_do_reset(drive);
414                 }
415                 ++rq->errors;
416         }
417
418         return ide_stopped;
419 }
420
421 ide_startstop_t
422 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
423 {
424         if (drive->media == ide_disk)
425                 return ide_ata_error(drive, rq, stat, err);
426         return ide_atapi_error(drive, rq, stat, err);
427 }
428
429 EXPORT_SYMBOL_GPL(__ide_error);
430
431 /**
432  *      ide_error       -       handle an error on the IDE
433  *      @drive: drive the error occurred on
434  *      @msg: message to report
435  *      @stat: status bits
436  *
437  *      ide_error() takes action based on the error returned by the drive.
438  *      For normal I/O that may well include retries. We deal with
439  *      both new-style (taskfile) and old style command handling here.
440  *      In the case of taskfile command handling there is work left to
441  *      do
442  */
443  
444 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
445 {
446         struct request *rq;
447         u8 err;
448
449         err = ide_dump_status(drive, msg, stat);
450
451         if ((rq = HWGROUP(drive)->rq) == NULL)
452                 return ide_stopped;
453
454         /* retry only "normal" I/O: */
455         if (!blk_fs_request(rq)) {
456                 rq->errors = 1;
457                 ide_end_drive_cmd(drive, stat, err);
458                 return ide_stopped;
459         }
460
461         if (rq->rq_disk) {
462                 ide_driver_t *drv;
463
464                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
465                 return drv->error(drive, rq, stat, err);
466         } else
467                 return __ide_error(drive, rq, stat, err);
468 }
469
470 EXPORT_SYMBOL_GPL(ide_error);
471
472 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
473 {
474         tf->nsect   = drive->sect;
475         tf->lbal    = drive->sect;
476         tf->lbam    = drive->cyl;
477         tf->lbah    = drive->cyl >> 8;
478         tf->device  = (drive->head - 1) | drive->select;
479         tf->command = ATA_CMD_INIT_DEV_PARAMS;
480 }
481
482 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
483 {
484         tf->nsect   = drive->sect;
485         tf->command = ATA_CMD_RESTORE;
486 }
487
488 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
489 {
490         tf->nsect   = drive->mult_req;
491         tf->command = ATA_CMD_SET_MULTI;
492 }
493
494 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
495 {
496         special_t *s = &drive->special;
497         ide_task_t args;
498
499         memset(&args, 0, sizeof(ide_task_t));
500         args.data_phase = TASKFILE_NO_DATA;
501
502         if (s->b.set_geometry) {
503                 s->b.set_geometry = 0;
504                 ide_tf_set_specify_cmd(drive, &args.tf);
505         } else if (s->b.recalibrate) {
506                 s->b.recalibrate = 0;
507                 ide_tf_set_restore_cmd(drive, &args.tf);
508         } else if (s->b.set_multmode) {
509                 s->b.set_multmode = 0;
510                 ide_tf_set_setmult_cmd(drive, &args.tf);
511         } else if (s->all) {
512                 int special = s->all;
513                 s->all = 0;
514                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
515                 return ide_stopped;
516         }
517
518         args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
519                         IDE_TFLAG_CUSTOM_HANDLER;
520
521         do_rw_taskfile(drive, &args);
522
523         return ide_started;
524 }
525
526 /**
527  *      do_special              -       issue some special commands
528  *      @drive: drive the command is for
529  *
530  *      do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
531  *      ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
532  *
533  *      It used to do much more, but has been scaled back.
534  */
535
536 static ide_startstop_t do_special (ide_drive_t *drive)
537 {
538         special_t *s = &drive->special;
539
540 #ifdef DEBUG
541         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
542 #endif
543         if (drive->media == ide_disk)
544                 return ide_disk_special(drive);
545
546         s->all = 0;
547         drive->mult_req = 0;
548         return ide_stopped;
549 }
550
551 void ide_map_sg(ide_drive_t *drive, struct request *rq)
552 {
553         ide_hwif_t *hwif = drive->hwif;
554         struct scatterlist *sg = hwif->sg_table;
555
556         if (hwif->sg_mapped)    /* needed by ide-scsi */
557                 return;
558
559         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
560                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
561         } else {
562                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
563                 hwif->sg_nents = 1;
564         }
565 }
566
567 EXPORT_SYMBOL_GPL(ide_map_sg);
568
569 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
570 {
571         ide_hwif_t *hwif = drive->hwif;
572
573         hwif->nsect = hwif->nleft = rq->nr_sectors;
574         hwif->cursg_ofs = 0;
575         hwif->cursg = NULL;
576 }
577
578 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
579
580 /**
581  *      execute_drive_command   -       issue special drive command
582  *      @drive: the drive to issue the command on
583  *      @rq: the request structure holding the command
584  *
585  *      execute_drive_cmd() issues a special drive command,  usually 
586  *      initiated by ioctl() from the external hdparm program. The
587  *      command can be a drive command, drive task or taskfile 
588  *      operation. Weirdly you can call it with NULL to wait for
589  *      all commands to finish. Don't do this as that is due to change
590  */
591
592 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
593                 struct request *rq)
594 {
595         ide_hwif_t *hwif = HWIF(drive);
596         ide_task_t *task = rq->special;
597
598         if (task) {
599                 hwif->data_phase = task->data_phase;
600
601                 switch (hwif->data_phase) {
602                 case TASKFILE_MULTI_OUT:
603                 case TASKFILE_OUT:
604                 case TASKFILE_MULTI_IN:
605                 case TASKFILE_IN:
606                         ide_init_sg_cmd(drive, rq);
607                         ide_map_sg(drive, rq);
608                 default:
609                         break;
610                 }
611
612                 return do_rw_taskfile(drive, task);
613         }
614
615         /*
616          * NULL is actually a valid way of waiting for
617          * all current requests to be flushed from the queue.
