ide: remove ide_task_t typedef
[safe/jmp/linux-2.6] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
52
53 #include <asm/byteorder.h>
54 #include <asm/irq.h>
55 #include <asm/uaccess.h>
56 #include <asm/io.h>
57
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59                              int uptodate, unsigned int nr_bytes, int dequeue)
60 {
61         int ret = 1;
62         int error = 0;
63
64         if (uptodate <= 0)
65                 error = uptodate ? uptodate : -EIO;
66
67         /*
68          * if failfast is set on a request, override number of sectors and
69          * complete the whole request right now
70          */
71         if (blk_noretry_request(rq) && error)
72                 nr_bytes = rq->hard_nr_sectors << 9;
73
74         if (!blk_fs_request(rq) && error && !rq->errors)
75                 rq->errors = -EIO;
76
77         /*
78          * decide whether to reenable DMA -- 3 is a random magic for now,
79          * if we DMA timeout more than 3 times, just stay in PIO
80          */
81         if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82             drive->retry_pio <= 3) {
83                 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
84                 ide_dma_on(drive);
85         }
86
87         if (!blk_end_request(rq, error, nr_bytes))
88                 ret = 0;
89
90         if (ret == 0 && dequeue)
91                 drive->hwif->rq = NULL;
92
93         return ret;
94 }
95
96 /**
97  *      ide_end_request         -       complete an IDE I/O
98  *      @drive: IDE device for the I/O
99  *      @uptodate:
100  *      @nr_sectors: number of sectors completed
101  *
102  *      This is our end_request wrapper function. We complete the I/O
103  *      update random number input and dequeue the request, which if
104  *      it was tagged may be out of order.
105  */
106
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
108 {
109         unsigned int nr_bytes = nr_sectors << 9;
110         struct request *rq = drive->hwif->rq;
111
112         if (!nr_bytes) {
113                 if (blk_pc_request(rq))
114                         nr_bytes = rq->data_len;
115                 else
116                         nr_bytes = rq->hard_cur_sectors << 9;
117         }
118
119         return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
120 }
121 EXPORT_SYMBOL(ide_end_request);
122
123 /**
124  *      ide_end_dequeued_request        -       complete an IDE I/O
125  *      @drive: IDE device for the I/O
126  *      @uptodate:
127  *      @nr_sectors: number of sectors completed
128  *
129  *      Complete an I/O that is no longer on the request queue. This
130  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
131  *      We must still finish the old request but we must not tamper with the
132  *      queue in the meantime.
133  *
134  *      NOTE: This path does not handle barrier, but barrier is not supported
135  *      on ide-cd anyway.
136  */
137
138 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
139                              int uptodate, int nr_sectors)
140 {
141         BUG_ON(!blk_rq_started(rq));
142
143         return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
144 }
145 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
146
147 void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
148 {
149         struct ide_taskfile *tf = &cmd->tf;
150         struct request *rq = cmd->rq;
151
152         tf->error = err;
153         tf->status = stat;
154
155         drive->hwif->tp_ops->tf_read(drive, cmd);
156
157         if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
158                 memcpy(rq->special, cmd, sizeof(*cmd));
159
160         if (cmd->tf_flags & IDE_TFLAG_DYN)
161                 kfree(cmd);
162 }
163
164 void ide_complete_rq(ide_drive_t *drive, u8 err)
165 {
166         ide_hwif_t *hwif = drive->hwif;
167         struct request *rq = hwif->rq;
168
169         hwif->rq = NULL;
170
171         rq->errors = err;
172
173         if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
174                                      blk_rq_bytes(rq))))
175                 BUG();
176 }
177 EXPORT_SYMBOL(ide_complete_rq);
178
179 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
180 {
181         u8 drv_req = blk_special_request(rq) && rq->rq_disk;
182         u8 media = drive->media;
183
184         drive->failed_pc = NULL;
185
186         if ((media == ide_floppy && drv_req) || media == ide_tape)
187                 rq->errors = IDE_DRV_ERROR_GENERAL;
188
189         if ((media == ide_floppy || media == ide_tape) && drv_req)
190                 ide_complete_rq(drive, 0);
191         else
192                 ide_end_request(drive, 0, 0);
193 }
194
195 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
