ide: make ide_special_rq() BUG() on unknown requests
[safe/jmp/linux-2.6] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58                              int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60         int ret = 1;
61         int error = 0;
62
63         if (uptodate <= 0)
64                 error = uptodate ? uptodate : -EIO;
65
66         /*
67          * if failfast is set on a request, override number of sectors and
68          * complete the whole request right now
69          */
70         if (blk_noretry_request(rq) && error)
71                 nr_bytes = rq->hard_nr_sectors << 9;
72
73         if (!blk_fs_request(rq) && error && !rq->errors)
74                 rq->errors = -EIO;
75
76         /*
77          * decide whether to reenable DMA -- 3 is a random magic for now,
78          * if we DMA timeout more than 3 times, just stay in PIO
79          */
80         if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
81             drive->retry_pio <= 3) {
82                 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
83                 ide_dma_on(drive);
84         }
85
86         if (!blk_end_request(rq, error, nr_bytes))
87                 ret = 0;
88
89         if (ret == 0 && dequeue)
90                 drive->hwif->rq = NULL;
91
92         return ret;
93 }
94
95 /**
96  *      ide_end_request         -       complete an IDE I/O
97  *      @drive: IDE device for the I/O
98  *      @uptodate:
99  *      @nr_sectors: number of sectors completed
100  *
101  *      This is our end_request wrapper function. We complete the I/O
102  *      update random number input and dequeue the request, which if
103  *      it was tagged may be out of order.
104  */
105
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 {
108         unsigned int nr_bytes = nr_sectors << 9;
109         struct request *rq = drive->hwif->rq;
110
111         if (!nr_bytes) {
112                 if (blk_pc_request(rq))
113                         nr_bytes = rq->data_len;
114                 else
115                         nr_bytes = rq->hard_cur_sectors << 9;
116         }
117
118         return __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
119 }
120 EXPORT_SYMBOL(ide_end_request);
121
122 /**
123  *      ide_end_dequeued_request        -       complete an IDE I/O
124  *      @drive: IDE device for the I/O
125  *      @uptodate:
126  *      @nr_sectors: number of sectors completed
127  *
128  *      Complete an I/O that is no longer on the request queue. This
129  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
130  *      We must still finish the old request but we must not tamper with the
131  *      queue in the meantime.
132  *
133  *      NOTE: This path does not handle barrier, but barrier is not supported
134  *      on ide-cd anyway.
135  */
136
137 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
138                              int uptodate, int nr_sectors)
139 {
140         BUG_ON(!blk_rq_started(rq));
141
142         return __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
143 }
144 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
145
146 void ide_complete_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 stat, u8 err)
147 {
148         struct ide_taskfile *tf = &cmd->tf;
149         struct request *rq = cmd->rq;
150         u8 tf_cmd = tf->command;
151
152         tf->error = err;
153         tf->status = stat;
154
155         drive->hwif->tp_ops->tf_read(drive, cmd);
156
157         if ((cmd->tf_flags & IDE_TFLAG_CUSTOM_HANDLER) &&
158             tf_cmd == ATA_CMD_IDLEIMMEDIATE) {
159                 if (tf->lbal != 0xc4) {
160                         printk(KERN_ERR "%s: head unload failed!\n",
161                                drive->name);
162                         ide_tf_dump(drive->name, tf);
163                 } else
164                         drive->dev_flags |= IDE_DFLAG_PARKED;
165         }
166
167         if (rq && rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
168                 memcpy(rq->special, cmd, sizeof(*cmd));
169
170         if (cmd->tf_flags & IDE_TFLAG_DYN)
171                 kfree(cmd);
172 }
173
174 void ide_complete_rq(ide_drive_t *drive, u8 err)
175 {
176         ide_hwif_t *hwif = drive->hwif;
177         struct request *rq = hwif->rq;
178
179         hwif->rq = NULL;
180
181         rq->errors = err;
182
183         if (unlikely(blk_end_request(rq, (rq->errors ? -EIO : 0),
184                                      blk_rq_bytes(rq))))
185                 BUG();
186 }
187 EXPORT_SYMBOL(ide_complete_rq);
188
189 void ide_kill_rq(ide_drive_t *drive, struct request *rq)
190 {
191         u8 drv_req = blk_special_request(rq) && rq->rq_disk;
192         u8 media = drive->media;
193
194         drive->failed_pc = NULL;
195
196         if ((media == ide_floppy && drv_req) || media == ide_tape)