618          */
619 #ifdef DEBUG
620         printk("%s: DRIVE_CMD (null)\n", drive->name);
621 #endif
622         ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
623                           ide_read_error(drive));
624
625         return ide_stopped;
626 }
627
628 int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
629                        int arg)
630 {
631         struct request_queue *q = drive->queue;
632         struct request *rq;
633         int ret = 0;
634
635         if (!(setting->flags & DS_SYNC))
636                 return setting->set(drive, arg);
637
638         rq = blk_get_request(q, READ, __GFP_WAIT);
639         rq->cmd_type = REQ_TYPE_SPECIAL;
640         rq->cmd_len = 5;
641         rq->cmd[0] = REQ_DEVSET_EXEC;
642         *(int *)&rq->cmd[1] = arg;
643         rq->special = setting->set;
644
645         if (blk_execute_rq(q, NULL, rq, 0))
646                 ret = rq->errors;
647         blk_put_request(rq);
648
649         return ret;
650 }
651 EXPORT_SYMBOL_GPL(ide_devset_execute);
652
653 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
654 {
655         u8 cmd = rq->cmd[0];
656
657         if (cmd == REQ_PARK_HEADS || cmd == REQ_UNPARK_HEADS) {
658                 ide_task_t task;
659                 struct ide_taskfile *tf = &task.tf;
660
661                 memset(&task, 0, sizeof(task));
662                 if (cmd == REQ_PARK_HEADS) {
663                         drive->sleep = *(unsigned long *)rq->special;
664                         drive->dev_flags |= IDE_DFLAG_SLEEPING;
665                         tf->command = ATA_CMD_IDLEIMMEDIATE;
666                         tf->feature = 0x44;
667                         tf->lbal = 0x4c;
668                         tf->lbam = 0x4e;
669                         tf->lbah = 0x55;
670                         task.tf_flags |= IDE_TFLAG_CUSTOM_HANDLER;
671                 } else          /* cmd == REQ_UNPARK_HEADS */
672                         tf->command = ATA_CMD_CHK_POWER;
673
674                 task.tf_flags |= IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
675                 task.rq = rq;
676                 drive->hwif->data_phase = task.data_phase = TASKFILE_NO_DATA;
677                 return do_rw_taskfile(drive, &task);
678         }
679
680         switch (cmd) {
681         case REQ_DEVSET_EXEC:
682         {
683                 int err, (*setfunc)(ide_drive_t *, int) = rq->special;
684
685                 err = setfunc(drive, *(int *)&rq->cmd[1]);
686                 if (err)
687                         rq->errors = err;
688                 else
689                         err = 1;
690                 ide_end_request(drive, err, 0);
691                 return ide_stopped;
692         }
693         case REQ_DRIVE_RESET:
694                 return ide_do_reset(drive);
695         default:
696                 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
697                 ide_end_request(drive, 0, 0);
698                 return ide_stopped;
699         }
700 }
701
702 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
703 {
704         struct request_pm_state *pm = rq->data;
705
706         if (blk_pm_suspend_request(rq) &&
707             pm->pm_step == IDE_PM_START_SUSPEND)
708                 /* Mark drive blocked when starting the suspend sequence. */
709                 drive->dev_flags |= IDE_DFLAG_BLOCKED;
710         else if (blk_pm_resume_request(rq) &&
711                  pm->pm_step == IDE_PM_START_RESUME) {
712                 /* 
713                  * The first thing we do on wakeup is to wait for BSY bit to
714                  * go away (with a looong timeout) as a drive on this hwif may
715                  * just be POSTing itself.
716                  * We do that before even selecting as the "other" device on
717                  * the bus may be broken enough to walk on our toes at this
718                  * point.