196 {
197         tf->nsect   = drive->sect;
198         tf->lbal    = drive->sect;
199         tf->lbam    = drive->cyl;
200         tf->lbah    = drive->cyl >> 8;
201         tf->device  = (drive->head - 1) | drive->select;
202         tf->command = ATA_CMD_INIT_DEV_PARAMS;
203 }
204
205 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
206 {
207         tf->nsect   = drive->sect;
208         tf->command = ATA_CMD_RESTORE;
209 }
210
211 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
212 {
213         tf->nsect   = drive->mult_req;
214         tf->command = ATA_CMD_SET_MULTI;
215 }
216
217 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
218 {
219         special_t *s = &drive->special;
220         struct ide_cmd cmd;
221
222         memset(&cmd, 0, sizeof(cmd));
223         cmd.data_phase = TASKFILE_NO_DATA;
224
225         if (s->b.set_geometry) {
226                 s->b.set_geometry = 0;
227                 ide_tf_set_specify_cmd(drive, &cmd.tf);
228         } else if (s->b.recalibrate) {
229                 s->b.recalibrate = 0;
230                 ide_tf_set_restore_cmd(drive, &cmd.tf);
231         } else if (s->b.set_multmode) {
232                 s->b.set_multmode = 0;
233                 ide_tf_set_setmult_cmd(drive, &cmd.tf);
234         } else if (s->all) {
235                 int special = s->all;
236                 s->all = 0;
237                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
238                 return ide_stopped;
239         }
240
241         cmd.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
242                        IDE_TFLAG_CUSTOM_HANDLER;
243
244         do_rw_taskfile(drive, &cmd);
245
246         return ide_started;
247 }
248
249 /**
250  *      do_special              -       issue some special commands
251  *      @drive: drive the command is for
252  *
253  *      do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
254  *      ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
255  *
256  *      It used to do much more, but has been scaled back.
257  */
258
259 static ide_startstop_t do_special (ide_drive_t *drive)
260 {
261         special_t *s = &drive->special;
262
263 #ifdef DEBUG
264         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
265 #endif
266         if (drive->media == ide_disk)
267                 return ide_disk_special(drive);
268
269         s->all = 0;
270         drive->mult_req = 0;
271         return ide_stopped;
272 }
273
274 void ide_map_sg(ide_drive_t *drive, struct request *rq)
275 {
276         ide_hwif_t *hwif = drive->hwif;
277         struct scatterlist *sg = hwif->sg_table;
278
279         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
280                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
281                 hwif->sg_nents = 1;
282         } else if (!rq->bio) {
283                 sg_init_one(sg, rq->data, rq->data_len);
284                 hwif->sg_nents = 1;
285         } else {
286                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
287         }
288 }
289
290 EXPORT_SYMBOL_GPL(ide_map_sg);
291
292 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
293 {
294         ide_hwif_t *hwif = drive->hwif;
295
296         hwif->nsect = hwif->nleft = rq->nr_sectors;
297         hwif->cursg_ofs = 0;
298         hwif->cursg = NULL;
299 }
300
301 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
302
303 /**
304  *      execute_drive_command   -       issue special drive command
305  *      @drive: the drive to issue the command on
306  *      @rq: the request structure holding the command
307  *
308  *      execute_drive_cmd() issues a special drive command,  usually 
309  *      initiated by ioctl() from the external hdparm program. The
310  *      command can be a drive command, drive task or taskfile 
311  *      operation. Weirdly you can call it with NULL to wait for
312  *      all commands to finish. Don't do this as that is due to change
313  */
314
315 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
316                 struct request *rq)
317 {
318         struct ide_cmd *cmd = rq->special;
319
320         if (cmd) {
321                 switch (cmd->data_phase) {
322                 case TASKFILE_MULTI_OUT:
323                 case TASKFILE_OUT:
324                 case TASKFILE_MULTI_IN:
325                 case TASKFILE_IN:
326                         ide_init_sg_cmd(drive, rq);
327                         ide_map_sg(drive, rq);
328                 default:
329                         break;
330                 }
331
332                 return do_rw_taskfile(drive, cmd);
333         }
334
335         /*
336          * NULL is actually a valid way of waiting for
337          * all current requests to be flushed from the queue.