197                 rq->errors = IDE_DRV_ERROR_GENERAL;
198
199         if ((media == ide_floppy || media == ide_tape) && drv_req)
200                 ide_complete_rq(drive, 0);
201         else
202                 ide_end_request(drive, 0, 0);
203 }
204
205 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
206 {
207         tf->nsect   = drive->sect;
208         tf->lbal    = drive->sect;
209         tf->lbam    = drive->cyl;
210         tf->lbah    = drive->cyl >> 8;
211         tf->device  = (drive->head - 1) | drive->select;
212         tf->command = ATA_CMD_INIT_DEV_PARAMS;
213 }
214
215 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
216 {
217         tf->nsect   = drive->sect;
218         tf->command = ATA_CMD_RESTORE;
219 }
220
221 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
222 {
223         tf->nsect   = drive->mult_req;
224         tf->command = ATA_CMD_SET_MULTI;
225 }
226
227 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
228 {
229         special_t *s = &drive->special;
230         struct ide_cmd cmd;
231
232         memset(&cmd, 0, sizeof(cmd));
233         cmd.protocol = ATA_PROT_NODATA;
234
235         if (s->b.set_geometry) {
236                 s->b.set_geometry = 0;
237                 ide_tf_set_specify_cmd(drive, &cmd.tf);
238         } else if (s->b.recalibrate) {
239                 s->b.recalibrate = 0;
240                 ide_tf_set_restore_cmd(drive, &cmd.tf);
241         } else if (s->b.set_multmode) {
242                 s->b.set_multmode = 0;
243                 ide_tf_set_setmult_cmd(drive, &cmd.tf);
244         } else if (s->all) {
245                 int special = s->all;
246                 s->all = 0;
247                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
248                 return ide_stopped;
249         }
250
251         cmd.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
252                        IDE_TFLAG_CUSTOM_HANDLER;
253
254         do_rw_taskfile(drive, &cmd);
255
256         return ide_started;
257 }
258
259 /**
260  *      do_special              -       issue some special commands
261  *      @drive: drive the command is for
262  *
263  *      do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
264  *      ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
265  *
266  *      It used to do much more, but has been scaled back.
267  */
268
269 static ide_startstop_t do_special (ide_drive_t *drive)
270 {
271         special_t *s = &drive->special;
272
273 #ifdef DEBUG
274         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
275 #endif
276         if (drive->media == ide_disk)
277                 return ide_disk_special(drive);
278
279         s->all = 0;
280         drive->mult_req = 0;
281         return ide_stopped;
282 }
283
284 void ide_map_sg(ide_drive_t *drive, struct request *rq)
285 {
286         ide_hwif_t *hwif = drive->hwif;
287         struct ide_cmd *cmd = &hwif->cmd;
288         struct scatterlist *sg = hwif->sg_table;
289
290         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
291                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
292                 cmd->sg_nents = 1;
293         } else if (!rq->bio) {
294                 sg_init_one(sg, rq->data, rq->data_len);
295                 cmd->sg_nents = 1;
296         } else
297                 cmd->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
298 }
299 EXPORT_SYMBOL_GPL(ide_map_sg);
300
301 void ide_init_sg_cmd(struct ide_cmd *cmd, int nsect)
302 {
303         cmd->nsect = cmd->nleft = nsect;
304         cmd->cursg_ofs = 0;
305         cmd->cursg = NULL;
306 }
307 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
308
309 /**
310  *      execute_drive_command   -       issue special drive command
311  *      @drive: the drive to issue the command on
312  *      @rq: the request structure holding the command
313  *
314  *      execute_drive_cmd() issues a special drive command,  usually 
315  *      initiated by ioctl() from the external hdparm program. The
316  *      command can be a drive command, drive task or taskfile 
317  *      operation. Weirdly you can call it with NULL to wait for
318  *      all commands to finish. Don't do this as that is due to change
319  */
320
321 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
322                 struct request *rq)
323 {
324         struct ide_cmd *cmd = rq->special;
325
326         if (cmd) {
327                 if (cmd->protocol == ATA_PROT_PIO) {
328                         ide_init_sg_cmd(cmd, rq->nr_sectors);
329                         ide_map_sg(drive, rq);
330                 }
331
332                 return do_rw_taskfile(drive, cmd);
333         }
334
335         /*
336          * NULL is actually a valid way of waiting for
337          * all current requests to be flushed from the queue.