719                  */
720                 ide_hwif_t *hwif = drive->hwif;
721                 int rc;
722 #ifdef DEBUG_PM
723                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
724 #endif
725                 rc = ide_wait_not_busy(hwif, 35000);
726                 if (rc)
727                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
728                 SELECT_DRIVE(drive);
729                 hwif->tp_ops->set_irq(hwif, 1);
730                 rc = ide_wait_not_busy(hwif, 100000);
731                 if (rc)
732                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
733         }
734 }
735
736 /**
737  *      start_request   -       start of I/O and command issuing for IDE
738  *
739  *      start_request() initiates handling of a new I/O request. It
740  *      accepts commands and I/O (read/write) requests.
741  *
742  *      FIXME: this function needs a rename
743  */
744  
745 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
746 {
747         ide_startstop_t startstop;
748
749         BUG_ON(!blk_rq_started(rq));
750
751 #ifdef DEBUG
752         printk("%s: start_request: current=0x%08lx\n",
753                 HWIF(drive)->name, (unsigned long) rq);
754 #endif
755
756         /* bail early if we've exceeded max_failures */
757         if (drive->max_failures && (drive->failures > drive->max_failures)) {
758                 rq->cmd_flags |= REQ_FAILED;
759                 goto kill_rq;
760         }
761
762         if (blk_pm_request(rq))
763                 ide_check_pm_state(drive, rq);
764
765         SELECT_DRIVE(drive);
766         if (ide_wait_stat(&startstop, drive, drive->ready_stat,
767                           ATA_BUSY | ATA_DRQ, WAIT_READY)) {
768                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
769                 return startstop;
770         }
771         if (!drive->special.all) {
772                 ide_driver_t *drv;
773
774                 /*
775                  * We reset the drive so we need to issue a SETFEATURES.
776                  * Do it _after_ do_special() restored device parameters.
777                  */
778                 if (drive->current_speed == 0xff)
779                         ide_config_drive_speed(drive, drive->desired_speed);
780
781                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
782                         return execute_drive_cmd(drive, rq);
783                 else if (blk_pm_request(rq)) {
784                         struct request_pm_state *pm = rq->data;
785 #ifdef DEBUG_PM
786                         printk("%s: start_power_step(step: %d)\n",
787                                 drive->name, pm->pm_step);
788 #endif
789                         startstop = ide_start_power_step(drive, rq);
790                         if (startstop == ide_stopped &&
791                             pm->pm_step == IDE_PM_COMPLETED)
792                                 ide_complete_pm_request(drive, rq);
793                         return startstop;
794                 } else if (!rq->rq_disk && blk_special_request(rq))
795                         /*
796                          * TODO: Once all ULDs have been modified to
797                          * check for specific op codes rather than
798                          * blindly accepting any special request, the
799                          * check for ->rq_disk above may be replaced
800                          * by a more suitable mechanism or even
801                          * dropped entirely.
802                          */
803                         return ide_special_rq(drive, rq);
804
805                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
806
807                 return drv->do_request(drive, rq, rq->sector);
808         }
809         return do_special(drive);
810 kill_rq:
811         ide_kill_rq(drive, rq);
812         return ide_stopped;
813 }
814
815 /**
816  *      ide_stall_queue         -       pause an IDE device
817  *      @drive: drive to stall
818  *      @timeout: time to stall for (jiffies)
819  *
820  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
821  *      to the hwgroup by sleeping for timeout jiffies.
822  */
823  
824 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
825 {
826         if (timeout > WAIT_WORSTCASE)
827                 timeout = WAIT_WORSTCASE;
828         drive->sleep = timeout + jiffies;
829         drive->dev_flags |= IDE_DFLAG_SLEEPING;
830 }
831
832 EXPORT_SYMBOL(ide_stall_queue);
833
834 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
835
836 /**
837  *      choose_drive            -       select a drive to service
838  *      @hwgroup: hardware group to select on
839  *
840  *      choose_drive() selects the next drive which will be serviced.
841  *      This is necessary because the IDE layer can't issue commands
842  *      to both drives on the same cable, unlike SCSI.
843  */
844  
845 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
846 {
847         ide_drive_t *drive, *best;
848
849 repeat: 
850         best = NULL;
851         drive = hwgroup->drive;
852
853         /*
854          * drive is doing pre-flush, ordered write, post-flush sequence. even
855          * though that is 3 requests, it must be seen as a single transaction.