338          */
339 #ifdef DEBUG
340         printk("%s: DRIVE_CMD (null)\n", drive->name);
341 #endif
342         ide_complete_rq(drive, 0);
343
344         return ide_stopped;
345 }
346
347 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
348 {
349         u8 cmd = rq->cmd[0];
350
351         switch (cmd) {
352         case REQ_PARK_HEADS:
353         case REQ_UNPARK_HEADS:
354                 return ide_do_park_unpark(drive, rq);
355         case REQ_DEVSET_EXEC:
356                 return ide_do_devset(drive, rq);
357         case REQ_DRIVE_RESET:
358                 return ide_do_reset(drive);
359         default:
360                 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
361                 ide_end_request(drive, 0, 0);
362                 return ide_stopped;
363         }
364 }
365
366 /**
367  *      start_request   -       start of I/O and command issuing for IDE
368  *
369  *      start_request() initiates handling of a new I/O request. It
370  *      accepts commands and I/O (read/write) requests.
371  *
372  *      FIXME: this function needs a rename
373  */
374  
375 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
376 {
377         ide_startstop_t startstop;
378
379         BUG_ON(!blk_rq_started(rq));
380
381 #ifdef DEBUG
382         printk("%s: start_request: current=0x%08lx\n",
383                 drive->hwif->name, (unsigned long) rq);
384 #endif
385
386         /* bail early if we've exceeded max_failures */
387         if (drive->max_failures && (drive->failures > drive->max_failures)) {
388                 rq->cmd_flags |= REQ_FAILED;
389                 goto kill_rq;
390         }
391
392         if (blk_pm_request(rq))
393                 ide_check_pm_state(drive, rq);
394
395         SELECT_DRIVE(drive);
396         if (ide_wait_stat(&startstop, drive, drive->ready_stat,
397                           ATA_BUSY | ATA_DRQ, WAIT_READY)) {
398                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
399                 return startstop;
400         }
401         if (!drive->special.all) {
402                 struct ide_driver *drv;
403
404                 /*
405                  * We reset the drive so we need to issue a SETFEATURES.
406                  * Do it _after_ do_special() restored device parameters.
407                  */
408                 if (drive->current_speed == 0xff)
409                         ide_config_drive_speed(drive, drive->desired_speed);
410
411                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
412                         return execute_drive_cmd(drive, rq);
413                 else if (blk_pm_request(rq)) {
414                         struct request_pm_state *pm = rq->data;
415 #ifdef DEBUG_PM
416                         printk("%s: start_power_step(step: %d)\n",
417                                 drive->name, pm->pm_step);
418 #endif
419                         startstop = ide_start_power_step(drive, rq);
420                         if (startstop == ide_stopped &&
421                             pm->pm_step == IDE_PM_COMPLETED)
422                                 ide_complete_pm_rq(drive, rq);
423                         return startstop;
424                 } else if (!rq->rq_disk && blk_special_request(rq))
425                         /*
426                          * TODO: Once all ULDs have been modified to
427                          * check for specific op codes rather than
428                          * blindly accepting any special request, the
429                          * check for ->rq_disk above may be replaced
430                          * by a more suitable mechanism or even
431                          * dropped entirely.
432                          */
433                         return ide_special_rq(drive, rq);
434
435                 drv = *(struct ide_driver **)rq->rq_disk->private_data;
436
437                 return drv->do_request(drive, rq, rq->sector);
438         }
439         return do_special(drive);
440 kill_rq:
441         ide_kill_rq(drive, rq);
442         return ide_stopped;
443 }
444
445 /**
446  *      ide_stall_queue         -       pause an IDE device
447  *      @drive: drive to stall
448  *      @timeout: time to stall for (jiffies)
449  *
450  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
451  *      to the port by sleeping for timeout jiffies.