338          */
339 #ifdef DEBUG
340         printk("%s: DRIVE_CMD (null)\n", drive->name);
341 #endif
342         ide_complete_rq(drive, 0);
343
344         return ide_stopped;
345 }
346
347 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
348 {
349         u8 cmd = rq->cmd[0];
350
351         switch (cmd) {
352         case REQ_PARK_HEADS:
353         case REQ_UNPARK_HEADS:
354                 return ide_do_park_unpark(drive, rq);
355         case REQ_DEVSET_EXEC:
356                 return ide_do_devset(drive, rq);
357         case REQ_DRIVE_RESET:
358                 return ide_do_reset(drive);
359         default:
360                 BUG();
361         }
362 }
363
364 /**
365  *      start_request   -       start of I/O and command issuing for IDE
366  *
367  *      start_request() initiates handling of a new I/O request. It
368  *      accepts commands and I/O (read/write) requests.
369  *
370  *      FIXME: this function needs a rename
371  */
372  
373 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
374 {
375         ide_startstop_t startstop;
376
377         BUG_ON(!blk_rq_started(rq));
378
379 #ifdef DEBUG
380         printk("%s: start_request: current=0x%08lx\n",
381                 drive->hwif->name, (unsigned long) rq);
382 #endif
383
384         /* bail early if we've exceeded max_failures */
385         if (drive->max_failures && (drive->failures > drive->max_failures)) {
386                 rq->cmd_flags |= REQ_FAILED;
387                 goto kill_rq;
388         }
389
390         if (blk_pm_request(rq))
391                 ide_check_pm_state(drive, rq);
392
393         SELECT_DRIVE(drive);
394         if (ide_wait_stat(&startstop, drive, drive->ready_stat,
395                           ATA_BUSY | ATA_DRQ, WAIT_READY)) {
396                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
397                 return startstop;
398         }
399         if (!drive->special.all) {
400                 struct ide_driver *drv;
401
402                 /*
403                  * We reset the drive so we need to issue a SETFEATURES.
404                  * Do it _after_ do_special() restored device parameters.
405                  */
406                 if (drive->current_speed == 0xff)
407                         ide_config_drive_speed(drive, drive->desired_speed);
408
409                 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
410                         return execute_drive_cmd(drive, rq);
411                 else if (blk_pm_request(rq)) {
412                         struct request_pm_state *pm = rq->data;
413 #ifdef DEBUG_PM
414                         printk("%s: start_power_step(step: %d)\n",
415                                 drive->name, pm->pm_step);
416 #endif
417                         startstop = ide_start_power_step(drive, rq);
418                         if (startstop == ide_stopped &&
419                             pm->pm_step == IDE_PM_COMPLETED)
420                                 ide_complete_pm_rq(drive, rq);
421                         return startstop;
422                 } else if (!rq->rq_disk && blk_special_request(rq))
423                         /*
424                          * TODO: Once all ULDs have been modified to
425                          * check for specific op codes rather than
426                          * blindly accepting any special request, the
427                          * check for ->rq_disk above may be replaced
428                          * by a more suitable mechanism or even
429                          * dropped entirely.
430                          */
431                         return ide_special_rq(drive, rq);
432
433                 drv = *(struct ide_driver **)rq->rq_disk->private_data;
434
435                 return drv->do_request(drive, rq, rq->sector);
436         }
437         return do_special(drive);
438 kill_rq:
439         ide_kill_rq(drive, rq);
440         return ide_stopped;
441 }
442
443 /**
444  *      ide_stall_queue         -       pause an IDE device
445  *      @drive: drive to stall
446  *      @timeout: time to stall for (jiffies)
447  *
448  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
449  *      to the port by sleeping for timeout jiffies.