856          * we must not preempt this drive until that is complete
857          */
858         if (blk_queue_flushing(drive->queue)) {
859                 /*
860                  * small race where queue could get replugged during
861                  * the 3-request flush cycle, just yank the plug since
862                  * we want it to finish asap
863                  */
864                 blk_remove_plug(drive->queue);
865                 return drive;
866         }
867
868         do {
869                 u8 dev_s = !!(drive->dev_flags & IDE_DFLAG_SLEEPING);
870                 u8 best_s = (best && !!(best->dev_flags & IDE_DFLAG_SLEEPING));
871
872                 if ((dev_s == 0 || time_after_eq(jiffies, drive->sleep)) &&
873                     !elv_queue_empty(drive->queue)) {
874                         if (best == NULL ||
875                             (dev_s && (best_s == 0 || time_before(drive->sleep, best->sleep))) ||
876                             (best_s == 0 && time_before(WAKEUP(drive), WAKEUP(best)))) {
877                                 if (!blk_queue_plugged(drive->queue))
878                                         best = drive;
879                         }
880                 }
881         } while ((drive = drive->next) != hwgroup->drive);
882
883         if (best && (best->dev_flags & IDE_DFLAG_NICE1) &&
884             (best->dev_flags & IDE_DFLAG_SLEEPING) == 0 &&
885             best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
886                 long t = (signed long)(WAKEUP(best) - jiffies);
887                 if (t >= WAIT_MIN_SLEEP) {
888                 /*
889                  * We *may* have some time to spare, but first let's see if
890                  * someone can potentially benefit from our nice mood today..
891                  */
892                         drive = best->next;
893                         do {
894                                 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) == 0
895                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
896                                  && time_before(WAKEUP(drive), jiffies + t))
897                                 {
898                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
899                                         goto repeat;
900                                 }
901                         } while ((drive = drive->next) != best);
902                 }
903         }
904         return best;
905 }
906
907 /*
908  * Issue a new request to a drive from hwgroup
909  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
910  *
911  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
912  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
913  * may have both interfaces in a single hwgroup to "serialize" access.
914  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
915  * together into one hwgroup for serialized access.
916  *
917  * Note also that several hwgroups can end up sharing a single IRQ,
918  * possibly along with many other devices.  This is especially common in
919  * PCI-based systems with off-board IDE controller cards.
920  *
921  * The IDE driver uses the single global ide_lock spinlock to protect
922  * access to the request queues, and to protect the hwgroup->busy flag.
923  *
924  * The first thread into the driver for a particular hwgroup sets the
925  * hwgroup->busy flag to indicate that this hwgroup is now active,
926  * and then initiates processing of the top request from the request queue.
927  *
928  * Other threads attempting entry notice the busy setting, and will simply
929  * queue their new requests and exit immediately.  Note that hwgroup->busy
930  * remains set even when the driver is merely awaiting the next interrupt.
931  * Thus, the meaning is "this hwgroup is busy processing a request".
932  *
933  * When processing of a request completes, the completing thread or IRQ-handler
934  * will start the next request from the queue.  If no more work remains,
935  * the driver will clear the hwgroup->busy flag and exit.
936  *
937  * The ide_lock (spinlock) is used to protect all access to the
938  * hwgroup->busy flag, but is otherwise not needed for most processing in
939  * the driver.  This makes the driver much more friendlier to shared IRQs
940  * than previous designs, while remaining 100% (?) SMP safe and capable.
941  */
942 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
943 {
944         ide_drive_t     *drive;
945         ide_hwif_t      *hwif;
946         struct request  *rq;
947         ide_startstop_t startstop;
948         int             loops = 0;
949
950         /* caller must own ide_lock */
951         BUG_ON(!irqs_disabled());
952
953         while (!hwgroup->busy) {
954                 hwgroup->busy = 1;
955                 /* for atari only */
956                 ide_get_lock(ide_intr, hwgroup);
957                 drive = choose_drive(hwgroup);
958                 if (drive == NULL) {
959                         int sleeping = 0;
960                         unsigned long sleep = 0; /* shut up, gcc */
961                         hwgroup->rq = NULL;
962                         drive = hwgroup->drive;
963                         do {
964                                 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) &&
965                                     (sleeping == 0 ||
966                                      time_before(drive->sleep, sleep))) {
967                                         sleeping = 1;
968                                         sleep = drive->sleep;
969                                 }
970                         } while ((drive = drive->next) != hwgroup->drive);
971                         if (sleeping) {
972                 /*
973                  * Take a short snooze, and then wake up this hwgroup again.
974                  * This gives other hwgroups on the same a chance to
975                  * play fairly with us, just in case there are big differences
976                  * in relative throughputs.. don't want to hog the cpu too much.
977                  */
978                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
979                                         sleep = jiffies + WAIT_MIN_SLEEP;
980 #if 1
981                                 if (timer_pending(&hwgroup->timer))
982                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
983 #endif
984                                 /* so that ide_timer_expiry knows what to do */
985                                 hwgroup->sleeping = 1;
986                                 hwgroup->req_gen_timer = hwgroup->req_gen;
987                                 mod_timer(&hwgroup->timer, sleep);
988                                 /* we purposely leave hwgroup->busy==1
989                                  * while sleeping */
990                         } else {
991                                 /* Ugly, but how can we sleep for the lock
992                                  * otherwise? perhaps from tq_disk?