452  */
453  
454 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
455 {
456         if (timeout > WAIT_WORSTCASE)
457                 timeout = WAIT_WORSTCASE;
458         drive->sleep = timeout + jiffies;
459         drive->dev_flags |= IDE_DFLAG_SLEEPING;
460 }
461 EXPORT_SYMBOL(ide_stall_queue);
462
463 static inline int ide_lock_port(ide_hwif_t *hwif)
464 {
465         if (hwif->busy)
466                 return 1;
467
468         hwif->busy = 1;
469
470         return 0;
471 }
472
473 static inline void ide_unlock_port(ide_hwif_t *hwif)
474 {
475         hwif->busy = 0;
476 }
477
478 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
479 {
480         int rc = 0;
481
482         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
483                 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
484                 if (rc == 0) {
485                         if (host->get_lock)
486                                 host->get_lock(ide_intr, hwif);
487                 }
488         }
489         return rc;
490 }
491
492 static inline void ide_unlock_host(struct ide_host *host)
493 {
494         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
495                 if (host->release_lock)
496                         host->release_lock();
497                 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
498         }
499 }
500
501 /*
502  * Issue a new request to a device.
503  */
504 void do_ide_request(struct request_queue *q)
505 {
506         ide_drive_t     *drive = q->queuedata;
507         ide_hwif_t      *hwif = drive->hwif;
508         struct ide_host *host = hwif->host;
509         struct request  *rq = NULL;
510         ide_startstop_t startstop;
511
512         /*
513          * drive is doing pre-flush, ordered write, post-flush sequence. even
514          * though that is 3 requests, it must be seen as a single transaction.
515          * we must not preempt this drive until that is complete
516          */
517         if (blk_queue_flushing(q))
518                 /*
519                  * small race where queue could get replugged during
520                  * the 3-request flush cycle, just yank the plug since
521                  * we want it to finish asap
522                  */
523                 blk_remove_plug(q);
524
525         spin_unlock_irq(q->queue_lock);
526
527         if (ide_lock_host(host, hwif))
528                 goto plug_device_2;
529
530         spin_lock_irq(&hwif->lock);
531
532         if (!ide_lock_port(hwif)) {
533                 ide_hwif_t *prev_port;
534 repeat:
535                 prev_port = hwif->host->cur_port;
536                 hwif->rq = NULL;
537
538                 if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
539                         if (time_before(drive->sleep, jiffies)) {
540                                 ide_unlock_port(hwif);
541                                 goto plug_device;
542                         }
543                 }
544
545                 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
546                     hwif != prev_port) {
547                         /*
548                          * set nIEN for previous port, drives in the
549                          * quirk_list may not like intr setups/cleanups
550                          */
551                         if (prev_port && prev_port->cur_dev->quirk_list == 0)
552                                 prev_port->tp_ops->set_irq(prev_port, 0);
553
554                         hwif->host->cur_port = hwif;
555                 }
556                 hwif->cur_dev = drive;
557                 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
558
559                 spin_unlock_irq(&hwif->lock);
560                 spin_lock_irq(q->queue_lock);
561                 /*
562                  * we know that the queue isn't empty, but this can happen
563                  * if the q->prep_rq_fn() decides to kill a request
564                  */
565                 rq = elv_next_request(drive->queue);
566                 spin_unlock_irq(q->queue_lock);
567                 spin_lock_irq(&hwif->lock);
568
569                 if (!rq) {
570                         ide_unlock_port(hwif);
571                         goto out;
572                 }
573
574                 /*
575                  * Sanity: don't accept a request that isn't a PM request
576                  * if we are currently power managed. This is very important as
577                  * blk_stop_queue() doesn't prevent the elv_next_request()
578                  * above to return us whatever is in the queue. Since we call
579                  * ide_do_request() ourselves, we end up taking requests while
580                  * the queue is blocked...
581                  * 
582                  * We let requests forced at head of queue with ide-preempt
583                  * though. I hope that doesn't happen too much, hopefully not
584                  * unless the subdriver triggers such a thing in its own PM
585                  * state machine.