450  */
451  
452 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
453 {
454         if (timeout > WAIT_WORSTCASE)
455                 timeout = WAIT_WORSTCASE;
456         drive->sleep = timeout + jiffies;
457         drive->dev_flags |= IDE_DFLAG_SLEEPING;
458 }
459 EXPORT_SYMBOL(ide_stall_queue);
460
461 static inline int ide_lock_port(ide_hwif_t *hwif)
462 {
463         if (hwif->busy)
464                 return 1;
465
466         hwif->busy = 1;
467
468         return 0;
469 }
470
471 static inline void ide_unlock_port(ide_hwif_t *hwif)
472 {
473         hwif->busy = 0;
474 }
475
476 static inline int ide_lock_host(struct ide_host *host, ide_hwif_t *hwif)
477 {
478         int rc = 0;
479
480         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
481                 rc = test_and_set_bit_lock(IDE_HOST_BUSY, &host->host_busy);
482                 if (rc == 0) {
483                         if (host->get_lock)
484                                 host->get_lock(ide_intr, hwif);
485                 }
486         }
487         return rc;
488 }
489
490 static inline void ide_unlock_host(struct ide_host *host)
491 {
492         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
493                 if (host->release_lock)
494                         host->release_lock();
495                 clear_bit_unlock(IDE_HOST_BUSY, &host->host_busy);
496         }
497 }
498
499 /*
500  * Issue a new request to a device.
501  */
502 void do_ide_request(struct request_queue *q)
503 {
504         ide_drive_t     *drive = q->queuedata;
505         ide_hwif_t      *hwif = drive->hwif;
506         struct ide_host *host = hwif->host;
507         struct request  *rq = NULL;
508         ide_startstop_t startstop;
509
510         /*
511          * drive is doing pre-flush, ordered write, post-flush sequence. even
512          * though that is 3 requests, it must be seen as a single transaction.
513          * we must not preempt this drive until that is complete
514          */
515         if (blk_queue_flushing(q))
516                 /*
517                  * small race where queue could get replugged during
518                  * the 3-request flush cycle, just yank the plug since
519                  * we want it to finish asap
520                  */
521                 blk_remove_plug(q);
522
523         spin_unlock_irq(q->queue_lock);
524
525         if (ide_lock_host(host, hwif))
526                 goto plug_device_2;
527
528         spin_lock_irq(&hwif->lock);
529
530         if (!ide_lock_port(hwif)) {
531                 ide_hwif_t *prev_port;
532 repeat:
533                 prev_port = hwif->host->cur_port;
534                 hwif->rq = NULL;
535
536                 if (drive->dev_flags & IDE_DFLAG_SLEEPING) {
537                         if (time_before(drive->sleep, jiffies)) {
538                                 ide_unlock_port(hwif);
539                                 goto plug_device;
540                         }
541                 }
542
543                 if ((hwif->host->host_flags & IDE_HFLAG_SERIALIZE) &&
544                     hwif != prev_port) {
545                         /*
546                          * set nIEN for previous port, drives in the
547                          * quirk_list may not like intr setups/cleanups
548                          */
549                         if (prev_port && prev_port->cur_dev->quirk_list == 0)
550                                 prev_port->tp_ops->set_irq(prev_port, 0);
551
552                         hwif->host->cur_port = hwif;
553                 }
554                 hwif->cur_dev = drive;
555                 drive->dev_flags &= ~(IDE_DFLAG_SLEEPING | IDE_DFLAG_PARKED);
556
557                 spin_unlock_irq(&hwif->lock);
558                 spin_lock_irq(q->queue_lock);
559                 /*
560                  * we know that the queue isn't empty, but this can happen
561                  * if the q->prep_rq_fn() decides to kill a request
562                  */
563                 rq = elv_next_request(drive->queue);
564                 spin_unlock_irq(q->queue_lock);
565                 spin_lock_irq(&hwif->lock);
566
567                 if (!rq) {
568                         ide_unlock_port(hwif);
569                         goto out;
570                 }
571
572                 /*
573                  * Sanity: don't accept a request that isn't a PM request
574                  * if we are currently power managed. This is very important as
575                  * blk_stop_queue() doesn't prevent the elv_next_request()
576                  * above to return us whatever is in the queue. Since we call
577                  * ide_do_request() ourselves, we end up taking requests while
578                  * the queue is blocked...
579                  * 
580                  * We let requests forced at head of queue with ide-preempt
581                  * though. I hope that doesn't happen too much, hopefully not
582                  * unless the subdriver triggers such a thing in its own PM
583                  * state machine.