993                                  */
994
995                                 /* for atari only */
996                                 ide_release_lock();
997                                 hwgroup->busy = 0;
998                         }
999
1000                         /* no more work for this hwgroup (for now) */
1001                         return;
1002                 }
1003         again:
1004                 hwif = HWIF(drive);
1005                 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1006                         /*
1007                          * set nIEN for previous hwif, drives in the
1008                          * quirk_list may not like intr setups/cleanups
1009                          */
1010                         if (drive->quirk_list != 1)
1011                                 hwif->tp_ops->set_irq(hwif, 0);
1012                 }
1013                 hwgroup->hwif = hwif;
1014                 hwgroup->drive = drive;
1015                 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
1016                 drive->service_start = jiffies;
1017
1018                 if (blk_queue_plugged(drive->queue)) {
1019                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1020                         break;
1021                 }
1022
1023                 /*
1024                  * we know that the queue isn't empty, but this can happen
1025                  * if the q->prep_rq_fn() decides to kill a request
1026                  */
1027                 rq = elv_next_request(drive->queue);
1028                 if (!rq) {
1029                         hwgroup->busy = 0;
1030                         break;
1031                 }
1032
1033                 /*
1034                  * Sanity: don't accept a request that isn't a PM request
1035                  * if we are currently power managed. This is very important as
1036                  * blk_stop_queue() doesn't prevent the elv_next_request()
1037                  * above to return us whatever is in the queue. Since we call
1038                  * ide_do_request() ourselves, we end up taking requests while
1039                  * the queue is blocked...
1040                  * 
1041                  * We let requests forced at head of queue with ide-preempt
1042                  * though. I hope that doesn't happen too much, hopefully not
1043                  * unless the subdriver triggers such a thing in its own PM
1044                  * state machine.
1045                  *
1046                  * We count how many times we loop here to make sure we service
1047                  * all drives in the hwgroup without looping for ever
1048                  */
1049                 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
1050                     blk_pm_request(rq) == 0 &&
1051                     (rq->cmd_flags & REQ_PREEMPT) == 0) {
1052                         drive = drive->next ? drive->next : hwgroup->drive;
1053                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1054                                 goto again;
1055                         /* We clear busy, there should be no pending ATA command at this point. */
1056                         hwgroup->busy = 0;
1057                         break;
1058                 }
1059
1060                 hwgroup->rq = rq;
1061
1062                 /*
1063                  * Some systems have trouble with IDE IRQs arriving while
1064                  * the driver is still setting things up.  So, here we disable
1065                  * the IRQ used by this interface while the request is being started.
1066                  * This may look bad at first, but pretty much the same thing
1067                  * happens anyway when any interrupt comes in, IDE or otherwise
1068                  *  -- the kernel masks the IRQ while it is being handled.
1069                  */
1070                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1071                         disable_irq_nosync(hwif->irq);
1072                 spin_unlock(&ide_lock);
1073                 local_irq_enable_in_hardirq();
1074                         /* allow other IRQs while we start this request */
1075                 startstop = start_request(drive, rq);
1076                 spin_lock_irq(&ide_lock);
1077                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1078                         enable_irq(hwif->irq);
1079                 if (startstop == ide_stopped)
1080                         hwgroup->busy = 0;
1081         }
1082 }
1083
1084 /*
1085  * Passes the stuff to ide_do_request
1086  */
1087 void do_ide_request(struct request_queue *q)
1088 {
1089         ide_drive_t *drive = q->queuedata;
1090
1091         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1092 }
1093
1094 /*
1095  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1096  * retry the current request in pio mode instead of risking tossing it
1097  * all away
1098  */
1099 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1100 {
1101         ide_hwif_t *hwif = HWIF(drive);
1102         struct request *rq;
1103         ide_startstop_t ret = ide_stopped;
1104
1105         /*
1106          * end current dma transaction
1107          */
1108
1109         if (error < 0) {
1110                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1111                 (void)hwif->dma_ops->dma_end(drive);
1112                 ret = ide_error(drive, "dma timeout error",
1113                                 hwif->tp_ops->read_status(hwif));
1114         } else {
1115                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1116                 hwif->dma_ops->dma_timeout(drive);
1117         }
1118
1119         /*
1120          * disable dma for now, but remember that we did so because of
1121          * a timeout -- we'll reenable after we finish this next request
1122          * (or rather the first chunk of it) in pio.