586                  */
587                 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
588                     blk_pm_request(rq) == 0 &&
589                     (rq->cmd_flags & REQ_PREEMPT) == 0) {
590                         /* there should be no pending command at this point */
591                         ide_unlock_port(hwif);
592                         goto plug_device;
593                 }
594
595                 hwif->rq = rq;
596
597                 spin_unlock_irq(&hwif->lock);
598                 startstop = start_request(drive, rq);
599                 spin_lock_irq(&hwif->lock);
600
601                 if (startstop == ide_stopped)
602                         goto repeat;
603         } else
604                 goto plug_device;
605 out:
606         spin_unlock_irq(&hwif->lock);
607         if (rq == NULL)
608                 ide_unlock_host(host);
609         spin_lock_irq(q->queue_lock);
610         return;
611
612 plug_device:
613         spin_unlock_irq(&hwif->lock);
614         ide_unlock_host(host);
615 plug_device_2:
616         spin_lock_irq(q->queue_lock);
617
618         if (!elv_queue_empty(q))
619                 blk_plug_device(q);
620 }
621
622 static void ide_plug_device(ide_drive_t *drive)
623 {
624         struct request_queue *q = drive->queue;
625         unsigned long flags;
626
627         spin_lock_irqsave(q->queue_lock, flags);
628         if (!elv_queue_empty(q))
629                 blk_plug_device(q);
630         spin_unlock_irqrestore(q->queue_lock, flags);
631 }
632
633 static int drive_is_ready(ide_drive_t *drive)
634 {
635         ide_hwif_t *hwif = drive->hwif;
636         u8 stat = 0;
637
638         if (drive->waiting_for_dma)
639                 return hwif->dma_ops->dma_test_irq(drive);
640
641         if (hwif->io_ports.ctl_addr &&
642             (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
643                 stat = hwif->tp_ops->read_altstatus(hwif);
644         else
645                 /* Note: this may clear a pending IRQ!! */
646                 stat = hwif->tp_ops->read_status(hwif);
647
648         if (stat & ATA_BUSY)
649                 /* drive busy: definitely not interrupting */
650                 return 0;
651
652         /* drive ready: *might* be interrupting */
653         return 1;
654 }
655
656 /**
657  *      ide_timer_expiry        -       handle lack of an IDE interrupt
658  *      @data: timer callback magic (hwif)
659  *
660  *      An IDE command has timed out before the expected drive return
661  *      occurred. At this point we attempt to clean up the current
662  *      mess. If the current handler includes an expiry handler then
663  *      we invoke the expiry handler, and providing it is happy the
664  *      work is done. If that fails we apply generic recovery rules
665  *      invoking the handler and checking the drive DMA status. We
666  *      have an excessively incestuous relationship with the DMA
667  *      logic that wants cleaning up.
668  */
669  
670 void ide_timer_expiry (unsigned long data)
671 {
672         ide_hwif_t      *hwif = (ide_hwif_t *)data;
673         ide_drive_t     *uninitialized_var(drive);
674         ide_handler_t   *handler;
675         unsigned long   flags;
676         int             wait = -1;
677         int             plug_device = 0;
678
679         spin_lock_irqsave(&hwif->lock, flags);
680
681         handler = hwif->handler;
682
683         if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
684                 /*
685                  * Either a marginal timeout occurred
686                  * (got the interrupt just as timer expired),
687                  * or we were "sleeping" to give other devices a chance.
688                  * Either way, we don't really want to complain about anything.