584                  */
585                 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
586                     blk_pm_request(rq) == 0 &&
587                     (rq->cmd_flags & REQ_PREEMPT) == 0) {
588                         /* there should be no pending command at this point */
589                         ide_unlock_port(hwif);
590                         goto plug_device;
591                 }
592
593                 hwif->rq = rq;
594
595                 spin_unlock_irq(&hwif->lock);
596                 startstop = start_request(drive, rq);
597                 spin_lock_irq(&hwif->lock);
598
599                 if (startstop == ide_stopped)
600                         goto repeat;
601         } else
602                 goto plug_device;
603 out:
604         spin_unlock_irq(&hwif->lock);
605         if (rq == NULL)
606                 ide_unlock_host(host);
607         spin_lock_irq(q->queue_lock);
608         return;
609
610 plug_device:
611         spin_unlock_irq(&hwif->lock);
612         ide_unlock_host(host);
613 plug_device_2:
614         spin_lock_irq(q->queue_lock);
615
616         if (!elv_queue_empty(q))
617                 blk_plug_device(q);
618 }
619
620 static void ide_plug_device(ide_drive_t *drive)
621 {
622         struct request_queue *q = drive->queue;
623         unsigned long flags;
624
625         spin_lock_irqsave(q->queue_lock, flags);
626         if (!elv_queue_empty(q))
627                 blk_plug_device(q);
628         spin_unlock_irqrestore(q->queue_lock, flags);
629 }
630
631 static int drive_is_ready(ide_drive_t *drive)
632 {
633         ide_hwif_t *hwif = drive->hwif;
634         u8 stat = 0;
635
636         if (drive->waiting_for_dma)
637                 return hwif->dma_ops->dma_test_irq(drive);
638
639         if (hwif->io_ports.ctl_addr &&
640             (hwif->host_flags & IDE_HFLAG_BROKEN_ALTSTATUS) == 0)
641                 stat = hwif->tp_ops->read_altstatus(hwif);
642         else
643                 /* Note: this may clear a pending IRQ!! */
644                 stat = hwif->tp_ops->read_status(hwif);
645
646         if (stat & ATA_BUSY)
647                 /* drive busy: definitely not interrupting */
648                 return 0;
649
650         /* drive ready: *might* be interrupting */
651         return 1;
652 }
653
654 /**
655  *      ide_timer_expiry        -       handle lack of an IDE interrupt
656  *      @data: timer callback magic (hwif)
657  *
658  *      An IDE command has timed out before the expected drive return
659  *      occurred. At this point we attempt to clean up the current
660  *      mess. If the current handler includes an expiry handler then
661  *      we invoke the expiry handler, and providing it is happy the
662  *      work is done. If that fails we apply generic recovery rules
663  *      invoking the handler and checking the drive DMA status. We
664  *      have an excessively incestuous relationship with the DMA
665  *      logic that wants cleaning up.
666  */
667  
668 void ide_timer_expiry (unsigned long data)
669 {
670         ide_hwif_t      *hwif = (ide_hwif_t *)data;
671         ide_drive_t     *uninitialized_var(drive);
672         ide_handler_t   *handler;
673         unsigned long   flags;
674         int             wait = -1;
675         int             plug_device = 0;
676
677         spin_lock_irqsave(&hwif->lock, flags);
678
679         handler = hwif->handler;
680
681         if (handler == NULL || hwif->req_gen != hwif->req_gen_timer) {
682                 /*
683                  * Either a marginal timeout occurred
684                  * (got the interrupt just as timer expired),
685                  * or we were "sleeping" to give other devices a chance.
686                  * Either way, we don't really want to complain about anything.