1123          */
1124         drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
1125         drive->retry_pio++;
1126         ide_dma_off_quietly(drive);
1127
1128         /*
1129          * un-busy drive etc (hwgroup->busy is cleared on return) and
1130          * make sure request is sane
1131          */
1132         rq = HWGROUP(drive)->rq;
1133
1134         if (!rq)
1135                 goto out;
1136
1137         HWGROUP(drive)->rq = NULL;
1138
1139         rq->errors = 0;
1140
1141         if (!rq->bio)
1142                 goto out;
1143
1144         rq->sector = rq->bio->bi_sector;
1145         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1146         rq->hard_cur_sectors = rq->current_nr_sectors;
1147         rq->buffer = bio_data(rq->bio);
1148 out:
1149         return ret;
1150 }
1151
1152 /**
1153  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1154  *      @data: timer callback magic (hwgroup)
1155  *
1156  *      An IDE command has timed out before the expected drive return
1157  *      occurred. At this point we attempt to clean up the current
1158  *      mess. If the current handler includes an expiry handler then
1159  *      we invoke the expiry handler, and providing it is happy the
1160  *      work is done. If that fails we apply generic recovery rules
1161  *      invoking the handler and checking the drive DMA status. We
1162  *      have an excessively incestuous relationship with the DMA
1163  *      logic that wants cleaning up.
1164  */
1165  
1166 void ide_timer_expiry (unsigned long data)
1167 {
1168         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1169         ide_handler_t   *handler;
1170         ide_expiry_t    *expiry;
1171         unsigned long   flags;
1172         unsigned long   wait = -1;
1173
1174         spin_lock_irqsave(&ide_lock, flags);
1175
1176         if (((handler = hwgroup->handler) == NULL) ||
1177             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1178                 /*
1179                  * Either a marginal timeout occurred
1180                  * (got the interrupt just as timer expired),
1181                  * or we were "sleeping" to give other devices a chance.
1182                  * Either way, we don't really want to complain about anything.
1183                  */
1184                 if (hwgroup->sleeping) {
1185                         hwgroup->sleeping = 0;
1186                         hwgroup->busy = 0;
1187                 }
1188         } else {
1189                 ide_drive_t *drive = hwgroup->drive;
1190                 if (!drive) {
1191                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1192                         hwgroup->handler = NULL;
1193                 } else {
1194                         ide_hwif_t *hwif;
1195                         ide_startstop_t startstop = ide_stopped;
1196                         if (!hwgroup->busy) {
1197                                 hwgroup->busy = 1;      /* paranoia */
1198                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1199                         }
1200                         if ((expiry = hwgroup->expiry) != NULL) {
1201                                 /* continue */
1202                                 if ((wait = expiry(drive)) > 0) {
1203                                         /* reset timer */
1204                                         hwgroup->timer.expires  = jiffies + wait;
1205                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1206                                         add_timer(&hwgroup->timer);
1207                                         spin_unlock_irqrestore(&ide_lock, flags);
1208                                         return;
1209                                 }
1210                         }
1211                         hwgroup->handler = NULL;
1212                         /*
1213                          * We need to simulate a real interrupt when invoking
1214                          * the handler() function, which means we need to
1215                          * globally mask the specific IRQ:
1216                          */
1217                         spin_unlock(&ide_lock);
1218                         hwif  = HWIF(drive);
1219                         /* disable_irq_nosync ?? */
1220                         disable_irq(hwif->irq);
1221                         /* local CPU only,
1222                          * as if we were handling an interrupt */
1223                         local_irq_disable();
1224                         if (hwgroup->polling) {
1225                                 startstop = handler(drive);
1226                         } else if (drive_is_ready(drive)) {
1227                                 if (drive->waiting_for_dma)
1228                                         hwif->dma_ops->dma_lost_irq(drive);
1229                                 (void)ide_ack_intr(hwif);
1230                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1231                                 startstop = handler(drive);
1232                         } else {
1233                                 if (drive->waiting_for_dma) {
1234                                         startstop = ide_dma_timeout_retry(drive, wait);
1235                                 } else
1236                                         startstop =
1237                                         ide_error(drive, "irq timeout",
1238                                                   hwif->tp_ops->read_status(hwif));
1239                         }
1240                         drive->service_time = jiffies - drive->service_start;
1241                         spin_lock_irq(&ide_lock);
1242                         enable_irq(hwif->irq);
1243                         if (startstop == ide_stopped)
1244                                 hwgroup->busy = 0;
1245                 }
1246         }
1247         ide_do_request(hwgroup, IDE_NO_IRQ);
1248         spin_unlock_irqrestore(&ide_lock, flags);
1249 }
1250
1251 /**
1252  *      unexpected_intr         -       handle an unexpected IDE interrupt
1253  *      @irq: interrupt line
1254  *      @hwgroup: hwgroup being processed
1255  *
1256  *      There's nothing really useful we can do with an unexpected interrupt,
1257  *      other than reading the status register (to clear it), and logging it.