689                  */
690         } else {
691                 ide_expiry_t *expiry = hwif->expiry;
692                 ide_startstop_t startstop = ide_stopped;
693
694                 drive = hwif->cur_dev;
695
696                 if (expiry) {
697                         wait = expiry(drive);
698                         if (wait > 0) { /* continue */
699                                 /* reset timer */
700                                 hwif->timer.expires = jiffies + wait;
701                                 hwif->req_gen_timer = hwif->req_gen;
702                                 add_timer(&hwif->timer);
703                                 spin_unlock_irqrestore(&hwif->lock, flags);
704                                 return;
705                         }
706                 }
707                 hwif->handler = NULL;
708                 /*
709                  * We need to simulate a real interrupt when invoking
710                  * the handler() function, which means we need to
711                  * globally mask the specific IRQ:
712                  */
713                 spin_unlock(&hwif->lock);
714                 /* disable_irq_nosync ?? */
715                 disable_irq(hwif->irq);
716                 /* local CPU only, as if we were handling an interrupt */
717                 local_irq_disable();
718                 if (hwif->polling) {
719                         startstop = handler(drive);
720                 } else if (drive_is_ready(drive)) {
721                         if (drive->waiting_for_dma)
722                                 hwif->dma_ops->dma_lost_irq(drive);
723                         if (hwif->ack_intr)
724                                 hwif->ack_intr(hwif);
725                         printk(KERN_WARNING "%s: lost interrupt\n",
726                                 drive->name);
727                         startstop = handler(drive);
728                 } else {
729                         if (drive->waiting_for_dma)
730                                 startstop = ide_dma_timeout_retry(drive, wait);
731                         else
732                                 startstop = ide_error(drive, "irq timeout",
733                                         hwif->tp_ops->read_status(hwif));
734                 }
735                 spin_lock_irq(&hwif->lock);
736                 enable_irq(hwif->irq);
737                 if (startstop == ide_stopped) {
738                         ide_unlock_port(hwif);
739                         plug_device = 1;
740                 }
741         }
742         spin_unlock_irqrestore(&hwif->lock, flags);
743
744         if (plug_device) {
745                 ide_unlock_host(hwif->host);
746                 ide_plug_device(drive);
747         }
748 }
749
750 /**
751  *      unexpected_intr         -       handle an unexpected IDE interrupt
752  *      @irq: interrupt line
753  *      @hwif: port being processed
754  *
755  *      There's nothing really useful we can do with an unexpected interrupt,
756  *      other than reading the status register (to clear it), and logging it.
757  *      There should be no way that an irq can happen before we're ready for it,
758  *      so we needn't worry much about losing an "important" interrupt here.
759  *
760  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
761  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
762  *      looks "good", we just ignore the interrupt completely.
763  *
764  *      This routine assumes __cli() is in effect when called.
765  *
766  *      If an unexpected interrupt happens on irq15 while we are handling irq14
767  *      and if the two interfaces are "serialized" (CMD640), then it looks like
768  *      we could screw up by interfering with a new request being set up for 
769  *      irq15.
770  *
771  *      In reality, this is a non-issue.  The new command is not sent unless 
772  *      the drive is ready to accept one, in which case we know the drive is
773  *      not trying to interrupt us.  And ide_set_handler() is always invoked
774  *      before completing the issuance of any new drive command, so we will not
775  *      be accidentally invoked as a result of any valid command completion
776  *      interrupt.
777  */
778
779 static void unexpected_intr(int irq, ide_hwif_t *hwif)
780 {
781         u8 stat = hwif->tp_ops->read_status(hwif);
782
783         if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
784                 /* Try to not flood the console with msgs */
785                 static unsigned long last_msgtime, count;
786                 ++count;
787
788                 if (time_after(jiffies, last_msgtime + HZ)) {
789                         last_msgtime = jiffies;
790                         printk(KERN_ERR "%s: unexpected interrupt, "
791                                 "status=0x%02x, count=%ld\n",
792                                 hwif->name, stat, count);
793                 }
794         }
795 }
796
797 /**
798  *      ide_intr        -       default IDE interrupt handler
799  *      @irq: interrupt number
800  *      @dev_id: hwif
801  *      @regs: unused weirdness from the kernel irq layer
802  *
803  *      This is the default IRQ handler for the IDE layer. You should
804  *      not need to override it. If you do be aware it is subtle in
805  *      places
806  *
807  *      hwif is the interface in the group currently performing
808  *      a command. hwif->cur_dev is the drive and hwif->handler is
809  *      the IRQ handler to call. As we issue a command the handlers
810  *      step through multiple states, reassigning the handler to the
811  *      next step in the process. Unlike a smart SCSI controller IDE
812  *      expects the main processor to sequence the various transfer
813  *      stages. We also manage a poll timer to catch up with most
814  *      timeout situations. There are still a few where the handlers
815  *      don't ever decide to give up.