687                  */
688         } else {
689                 ide_expiry_t *expiry = hwif->expiry;
690                 ide_startstop_t startstop = ide_stopped;
691
692                 drive = hwif->cur_dev;
693
694                 if (expiry) {
695                         wait = expiry(drive);
696                         if (wait > 0) { /* continue */
697                                 /* reset timer */
698                                 hwif->timer.expires = jiffies + wait;
699                                 hwif->req_gen_timer = hwif->req_gen;
700                                 add_timer(&hwif->timer);
701                                 spin_unlock_irqrestore(&hwif->lock, flags);
702                                 return;
703                         }
704                 }
705                 hwif->handler = NULL;
706                 /*
707                  * We need to simulate a real interrupt when invoking
708                  * the handler() function, which means we need to
709                  * globally mask the specific IRQ:
710                  */
711                 spin_unlock(&hwif->lock);
712                 /* disable_irq_nosync ?? */
713                 disable_irq(hwif->irq);
714                 /* local CPU only, as if we were handling an interrupt */
715                 local_irq_disable();
716                 if (hwif->polling) {
717                         startstop = handler(drive);
718                 } else if (drive_is_ready(drive)) {
719                         if (drive->waiting_for_dma)
720                                 hwif->dma_ops->dma_lost_irq(drive);
721                         if (hwif->ack_intr)
722                                 hwif->ack_intr(hwif);
723                         printk(KERN_WARNING "%s: lost interrupt\n",
724                                 drive->name);
725                         startstop = handler(drive);
726                 } else {
727                         if (drive->waiting_for_dma)
728                                 startstop = ide_dma_timeout_retry(drive, wait);
729                         else
730                                 startstop = ide_error(drive, "irq timeout",
731                                         hwif->tp_ops->read_status(hwif));
732                 }
733                 spin_lock_irq(&hwif->lock);
734                 enable_irq(hwif->irq);
735                 if (startstop == ide_stopped) {
736                         ide_unlock_port(hwif);
737                         plug_device = 1;
738                 }
739         }
740         spin_unlock_irqrestore(&hwif->lock, flags);
741
742         if (plug_device) {
743                 ide_unlock_host(hwif->host);
744                 ide_plug_device(drive);
745         }
746 }
747
748 /**
749  *      unexpected_intr         -       handle an unexpected IDE interrupt
750  *      @irq: interrupt line
751  *      @hwif: port being processed
752  *
753  *      There's nothing really useful we can do with an unexpected interrupt,
754  *      other than reading the status register (to clear it), and logging it.
755  *      There should be no way that an irq can happen before we're ready for it,
756  *      so we needn't worry much about losing an "important" interrupt here.
757  *
758  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
759  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
760  *      looks "good", we just ignore the interrupt completely.
761  *
762  *      This routine assumes __cli() is in effect when called.
763  *
764  *      If an unexpected interrupt happens on irq15 while we are handling irq14
765  *      and if the two interfaces are "serialized" (CMD640), then it looks like
766  *      we could screw up by interfering with a new request being set up for 
767  *      irq15.
768  *
769  *      In reality, this is a non-issue.  The new command is not sent unless 
770  *      the drive is ready to accept one, in which case we know the drive is
771  *      not trying to interrupt us.  And ide_set_handler() is always invoked
772  *      before completing the issuance of any new drive command, so we will not
773  *      be accidentally invoked as a result of any valid command completion
774  *      interrupt.
775  */
776
777 static void unexpected_intr(int irq, ide_hwif_t *hwif)
778 {
779         u8 stat = hwif->tp_ops->read_status(hwif);
780
781         if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
782                 /* Try to not flood the console with msgs */
783                 static unsigned long last_msgtime, count;
784                 ++count;
785
786                 if (time_after(jiffies, last_msgtime + HZ)) {
787                         last_msgtime = jiffies;
788                         printk(KERN_ERR "%s: unexpected interrupt, "
789                                 "status=0x%02x, count=%ld\n",
790                                 hwif->name, stat, count);
791                 }
792         }
793 }
794
795 /**
796  *      ide_intr        -       default IDE interrupt handler
797  *      @irq: interrupt number
798  *      @dev_id: hwif
799  *      @regs: unused weirdness from the kernel irq layer
800  *
801  *      This is the default IRQ handler for the IDE layer. You should
802  *      not need to override it. If you do be aware it is subtle in
803  *      places
804  *
805  *      hwif is the interface in the group currently performing
806  *      a command. hwif->cur_dev is the drive and hwif->handler is
807  *      the IRQ handler to call. As we issue a command the handlers
808  *      step through multiple states, reassigning the handler to the
809  *      next step in the process. Unlike a smart SCSI controller IDE
810  *      expects the main processor to sequence the various transfer
811  *      stages. We also manage a poll timer to catch up with most
812  *      timeout situations. There are still a few where the handlers
813  *      don't ever decide to give up.