1258  *      There should be no way that an irq can happen before we're ready for it,
1259  *      so we needn't worry much about losing an "important" interrupt here.
1260  *
1261  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1262  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1263  *      looks "good", we just ignore the interrupt completely.
1264  *
1265  *      This routine assumes __cli() is in effect when called.
1266  *
1267  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1268  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1269  *      we could screw up by interfering with a new request being set up for 
1270  *      irq15.
1271  *
1272  *      In reality, this is a non-issue.  The new command is not sent unless 
1273  *      the drive is ready to accept one, in which case we know the drive is
1274  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1275  *      before completing the issuance of any new drive command, so we will not
1276  *      be accidentally invoked as a result of any valid command completion
1277  *      interrupt.
1278  *
1279  *      Note that we must walk the entire hwgroup here. We know which hwif
1280  *      is doing the current command, but we don't know which hwif burped
1281  *      mysteriously.
1282  */
1283  
1284 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1285 {
1286         u8 stat;
1287         ide_hwif_t *hwif = hwgroup->hwif;
1288
1289         /*
1290          * handle the unexpected interrupt
1291          */
1292         do {
1293                 if (hwif->irq == irq) {
1294                         stat = hwif->tp_ops->read_status(hwif);
1295
1296                         if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1297                                 /* Try to not flood the console with msgs */
1298                                 static unsigned long last_msgtime, count;
1299                                 ++count;
1300                                 if (time_after(jiffies, last_msgtime + HZ)) {
1301                                         last_msgtime = jiffies;
1302                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1303                                                 "status=0x%02x, count=%ld\n",
1304                                                 hwif->name,
1305                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1306                                 }
1307                         }
1308                 }
1309         } while ((hwif = hwif->next) != hwgroup->hwif);
1310 }
1311
1312 /**
1313  *      ide_intr        -       default IDE interrupt handler
1314  *      @irq: interrupt number
1315  *      @dev_id: hwif group
1316  *      @regs: unused weirdness from the kernel irq layer
1317  *
1318  *      This is the default IRQ handler for the IDE layer. You should
1319  *      not need to override it. If you do be aware it is subtle in
1320  *      places
1321  *
1322  *      hwgroup->hwif is the interface in the group currently performing
1323  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1324  *      the IRQ handler to call. As we issue a command the handlers
1325  *      step through multiple states, reassigning the handler to the
1326  *      next step in the process. Unlike a smart SCSI controller IDE
1327  *      expects the main processor to sequence the various transfer
1328  *      stages. We also manage a poll timer to catch up with most
1329  *      timeout situations. There are still a few where the handlers
1330  *      don't ever decide to give up.
1331  *
1332  *      The handler eventually returns ide_stopped to indicate the
1333  *      request completed. At this point we issue the next request
1334  *      on the hwgroup and the process begins again.
1335  */
1336  
1337 irqreturn_t ide_intr (int irq, void *dev_id)
1338 {
1339         unsigned long flags;
1340         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1341         ide_hwif_t *hwif;
1342         ide_drive_t *drive;
1343         ide_handler_t *handler;
1344         ide_startstop_t startstop;
1345         irqreturn_t irq_ret = IRQ_NONE;
1346
1347         spin_lock_irqsave(&ide_lock, flags);
1348         hwif = hwgroup->hwif;
1349
1350         if (!ide_ack_intr(hwif))
1351                 goto out;
1352
1353         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1354                 /*
1355                  * Not expecting an interrupt from this drive.
1356                  * That means this could be:
1357                  *      (1) an interrupt from another PCI device
1358                  *      sharing the same PCI INT# as us.
1359                  * or   (2) a drive just entered sleep or standby mode,
1360                  *      and is interrupting to let us know.
1361                  * or   (3) a spurious interrupt of unknown origin.
1362                  *
1363                  * For PCI, we cannot tell the difference,
1364                  * so in that case we just ignore it and hope it goes away.
1365                  *
1366                  * FIXME: unexpected_intr should be hwif-> then we can
1367                  * remove all the ifdef PCI crap
1368                  */
1369 #ifdef CONFIG_BLK_DEV_IDEPCI
1370                 if (hwif->chipset != ide_pci)
1371 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1372                 {
1373                         /*
1374                          * Probably not a shared PCI interrupt,
1375                          * so we can safely try to do something about it:
1376                          */
1377                         unexpected_intr(irq, hwgroup);
1378 #ifdef CONFIG_BLK_DEV_IDEPCI
1379                 } else {
1380                         /*
1381                          * Whack the status register, just in case
1382                          * we have a leftover pending IRQ.