816  *
817  *      The handler eventually returns ide_stopped to indicate the
818  *      request completed. At this point we issue the next request
819  *      on the port and the process begins again.
820  */
821
822 irqreturn_t ide_intr (int irq, void *dev_id)
823 {
824         ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
825         struct ide_host *host = hwif->host;
826         ide_drive_t *uninitialized_var(drive);
827         ide_handler_t *handler;
828         unsigned long flags;
829         ide_startstop_t startstop;
830         irqreturn_t irq_ret = IRQ_NONE;
831         int plug_device = 0;
832
833         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
834                 if (hwif != host->cur_port)
835                         goto out_early;
836         }
837
838         spin_lock_irqsave(&hwif->lock, flags);
839
840         if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
841                 goto out;
842
843         handler = hwif->handler;
844
845         if (handler == NULL || hwif->polling) {
846                 /*
847                  * Not expecting an interrupt from this drive.
848                  * That means this could be:
849                  *      (1) an interrupt from another PCI device
850                  *      sharing the same PCI INT# as us.
851                  * or   (2) a drive just entered sleep or standby mode,
852                  *      and is interrupting to let us know.
853                  * or   (3) a spurious interrupt of unknown origin.
854                  *
855                  * For PCI, we cannot tell the difference,
856                  * so in that case we just ignore it and hope it goes away.
857                  */
858                 if ((host->irq_flags & IRQF_SHARED) == 0) {
859                         /*
860                          * Probably not a shared PCI interrupt,
861                          * so we can safely try to do something about it:
862                          */
863                         unexpected_intr(irq, hwif);
864                 } else {
865                         /*
866                          * Whack the status register, just in case
867                          * we have a leftover pending IRQ.
868                          */
869                         (void)hwif->tp_ops->read_status(hwif);
870                 }
871                 goto out;
872         }
873
874         drive = hwif->cur_dev;
875
876         if (!drive_is_ready(drive))
877                 /*
878                  * This happens regularly when we share a PCI IRQ with
879                  * another device.  Unfortunately, it can also happen
880                  * with some buggy drives that trigger the IRQ before
881                  * their status register is up to date.  Hopefully we have
882                  * enough advance overhead that the latter isn't a problem.
883                  */
884                 goto out;
885
886         hwif->handler = NULL;
887         hwif->req_gen++;
888         del_timer(&hwif->timer);
889         spin_unlock(&hwif->lock);
890
891         if (hwif->port_ops && hwif->port_ops->clear_irq)
892                 hwif->port_ops->clear_irq(drive);
893
894         if (drive->dev_flags & IDE_DFLAG_UNMASK)
895                 local_irq_enable_in_hardirq();
896
897         /* service this interrupt, may set handler for next interrupt */
898         startstop = handler(drive);
899
900         spin_lock_irq(&hwif->lock);
901         /*
902          * Note that handler() may have set things up for another
903          * interrupt to occur soon, but it cannot happen until
904          * we exit from this routine, because it will be the
905          * same irq as is currently being serviced here, and Linux
906          * won't allow another of the same (on any CPU) until we return.
907          */
908         if (startstop == ide_stopped) {
909                 BUG_ON(hwif->handler);
910                 ide_unlock_port(hwif);
911                 plug_device = 1;
912         }
913         irq_ret = IRQ_HANDLED;
914 out:
915         spin_unlock_irqrestore(&hwif->lock, flags);
916 out_early:
917         if (plug_device) {
918                 ide_unlock_host(hwif->host);
919                 ide_plug_device(drive);
920         }
921
922         return irq_ret;
923 }
924 EXPORT_SYMBOL_GPL(ide_intr);
925
926 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
927 {
928         ide_hwif_t *hwif = drive->hwif;
929         u8 buf[4] = { 0 };
930
931         while (len > 0) {
932                 if (write)
933                         hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
934                 else
935                         hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
936                 len -= 4;
937         }
938 }
939 EXPORT_SYMBOL_GPL(ide_pad_transfer);