814  *
815  *      The handler eventually returns ide_stopped to indicate the
816  *      request completed. At this point we issue the next request
817  *      on the port and the process begins again.
818  */
819
820 irqreturn_t ide_intr (int irq, void *dev_id)
821 {
822         ide_hwif_t *hwif = (ide_hwif_t *)dev_id;
823         struct ide_host *host = hwif->host;
824         ide_drive_t *uninitialized_var(drive);
825         ide_handler_t *handler;
826         unsigned long flags;
827         ide_startstop_t startstop;
828         irqreturn_t irq_ret = IRQ_NONE;
829         int plug_device = 0;
830
831         if (host->host_flags & IDE_HFLAG_SERIALIZE) {
832                 if (hwif != host->cur_port)
833                         goto out_early;
834         }
835
836         spin_lock_irqsave(&hwif->lock, flags);
837
838         if (hwif->ack_intr && hwif->ack_intr(hwif) == 0)
839                 goto out;
840
841         handler = hwif->handler;
842
843         if (handler == NULL || hwif->polling) {
844                 /*
845                  * Not expecting an interrupt from this drive.
846                  * That means this could be:
847                  *      (1) an interrupt from another PCI device
848                  *      sharing the same PCI INT# as us.
849                  * or   (2) a drive just entered sleep or standby mode,
850                  *      and is interrupting to let us know.
851                  * or   (3) a spurious interrupt of unknown origin.
852                  *
853                  * For PCI, we cannot tell the difference,
854                  * so in that case we just ignore it and hope it goes away.
855                  */
856                 if ((host->irq_flags & IRQF_SHARED) == 0) {
857                         /*
858                          * Probably not a shared PCI interrupt,
859                          * so we can safely try to do something about it:
860                          */
861                         unexpected_intr(irq, hwif);
862                 } else {
863                         /*
864                          * Whack the status register, just in case
865                          * we have a leftover pending IRQ.
866                          */
867                         (void)hwif->tp_ops->read_status(hwif);
868                 }
869                 goto out;
870         }
871
872         drive = hwif->cur_dev;
873
874         if (!drive_is_ready(drive))
875                 /*
876                  * This happens regularly when we share a PCI IRQ with
877                  * another device.  Unfortunately, it can also happen
878                  * with some buggy drives that trigger the IRQ before
879                  * their status register is up to date.  Hopefully we have
880                  * enough advance overhead that the latter isn't a problem.
881                  */
882                 goto out;
883
884         hwif->handler = NULL;
885         hwif->req_gen++;
886         del_timer(&hwif->timer);
887         spin_unlock(&hwif->lock);
888
889         if (hwif->port_ops && hwif->port_ops->clear_irq)
890                 hwif->port_ops->clear_irq(drive);
891
892         if (drive->dev_flags & IDE_DFLAG_UNMASK)
893                 local_irq_enable_in_hardirq();
894
895         /* service this interrupt, may set handler for next interrupt */
896         startstop = handler(drive);
897
898         spin_lock_irq(&hwif->lock);
899         /*
900          * Note that handler() may have set things up for another
901          * interrupt to occur soon, but it cannot happen until
902          * we exit from this routine, because it will be the
903          * same irq as is currently being serviced here, and Linux
904          * won't allow another of the same (on any CPU) until we return.
905          */
906         if (startstop == ide_stopped) {
907                 BUG_ON(hwif->handler);
908                 ide_unlock_port(hwif);
909                 plug_device = 1;
910         }
911         irq_ret = IRQ_HANDLED;
912 out:
913         spin_unlock_irqrestore(&hwif->lock, flags);
914 out_early:
915         if (plug_device) {
916                 ide_unlock_host(hwif->host);
917                 ide_plug_device(drive);
918         }
919
920         return irq_ret;
921 }
922 EXPORT_SYMBOL_GPL(ide_intr);
923
924 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
925 {
926         ide_hwif_t *hwif = drive->hwif;
927         u8 buf[4] = { 0 };
928
929         while (len > 0) {
930                 if (write)
931                         hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
932                 else
933                         hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
934                 len -= 4;
935         }
936 }
937 EXPORT_SYMBOL_GPL(ide_pad_transfer);