1383                          */
1384                         (void)hwif->tp_ops->read_status(hwif);
1385 #endif /* CONFIG_BLK_DEV_IDEPCI */
1386                 }
1387                 goto out;
1388         }
1389
1390         drive = hwgroup->drive;
1391         if (!drive) {
1392                 /*
1393                  * This should NEVER happen, and there isn't much
1394                  * we could do about it here.
1395                  *
1396                  * [Note - this can occur if the drive is hot unplugged]
1397                  */
1398                 goto out_handled;
1399         }
1400
1401         if (!drive_is_ready(drive))
1402                 /*
1403                  * This happens regularly when we share a PCI IRQ with
1404                  * another device.  Unfortunately, it can also happen
1405                  * with some buggy drives that trigger the IRQ before
1406                  * their status register is up to date.  Hopefully we have
1407                  * enough advance overhead that the latter isn't a problem.
1408                  */
1409                 goto out;
1410
1411         if (!hwgroup->busy) {
1412                 hwgroup->busy = 1;      /* paranoia */
1413                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1414         }
1415         hwgroup->handler = NULL;
1416         hwgroup->req_gen++;
1417         del_timer(&hwgroup->timer);
1418         spin_unlock(&ide_lock);
1419
1420         if (hwif->port_ops && hwif->port_ops->clear_irq)
1421                 hwif->port_ops->clear_irq(drive);
1422
1423         if (drive->dev_flags & IDE_DFLAG_UNMASK)
1424                 local_irq_enable_in_hardirq();
1425
1426         /* service this interrupt, may set handler for next interrupt */
1427         startstop = handler(drive);
1428
1429         spin_lock_irq(&ide_lock);
1430         /*
1431          * Note that handler() may have set things up for another
1432          * interrupt to occur soon, but it cannot happen until
1433          * we exit from this routine, because it will be the
1434          * same irq as is currently being serviced here, and Linux
1435          * won't allow another of the same (on any CPU) until we return.
1436          */
1437         drive->service_time = jiffies - drive->service_start;
1438         if (startstop == ide_stopped) {
1439                 if (hwgroup->handler == NULL) { /* paranoia */
1440                         hwgroup->busy = 0;
1441                         ide_do_request(hwgroup, hwif->irq);
1442                 } else {
1443                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1444                                 "on exit\n", drive->name);
1445                 }
1446         }
1447 out_handled:
1448         irq_ret = IRQ_HANDLED;
1449 out:
1450         spin_unlock_irqrestore(&ide_lock, flags);
1451         return irq_ret;
1452 }
1453
1454 /**
1455  *      ide_do_drive_cmd        -       issue IDE special command
1456  *      @drive: device to issue command
1457  *      @rq: request to issue
1458  *
1459  *      This function issues a special IDE device request
1460  *      onto the request queue.
1461  *
1462  *      the rq is queued at the head of the request queue, displacing
1463  *      the currently-being-processed request and this function
1464  *      returns immediately without waiting for the new rq to be
1465  *      completed.  This is VERY DANGEROUS, and is intended for
1466  *      careful use by the ATAPI tape/cdrom driver code.
1467  */
1468
1469 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1470 {
1471         ide_hwgroup_t *hwgroup = drive->hwif->hwgroup;
1472         unsigned long flags;
1473
1474         hwgroup->rq = NULL;
1475
1476         spin_lock_irqsave(&ide_lock, flags);
1477         __elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 0);
1478         blk_start_queueing(drive->queue);
1479         spin_unlock_irqrestore(&ide_lock, flags);
1480 }
1481
1482 EXPORT_SYMBOL(ide_do_drive_cmd);
1483
1484 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1485 {
1486         ide_hwif_t *hwif = drive->hwif;
1487         ide_task_t task;
1488
1489         memset(&task, 0, sizeof(task));
1490         task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1491                         IDE_TFLAG_OUT_FEATURE | tf_flags;
1492         task.tf.feature = dma;          /* Use PIO/DMA */
1493         task.tf.lbam    = bcount & 0xff;
1494         task.tf.lbah    = (bcount >> 8) & 0xff;
1495
1496         ide_tf_dump(drive->name, &task.tf);
1497         hwif->tp_ops->set_irq(hwif, 1);
1498         SELECT_MASK(drive, 0);
1499         hwif->tp_ops->tf_load(drive, &task);
1500 }
1501
1502 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1503
1504 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1505 {
1506         ide_hwif_t *hwif = drive->hwif;
1507         u8 buf[4] = { 0 };
1508
1509         while (len > 0) {
1510                 if (write)
1511                         hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1512                 else
1513                         hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1514                 len -= 4;
1515         }
1516 }
1517 EXPORT_SYMBOL_GPL(ide_pad_transfer);